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Abstract The well-being of human and wildlife health involves many chal-
lenges, such as monitoring the movement of pathogens; expanding health
surveillance; collecting data and extracting information to identify and predict
risks; integrating specialists from different areas to handle data, species and
distinct social and environmental contexts; and, the commitment to bringing
relevant information to society. In Brazil, there is still the difficulty of building
a system that is not impaired by its large territorial extension and its poorly
integrated sectoral policies. The Brazilian Wildlife Health Information System,
SISS-Geo1, is a platform for collaborative monitoring that intends to overcome
the challenges in wildlife health. It aims at the integration and participation of
various segments of society, encompassing: the registration of animals occur-
rences by citizen scientists; the reliable diagnosis of pathogens from the labo-
ratory and expert networks; and computational and mathematical challenges
in analytical and predictive systems, model interpretation, data integration
and visualization, and geographic information systems. It has been success-
fully applied to support decision-making on recent wildlife health events, such
as a Yellow Fever epizootic.
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1 Introduction

Environmental change, including climate change and biodiversity loss, are de-
termining factors for the emergence of diseases originating from wildlife [15]
and can be the source of the selective forces of new genetic variations that
allow the disruption of biological barriers by pathogens and the increase in
the potential for spread of diseases to humans. Although not considered ap-
propriately in health surveillance policies, the situation is relevant, since the
majority (60.3%) of infectious diseases circulate between humans and ani-
mals (zoonoses), of which 71.8% are caused by pathogens originating from
wildlife [24]. Not to mention the alarming data from a recent study [55], which
shows that the number of pathogens infecting humans and animals is vast and,
more worryingly, they are growing over time.

These emergences are widely associated with areas most affected by natural
and anthropogenic impacts, also composing the range of parameters that make
social inequalities even more severe and unfair, with substantial repercussions
and costs to health and quality of life [5,45]. Over the past decade, several
studies have shown that biodiversity can affect both the dilution and dispersion
of pathogens, as well as modulate their transmission rate [25,57,40].

However, studies and actions in the last century, despite the expansion of
epidemiological knowledge, responded to specific disease emergence events in
the human population, with some mitigation attempts. Considering the low
ability to reverse climate change and the environmental impacts determined
by human population growth, and the rate of production and consumption of
natural resources, it seems reasonable to expect that the emergence of these
diseases cannot be held back. This scenario is paradoxical in megadiverse coun-
tries, such as Brazil. While species richness results in richness of parasites that
are associated to them, and therefore a potential risk, it is this complexity
of species and their relationships that protect and stabilize the dynamics of
transmission, reducing the outbreaks of diseases, one of the essential ecosys-
tem services [26,34,9,46,53,28,3]. In this scenario, more than seeking effective
responses to crises, there is a reason to pursue actions that anticipate problems
so that one can mitigate them where possible, and quickly respond to them
when prevention or mitigation fail.

This approach has been strengthened with international programs, such
as “One world, one health” from the WHO/OIE and the 2011-2020 Strate-
gic Plan of the Convention on Biological Diversity (CBD) [11] and strategi-
cally in governmental programs of developed countries. These already dedicate
considerable resources and efforts to tracking pathogens, whether to prevent
pandemics, such as the recent occurrences with influenza and Ebola viruses,
the development of new drugs or even biological warfare concerns. There are
programs and systems of surveillance of zoonoses in wild animals that have
been acting essentially for the identification of new and old diseases, espe-
cially those of economic and conservationist interest and in the approach of
One Health [13]. Most of these programs are: structured and maintained by
governmental services, with professional personnel, collection protocols and
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standardized diagnostic capacity (e.g., US Wildlife Disease Surveillance and
Emergency Response), implemented by groups with scientific or conservation
interest in one or a few species (e.g., World Conservation Society Health Pro-
gram) or are based on the participation of trained farmers and hunters who
are the first to come into contact with slaughtered animals, such as in Eu-
rope [49]. Except for studies of scientific interest and conservation of species,
the other characteristics are not applicable in Brazil. In Brazil, systematized
strategies for monitoring and predicting occurrences of diseases resulting from
biodiversity are incipient. They follow a notification model about diseases that
already occurred in humans or in a few species, which is insufficient for pre-
ventive action [7]. Firstly, there is no government system in place to monitor
wildlife health consistently. Secondly, in Brazil, hunting is prohibited by law
throughout the territory, except in particular places where vulnerable and tra-
ditional populations have the right to subsistence hunting. It should also be
emphasized that the act of collecting biological samples for diagnosis imposes
risks to the health of the person and therefore requires specific training and
personal protection equipment. However, this is not consistent with the reality
at the national level as well as with the vulnerability and low level of educa-
tion of the majority of the population that lives in the forest of natural and
anthropized environments.

The relationships that link biodiversity to health are complex because
they are often indirect, scattered in space and time, and dependent on many
forces [40]. The problem is not restricted to identifying species and their geo-
graphical distribution. In the context of the emergence of zoonoses, there are
various species of pathogens, vectors, and hosts that modulate evolutionarily
each other, their populational dynamics and composition, which collectively
also undergo and react to environmental changes [25].

Therefore a multi-dimensional challenge is faced:

1. Sensitizing decision-makers about the need to monitor the movement of
pathogens in wildlife before they impact humans, expanding health surveil-
lance actions.

2. Building a mechanism that is not limited by the territorial extension of
Brazil, the poorly integrated sectoral policies, and by other outbreaks or
emergencies that absorb all the health staff.

3. How to integrate multiple skills, since this mechanism should contain spe-
cialists to handle data, species, and distinct social and environmental con-
texts.

4. How to effectively obtain, store, and manage data properly.
5. Modeling the risks from data to identify and predict them, as well as to

extract the relevant information to convey it to society ultimately.

The first challenge is arguably the hardest one because it is mostly non-
technical and involves dealing with politics. The ongoing strategy to sensitize
decision-makers stands on two continuous actions: (i) getting in touch with
decision-makers and, backed up by scientific studies, educating them about
the benefits in terms of health, sustainability, economics, and politics from
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taking preventive and predictive measures; (ii) presenting to decision-makers
regularly how the SISS-Geo platform has been helping in disease prevention
moreover, how the monitoring can be made both effective and inexpensive
thanks to the network of volunteers and machine-learning based workflows.
How the remaining challenges were dealt with in designing SISS-Geo will be
explained further in the following sections.

