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Felipe Sodré M. Barros2, Guilherme M. Gall3, Luiz M. R. Gadelha Jr.3,
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Abstract. Spatial analysis tools and synthesis of results are key to iden-
tifying the best solutions in biodiversity conservation. The importance
of process automation is associated with increased e�ciency and perfor-
mance both in the data pre-processing phase and in the post-analysis
of the results generated by the packages and modeling programs. The
Model-R framework was developed with the main objective of unifying
pre-existing ecological niche modeling tools into a common framework
and building a web interface that automates steps of the modeling process
and occurrence data retrieval. The web interface includes RJabot, a func-
tionality that allows for searching and retrieving occurrence data from
Jabot, the main reference on botanical collections management system in
Brazil. It returns data in a suitable format to be consumed by other com-
ponents of the framework. Currently, the tools are multi-projection, they
can thus be applied to di↵erent sets of temporal and spatial data. Model-
R is also multi-algorithm, with seven algorithms available for modeling:
BIOCLIM, Mahalanobis distance, Maxent, GLM, RandomForest, SVM,
and DOMAIN. The algorithms as well as the entire modeling process may
be parametrized using command-line tools or through the web interface.
We hope that the use of this application, not only by modeling special-
ists but also as a tool for policy makers, will be a significant contribution
to the continuous development of biodiversity conservation analysis. The
Model-R web interface can be installed locally or on a server. A software
container is provided to automate the installation.
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1 Introduction

Ecological Niche Modeling (ENM) has been widely used for over a decade [1] [2]
[3] [4]. In recent years ENM approaches have become an essential tool for species



conservation, ecology and evolution studies, as well for systematic conservation
and restoration planning [5]. These models use species occurrence data and pre-
dictor variables that are combined to form statistical and theoretical models
resulting in projections in the geographic space that represent the potential ge-
ographic distribution of a species [6]. The environmental suitability maps [7],
generated by the models inform how similar a particular area is to the area
where the species occurs, thus identifying the potential area for occupation by
the species, from the predictor variables selected.

Ecological niche modeling comprises several stages, which require knowledge
of many concepts and techniques related to various fields of biology, such as
biodiversity, biogeography, as well as climate and data processing tools, before,
during and after obtaining the model [8][5]. The biotic data processing step con-
sists of obtaining, evaluating and preparing the points of presence and, in some
cases, of absence of the species to be modeled. In this process, it is fundamental
to perform data cleaning with the removal of inaccurate or unreliable data. In
the step of treatment and choice of environmental layers, one obtains and selects
the layers to be used in the analysis. Traditionally, it is necessary to use a Geo-
graphic Information System (GIS) tools for clipping and adjusting the resolution
and cropping the raster layers to the modeling extension, requiring a reasonable
knowledge of the tool. This task can be even more time-consuming when deal-
ing with a large dataset. The use of specific data types by the algorithms, and
their various forms of parametrization, requires a reasonable knowledge of pro-
gramming for their full use. The importance of process automation is associated
with increased e�ciency and performance both in the data pre-processing phase
and in the post-analysis of the results generated by the packages and modeling
programs, which is the main objective of this work. The elimination of external
tools for data acquisition and preparation, as well as their standardization, re-
duces the possibility of errors, confers reproducibility and improves the speed of
the modeling process, making the whole process more e�cient.

The modeling process consists of many steps, as described in [8], some of
which consume considerable time to be performed by traditional means. A re-
source available for tackling this problem is the R statistical environment, which
features various possibilities of automation but does require some knowledge of
programming for obtaining the desired outcomes in this process. The main ob-
jective of this work was to package modeling procedures as R functions and to
create an application (Model-R) that allows, either via command-line or through
a web interface, to perform ecological niche modeling, overcoming the most com-
mon barriers and providing approaches for data entry steps, data cleaning, choice
of predictor variables, parametrization of algorithms, and post-analysis as well
as the retrieval of the results. A list of acronyms and variable definitions is
presented in Table 1.



