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Abstract—Reproducibility is a topic that has received sig-
nificant attention in recent years. Despite being considered a
fundamental factor in the scientific process, recent surveys have
shown the difficulty of reproducing already published works,
which impacts scientists’ ability to verify, validate, and reuse
research findings. Recording provenance data is one of the
approaches that can help to mitigate the challenges involved
in the reproducibility process. When semantically well defined,
provenance can describe the entire process involved in producing
a given result. Additionally, the use of semantic web technologies
can allow for the provenance data to be machine-actionable.
With a focus on computational experiments, this work presents
a package for collecting and describing provenance data from R
scripts using the REPRODUCE-ME ontology to describe the path
taken to produce results. We describe the package implementa-
tion process and demonstrate how it can help describe the story
of experiments defined as R scripts to support reproducibility.

Index Terms—Reproducibility, Provenance, Ontology, Compu-
tational experiments, R scripts

I. INTRODUCTION

Often referred to as one of the most important pillars

of scientific research, reproducibility concerns the ability to

perform a method more than once and arrive at results and

conclusions consistent with those originally obtained. The

practice of reproducible research allows results to be validated,

verified, and reused by third parties. This pillar alone does

not determine the production of new scientific findings. It

must be accompanied by scientific rigor and transparency.

However, reproducibility supports the development of future

works based on more solid foundations [1].

In recent years, reproducibility in scientific research has

been a discussed topic in many different domains. Studies and

surveys have pointed to the poor reproducibility of published

works, leading to a reproducibility crisis in research [2], [3].

The reasons for this may vary depending on the domain, but

part of them focuses on the lack of adoption of good practices,

such as sharing the research objects involved. A Nature survey

points out that other reasons include lack of incentives, the

pressure to publish, and selective reporting [2].

With the increasing advancement and democratization of the

computational infrastructure, such as the availability of cloud

services, research groups have benefited from computational

approaches to carry out their experiments and analyses. This

encourages the development of new tools and methods as well

as the production and availability of data to be processed.

In this context, an experiment that uses computing most of

the time comprises a set of steps performed by a range of

applications (software) and involves consuming and producing

data. Experiments in this format can execute a flow of steps,

where the data generated by one step is consumed by the

subsequent step.

One can then think that computational experiments are, in

essence, easy to be reproduced: the execution of an application,

or a flow of applications, with the same input data should

generate the same results. However, this is not always the case,

as not all steps are necessarily deterministic. Besides, minor

variations in the various layers involved in executing these

experiments, such as hardware, software, data, and code, can

significantly impact the results [4]. This can be exacerbated in

cases where experiments are data and compute-intensive.

Some recent approaches have been proposed and imple-

mented to support, allow and encourage the practice of repro-

ducibility in scientific research. Some examples include tools

to facilitate the work of making the experiment reproducible

by scientists, adjustments to publication policy in journals,

checklists on relevant information to be reported in papers,

and conference tracks that focus on reproducible works. In this

work, we explore the use of an ontology that can support the

process of making an experiment reproducible by allowing a

better understanding of the processes involved in its execution.

For this, we have developed a mechanism for collecting

provenance data from experiments that use the R scripting

language according to the REPRODUCE-ME data model [5].

We demonstrate and evaluate this approach through a set

of competency questions and discuss how the ontology can

support reproducibility. We also discuss how this approach can

be integrated with a computational reproducibility framework

we proposed previously [6].

Therefore, in Section II, we present a review of the literature

on approaches to allow the reproducibility of computational

experiments. In Section III, we describe the approach for

semantic representation of the provenance of R scripts, and

also present and evaluate a package developed for this purpose.

Finally, in Section IV we present some concluding remarks.

II. RELATED WORK

The challenge of supporting reproducibility is closely linked

to the number of factors involved in the life cycle of compu-

© 2021 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, 

including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works. This is the author’s version of an article that has been published in 

the Proceedings of the 2021 IEEE 17th International Conference on eScience (eScience). 

The final version of record is available at https://doi.org/10.1109/eScience51609.2021.00057.



tational experiments. Ivie et al. [4] present a survey of these

factors, separating them into scopes, or layers, which include:

the command needed to execute a script, data, software,

operating system, kernel, and hardware. In this sense, some

studies have pointed out good practices for the development

of reproducible research [7], [8]. In general, they recommend:

(i) the use of automation to execute the experiments, avoiding,

for example, manual steps for data manipulation; (ii) keeping

a record of all executed steps; (iii) code and data versioning;

(iv) availability of code and data in public repositories; (v)

preserving experiments in containers or virtual machines. It

is increasingly common to see conferences and journals that

recommend some of these good practices. Also, research

domains have proposed checklists and guidelines to include

some specifics according to the perceived needs [9]–[11].