As evidenced, data collection, monitoring and extraction of knowledge and
information about wildlife health and its relationship to human health arise
as challenging tasks involving several areas of knowledge, characterized as
interdisciplinary activities aimed at modeling a dynamic and complex system.
It is also clear that major areas of computing are mostly applicable in the
context presented, such as computer modeling, machine learning, and parallel
programming. However, their application is not apparent given the need to
integrate information in different ways, the complexity and dimensionality
of the data to be manipulated and the sensitivity involved in the use and
dissemination of these data [42].

In this article, the Information System on Wildlife Health (SISS-Geo) is
presented, a joint effort between the Oswaldo Cruz Foundation (Fiocruz) and
the National Laboratory for Scientific Computing (LNCC), as an essential
step for moving forward on the challenges posed. Its conception aimed at the
integration and participation of various segments of society and encompasses:
the registration of primary data by any person interested; the application of
the concept of citizen science; the reliable diagnosis of pathogens circulat-
ing in wildlife that may potentially impact humans with the participation of
laboratory and expert networks; the computational and mathematical chal-
lenges that include analytical and predictive systems, data mining, intensive
processes, parallel programming, system integration, data (unstructured and
heterogeneous) and information, geographic information systems (GIS), ma-
chine learning, meta-heuristics, and data visualization.

SISS-Geo is mainly characterized by managing its data in a spatially ref-
erenced environment. It aims to:

– provide, quickly and efficiently, the flow of information between (i) the In-
formation Center for Wildlife at Fiocruz and the national system of health
surveillance, with special contribution to the Strategic Information Center
on Health Surveillance (CIEVS, Ministry of Health); (ii) the participatory
networks in wildlife health and laboratories; (iii) the general population
that wants to participate in the process; and (iv) the different biodiversity
monitoring centers, as the MCTI (Ministry of Science, Technology and
Innovation), ICMBio (Chico Mendes Institute for Biodiversity), MAPA
(Ministry of Agriculture, Livestock and Supply), Embrapa (Brazilian Agri-
cultural Research Corporation), etc.

– create, from the data and georeferenced information, warning and fore-
casting models on human and wildlife diseases in order to act as a sentinel
system for emerging and reemerging diseases as well as provide the results
of spatial modeling to scientific community and decision makers.
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– allow for adequate means to integrate the georeferenced system with spatial
databases partners from governmental and non-governmental partners.

– adapt to the metadata standard of the National Spatial Data Infrastruc-
ture (INDE) (http://www.inde.gov.br), aiming to provide, efficiently
and with full compatibility, data related to wildlife health to the scien-
tific community and the general population.

2 Design and Implementation of SISS-Geo

SISS-Geo is built upon four high-level modules, as illustrated in Figure 1. The

Fig. 1 Four modules of SISS-Geo, consisting of (1) data collection and storage, (2) alert
prediction and confirmation, (3) forecast of ecological opportunities, and (4) model inter-
pretation.

first one systematizes photographs and the capture of georeferenced field and
observation records of animals, their physical conditions, and their surrounding
environment, which are stored in a database (Sections 2.1and 2.2). Collabo-
rators compile these observations through mobile applications, for Android
(Figure 2), iOS, and in a Web interface (Figure 3). The second module ana-
lyzes the data to generate automated alert models that take into account ter-
ritorial distances, time interval, similarity between taxonomic groups involved
(notably for primates, Chiroptera, rodents, and carnivores, but not limited
to them), the observed physical conditions of the animals in the field accord-
ing to pre-categorized clinical patterns, and the environmental characteristics
of the site where the animal was observed (Section 2.3.1). A georeferenced
data explorer is available as well, allowing for multiple layers of information to
be overlayed. Figure 4 illustrates a visualization where records (green), alerts
(red), and biomes are overlayed in a map of Brazil.
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Fig. 2 Screenshots of the SISS-Geo mobile application displaying the initial screen, main
screen action buttons for taking photos and adding records, record description, and record
map.

Fig. 3 Screenshots of the SISS-Geo Web application. Record details in the map (left),
corresponding photo with a dead marmoset (right).

From the indication of importance and emergency generated by the alert
model, the participatory and laboratory networks in wildlife and human health
and environmental services established in the country are requested to collabo-
rate on collecting biological samples from animals in the field and on providing
reliable diagnoses. The reliable diagnosis feeds and validates the alert models
which in turn, from the initial correlation of the environmental conditions of
the occurrence, allows for the generation of forecast models of ecological op-
portunities for disease occurrence that may result from biodiversity loss, thus
opening up a different research viewpoint. These actions comprise the third
module (Section 2.3.2).

Finally, the fourth module approaches the challenge of understanding the
relationships that govern the phenomenon in question, from the trained mod-
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Fig. 4 Screenshots of the SISS-Geo georeferenced data explorer with options for displaying
records, environmental, and socioeconomic layers in the right panel.

els. In this context, the model interpretation serves as the main hypotheses
mechanism for further investigation and validation by experts (Section 2.3.3).
The main components found in SISS-Geo can be categorized into four classes:
wildlife health data management, GIS, machine learning, and wildlife health,
in the next section.

It should be clear by now that in designing a platform whose (i) the pri-
mary source of data comes from citizens, i.e., it does not necessarily rely on
the typically overburden health staff moreover, it is also not affected by sec-
toral policies at different administrative levels; also, (ii) has many components
automated by smart workflows and machine learning, the platform is capable
of covering the whole territorial extension of Brazil. Therefore, it overcomes
the second challenge referred to in Section 1. In respect to the third challenge,
SISS-Geo has been designed since the beginning to accommodate and inte-
grate multiple use cases according to the role of each collaborator class, such
as citizen scientists, specialists, laboratories and decision-makers (Fig. 1 and
5). The strength of SISS-Geo comes from the collaboration among these dif-
ferent users, with some providing the data (citizen scientists and specialists),
others validating/processing it (specialists and laboratories) moreover, finally,
a third group conveying the processed information to the academy (specialists)
and society (decision-makers).

