
The Canon package: a fast kernel for tensor

manipulators

L.R.U. Manssur and R. Portugal

Laboratório Nacional de Computação Cient́ıfica (LNCC), Av. Getúlio Vargas 333,
Petrópolis, RJ, CEP 25651-075, Brazil

Abstract

This paper describes the Canon package written in the Maple programming lan-
guage. Canon’s purpose is to work as a kernel for complete Maple tensor packages
or any Maple package for manipulating indexed objects obeying generic permutation
symmetries and possibly having dummy indices. Canon uses Computational Group
Theory algorithms to efficiently simplify or manipulate generic tensor expressions.
We describe the main command to access the package, give examples, and estimate
typical computation timings.

Key words: tensor calculus, Maple, computational group theory, computer algebra
PACS:

Email addresses: leon@lncc.br (L.R.U. Manssur), portugal@lncc.br (R.
Portugal).

Preprint submitted to Elsevier Science 24 June 2003

LONG WRITE-UP

1 Introduction

Abstract tensor manipulation is a desirable feature of any multiple purpose
computer algebra system such as Mathematica, Maple, or Mupad. Despite
this fact, all available tensor packages are inefficient in manipulating indices
obeying permutation symmetries. The calculations with the Riemann tensor
polynomials, which have many applications in theoretical Physics, highlight
this problem. [1] For example, the product of seven Riemann tensors has 28
indices, and a näıvely implemented tensor package would deal with factorial
of 28 index configurations. The exponential number of index configurations
requires a careful strategy to address the index manipulation problem.

Fortunately, index canonicalization can be reduced to the problem of finding
the canonical representatives of single [2] or double cosets [3] of permutation
groups. This reduction is addressed in Ref. [4]. That reference describes an
experimental implementation which was used to estimate the algorithm’s ef-
ficiency. That implementation was improved becoming the Canon package 1 ,
which is described in the present paper. Canon’s purpose is to be a kernel
for Maple tensor packages. Its design and implementation is taut, using very
basic structures. A small user interface (CanonPrint) was included.

A complete tensor (or indexed object) package consists of a large number of
tools and built-in tensors (objects) which depend heavily on the application
area. The indexed objects can be tensors, but also can be spinors, differential
forms, objects with gauge indices and so on. In any case, the indices usually
obey permutation symmetries, and there are dummy indices. As mentioned
earlier, the manipulation of indices is not trivial, and can be performed by some
black box using sophisticated techniques from computational group theory.[5–
7] These techniques are not required in designing most of the commands of a
complete tensor package. Canon’s purpose is to be such black box.

In object oriented languages, objects are the black boxes. What matters is the
description of what is the object input and what is the output. The internal
structure does not matter. In this work we follow the same strategy. We de-
scribe in details the “methods” of the Canon package, which can be loaded by
issuing

> libname := ‘c:/Canon‘, libname:

> with(Canon);

1 The Canon’s web page is http://www.cbpf.br/∼portugal/Canon.html.

2

[CanonDefine, CanonPrint, CanonUnPrint, Canonical, CanonicalOne]

These external commands allow a user to communicate with the internal pro-
cedures. We do not describe the internal commands except for a brief mention
of the main ones in the Appendix. They rely on computational group theory
algorithms, such as the one for finding strong generating sets of permutation
groups, which are implemented in Canon. Note that there is a group pack-
age in Maple, but it does not have the key algorithms needed here. We have
re-implemented even basic algorithms such as multiplication of permutations
because of efficiency requirements. No command of the Maple group package
was used.

This paper is organized as follows: in section 2, we define symmetries and
establish the notation to be used; in section 3, we address the problem of
algebraic constraints; in section 4, we describe the procedures of the package
with some examples; in section 5 we present a performance study; in section 6
we make some remarks on computational complexity and possible applications
and finally we draw our conclusions.