Computational experiments usually involve the composition

of tasks connected through data consumption and production.

Workflow management systems (WfMS) can be considered a

type of approach to automate these experiments [12]. Systems

like this provide features for scalable execution, management,

and tracking of data, applications and their dependencies, and

fault tolerance techniques. Scripting languages are also another

possibility for automation. Its use, especially in studies involv-

ing data science techniques, has been widespread. Languages

like R and Python are well-established, general-purpose lan-

guages with a range of packages available, providing flexibility

in defining workflow steps.

Being able to record what was done in the experiment is

linked to the concept of provenance. From a computational

point of view, provenance can be classified in two forms [13]:

(i) prospective, which concerns the experiment format, for

instance, through a script or workflow definition containing

the steps that compose it; and (ii) retrospective, which includes

details on the execution of these steps including, for example,

what input data, parameters, and computational environment

were used. In this sense, provenance can be considered an

important aspect to support reproducibility, as it provides the

means to describe the entire process that led to the generation

of a result.

Approaches that use provenance to support reproducibility

have been developed in recent years. ReproZip [14] is an

example of a packaging tool that uses provenance to identify

dependencies required to run an experiment, and it builds

a container in which the user can re-run the experiment.

Similarly, encapsulator [15], is a toolbox that relies on prove-

nance data to produce an environment in which computational

experiments can be reproduced. WfMS usually provides func-

tionality for capturing and analyzing provenance data, and for

scripting languages, we have noWorkflow [16] for collecting

provenance of Python scripts, the drake [17] and RDataTracker

[18] packages for R, and ProvBook [19] for the provenance

of Jupyter notebooks.

The basis for a mechanism aimed at collecting and recording

provenance data is the definition of how this data should be

represented. In addition, the granularity level at which this

should happen must also be taken into account: a higher

level can consider workflow activities, their dependencies, and

parameter settings while a lower level considers aspects of

the computing environment such as memory consumption,

processing time, and implicit/hidden library dependencies.

One approach to the representation of the provenance model

comprises the use of ontologies [20]. A first example is the

OPM model [21], which models provenance as a graph where

nodes can be artifacts, processes, or agents. Its creation was

followed by the definition of the PROV model, which is a well-

established model and used as a reference by other models,

such as the P-Plan [22], D-PROV [23], ProvONE [24], and

PROV-Wf [25]. These models introduced more specific aspects

about workflows, workflow technologies, and the possibility

of representing domain data. Including both computational

and non-computational steps, the REPRODUCE-ME ontology

extends PROV and P-Plan to describe a complete path of a

scientific experiment. Its development was initially based on

life science experiments, but it has been adjusted to cover

aspects regardless of the domain.

Because REPRODUCE-ME allows for greater detail of

aspects involved in experiments defined as workflows than, for

example, the PROV model alone as it is the case of RData-

Tracker, we understand that it fits our goal of representing

the provenance of computational experiments defined with R

scripts. Furthermore, as we aim to support reproducibility,

we need to have access to information that provides greater

understandability and interoperability, and with that, the need

for a vocabulary capable of detailing the research objects

involved in computational experiments. To our knowledge,

there is no tool that semantically describes the provenance of R

scripts at this level of detail. Furthermore, we understand that

because it is an ontology based on well-established models and

can be extended and modularized, it allows us to use it as the

foundation of a bigger framework to support reproducibility.

Therefore, in this work, we evaluate the applicability of the

ontology to represent the provenance of R scripts.

III. TOWARDS PROVENANCE OF R SCRIPTS

In previous work, we proposed a framework to enable the

reproducibility of computational experiments, especially those

that use scripting languages to define their workflows [6]. We

suggested that this framework could follow, even minimally,

the FAIR principles [26] so that the research artifacts involved

were available and adequately identified. From this work, we

identified the need to have a vocabulary capable of represent-

ing the details of the artifacts and layers involved in com-

putational experiments to better adapt to the FAIR principles

and provide broader support for reproducibility. In this work,

we take a step in this direction, considering computational

experiments that are defined by scripting languages, more

specifically R, and applying the REPRODUCE-ME ontology

to represent the provenance in greater detail semantically.

R is an open-source scripting language and environment for

statistical and graphical methods, supported by the R Foun-

dation for Statistical Computing and a large community of

open-source developers and contributors. R can be considered



a flexible language and environment since it can be extended

with other functions beyond the functions available by default.