The components that had their implementations concluded correspond to
the functionality that allows for gathering occurrence data from volunteers
through the mobile or the Web application, storing the occurrences in the
database, allowing specialists and laboratories to manipulate the occurrences,
and allowing for the data to be geographically explored. These components
are fully functional and are deployed as mobile applications (for Android and
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iOS), Web applications (for manipulating occurrences and for geographic ex-
ploration), and a database. They correspond to the wildlife health data man-
agement and GIS classes and are described in sections 2.1 and 2.2. In section
2.3, a methodology is presented for generating alerts using machine learning
techniques; this functionality is still under implementation.

2.1 Data management in wildlife health

To monitor changes in biodiversity, one needs to collect, document, store, and
analyze indicators of the spatial and temporal distribution of species, as well
as information on how they interact with each other and with the environment
they live in [30]. The development and implementation of mechanisms to pro-
duce these indicators [37] depend on access to reliable data from field surveys,
automated sensors, biological collections, and from the academic literature.
This data is usually available in various institutions that use different formats
and identifiers, which makes it a challenging data integration task. The meth-
ods and techniques used to manage and analyze this data define a research area
often called Biodiversity Informatics [21,39]. Some initiatives for establishing
metadata and data publishing standards, such as EML [16] and Darwin Core
[56], were able to present standard vocabularies used to describe concepts of
biodiversity. Although these vocabularies cover only a fraction of the possi-
ble concepts, they allow institutions to publish their data about biodiversity
using the same format, and for their automatic collection and processing by
aggregator systems.

Through the use of these standards, SISS-Geo can collect species occur-
rence data provided by various contributors, as well as providing data stored in
its database to the community at large in an easy to use format. Darwin Core
has been extended to include concepts on specific topics, such as information
about interactions and pollinators (Darwin Core Extension for Interactions)
and on species profiles (Plinian Core) [36]. It would be essential to evalu-
ate and propose an extension of the standard to include information about
wildlife health on species observation records, which is typically carried out in
the context of the Biodiversity Information Standards2 (TDWG) organization.

SISS-Geo is a biodiversity informatics platform and, as such, it allows for
users to upload species occurrence records. In SISS-Geo, these records are en-
riched with additional attributes, provided by the user, to describe the health
condition of the respective individuals. The term occurrence is used in this
work to refer to the observation of an individual that apparently carries a dis-
ease, which is a particular case of a species occurrence as commonly defined
in the biodiversity informatics literature. Its geographical scope is limited to
Brazil, and the users are given by citizen scientists and specialists. A relational
database was conceptually modeled and implemented for SISS-Geo comprising
occurrences of organisms along with associated information about their health

2 http://www.tdwg.org
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condition. Standard operations for creating, reading, updating and deleting
information are enabled by mobile and Web applications that allow for both
citizen scientists and system managers to interact with the system (Figure 5
describes SISS-Geo use cases).

UC010 Send observation record

UC005 Maintain collaborator registration (web)

UC008 Maintain "Collaborate with Us" (web)

UC004 Log in (web)

UC003 Maintain observation record (mobile app)

UC002 Maintain collaborator registration (mobile app)

UC001 Log in (mobile app)

UC007 Maintain "Collaborate with Us" (mobile app)

Collaborator

Citizen

scientist

Specialist

CISS

Administrator

UC006 Maintain specialist spreadsheet (web)

UC009 Maintain supporting features (web)

Send collaborator data

Select animal

extend<< <<

include<< <<

Select location

Send "Collaborate with Us"

include<< <<

extend<< <<

extend<< <<

Download spreadsheet template

Upload filled spreadsheet

Download my filled spreadsheet

extend<< <<

extend<< <<

extend<< <<

Fig. 5 Use cases of SISS-Geo displaying various possible interactions between users and
functions of SISS-Geo.

As can be observed in its database schema in Figure 6, SISS-Geo stores
information about wildlife health occurrences (Occurrence). These occurrences
usually have an animal (Animal), a collaborator (Collaborator) and a loca-
tion (Location) associated with them. Specialists can require samples (Sam-
ple) related to the occurrence to be collected, which are going to be analyzed
(Analysis) in the laboratory (Laboratory) network. Data stored in this database
is consumed by mathematical models that can produce and confirm wildlife
health alerts (Alert).

The architecture of SISS-Geo is described in Figure 7. It is comprised of
the following components: a mobile application, a Web application server, a
database server, and high-performance computing (HPC) resources. As de-
scribed in the use cases diagram in Figure 5, citizen scientists use the mobile
application to request, for instance, the upload of their observations or queries
to be executed. These requests are forwarded to the Web application server
which connects to the database server to answer these requests. Administrative
users and specialists can access the Web application server directly also to send
requests to SISS-Geo. Finally, the Web application server can invoke the exe-
cution of computationally-intensive analyzes on high-performance computing
resources. A complete list of use cases is described in Figure 5.

The approach used to tackle the fourth challenge mentioned in Section 1,
of effectively obtaining, storing, and managing data is based on following the
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Fig. 6 Overview of the various entities and relationships that comprise the database schema
of SISS-Geo.

Fig. 7 Architectural view of SISS-Geo displaying components of the system and their in-
teractions with citizen scientists, specialists, and system administrators.

best practices for scientific data management, especially from the biodiversity
informatics community. The conceptual model of SISS-Geo’s database follows
established standards, such as Darwin Core [56], and the Ecological Metadata
Language (EML) [16]. Following the example of citizen science initiatives, such
as eBird [52], SISS-Geo can obtain massive valuable data from volunteers that
use its mobile application in Android and iOS platforms. As described in the
next subsection, this data is combined with other datasets, and it is used in
the alert prediction model proposed in subsection 2.3.
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2.2 Geoprocessing

Spatial and geographical visualization are fundamental conditions for the man-
agement of information today. It is often difficult due to the need for normal-
ization, update, and access to qualified data. In studies of infectious diseases,
the spatialization of data needs additionally to consider populational pulses
and fluctuations determined by several factors such as seasonality, reproduc-
tive periods, migrations, among others [35].