2 Symmetries

In general, indexed objects obey permutation symmetries, which are com-
monly described as a set of equations of the form

T i1...in = εσT σ(i1 ...in) (1)

where σ(i1...in) is a permutation of i1...in and εσ is either 1 or −1. For example,
the permutation symmetries of the Riemann tensor are usually described as

R i1 i2 i3 i4 =−R i2 i1 i3 i4 (2)

R i1 i2 i3 i4 =−R i1 i2 i4 i3 (3)

R i1 i2 i3 i4 =R i3 i4 i1 i2. (4)

From these permutation symmetries, one can derive new ones. In the case
of the Riemann tensor, there is a total of 8 equations. The total number of
equations appears mysterious in tensor notation, but it is naturally understood
in group notation. The permutation symmetries associated with Eqs. (2)-(4)
can be expressed by permutations in the group {1,−1}⊗S4 (the direct product
of the multiplicative group {1,−1} and the symmetric group of degree 4): they
correspond to −(1, 2), −(3, 4) and (1, 3)(2, 4) respectively. These permutations
are the generating set of the group of symmetries of the Riemann tensor. The

3

whole group can be obtained by exhaustive multiplication of the permutations
(composition of permutations) of the generating set, yielding

S = {+(), −(1, 2), −(3, 4), (1, 3)(2, 4), (1, 3)(2, 4), (5)

−(1, 3, 2, 4), −(1, 4, 2, 3), (1, 4)(2, 3)}.

The order of the group S (subgroup of {1,−1} ⊗ S4) gives the total number
of tensor equations. In the present context, it is important to stress that the
size of the generating set of a group G of order |G| can be at most blog2 |G|c.
The symmetry group can be large, such as factorial of n elements for rank-n
tensors, but the size of the generating set scales with n. This feature allows
the efficient manipulation of tensors with many indices. [4]

In Canon, a minus-signed permutation is represented by a Maple list, where
the first element is −1, and the second element is a list of lists describing
the permutation. For example, symmetries associated with Eqs. (2)-(4) are
represented as [−1, [[1, 2]]], [−1, [[3, 4]]], and [[1, 3], [2, 4]], respectively. The
form [+1, [[1, 3], [2, 4]]] is not allowed. On the other hand, [−1, [[1, 3], [2, 4]]]
is acceptable, which represents the signed permutation −(1, 3)(2, 4). The per-
mutations in S act on the position of the indices of Eqs. (2)-(4) as described
in Eq. (1).

3 Algebraic Constraints

By now one might be asking about the cyclic symmetry of the Riemann tensor:

Ri1 i2 i3 i4 + Ri1 i4 i2 i3 + Ri1 i3 i4 i2 = 0. (6)

This equation cannot be represented as a permutation symmetry. It is an
algebraic constraint which cannot be addressed by the techniques of compu-
tational group theory. To deal with (6) one needs to use group algebra (group
ring) algorithms,[8] which address expressions of the type

() + (234) + (243) = 0. (7)

Unfortunately, group algebra algorithms have exponential complexity on the
number of indices, associated with the exponential number of Young tableauxs
[9]. Alternative approaches [10,11] seem to be more convenient, although they
lose the generality which is provided by the group algebra approach. An effi-
cient approach (in terms of timing) for simplifying Riemann tensor polynomi-
als is to use a table of rules, which stores all algebraic constraints of Riemann

4

tensor monomials up to some degree. These constraints are used after the
canonicalization as the one described in this work. The table approach is used
in Ref. [12]. The Canon package does not address algebraic constraints.

4 User commands

4.1 CanonDefine

The command CanonDefine associates a symmetry with a tensor. The syntax
is

CanonDefine(tensor name, number of indices, generating set,

base)

The argument base is optional. For example, to define the Riemann tensor,
one issues the command

> CanonDefine(R, 4, { [-1, [[1, 2]]], [[1, 3], [2, 4]] });

CanonTableR,40
= {[−1, [[1, 2]]], [−1, [[3, 4]]], [[1, 3], [2, 4]]} , [1, 3]

Notice that it is enough to give 2 permutations for the symmetries of the
Riemann tensor, since the above set generates the group S of Eq. (5). As an
initial step, CanonDefine verifies if generating set is a strong generating set
with respect to the base. If the base is not given or the generating set is not
strong, a internal procedure generates them using Schreier-Sims’ algorithm.[6]
If one wishes to use the standard base [1, 2, 3, 4] 2 , one must pass it as the
fourth argument of CanonDefine. As a final step, CanonDefine stores the
strong generating set and the associated base in the table CanonTable. Notice
that the permutation −(3, 4) was added and the base [1, 3] was generated in
the above example. To verify which tensors are defined and their respective
symmetries, one simply prints the table CanonTable.