2 Model-R Framework

The Model-R framework for ecological niche modeling is given by a set of ecolog-
ical niche modeling functions (dismo.mod, final.models, ensemble), functions
for retrieving species occurrences records (Rjabot and Rgbif) and the graphic
user interface. It allows researchers to use their own data. The framework is di-
vided in front and backend; some functions are presented at web interface that
abstracts and automates the main steps involved in the ecological niche modeling
process. This is a dynamic process, and our goal is that this interface will evolve
and incorporate more and more aspects of the framework. All these components
were implemented in R and are described in the subsections that follow.

2.1 Frontend

The main focus of the web application for Model-R is the development of an in-
terface for the modeling process, allowing users without programming knowledge
to perform the steps of the modeling process consistently, avoiding the concern
with script coding and concentrating on the data and its processing workflow.
To do so, we adapted the modeling functions into a Shiny application [9]. The
Shiny package [9] is a web application framework for R, allowing the creation of
interactive applications that can be accessed from devices with internet access,
such as computers, tablets, and mobile phones. Thus, the application provides a
graphical interface where users can easily choose biotic and abiotic data, perform
the data cleaning on occurrence records, choose algorithms and their parameters.
They can also download the results, as well as the script of the modeling process
that allow its execution without the use of the Model-R web application. The
use of the script as a stand-alone application allows for more precise adjustment
of the parameters or adjustments that were not possible in the web interface.
To make the application and process user-friendly, we separated the features by
steps, following the modeling process described in [8].

The following steps of the modeling process are available in the application:
biotic data entry; data cleaning; choice of abiotic variables; cutting o↵ the ge-
ographic extension; choosing the algorithm and its parameters; visualization of
results; and downloading the resulting data.

Biotic data entry. This stage represents the entry of biotic data in the
system. A modeling project can be created using the ”Create Project” feature,
this allows for keeping track of the modeling experiments performed. Creating a
project allows one to assign a name and thus organize and store the information
generated. Biotic data can be given as input to the application in three ways:
queries to the GBIF database, queries to the Jabot database, and uploading CSV
files. CSV files allow for uploading occurrence records not present in GBIF and
Jabot from other databases after conversion to this format. The RJabot package
makes the query to the Jabot database (Figure 1). These records are given by
species name, latitude, and longitude. At the end of the biotic data entry step,
a map with the occurrence records is displayed. In July 2017, GBIF contained
approximately 10 million species occurrence records about Brazil, 70% of which



were published by its Brazilian node, the Brazilian Biodiversity Information
System (SiBBr) [10].

Fig. 1. Output of getOccurrence showing occurrence points obtained from Jabot.

Data cleaning. This step allows cleaning the biotic data entered into the
application. It has two features: ”Eliminate duplicate data” and “Delete Occur-
rence point”. “Eliminate Duplicate Data” removes occurrence records entered
to the application that have the same value for latitude and longitude. “Delete
occurrence point” eliminates points that were evaluated by the user as erroneous
in their location and will not be used in modeling. Using the interface, the user
clicks the button “Delete duplicate” or selects the point it wants to eliminate
suspicious data. After that, the user can also save the final biotic dataset, after
the data cleaning process.

Abiotic data entry. This step is responsible for the entry of abiotic vari-
ables and definition of the geographic extensions of the modeling process and its
projection. The first step is to set the spatial extension of modeling process (i.e.:
the extent to which the modeling will be done, also understood as study area).
The extensions can be defined directly on the map, which displays the occurrence
points selected in the previous steps. Regarding spatial projection, the applica-
tion allows users to define a di↵erent extent to project ENM in another region.
This can be useful, for instance, for checking the ability of a species to become
invasive in the given region. Also, it is possible to define a projection in time,
in instance, to the past (Pleistocene/Holocene) or future (2050 and 2070) using



Worldclim dataset4 and Bio-ORACLE variables [11]. Independently of the spa-
tial and temporal projection chosen, the user might define the spatial resolution
(i.e. pixel size) of the abiotic dataset. For development, we used the resolution
of 10 arc minutes (for Worldclim variables) and 9.2 km (for Bio-ORACLE vari-
ables), due to storage space and processing speed reasons. The main database
technologies that optimize storage and speed processing are already under study,
so the application supports others resolutions, like 30 seconds, 2.5, 5 arc minutes.