SISS-Geo aims to generate relevant and reliable information that can sup-
port decision processes of the Brazilian Ministries of Health, Environment,
Agriculture, Livestock, and Supply providing subsidies for more agile and
timely decision making.

Because it is an innovative project, the functionality developed is not
straightforward, and it was often not available in similar initiatives. The con-
struction of new methodologies and the use of different types of geographic
technologies that can meet the expectations and objectives of SISS-Geo is
therefore necessary. The GIS Infrastructure (GI) of SISS-Geo has strategic
importance in this process, in which there is a need to overcome challenges
related to quality control of spatial data, modeling spatialization based on ma-
chine learning and the dissemination of models in the form of dynamic maps
on the Internet.

The data-driven modeling of diseases occurrence based on socio-environmental
variables in SISS-Geo uses a broad diversity of spatial data, such as land use
and vegetation cover (Mapbiomas collection 2.33); temperature and precipita-
tion (Global Precipitation Mission - GPM4 and Worldclim5); geomorphology,
soil types, climatic zones, degree of urbanization, highways, mineral explo-
ration areas, biomes, and conservation units (Brazilian Institute of Geography
and Statistics - IBGE6); demographic density (NASA’s Socioeconomic Data
and Applications Center7); altimetry (NASA’s Aster GDEM8). Since these
data come from different sources (Brazilian and other national and global
sources), they have different scales, reference systems, and mapping method-
ologies. Therefore, they were pre-processed and structured for integration into
a geographic database. It is used both to consume information/data and to
store the modeling results in the form of geographically distributed mod-
els. The data used as input for modeling are obtained from the overlapping
of wildlife occurrence records and environmental, social, and human impact
databases. Depending on the location of the records, spatial relationships of
the types intersect, within, close, crosses, and the like can be established.

All pre-processing tasks, performed on over one hundred gigabytes of data,
were carried out in QGIS [41]. At this stage, it was necessary to standardize

3 http://mapbiomas.org
4 https://pmm.nasa.gov/data-access/downloads/gpm
5 http://www.worldclim.org
6 https://www.ibge.gov.br
7 http://sedac.ciesin.columbia.edu
8 https://asterweb.jpl.nasa.gov/gdem.asp
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the cartographic characteristics of geographic data, correct topological errors,
clean duplication of information, and standardize the structure of the attribute
table. In general, the data were divided into two groups: vector data and raster
data. All data in raster format was converted to vector format in order to be
compatible with the internal software package which expects this format as
input.

Knowing that part of the thematic data used was produced in small and
medium scale (1:1,000,000, 1:500,000, 1:250,000), which provide a limited level
of detail and accuracy, the verification methodology of spatial relations adopted
areas of influence (buffers) on the occurrence points of the animal species. It
brought flexibility for spatial queries, allowing to identify the context of socio-
environmental features on which the animal was observed.

Other spatial and temporal information is requested to the user and added
to the database as observation site (“local scale”) attributes to enhance species
observation records used for data-driven modeling.

The geoprocessing infrastructure also needs to make available the results,
alerts, and prediction models produced by SISS-Geo to the public domain ac-
cording to the Brazilian Information Access Act, except for sensitive informa-
tion. Therefore, adequating the geographic information system for the Web en-
vironment, which provides SISS-Geo’s results in the form of dynamic/interactive
maps and graphical statistics9, is an ongoing development. An advantage of
this technology is the ease of handling, analysis, and interpretation of models
by the end user, as well as operating system independence and interaction
with desktop systems and other Internet systems (interoperability).

2.3 Machine Learning

SISS-Geo embraces machine learning techniques to fulfill the fifth challenge
mentioned in Section 1, leading to risk mapping and the understanding of
factors related to the emergence of diseases. These products are vital for the
genuine purpose of SISS-Geo because they account for the main avenue of
conveying information to decision-makers and society. The first component
(Section 2.3.1) deals with real-time alert prediction, which intends to target
health authorities for further verification and diagnostic of alerts. The second
and third components (Sections 2.3.2 and 2.3.3) aim, respectively, at building
models and extracting knowledge from them in order to advance the under-
standing of associations between socio-environmental factors and suitability
for disease occurrence, which are of vital importance for specialists, decision-
makers, and society.

2.3.1 Grouping of observation records and alert prediction

When a wild animal is observed, its physical condition and surrounding en-
vironment are recorded in SISS-Geo, either by experts or volunteers. These

9 http://morcego.siss.lncc.br/i3geo/interface/black_ol.htm
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records are grouped with other related records (previously reported) resulting
in a collection of events characterizing a phenomenon. This is the grouping
stage and, although it may sound trivial, it involves the challenge of conceiv-
ing/training models with the discriminative capacity to recognize similarities
and dissimilarities between events, based on criteria such as spatial and tempo-
ral distance between records, the similarity between species and the reported
physical conditions, among others. This flow of learning is summarized in Fig-
ure 8.

Fig. 8 Machine learning flow of SISS-Geo, starting with a new occurrence, going through
decision and analysis steps, and finishing in either a database update to record the occurrence
or in an alert confirmation followed by the creation of a new model.

The second part consists of modeling the characteristics of observation
records that make them more or less relevant, i.e., training the alert model.
It means predicting the severity of records according to information brought
by events and the geographic/environmental context. For example, a record
involving an animal in isolation exhibiting symptoms is less severe, in general,
than occurrences containing similar events but covering groups of animals. Of
course, in real situations, the characterization of an alert situation is usually
much less noticeable, commonly taking into consideration many factors for
decision making. In some cases, a single record is sufficient to generate an
alert, such as the registration of a wild canid with symptoms of rabies and
non-human primates with Yellow Fever symptoms.
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It can be seen that the activities mentioned above refer to the grouping
and data classification task, typical of machine learning, and well known for
the wide variety of approaches and methodologies. They are therefore complex
tasks, both by nature as well as by the large volume of data expected for the
system10.

However, the challenges of grouping and classification that are present in
SISS-Geo go beyond the classic challenges of these tasks.