> print(CanonTable);

table([(R, 4) = table([0 = ({[-1, [[1, 2]]], [-1, [[3, 4]]], [[1, 3], [2, 4]]}, [1, 3])])])

The tensor symmetry and base are stored in the index 0 of CanonTable[R,4].
Then, there is room for other types of data related to the tensor R with 4

indices. It is allowed to use tensors with the same name but with different
number of indices.

2 Notice that the notations for bases and citations are the same.

5

4.2 Canonical

The command Canonical puts a tensor expression into its equivalent normal
form. If the input is a single tensor, the output is the canonical form, charac-
terized by the indices being in the least ordering (the definition of permutation
ordering is given in [4]). Tensors are indexed objects such as T[a,-b], where
T is the tensor name, and positive (negative) indices represent contravariant
(covariant) indices. Dummy indices are represented by repeated indices with
opposite sign, such as T[i,-i]. Dummy indices may have symmetries induced
by the symmetries of the metric tensor. There are 3 cases: (1) symmetric met-
ric (as usual in tensor calculus), T[i,-i]=T[-i,i], (2) anti-symmetric metric
(as usual in spinor calculus), T[i,-i]=-T[-i,i], and (3) metric with no sym-
metry (as usual in affine tensor calculus), T[i,-i] 6= ± T[-i,i]. Canon uses
the global variable CanonMetricSymmetry := +1,-1 or 0 to specify the 3
cases, respectively. By default it is assigned the +1 value. For example, the
canonicalization of the Riemann tensor is obtained by issuing

> Canonical(R[-b, i, -i, a]);

−R a i
b i

Canonical consults the table CanonTable to verify the symmetries of the
tensors in the input. The next example is more elaborated.

> tensor_expression := CanonPrint(R[-e,j,i,b]*R[-b,-c,a,d]*

R[-d,c,-a,e]);

tensor expression := R e
j i b R b c

a d R d
c

a
e

> Canonical(tensor expression);

−R i a j b R a
c d e R b d c e

To address the canonicalization of tensor monomials, Canon uses the reduction
algorithm described in Ref. [11]. Products of tensors are merged into a single
tensor which inherits the symmetries of the original tensors. The merged tensor
can be canonicalized using the computational group theory techniques. In the
end, the canonicalized merged tensor is converted back to a tensor monomial
with the indices of each tensor in the canonical ordering. The output is not
canonical with respect to term ordering, since the product is commutative. In
this case, we say the output is in a normal form.

6

4.3 CanonicalOne

The command CanonicalOne is a shortcut to canonicalize a single tensor.
One does not define the tensor, but pass the symmetry in the form of a strong
generating set as the second argument and the base as the third argument of
CanonicalOne. The syntax is

CanonicalOne (a single tensor, strong generating set, base).

4.4 Interface

The interface is controlled by the command CanonPrint. It wraps all indexed
objects of an expression by the function TENSOR, which displays contravariant
(positive) indices in the upper level and covariant (negative) indices in the
lower level. For example

> CanonPrint(T[a, -b]);

T a
b

The command lprint reveals the hidden function:

> lprint(%);

TENSOR(T[a,-b])

The function TENSOR has an associated procedure ‘print/ TENSOR‘ which
prints positive indices as powers and negative indices as table indices gener-
ating the desired display effects in Maple.

After issuing the commands CanonPrint, Canononical, or CanonicalOne, all
indexed objects of an expression are wrapped by the function TENSOR. The
command CanonUnPrint remove the wrapping, and the expression returns to
its original form with no interface.