The map, the occurrence points, and the geographic extensions are displayed
using the Leaflet [12]. The package allows for zooming and interacting with the
map. The application is configured to work with Wordclim and Bio-ORACLE
to retrieve abiotic data and allow for other variables to be added manually to
the application.

Once the abiotic variables are defined, the Model-R application displays the
variables considering the extension defined by the user, and a table with charts
containing the correlation values between them (see Figure 2, step 4), allowing
to verify the correlated variables. Strongly correlated variables can impair the
prediction performance and statistics of the modeling process [13] [14].
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Fig. 2. Modeling steps in the web interface of Model-R.

4 http://www.worldclim.org



3 Modeling process and backend

The next step in the web application, modeling process, is the core of the species
distribution modeling workflow and was implemented as a three-step procedure,
wrapped in R functions, called dismo.mod() (in reference to the dismo package
[15] from which it draws the main structure and functions), final.models()
and ensemble().

dismo.mod() takes the input data, partitions it by cross-validation, fits the mod-
els for each partition and writes the evaluation statistics tables, using func-
tion evaluate () in the dismo package, with some modifications, such as
the calculation of TSS for each partition. It writes the raw models, i.e. the
continuous outputs, in raster and image formats. Writing to the hard disk
allows keeping the main memory uncluttered. The structure of the function
draws both on the dismo [15] and the biomod2 [16] tutorials.

final.model() joins the fitted models for each partition into a final model per
species per algorithm. It can select the best partitions according to their
TSS or AUC value. The default is selecting by TSS > 0.7, but this can be
changed by the user. The function also allows choosing which algorithms
will be processed. Otherwise, it will read all algorithms available from the
statistics table, and to use a mask to crop the models to a subset of the fitting
geographic area. Finally, it cuts the continuous models by the threshold that
maximizes the TSS of the model and averages these models.

ensemble() computes the average of the final models, to obtain an ensemble
model per species and retaining only the algorithms and partitions that
were selected previously. It can also focus on the areas where the algorithms
exhibited consensus. The default is 0.5, which corresponds to a Weighted
Majority Rule Ensemble to reduce variability between the algorithms in final
models so that the final models only retains areas predicted by at least half
of the algorithms [17].

The application interface runs this framework in the background, but the
user can adjust the following parameters:

Partition Number. The number of times the model will be generated for each
selected algorithm and, consequently, the number of times the k-fold parti-
tioning will be performed. (dividing the total data set in k mutually exclusive
subsets of the same size, using k�1 for parameter estimation and algorithm
training and the remaining subset to evaluate the accuracy of the model).

Number of pseudo-absences. Number of points sampled randomly in the
background for use in the modeling process.

Modeling algorithms Seven algorithms are available: BIOCLIM, Mahalanobis,
Maxent, DOMAIN available in the dismo package [15] GLM (’stats’), Ran-
domForest (’randomForest’) and SVM (’kernlab’). BIOCLIM, Malahanobis,
and DOMAIN are based on simple statistical techniques, such as environ-
mental distance. GLM is based on regression techniques. Lastly, Maxent,
RandomForest, and SVM are based on machine learning techniques.



Bu↵er should be applied during the sampling of pseudo-absences. This is an
inclusive bu↵er, it calculates the distance between the occurrence points and
use the maximum or the mean geographic distance between the occurrences
of the species within which pseudo-absences will be generated.

Project on another extension. The application reprojected the model to dif-
ferent extensions (spatial or temporal) from the modeling process obtained
on the creation extension.

At the end of the execution, k continuous models, k binary models and one
ensemble model are generated for each species and algorithm, as displayed in
Figure 2 (step 5). The values obtained from the validation process are stored as
a table, and their values are presented in Figure 2 (step 6). A brief description
of each variable is presented in Table 1.

Table 1. Description of variables generated by the modeling process.