Phenomenon characterization. The characterization of what defines a group
of events (phenomenon) lies in the problem of non-conventional similarity mea-
surement formulation (e.g., not necessarily Euclidean). Grouping rules based
on expert experience are a reasonable alternative but has as shortcoming the
limited formalization of knowledge and, consequently, the potential for the in-
troduction of unwanted biases. Another approach is to treat this problem as
a machine learning process, aiming at the training of similarity models: given
a new record and the existing ones, determine to which group it belongs — or
whether it characterizes a new group. The process is characterized as super-
vised learning, since it is possible to determine reliably, a priori or a posteriori,
which records belong to which phenomenon, either by empirical tests or by
expert confidence.

Feature extraction. Once constituted the phenomena, it is necessary to
evaluate them as to the potential threat to wildlife health and its possible
outbreak in humans, as phenomena alone do not necessarily constitute alert
situations. In this sense, information characterizing a group of events needs
to be extracted and provided to the alert prediction model. The difficulty is
thus to derive statistics which better represent the phenomenon described by
the group in order to maximize the performance of the prediction model; in
other words, raise the necessary information to facilitate the learning process.
Experts recommend the use of certain statistics, such as the type and quan-
tity of affected animals, number and frequency of occurrences, among others;
however, the space of possible features goes well beyond that and could be
used to improve predictive performance. Thus, an open question is how to
exploit this vast space automatically? An interesting line of research and a
potential solution to this challenge is the investigation of automatic feature
extraction methods [20,19]. In a nutshell, the task can be cast as a supervised
machine-learning problem by taking as independent variables the union of the
information of all events in a group and, as the corresponding dependent vari-
able, whether or not an alert was issued at the time—of course, this requires
the existence of pre-labeled alerts. Then, a machine-learning algorithm can be
applied to learn a function (or set of functions) that maximizes the correlation
between groups’ content and alert prediction; this optimized function can be
understood as the extracted feature.

Alert prediction model. Although its use in the system is similar to suffi-
ciently known methods described in the literature, the alert prediction model

10 After all, it is an ambitious system that aims to aggregate and store records on wildlife
health of a vast country.
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is probably the most strategic component of SISS-Geo’s intelligence. The via-
bility of the system is fundamentally based on the accuracy of the prediction
model, both in detecting true positives (alerts) as true negatives (non-alerts).
The failure to detect an alert condition (false negative) can result in severe con-
sequences to wildlife, environmental, and human health. On the other hand,
false positives would overwhelm the relatively small network of laboratories
and experts responsible for confirming or denying alerts (more details below).
In this sense, methods that combine multiple models (ensemble methods) usu-
ally produce more accurate and robust solutions. Therefore they are promising
candidates as training algorithms for prediction models [44]. Still, since the
large portion of the system’s data has no associated class, that is, phenom-
ena whose alert predictions have not yet been confirmed, the semi-supervised
learning is an interesting approach due to its ability also to leverage unlabelled
instances in the training process [8].

Alert confirmation. Another key component of SISS-Geo—on which all
others depend—is the process of alert confirmation. This step is the second
(and last) time a human interacts in the process, the other being the upload
of the observation record. As expected, a great challenge and bottleneck result
from the need for direct human participation in the confirmation procedure,
either in the field or laboratory; it is an expensive and slow process, even con-
sidering the extensive network of qualified collaborations linked to SISS-Geo.
When there are more alerts issued by the prediction model than the capacity
of experts and the laboratory network to confirm them, the phenomena need
to be prioritized. In this situation, one can think of prioritizing the phenom-
ena associated with alerts (1) by alert severity weighted by the confidence of
prediction; or (2) by relevance to regions of great interest, be it social, environ-
mental or economic. However, a strategy focused on the medium and long term
is the prioritization of confirmation (or denial) of alerts with greater potential
for improving the accuracy of the prediction model. This line of research is re-
cent, and it is called active learning [50]. The same method can also be used in
possible cases of false negatives, thus avoiding the possibility of degeneration
of the prediction model11: the phenomena predicted as non-alerts but that are
promising from the learning point of view would be subject to confirmation
(of the non-alert condition) by an expert.

2.3.2 Prediction of Ecological Opportunities for Disease Occurrence

Another line of fundamental importance in SISS-Geo is the prediction of sce-
narios and environments that favor ecological opportunities for disease occur-
rence arising from wildlife or, put differently, raising scenarios conducive to
the occurrence of a particular event, such as an outbreak of a disease.

In short, trained alert models can be used to evaluate different scenar-
ios and characterize those potentially susceptible. From these, environmental,

11 Consider the extreme situation where all the predictions are non-alerts, including both
true as false negatives. Since, in principle, only the cases of alerts are of interest and subject
to confirmation, in this scenario, the model would be doomed to degeneration.
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social, and human and animal health variables are taken (see Section 2.2),
leading to a set of instances that share the status of “abnormality”, according
to the alert model predictions. Then, data-driven models are built over this set
in order to estimate a distribution of socio-environmental variables related to
alerts. Finally, the resulting models can be applied for predictive or descriptive
purposes. While in the former the goal is to assign a degree of suitability for
disease occurrence in the geographic space (regions), the latter aims at the
understanding of the factors associated with the disease occurrence, akin to
the discussion in Section 2.3.3.

In order to construct these predictive/descriptive models, methods for link-
ing of the mentioned variables, such as the ones applied to ecological niche
modeling [51] or, preferably, the less specific traditional machine learning
methods can be applied in this context. Since the alert models are trained
based on confirmed/denied events (Figure 8), what the disease occurrence
models will be reconstructing is not only the (realized) niche of the observed
animals but hopefully the environmental and climatic parameters that favor
the realized niche of the pathogen, which potentially include portions of the
niche of its components including vectors and hosts (since non-human primates
coexist with other species) [38]. Take, for instance, the Sylvatic Yellow Fever
disease. When an alert is issued (due perhaps to an observed high number
of non-human primate deaths), specialists will confirm or deny the alert. In
this case, it is the same as confirming (or not) the circulation of the YF virus
among non-human primates, which in turn is connected with the circulation
of YF mosquitoes.

It is worth observing that this kind of modeling outputs the suitability for
disease occurrence, not the actual probability of occurrence. In other words, the
model measures how close a given region’s socio-environmental variables are to
the distribution of the corresponding variables of regions that had confirmed
alerts [38].

