





## PÓS-GRADUAÇÃO EM MODELAGEM COMPUTACIONAL

GA-032 Sistemas Lineares 4P22 – Sexta Lista de Exercícios

Notação:  $t \in \mathbb{R}, k \in \mathbb{Z}$   $\mathbf{x} \in \mathbb{R}^n$  (vetor de estados)  $\mathbf{u} \in \mathbb{R}^m$  (vetor de entrada)  $\mathbf{y} \in \mathbb{R}^p$  (vetor de saída) n: ordem do sistema

## Exercício 1

Considere o SLIT MIMO causal a tempo discreto representado pelo diagrama de blocos mostrado na **Figura 1**, onde os parâmetros  $a_1$  e  $a_2$  são reais não-nulos e os cruzamentos diagonais de linha **não** representam conexão física.

- *a)* Determine as matrizes **A**, **B**, **C** e **D** de uma representação em espaço de estados do sistema.
- *b*) Determine os polos do sistema.
- *c)* Qual condição deve ser imposta aos parâmetros  $a_1$  e  $a_2$  para garantir a estabilidade assintótica do sistema?

Para 
$$a_1 = 4/5$$
 e  $a_2 = 1/2$ :

- d) Implemente computacionalmente o SLIT via equações matriciais de estado e saída e plote as saídas  $y_1(k)$  e  $y_2(k)$  para a entradas  $u_1(k) = \delta(k)$  e  $u_2(k) = 0$ , com estado inicial nulo em k = 0.
- e) Encontre uma expressão analítica explícita **não-matricial** para  $y_1(k)$ , para as condições especificadas no item anterior.

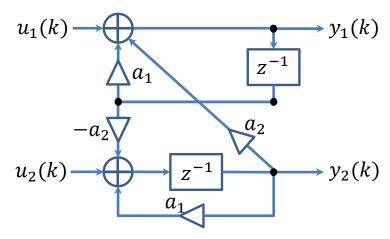



Figura 1. Diagrama de blocos do sistema MIMO do Exercício 1.







## EXERCÍCIO 2

Considere o SLIT SISO causal, a tempo discreto, mostrado no diagrama de fluxo da **Figura 2**, onde  $m_1$  e  $m_2$  são escalares reais não-nulos, tais que  $0 < (m_1 + m_2) \le 1$ .



Figura 2. Diagrama de fluxo do SLIT SISO do Exercício 2.

- a) Determine as matrizes **A**, **B**, **C** e **D** de uma representação em espaço de estados do sistema.
- b) O SLIT é Assintoticamente Estável, na implementação da Figura 2?
- c) Determine a função de transferência do SLIT, reduzida àquela de menor ordem.
- d) O SLIT é BIBO-estável?
- e) O SLIT da Figura 2 é diagonalizável? Caso seja, encontre uma base P para o  $\mathbb{R}^n$ , tal que a mudança de base  $\widehat{x}(k) = P^{-1}x(k)$  diagonaliza o sistema. Encontre as matrizes  $\widehat{A}$ ,  $\widehat{B}$ ,  $\widehat{C}$  e  $\widehat{D}$  do SLIT após a mudança de base.
- f) O SLIT é Marginalmente estável?
- g) Encontre os pontos de equilíbrio do SLIT homogêneo.
- h) Para cada elemento do vetor de estados, obtenha uma expressão algébrica explícita para a solução da equação de estado homogênea, quando o estado inicial é igual um autovetor de **A**. Dica: use a REE da forma desacoplada do SLIT, se houver.







## **EXERCÍCIO 3**

Considere o SLIT SISO causal a tempo discreto, representado pela ED de  $3^{\underline{a}}$  ordem abaixo, onde y(k) é a saída do sistema e u(k) a sua entrada:

$$y(k) - 2y(k-1) + \frac{1}{4}y(k-2) - \frac{1}{2}y(k-3) = u(k) - \frac{3}{2}u(k-1) + u(k-2).$$

- a) Determine as matrizes **A**, **B**, **C** e **D** de uma representação em espaço de estados para a ED, tal que a matriz **A** seja matriz companheira do polinômio característico da ED homogênea.
- b) O SLIT da REE do item (a) é Assintoticamente Estável? É diagonalizável?
- c) Obtenha a função de transferência do SLIT, reduzida àquela de menor ordem.
- d) O SLIT é BIBO-estável?
- e) Encontre os parâmetros e desenhe, se houver, um diagrama de fluxo da forma paralela do SLIT de 3ª ordem.