Variable name Description
Sp Species name
Part Partition number
Algorithm Modeling algorithm employed
AUC Computed Area Under Curve
TSS True skill statistic = (sensitivity + specifity) - 1
Kappa Cohen’s Kappa coe�cient
No Omission Threshold where there is no omission
Prevalence Prevalence
Sensitivity Sensitivity
TSSth Threshold = (sens+esp)
Np Number of presences
Na Number of Absences

4 Reproducibility

Provenance information [18] is given by the documentation of the conception and
execution of computational processes, including the activities that were executed
and the respective data sets consumed and produced by them. Applications of
provenance include reproducibility of computational processes, sharing and reuse
of knowledge, data quality evaluation and attribution of scientific results [19].
Reproducibility is one of the important features of Model-R. The inclusion of
this feature is motivated by many academic journals recommending that authors
of computational studies should also provide the required data sets, tools, and
workflows used to generate the results [20] [21] so that reviewers and readers
could better validate them. For each modeling project specified and executed
in Model-R, the following information is available for download: the R script,



illustrated in Figure 2 (step 6) that allows for reproducing the steps that were
performed to produce results of the modeling process and to re-execute the mod-
eling process without using the web interface of Model-R; a CSV file containing
the resulting variables from the modeling process; the occurrence records used
after data cleaning; the raster files in the GeoTIFF format generated by the
application; a raster file in the GeoTIFF format with an ensemble of the models
generated; raster files in the GeoTIFF format with the projection of the model
into another geographic extension. These are only generated when the ”Project
into another extension” option is selected.

5 Case Study and Evaluation

A case study was performed with woody plants of the Brazilian Atlantic Forest
and is described next.

Species occurrence data. The original plant names database (3,952 plant
names and 171,144 original records) were compiled from SpeciesLink5 and Neo-
TropTree6 (List of species with number of records – appendix 1) and corrected
according to the Catalog of Plants and Fungi of Brazil (CPFB)7, using R pack-
age flora [22], which is based on the List’s IPT database. The CPFB publishes
the o�cial List of the Brazilian Flora, meeting Target 1 of the Global Strat-
egy for Plant Conservation. The catalog recognized and checked 3,910 names.
The 42 names that were not found by the LSBF were looked for in The Plant
List8 (TPL) and then in the Taxonomic Name Resolution Service9 (TNRS), as
implemented in the R packages Taxonstand [23] and taxize [24]. [25]. The in-
formation from the CPFB, TPL, and TNRS was cross-checked, and when there
were conflicts, the names from the CPFB were given priority. For each species
the complete occurrence data was treated for (1) records that fell out of the
Brazilian limit, (2) duplicated records, (3) non-duplicated records that fell in
the same 1km-pixel. Only species with at least 100 unique occurrences (deleting
duplicated within each pixel) were maintained, and of these, to overcome bias of
with marginal occurrence for Atlantic Rainforest, only species with more than
50% of occurrences in the Atlantic Rain Forest were considered. After all these
procedures, a sub-sample of the 96 species (35,672 presence records) that pre-
sented the largest numbers of samples was chosen to compose the given woody
plants case study (Figure 3, left).

Environmental data. As environmental predictors, 28 variables with spa-
tial resolution of 1km2 were compiled and organized. Those variables were sum-
marized by PCA axes, from which the first ten axes (about 95% of the data
variation) were used to run models. Aspect variable was edited and had its sin
and cosin created to be used as variables.

5 http://splink.cria.org.br/
6 http://prof.icb.ufmg.br/treeatlan/
7 http://floradobrasil.jbrj.gov.br/
8 http://www.theplantlist.org/
9 http://tnrs.iplantcollaborative.org/



Environmental Niche Modeling. Environmental niche models were built
for each species, using dismo.mod, final.model, and ensemble functions.

A three-fold cross validation procedure was performed. Random pseudo-
absence points (nback = 2 ⇥ n) were sorted within a maximum distance bu↵er
(the radius of the bu↵er is the maximal geographic distance between the occur-
rence points) and divided into three groups, for training and testing purposes.