2.3.3 Gaining insights through model interpretation

An essential feature of symbolic modeling methods, such as decision trees,
rule extraction algorithms and meta-heuristic genetic programming [27], is
that they reveal in human-readable form the existing relationships between
the input and output data.

The potential of this class of models to aid experts is remarkable in the
analysis and understanding of the phenomenon investigated, leading to a man-
machine interaction: the model suggests hypotheses that best fit the data while
the expert validates them.

In order to gain meaningful insights from the model, it is necessary to
accurately define its structure/language or, in other words, to incorporate
expert knowledge properly. While doing that, care should be taken to find
the ideal balance between bias, usually resulting from structural simplicity of
the model, and variance, an issue usually associated with structurally more
complex models.



SISS-Geo: Leveraging Citizen Science to Monitor Wildlife Health Risks in Brazil 17

3 Evaluation

As of February 2018, SISS-Geo was downloaded more than a thousand times
from the Google Play store and had an average rating of 4.8 out of 5 stars.
Even though the potential number of observations related to wildlife health
usually being a fraction of the population of a species, SISS-Geo has 3,014
records in its database performed by 1,881 citizen scientists. Its Web interface
has been accessed 4,463 times. These records correspond to 764 mammals,
815 birds, 383 reptiles, 227 amphibians, 47 fish, and 540 not identified. Table
1 lists the ten most recorded taxonomic groups in SISS-Geo. It is important
to emphasize that the records were uploaded by volunteer collaborators that
often do not have taxonomic knowledge, which can have adverse effects on
data quality. To tackle this issue and improve wild animal monitoring, which
can lead to better assertive models for the emergence of zoonoses, SISS-Geo
has developed a tool for expert-supported record validation. Figure 9 shows
the geographic distribution of the observations recorded by SISS-Geo that are
georeferenced.

Table 1 Ten most recorded taxonomic group in SISS-Geo - data until March 2018

Common name Number of records %

Not identified 540 18.3
Birds (Other) 417 14.1
Birds (Penelopes, Seriemas, Toucans) 112 8.6
Amphibians 242 8.2
Snakes 189 6.4
Marmosets and Tamarins 177 6.0
Turtles 101 5.9
Lizards 75 3.4
Birds of prey 72 2.5
Capybaras 64 2.2

SISS-Geo integrates data-based computational modeling, development, and
high-performance computing. It was selected in 2014 as the best project [6]
in the “Health” category of the Grand Challenges of Computing event of the
Brazilian Computer Society. In 2017, SISS-Geo received the National Biodi-
versity Prize from the Brazilian Ministry of the Environment12. It allows the
monitoring of wildlife and can support the identification of zoonoses, such as
the Yellow Fever outbreaks, which in its sylvatic cycle circulates among non-
human primates. The fact that monkeys become ill or die before there are
human cases of Yellow Fever causes the surveillance of outbreaks, such as the
recent one [12,33], in these animals to be of vital importance in the control
and prevention of the disease. The collaboration of the population is critical
because prevention actions can be improved and streamlined, and everyone

12 http://www.mma.gov.br/component/k2/item/10443-pr& (In Portuguese)
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Fig. 9 Geographic distribution of records (red dots) in Brazil until March 2018.

will benefit. With the participation of ordinary people, the application makes
available, in real time, the occurrences of dead or diseased animals for public
health and biodiversity conservation, assisting the Epizootics Surveillance Sys-
tem in Nonhuman Primates (PNH), of the Brazilian Ministry of Health, and
records of dead monkeys are reported to the responsible bodies investigating
the cases. The information recorded in SISS-Geo serves to generate compu-
tational models for predicting zoonoses and for the adoption of preventive
measures. Tables 2 and 3 list the recorded conditions and the most recorded
abnormalities in SISS-Geo, respectively.

Table 2 Recorded conditions in SISS-Geo until March 2018

Condition Number of records %

Normal behavior 2,168 71.2
Dead animal 697 22.9
Strange behavior 112 3.7
Sick animal 67 2.2

Some of the observations performed with SISS-Geo triggered alerts and
contributed to biodiversity conservation actions, such as: (i) 59 dead turtles
were recorded in the south of the Brazilian state of Bahia in November 2017,
generating a notification to the responsible environmental agency and a legal
notice to those involved in predatory fishing in the area; (ii) observations of
dead foxes with rabies in the Northeast were able to support decision-making
by health surveillance agencies; (iii) 73 dead monkeys were recorded in 2016
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Table 3 Recorded abnormalities in SISS-Geo until March 2018

Abnormality Number of records %

None 2,377 81.3
Wound 103 3.5
Other 101 3.5
Fracture 75 2.6
Blindness 74 2.5
Bleed 58 2.0
Skin problems 36 1.2
Swell 32 1.1
Myiasis 25 0.9
Secretion 18 0.6
Drool 16 0.5
Lump or Tumor 6 0.2
Diarrhea 3 0.1

during the recent Yellow Fever epizooty, which directed health surveillance
actions in the field.

The outbreak of yellow fever, which occurred in 2016 and spread through-
out southeastern Brazil [54,33], was evidenced by SISS-Geo from the recording
of non-human primates in Minas Gerais and other states. Among the various
prevention and control actions, the Health Surveillance Secretariat of the Min-
istry of Health of Brazil carried out five training courses with all the agents
and stakeholders involved in the surveillance of Yellow Fever in all the states
of the country. In these training sessions, SISS-Geo was presented and offered
to agents and managers as a monitoring tool for zoonoses epizootics [1]. Other
training activities were carried out with community health agents, park guards
and civil defense agents directly involved in the actions of human vaccination
and collection of biological samples of non-human primates to confirm cases,
in addition to the capture of animals. The use of SISS-Geo, although unofficial
so far, since it is necessary to restructure the national flow of information, has
been adopted as an additional tool in surveillance, especially for the ability
to generate georeferencing, photographs, and real-time information. As a re-
sult of this work, working groups, municipal agents, and collaborators from 25
Brazilian states record animals, which has already helped to inform about 200
deaths of non-human primates throughout the country.