5 Performance

The single coset algorithm (free indices) is known to be polynomial, while
the double coset algorithm (dummy indices) is known to be exponential in
the worst case. On the other hand, the symmetries of tensor expressions are
special cases of subgroups of {1,−1} ⊗ S2n, and practical calculations show
that Canon is efficient enough.

7

0

0.5

1

1.5

2

2.5

3

3.5

time(min)

20 40 60 80 100

number of indices

Fig. 1. Timing to find the canonical form of a Riemann monomial ver-
sus the number of indices. The dashed line is a fitting curve of the form
y = 3.3 × 10−8

x
4, where x, y are the horizontal and vertical axis respec-

tively.

The symmetries of the Riemann tensor are some of the most complex that
occur in practice. Therefore, monomials built out of Riemann tensors are ex-
amples of complex tensor expressions. We have developed an auxiliary pro-
gram that generates at random Riemann monomials of any degree (number of
Riemann tensors) with all indices contracted (Riemann scalar invariants). For
each Riemann monomial we calculate the time to find the canonical represen-
tative. We have used a 1.2 GHz processor PC, and we have excluded from the
count all timings of vanishing results. The vertical axis of the plot of Fig. 1
is the mean value of 40 timings for each monomial. The horizontal axis is the
number of indices.

Fig. 1 shows that Canon can handle monomials with a large number of indices.
The storage space is very low in order to produce the data. If we try to fit
the simulated curve with a polynomial curve of the form y = axN , for integer
N < 4 the curve passes above the simulated curve, and for N > 4 the curve
passes below for most points. Using the least square method, the best fit is
y = 3.3 × 10−8x4. Notice that the deviation from the polynomial curve grows
with the degree due to the fact that 40 timings give worse and worse statistics
with increasing degree.

Now we give the timing (in seconds) and the allocated memory for verifying
that scalar invariants built out of the Riemann tensor with no Ricci tensors

8

are zero. We give 3 examples of degrees 5, 6, and 7.

> byal := kernelopts(bytesalloc):

> invar1 := CanonPrint(R[a,b,c,d]*R[-a,-b,-c,e]*R[-d,-e,f,g]*

R[-f,h,i,j]*R[-g,-h,-i,-j]);

invar1 := R a b c d R a b c
e R d e

f g R f
h i j R g h i j

> invar2 := CanonPrint(R[a,b,c,d]*R[-a,-b,-c,e]*R[-d,-e,f,g]*

R[-f,-g,h,i]*R[-h,j,k,l]*R[-i,-j,-k,-l]);

invar2 := R a b c d R a b c
e R d e

f g R f g
h i R h

j k l R i j k l

> invar3 := CanonPrint(R[a,b,c,d]*R[-a,-b,-c,e]*R[-d,-e,f,g]*

R[-f,-g,h,i]*R[-h,-i,j,k]*R[-j,l,m,n]*R[-k,-l,-m,-n]);

invar3 := R a b c d R a b c
e R d e

f g R f g
h i R h i

j k R j
l m n R k l m n

> showtime();

> Canonical(invar1);

0

time = 0.71, bytes = 7149866

> Canonical(invar2);

0

time = 0.98, bytes = 10165606

> Canonical(invar3);

0

time = 1.39, bytes = 14129170

> off;

> kernelopts(bytesalloc) - byal;

196572

The amount of bytes allocated is less than 200 kB. The total number of non-
equivalent zero invariants is: 5 for degree 5, 27 for degree 6, and 248 for degree
7.

9

Appendix: Main internal commands

This appendix describes the key internal algorithms of Canon. Most of them
are based on computational group theory and are responsible for the package
efficiency. All internal commands have names of the form ‘Canon/command‘.
The total number is above 50 commands and the user can find a brief descrip-
tion of each of them in the acompanying code (Canon.mpl). The arguments
between square brackets are optional.

‘Canon/product‘(perm1, perm2) calculates the product of the two per-
mutations perm1*perm2 (permutations are applied to the right). Permutations
can be minus signed or not.