For each partition (k = 3) and algorithm, a model was built, and its perfor-
mance was tested by calculating the True Skill Statistic [26]. The authors found
that TSS scores were largely una↵ected by prevalence and values from 0.6 to
1.0 were considered as a good adjustment of the model accuracy. Because of
that, only models with TSS > 0.7 were retained. Selected partitions were cut by
the threshold that maximizes their TSS, and the resulting binary models were
averaged to generate a model per algorithm. The scale in these final models is
equivalent to the number of partitions that predict the species presence (it goes
from 0 to n

n in 1
n intervals where n is the number of selected models). The en-

semble model (e.g. joining models from di↵erent algorithms) was obtained by
averaging the final models for each algorithm. A species potential richness map
was generated by summing the binary final models, cut by the average threshold
that maximizes TSS values (Figure 3, right).

Fig. 3. Map with original occurrence records (left) and richness map generated by
analyzing Model-R output data (right).



Performance and Parallelization The dismo.mod() function, in which the
modeling process of Model-R is based, was entirely sequential in its first version.
Models for all species of interest were generated one after another. To improve
performance, parallel processing was employed. Now, if n cores are available,
models for n species can be generated simultaneously. The snowfall [27] R pack-
age provided support for the parallelization. It provides functions for parallel
collection processing. sfLapply, for instance, is the parallel version of the stan-
dard lapply, which applies some function to every element of an array, producing
a new array with the results.

The e↵ects of the parallelization on performance can be seen in Figure 4.
Each point in the plot is the arithmetic mean of the time elapsed to do three
executions of dismo.mod(). Models for 96 species were generated, varying the
number of cores from 1 to 64. The algorithms used were RandomForest, SVM,
and Maxent. The variability in execution time for 96 species can be explained
in part by the parallelization strategy used, i.e. one thread per species. The
total time that it takes to apply all the modeling algorithms can be significantly
di↵erent from one species to another.
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Fig. 4. Parallelization e↵ects on performance.

The creation of separate functions for each of the modeling algorithms that
dismo.mod() can fit was another important optimization. In its first version,
all algorithms were generating models in the context of a single function. The
memory allocated to the variables used by one algorithm was never released even
if the referenced algorithm had finished its work. R is a programming language



with garbage collector [28] meaning it releases memory when an object is no
longer used. It does this by counting how many references point to each object
and when the counter reaches zero, removes that object. Since dismo.mod() was
keeping at least one reference to the variables used by all selected algorithms for
all the runtime of the function, a lot of memory was being occupied unneces-
sarily. The separation did not make the modeling process faster but allowed the
generation of more models per node because of the smaller memory footprint.
The generation of models for a single species was performed using approximately
5GB of resident memory. Resident memory is a metric that gets closer to the
actual memory budget of a process [29]. The version with separate functions for
each modeling algorithm uses half of this memory.

6 Related Work

As parameters for comparison, two related services in this area were considered:
the Biomodelos portal [30], developed by the Humboldt Institute in Colombia,
and the Virtual Biodiversity e-Laboratory (BioVel) [31], an initiative supported
by the European Union. These two examples were chosen because they repre-
sent two distinct e↵orts from the standpoint of the internal and external target
audience of the system.

BioVel provides, via a web interface, a service that allows management of
scientific workflows [32] for biodiversity. Several pre-defined activities can be
composed to form these workflows, as an example, the following features were
developed and are available in BioVel: geographic and temporal selection of
occurrences; data cleaning; Taxonomic name resolution; modeling algorithms
ecological niches (openModeller) [33]. Such activities can be composed freely
in complex scientific workflows for performing various analyses on biodiversity.
This flexibility of service and the range of applications available in its catalog,
generate a plurality of results provided by the service that can be di�cult to
assess regarding quality and suitability, since the service is freely accessible and
does not have a methodology systematic qualification of models where experts
can criticize, comment and change the generated results.

The Biomodelos portal [30] is intended for species distribution modeling,
which is carried out and published on the website by the Humboldt Institute
modeling team. The most interesting feature of biomodelos, absent from similar
portals is the existence of a network of taxonomists, who are also users of the
portal, which evaluates each species distribution published on the website. The
taxonomy experts have access to metadata about how the species distribution
models were executed and can assign a note to the generated model, add notes
to them or geographically edit the distribution map (excluding, for example,
records in areas with known absences). Thus, species distributions published in
Biomodelos are accompanied by information to support the decision maker in
assessing their quality and fitness for the use.