SISS-Geo also contributed to the monitoring of species on the IUCN Red
List of Threatened Species, with the availability of the location and infor-
mation of some species already registered as Panthera onca, Puma concolor,
Tapirus terrestris, Myrmecophaga tridactyla, Bradypus torquatus, Chrysocyon
brachyurus, Chelonia mydas, Leontopithecus chrysomelas, Alouatta guariba
guariba, and Crax blumenbachii.

As seen, the SISS-Geo platform, including its data and methodologies,
allows analyses that can go beyond the initial planning: from the monitoring
of specific groups of animals to its complete adaptation to new contexts. Thus,
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examples of the expansion of SISS-Geo to new scenarios can be seen by the use
of data already collected, its tools, or even all its computational framework.

In this sense, projects that rely on the records of the platform to support
biodiversity monitoring, such as in Serra dos Órgãos National Park (PARNASO
- Parque Nacional da Serra dos Órgãos in Rio de Janeiro State), are already
in progress. Besides that, the collected records can also be used in many other
scenarios, for instance: estimating species distribution along with their health
status and training models of automatic species identification from SISS-Geo’s
images.

Besides, the SISS-Geo computing framework, designed to integrate locality
information, photographic and animal records, is easily replicated, taking ad-
vantage of all the tools and methodologies developed and applied in its design.
An example of this reuse is the project under development as a partnership
between Fiocruz, the National Center for Flora Conservation of the Rio de
Janeiro Botanical Garden Research Institute (CNCFlora/JBRJ) and the Rio
de Janeiro State Secretary of the Environment (SEA-RJ). It aims to adapt
SISS-Geo to a citizen-scientist platform for searching for rare plants, within
the context of the project “Campanha Procura-se13”. By simply adapting the
information from the module “Animal” to a “Plant” one, it was possible to
replicate most of the previously described concepts and flows.

4 Related Work

He et al. [22] present the eMammal framework for wildlife monitoring sup-
ported by citizen scientists. Animal images collected with camera traps are
sent to its database where visual animal recognition techniques are applied.
The species identification recommendations generated are reviewed by citizen
scientists and, subsequently, by experts. The resulting validated records are
made available to wildlife and ecological researchers. eBird [52] also leverages
the capability of citizen scientists to gather bird observation records. Auto-
mated data quality filters are used to support species identifications performed
by citizen scientists. iNaturalist [23] is another biodiversity citizen-science ini-
tiative available as both a mobile and Web application. Volunteers can record
and identify species observations that can be validated by other users and bi-
ologists. After an observation is validated, it is annotated as “research grade”
and uploaded to GBIF. The World Organization for Animal Health (OIE),
which maintains the World Animal Health Information Database (WAHIS)
Interface14, is accessible online and contains updated information on disease
outbreaks. However, most of OIE’s pertinent and relevant information relates
to infectious agents that have an impact on livestock production and human
health, when the two situations are interlinked. As an example, there is no no-
tification of Yellow Fever epizootics in humans and non-human primates, and
this information was only requested to Brazil in 2017 after thousands of deaths

13 http://dspace.jbrj.gov.br/jspui/handle/doc/95
14 http://www.oie.int/wahis_2/public/wahid.php/Wahidhome/Home



SISS-Geo: Leveraging Citizen Science to Monitor Wildlife Health Risks in Brazil 21

of people and non-human primates. In WAHIS, space for “other diseases” of
irrelevant paper to the economy was added only in recent years. It is important
to note that the information provided by the OIE comes from member coun-
tries in half-yearly reports. Brazil has the National Animal Health Information
System (SIZ)15, however, the database refers to the mandatory notification
diseases described in Normative Instruction No. 50, 23rd of September, 2013.
The national list does not include pathogens that have no interest for animal
production, although there is also a field where any notification can be made.
Therefore, in Brazil, there is no system for collecting and systematizing wildlife
diseases, one of the main reasons for the development of SISS-Geo, created by
a project in partnership with government agencies of livestock production and
the environment.

More general biodiversity databases exist at the global, national, and ecosys-
tem levels. GBIF [14] gathers species observation data on a global scale. In
February 2018, it had 54 national nodes. Along with other types of partic-
ipants, GBIF gathers data from 1,152 institutions, totaling approximately
a billion records. SiBBr [18] is the Brazilian GBIF node, publishing species
occurrence records and providing an ecological niche modeling portal [47].
BaMBa [29] is a biodiversity database that focuses on marine ecosystems that
is also integrated with GBIF. These systems use the IPT tool [43] to extract
observation records from local databases, export them to Darwin Core [56],
and publish them on GBIF.

SISS-Geo is both a citizen science application and a biodiversity database.
eBird, eMammal, and iNaturalist while being citizen science applications as
well, do not provide tools for data analysis as SISS-Geo plans to do with the
application of machine learning techniques to generate wildlife health alerts fol-
lowing the methodology proposed in subsection 2.3. GBIF, SiBBr, and BaMBa
focus on data mobilization and publication and do not directly provide tools
for enabling the participation of citizen scientists.

5 Conclusion

The proposal was inspired by the desire to make public and seek reinforcements
for a long walk that brings together researchers, experts from multiple areas
and society so that, through computing, information and disease prevention
actions reach the most remote regions of the country. It emerges from many
years of practice of field research in the Brazilian semi-arid region, where
relevant information on diseases in wild animals have been lost or dispersed,
and the lack of systematization turned necessary actions impossible both for
the containment of diseases in humans, as for conservation of species.

SISS-Geo was born out of efforts to create innovative and integrated ac-
tions for the mainstreaming of biodiversity in the sectors of the country. It

15 http://www.agricultura.gov.br/assuntos/sanidade-animal-e-vegetal/

animal-animal/epidemiologia/ingles/animal-health-information-system
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integrates the actions of the Oswaldo Cruz Foundation (Fiocruz) in “Public-
Private Actions for Biodiversity Project” – PROBIO II16, coordinated by the
Brazilian Ministry of the Environment, and developed by FUNBIO, Embrapa,
the Brazilian Ministries of Agriculture and Livestock, Health, and Science
Technology and Innovation, the Botanical Garden of Rio de Janeiro, ICMBio
and Fiocruz. The National Laboratory for Scientific Computing joined the
Fiocruz project and ensured its execution in a long-term knowledge-building
partnership.