‘Canon/orbit‘(pt, listperms, [B, sch, back]) calculates the orbit
of point pt in the group generated by the list of (signed) permutations list-
perms. Optionally, if given a basis B, and names sch and back, calculates the
Schreier vector and backward pointers.

‘Canon/trace‘(pt, sch, back) traces a Schreier vector. The arguments
sch and back are the Schreier vector and the associated backward pointer,
respectively, as assigned by the procedure ‘Canon/orbit‘.

‘Canon/SortPermutations‘(listperms, B) sorts the list of permutations
listperms with respect to base B.

‘Canon/singcoset‘(perm, strongS, B, free ind) obtains the canoni-
cal representative of the single coset, which contains the permutation perm.
The group is generated by the list of strong generators strongS with respect
to base B. free ind specifies the positions to be affected, when using this
procedure in connection with ‘Canon/doubcoset‘. Output is in the form of
a sequence of 3 elements: resulting permutation, updated strong generators,
updated free indices positions.

‘Canon/doubcoset‘(perm, strongS, BS, strongD, BD) finds the canon-
ical representative of the double coset, which contains the permutation perm.
The groups are generated by the lists of strong generators strongS with re-
spect to base BS and strongD with respect to BD.

‘Canon/isingroup‘(perm, strongS, B) performs membership testing. It
returns true if perm is in the group generated by the list of strong generators
strongS with respect to base B, and false otherwise.

‘Canon/schreier-sims‘(K, [B]) uses the Schreier-Sims algorithm [6]
in order to find a strong generating set given a generating set K, and optionally
a base B. If not given a base, a base is obtained from K.

10

‘Canon/indices‘(expr) finds the indices of the tensorial expression expr.
The output is a list of lists: [[dummy], [free], [numerical]]. This command does
not use computational group algorithms.

Acknowledgements

R. P. thanks K. Lake, N. Pelavras and I. Mustapha for the kind hospitality at
Queen’s University, where this work was started. R. P. was partially supported
by CNPq and L.R.U.M. was supported by CNPq and PCI/MCT.

References

[1] S.A. Fulling, R.C. King, B.G. Wybourne and C.J. Cummins, Normal forms
for tensor polynomials: I. The Riemann tensor, Class. Quantum Grav. 9

(1992) 1151-1197.

[2] G. Butler, Effective Computation with Group Homomorphisms, J. Symbolic
Comp. 1 (1985) 143-157.

[3] G. Butler, On Computing Double Coset Representatives in Permutation
Groups, Computational Group Theory, ed. M.D. Atkinson, Academic Press
(1984) pp. 283-290.

[4] L.R.U. Manssur, R. Portugal, B.F. Svaiter, Group-theoretic Approach for
Symbolic Tensor Manipulation, Int. J. Mod. Phys. C 13 (2002) 859-880.

[5] C.C. Sims, Computation with Permutation Groups, Proceedings of the
Second Symposium on Symbolic and Algebraic Manipulation (Los Angeles
1971), ed. S.R. Petrick, ACM, New York (1971).

[6] J.S. Leon, On an Algorithm for Finding a Base and a Strong Generating
Set for a Group Given by Generating Permutations, Math. Comp. 35 (1980)
941-974.

[7] G. Butler, Fundamental Algorithms for Permutation Groups, Lecture Notes
in Computer Science, vol. 559, Springer-Verlag (1991).

[8] B. Fiedler, A Use of Ideal Decomposition on the Computer Algebra of Tensor
Expressions, Zeitschrift für Analysis und ihne Anwendungen 16 (1997) 145-
164.

[9] H. Boerner, Representations of Groups, North-Holland Pub. Co.,
Amsterdam (1970).

[10] A. Balfagon, X. Jaen, Review of some classical gravitational superenergy
tensors using computational techniques Class. Quantum Grav. 17 (2000)
2491-2497.

11

[11] R. Portugal, Algorithmic Simplification of Tensor Expressions, J. Phys. A:
Math. Gen. 32 (1999) 7779-7789.

[12] L. Parker, S.M. Christiansen, MathTensor, A system for Doing Tensor
Analysis by Computer, Addison-Wesley, Reading, MT, 1994.

12