These functions are distributed through external packages that

can be installed and coupled to the environment. R users are

encouraged to create their own packages and submit them to

the Comprehensive R Archive Network (CRAN), the official R

package repository. Currently, CRAN contains approximately

17600 published packages. Other packages can also be made

available on platforms such as GitHub.

Because of its flexibility, R has been extensively used

to construct and execute data science workflows and as a

means of implementing routines for automating tasks that

need to be executed frequently, for example. In addition, the

use of scripting languages such as R has been encouraged

by universities and research institutes, with the inclusion of

classes and extension courses in their programs, in areas

that are not necessarily those of technology or computational

sciences. This is because different domains have seen the

opportunity to add value to their work with the development

of scripts, either to make them available or to improve their

own productivity.

When implementing workflows in R, small tasks or activi-

ties comprise functions. Usually, functions receive input data,

such as files or another type of object, and generate output data

consumed by the following function. R functions are stored in

packages, and the most commonly used R packages include

features for manipulating, cleaning, and visualizing data. Func-

tions encapsulate a set of smaller routines and are often defined

to receive arguments for their parameters. These parameters

may or may not have arguments with default values, and

the user can perform the same function informing different

arguments for the parameters in different moments. This is,

in fact, a very common behavior, executing functions, or even

entire scripts, with variations in their parameters. In the context

of data science workflows, for example, these executions,

or trials, can be made to identify the best configuration for

adjusting a model considering a given input data.

The R environment does not automatically record prove-

nance data from different executions of the same function or

R script. This is one factor differentiating R and other scripting

languages from some scientific workflow management systems

that provide provenance management by default. However,

because of the flexibility mentioned earlier, this functionality

can be coupled to the environment by loading packages

specifically designed for this purpose.

A. Semantic representation of R scripts with REPRODUCE-

ME

Based on the overview of the tools available for collecting

provenance in R and the most common ontologies used for

this purpose, presented in Section 2, we opted for using the

REPRODUCE-ME ontology to represent the provenance of

R scripts. Therefore, we describe in more detail how some

of the REPRODUCE-ME classes can be mapped to each of

the components of an R script that we believe are the most

relevant to be reported in the provenance data:

• Script: comprises the file containing the code that defines

a particular workflow or experiment and is then part of

the prospective provenance.

• Function: a set of encapsulated instructions aimed at

executing a specific routine within a script. It may or

may not consume and generate data, depending on how

it was defined.

• Package: the component responsible for grouping various

functionalities, such as functions. Users commonly use

functions that have already been implemented and are

made available through packages.

• Version (package): it concerns the version of the package.

Implementations of functions within packages can be

modified, so it is necessary to identify the version of the

package loaded in a script. Small changes can impact

results obtained between package versions.

• Programming language: it concerns the programming

language in which the script is defined. In this work, we

focus on R scripts, but as the ontology itself suggests, it

can be applied to other languages.

• Version (programming language): it specifies the pro-

gramming language version used to define and execute

the R script. As with packages, variations between pro-

gramming language versions can lead to variations in the

final results.

• Operating system (OS): it describes the operating system

used to run the R script.

• Version (operating system): it specifies the operating

system version used to define and execute the R script.

• Operation: comprises R commands that perform arith-

metic or assignment operations, which do not involve the

execution of functions.

• Function activation: it concerns the execution of a func-

tion and is part of the prospective provenance. This is

because the same function can be executed more than

once and with different parameter settings. Also, as

functions are executed, the order in which this happens

or the chain between functions’ inputs and outputs allows

us to retrieve the script execution flow.

• Parameter: It concerns the input expected by the function

for its execution/activation.

• Argument: it specifies the input value informed for a

given parameter. Functions can have argument values set

by default, but the user can modify them as needed. As

changes in the input values of arguments can impact the

results obtained, this is an essential provenance data to

be recorded.

• Output: it concerns the result generated by the execu-

tion/activation of a function.

A diagram indicating how these classes connect to each

other is presented in the Fig. 1. The Operation class, in purple,

was added to the ontology as the mapping between the char-

acteristics of R scripts and the existing classes in the ontology

was performed. In addition to the classes described above,

indicated in yellow, we have included in the diagram how





only the functions of other packages loaded in the script. For

each function activation, we check the informed arguments

and also if there are arguments with default values, which are

not necessarily explicit in the function call. In this way, we

can track the parameters’ configuration every time a function

is executed. Entities are broken down into variables if they

comprise input and output data from function activations or

operations, or just outputs if they are only generated as a result

of function activations or operations.