By automating the search for occurrence patterns, the information reaches
more efficiently citizens nationwide, from the general population through ex-
perts, as well as provides the opportunity for the acquisition of knowledge
about the possible patterns and parameters that contribute to the occurrence
of diseases. In the medium- and long-term, it also builds the capacity of re-
searchers to develop complex modeling in the ecology of diseases that can
exploit geographic information in order to improve accuracy. Moreover, oc-
currence patterns yield data that can assist national policy on health and
biodiversity conservation.

It should be pointed out that all the described design decisions and tech-
niques embodied in SISS-Geo could also be readily adapted to other similar
settings. Besides the increasingly popular concept of leveraging citizen sci-
entists to propel a collaborative monitoring tool, which would fit countless
different scenarios provided they can either tolerate some inaccuracy or have
a mechanism to validate user input, the proposed machine-learning flow is
sufficiently generic to cover a wide range of related contexts. For instance,
it is rather common the case in which a phenomenon cannot be recorded all
at once, but incrementally in time and space, possibly by different collabora-
tors, as in the jigsaw puzzle; here, everything discussed in Section 2.3.1 would
be potentially useful. Another potential contribution to other settings is the
discussion about feature extraction from groups followed by the alert predic-
tion/confirmation, which could play a central role in situations—especially in
those related to unattended monitoring—where certain events should trigger
alerts.

In the context of SISS-Geo, the incorporation provenance information is
planned to allow the alert generation process to be traceable, meaning that one
can recover the data, configuration parameters, people and computational ac-
tivities involved. This enables many applications, such as assessing the quality
of the alerts generated, verifying compliance with governmental regulations,
and the reproducibility [10,4] of the alert generation process. Provenance in-
formation [32,31], which contains details about the planning and execution of
computational processes, such as scientific workflows, describing the processes
and data involved in the generation of its results may be used to facilitate
this task. They allow an accurate description of how a computational pro-
cess was planned, which is called prospective provenance, and what occurred
during execution, which is called retrospective provenance. Some applications

16 http://www.funbio.org.br/probioii
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of provenance include reproducibility of computational processes for valida-
tion, sharing and reuse of knowledge, data quality evaluation, and attribution
of scientific results. One of the concepts commonly captured in provenance
is causality, which is given by the existing dependency relationships between
computational activities and data sets. These dependencies can derive, by
transitivity, dependencies between data sets and between processes.

An application programming interface (API) is being implemented and will
serve the data stored in SISS-Geo to other systems. The installation of an in-
stance of IPT [43] is also planned and will allow this same data to be exposed
in the Darwin Core [56] standard along with EML [16] metadata . This will
enable global and national biodiversity databases, such as GBIF and SiBBr
[18], to collect the species occurrence records stored in SISS-Geo. As a result of
the need to integrate information on wildlife, human and livestock health, sev-
eral conversations have been made with the OIE’s Brazilian focal point in the
government’s Ministry for Agriculture, Livestock and Food Supply of Brazil.
The plan is for information from SISS-Geo to feed the SIZ (Brazilian National
Animal Health Information System) database, which will subsequently power
the WAHIS database. Since 2017 the transfer of information has been done
informally, with the reporting of notifications of dead and sick animals. Sys-
tematic integration in the various national information systems, both human
health and livestock production, also depends on many political and legal ad-
vances and, in particular, on the strengthening of the structure that supports
the laboratory diagnosis of pathogens that do not appear in the notifiable dis-
eases nor for humans, or livestock. The integration data from additional data
providers that are relevant to the application area of SISS-Geo is planned,
following the rules and national legislation.

In one way or another, the authors believe that the SISS-Geo platform
addresses the five challenges mentioned in Section 1:

1. Decision-makers can be sensitized to the importance of wildlife monitoring
through multiple avenues, such as (i) scientific communication (as this
document itself) and (ii) models of diseases occurrence that are capable
of anticipating outbreaks. SISS-Geo is being used in ongoing collaborative
work with the Secretariat of Health Surveillance (Brazilian Ministry of
Health) to generate data-driven Yellow Fever models.

2. Regarding the second challenge, being an easy-to-use GIS-based tool that
leverages citizen scientists as the primary source of data collection from
wildlife health, SISS-Geo is not impaired by large territorial extension nei-
ther is it dependent on sectoral policies and government health staff. The
independent network of experts and laboratories takes care of alert con-
firmation; concomitantly, the active-learning approach proposed in Sec-
tion 2.3.1 would hopefully minimize the human resource involved in this
task.

3. SISS-Geo has been designed since the beginning as a platform aimed at
integrating seamlessly multiple agents and skills. Each agent, whether it
is a citizen scientist, specialist, laboratory or decision-maker, has a well-
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defined role in SISS-Geo. Citizen scientists and specialists can both upload
records of observations to SISS-Geo; the difference is that records provided
by experts tend to be more comprehensive and reliable. After that, they
are validated and, if alerts are predicted, the network of experts and lab-
oratories are asked to confirm or deny them. From the confirmed/denied
data, models that correlate factors and occurrence are built via machine-
learning techniques with the aid of experts. Then, occurrence cases, alerts,
and models are communicated to decision-makers, enabling them to make
informed decisions on possibly imminent outbreaks.

4. For obtaining, storing, and managing data properly, this is effectively ac-
complished in SISS-Geo thanks to its architecture with a dedicated Web
server, database server, and HPC resources (Figure 7). There are ongoing
efforts into making the SISS-Geo mobile application capable of operating
flawlessly in offline mode, which is very common in remote areas of the
country.

5. Finally, the fifth challenge concerning the identification and prediction of
risks from data, as well as the extraction and communication of relevant
information, are also part of the SISS-Geo workflow, tackled respectively
by the tasks of modeling of disease occurrence (Section 2.3.2) and model
interpretation (Section 2.3.3).

Availability

Web interface:
http://sissgeo.lncc.br and http://www.biodiversidade.ciss.fiocruz.

br

Geographical explorer:
http://morcego.siss.lncc.br/i3geo/interface/black_ol.htm

Mobile application (Android):
https://play.google.com/store/apps/details?id=siss.ui

Mobile application (iOS):
https://itunes.apple.com/br/app/siss-geo/id1291912325
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