Other initiatives based on R include SDM [34] and Wallace [35], and based
on scientific workflow management system include Kepler [36], VisTrails [37] [38]



or in the cloud computing environment [39] [40] [41]. They have some similarity
with our application as well as some striking di↵erences, especially in terms of
functionality, such as the lack of scalability in the implementation of the models
and the absence of provenance recording.

7 Conclusion

In this work, we presented Model-R, a framework for species distribution mod-
eling. It abstracts away cumbersome steps usually involved in this type of mod-
eling, such as data acquisition and cleaning, by providing a productive web
interface that allows for customizing key steps of the process, including the
pre-processing of biotic and abiotic data and the post-analysis of the results.
The RJabot package, for instance, allows for easy retrieval of species occurrence
records from the Rio de Janeiro Botanical Garden Herbarium (RB) [42], one of
the most complete sources of information about the Brazilian flora. The scalable
execution of the modeling process is enabled through the use of parallel pro-
gramming libraries available for the R environment. Having separate functions
per algorithm also presents an opportunity for further exploration of parallelism.
Currently only parallelism by species is used. All models for a given species are
generated by the same core even if more than one algorithm is used. Paral-
lelism by algorithm is feasible as well. Model-R also enables reproducibility of
the modeling process by providing the data sets generated and scripts in R that
allow for reproducing the steps used to generate them. The application supports
applying the modeling process to di↵erent sets of temporal or spatial data. Max-
ent, RandomForest, and all the algorithms supported by the dismo package are
supported by Model-R, and their parameters can be customized through its web
interface. We expect the application to become a valuable tool for scientist work-
ing with analysis and synthesis of biodiversity data, and for decision-makers in
biodiversity conservation.

As future work, we plan to better automate the generation of raster files con-
taining abiotic data by using GIS tools, such as PostGIS. These are currently
generated manually for some pre-defined resolutions and copied to the Model-R
application server. We also plan to further improve the scalability of the ap-
plication by adapt it to run on petascale computing resources of the Brazilian
National System for High-Performance Computing10 [43] using the Swift [44]
parallel scripting system, which gathers provenance information [45] [46]. Addi-
tionally, we are working on porting the modeling scripts to Big Data platforms.
In particular, we are adapting them to the Spark platform [47] using its R in-
terface [48].

Model-R is available as open-source software on Github11. To facilitate its
installation, we also built a software container that is available on Docker Hub12.
This software container is synchronized to the Github repository, i.e. any update

10 http://sdumont.lncc.br
11 https://github.com/Model-R/Model-R
12 https://hub.docker.com/r/modelr/shinyapp/



to the source code on Github triggers the production of an updated software
container.
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10. Gadelha, L., Guimarães, P., Moura, A.M., Drucker, D.P., Dalcin, E., Gall, G.,
Tavares, J., Palazzi, D., Poltosi, M., Porto, F., Moura, F., Leo, W.V.: SiBBr: Uma
Infraestrutura para Coleta, Integração e Análise de Dados sobre a Biodiversidade
Brasileira. In: VIII Brazilian e-Science Workshop (BRESCI 2014). Proc. XXXIV
Congress of the Brazilian Computer Society. (2014)

11. Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F., De Clerck,
O.: Bio-ORACLE: a global environmental dataset for marine species distribution
modelling. Global Ecology and Biogeography (2012)



12. Agafonkin, V.: Leaflet - a JavaScript library for interactive maps.
http://leafletjs.com/ (2016)

13. Guisan, A., Zimmermann, N.E.: Predictive habitat distribution models in ecology.
Ecological Modelling 135(2-3) (dec 2000) 147–186

14. Lomba, A., Pellissier, L., Randin, C., Vicente, J., Moreira, F., Honrado, J., Guisan,
A.: Overcoming the rare species modelling paradox: A novel hierarchical framework
applied to an Iberian endemic plant. Biological Conservation 143(11) (nov 2010)
2647–2657

15. Hijmans, R.J., Elith, J.: dismo: Species Distribution Modeling. https://cran.r-
project.org/web/packages/dismo (2016)

16. Thuiller, W., Lafourcade, B., Engler, R., Araújo, M.B.: BIOMOD - A platform for
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