The process of extracting the provenance collected by rdt,

complementing it with reproducibility-related information, and

representing it according to REPRODUCE-ME was imple-

mented using R as a post-processing step to the provenance

recording by rdt. For ease of use, we have made this mecha-

nism available as an R package, named rdt2repr. We encap-

sulated rdt features into this package and added the option

to do the extraction by calling a function. For users using

RStudio3, an integrated development environment (IDE) for

R, this extraction function can also be executed from an Add-

in, an option in the interface menu that acts as an extension

to the IDE. The Fig. 2 shows how the steps for collection and

representation of provenance according to REPRODUCE-ME

occur. The user who wants to collect the provenance of R

commands must indicate when the collection should start and

end and then extract to REPRODUCE-ME. The result of this

extraction is a file in RDF format. We envision improving this

process to allow the inclusion of provenance into a database in

an integrated way, facilitating, for example, the access, sharing,

and executions of queries to retrieve relevant information.

C. Evaluation

As part of the demonstration and evaluation of the semantic

representation of R scripts using the REPRODUCE-ME on-

tology, we considered a sample of an R script for collecting

the provenance of its execution. This script uses a package to

query tweets data from the Twitter API and execute a set of

functions to analyze and save the obtained data in a file.
Once the script is defined, we load the implemented

package, rdt2repr, and call the function that starts gathering
the provenance of all commands. Then we run the script, and
at the end, we call another function to finish the provenance
collection. These two functions are native to rdt and have
been encapsulated within the rdt2repr package. After that,
we convert the collected provenance using the function
implemented in rdt2repr. We define and select competency
questions to answer based on the initial requirements of the
computational reproducibility of scripts [5]. We demonstrate
one of the questions here based on the generated RDF file, and
the others, along with the R script used and the provenance
collected, are available on GitHub4. As the provenance data
is extracted to RDF format, we use SPARQL to define the
queries. The following query lists the functions used in the
definition of the sample R script, with the respective packages
they belong to and the package versions used, the first lines
of the result is presented in Table I:

3https://www.rstudio.com/
4https://github.com/mmondelli/rewords sample

PREFIX repr: <https://w3id.org/reproduceme#>

SELECT DISTINCT *
WHERE {

?function a repr:Function ;

repr:hasPackage ?package .

?package repr:hasPackageVersion

?package_version .

}

TABLE I
SAMPLE OF QUERY RESULTS

function package package version

repr:pipe repr:dplyr ”1.0.5”

repr:arrange repr:dplyr ”1.0.5”

repr:count repr:dplyr ”1.0.5”

repr:fwrite repr:data table ”1.14.0”

repr:library repr:base ”4.0.2”

As an additional evaluation, we plan to work on the integration
of the package developed in the framework proposed in the previous
work, as well as identifying possible extensions in the ontology. In
addition, we have two case studies of workflows developed in R by
partner researchers, in ecological niche modeling and metabolome
annotation, where we will be able to evaluate the work in greater
depth.

IV. CONCLUSION

In the present work, we explore using a semantic approach to
represent the provenance of R scripts through the REPRODUCE-ME
ontology. We understand that adopting a semantic model that allows
a greater description of the aspects involved in workflows defined
through scripting languages can provide greater understandability
and interpretability, and consequently reproducibility. Furthermore,
as it is a model that extends well-consolidated ontologies, the
REPRODUCE-ME brings the aspect of interoperability, which is
essential if we consider supporting the other layers involved in
computational experiments, also important to be represented from
the point of view of reproducibility.

The present work and the development of the proposed R package
act as proof of concept of applying the ontology in this context. We
see in the application and use of a vocabulary that is essentially geared
towards reproducibility and based on well-established ontologies an
opportunity to support workflows following FAIR principles. With
the approach proposed in this work, we can meet three of the FAIR
guidelines, for the description of workflow with rich metadata (F2)
using a formal vocabulary that can be widely applied to the context
of computational experiments (I1 and I2). In this sense, we envision
the integration of this work with the framework that we proposed
previously to cover not only the representation of scripts but also
other layers, such as the computational environment used to execute
computational experiments. We intend to cover other guidelines such
as assigning unique identifiers to the research objects involved in
the experiment and supporting the reuse of the experiment and
research objects (A1, F1, F2, and R1). This will demand extension
of the ontology to include other classes and relations that may be
necessary. Furthermore, we see the need to implement a mechanism
that facilitates the consultation and visualization of source data that
may be valuable to users to support the usability of the collected
data.
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B. Ludäscher, “D-PROV: Extending the PROV Provenance Model with
Workflow Structure,” in 5th Workshop on the Theory and Practice of

Provenance, (TaPP’13). Lombard, IL: USENIX Association, 4 2013.
[Online]. Available: http://www.dataone.org

[24] V. Cuevas-Vicenttı́n, B. Ludäscher, P. Missier, K. Belhajjame,
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