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Abstract—Science gateways bring out the possibility of 
reproducible science as they are integrated into reusable 
techniques, data and workflow management systems, security 
mechanisms, and high performance computing (HPC). We 
introduce BioinfoPortal, a science gateway that integrates a 
suite of different bioinformatics applications using HPC and 
data management resources provided by the Brazilian National 
HPC System (SINAPAD). BioinfoPortal follows the Software as 
a Service (SaaS) model and the web server is freely available for 
academic use. The goal of this paper is to describe the science 
gateway and its usage, addressing challenges of designing a 
multiuser computational platform for parallel/distributed 
executions of large-scale bioinformatics applications using the 
Brazilian HPC resources. We also present a study of 
performance and scalability of some bioinformatics applications 
executed in the HPC environments and perform machine 
learning analyses for predicting features for the HPC 
allocation/usage that could better perform the bioinformatics 
applications via BioinfoPortal. 

Keywords—science gateway, bioinformatics, high 
performance computing 

I. INTRODUCTION 
Nowadays, genomics research shows an unprecedented 

effort in sequencing and categorizing genomes produced by 
new-generation high-throughput DNA sequencing [1]. The 
capacity for the biological data generation has led to an 
explosive growth of the complexity, heterogeneity, volume, 
and geographic dispersion of this biological “big data” [2]. 
Considering the annual growth of the generated data, it is 
estimated that the biological big data will reach 44 zettabytes 
in 2020 [3]. Thus, analyzing this volume of data is far from 
trivial. The integration of the latest breakthroughs in 
biomedical technology from one side and High Performance 
Computing (HPC), Scientific Workflow Management 
Systems (SWfMS) [4], and Database Management Systems 
(DBMS) [5] from another side, enables remarkable advances 
in the fields of healthcare, drug discovery, genome research, 
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computational biology, system biology, data science 
(management, sharing, and execution) and so on.  

Computational biology and bioinformatics are 
interdisciplinary fields that deal with the development of 
computational, mathematical, and biostatistics methods to 
analyze large biological datasets to infer hypotheses or 
discover new solutions. They have emerged as a very 
promising area in the analysis of genome sequences. Latin 
America has a very active research community interested in 
developing and using bioinformatics approaches for 
supporting academic, scientific, and industrial demands. The 
Brazilian Bioinformatics Network (RNBio) aims at 
strengthening the bioinformatics research projects in Brazil in 
a multi-institutional format with the training of specialized 
human resources in thematic studies involving bioinformatics 
and computational biology. RNBio has scientific 
collaborations with the Brazilian National System for High 
Performance Computing1 (SINAPAD), which offers to users 
several heterogeneous and geographically distributed 
resources with high performance/throughput computing 
(HPC/HTC) capabilities and customized security models. 

A science gateway [6] is defined as “a community-
developed set of tools, applications, and data that is 
integrated via a portal or a suite of applications” [7]. 
SINAPAD applies grid computing [8] using the middleware 
CSGrid 2  that offers the single access points through web 
interfaces (gateways) for the submission of scientific 
applications for the use of HPC resources. CSGrid offers two 
key entry points for users, a desktop Java client and a service 
bus (called OpenBus). OpenBus allows managing services as 
jobs (OpenDreams) and files (HDataService), provided as 
APIs. Other CSGrid services that can be accessed by science 
gateways are the mc2toolset, a RESTful web service (APIs to 
develop gateways), and a CLI (Command Line Interface).  

CSGrid has been used in different projects, as the 
mc2toolset that supports the prototyping of several scientific 
portals3  at SINAPAD for physics, meteorology, chemistry, 
complex networks, mathematical, bioinformatics, medicine, 
etc [9]. However, although CSGrid and their tools represent a 
step forward, it may be complex to the regular users to execute 

3 https://www.lncc.br/sinapad/portais.php 



their experiments, since it may require advanced knowledge 
of several tools, frameworks, applications, filesystems, etc. 
BioinfoPortal invokes the middleware CSGrid for managing 
the requests of users for executing applications in the 
HPC/HTC resources of SINAPAD. At the end of the 
execution, a link pointing to the scientific results is sent to the 
e-mail of the users.  

The main goal of this paper is to address the problems and 
features of designing a multiuser computational platform for 
parallel/distributed executions of large-scale bioinformatics 
applications using the Brazilian HPC resources. A grid-based 
architecture for the science gateway is introduced. This 
architecture allows scientists to design and integrate 
components of a heterogeneous architecture for their 
experiments. Other goals of the Project called BioinfoPortal 
are: 1) to integrate HPC, SWfMS, and DBMS technologies; 
2) to dispatch, manage, and execute processes in a transparent 
and friendly manner for (non)expert users; 3) to evaluate the 
performance of applications; and 4) to manage the provenance 
data tracking of records of executions at Bioinfo-Portal. 

The results (scientific/performance) of HPC applications 
executions at BioinfoPortal were analyzed with the support of 
the provenance databases, by submitting high level database 
analytical queries. These results show that BioinfoPortal is 
functional and capable of processing up to the datasets 
required for each one of the bioinformatics applications, 
especially HPC applications as RAxML with multithreads and 
MPI, which improved the performance. We analyzed the 
general features of the application executions (input size, 
software parameters, efficiency of machines capacity) using 
machine learning techniques to explore the allocation/usage of 
computational resources for the gateway. Decision trees 
generated with regression models, based on a historic of the 
dataset, provided a promisor learning module and proved that 
choosing the platform configuration for performing 
executions is valuable for exploring the better usage of the 
HPC infrastructure in science gateways. 

The science gateway BioinfoPortal mediates the execution 
of a suite of bioinformatics applications using the 
computational resources of SINAPAD. It follows the 
Software as a Service (SaaS) delivery model and is built on 
top of the middleware CSGrid, which allows managing the 
bioinformatics applications (programs, tools, or workflows) 
with HPC/HTC. BioinfoPortal is currently supported by the 
team of RNBio, National Laboratory of Scientific Computing 
(LNCC4 ) and SINAPAD and it is freely available for the 
academic use at https://bioinfo.lncc.br/. 

This paper is organized as follows. Section II presents 
related works. Section III describes the specification of the 
architecture of the science gateway BioinfoPortal and presents 
its implementation using CSGrid and the HPC resources of 
SINAPAD. Section IV shows the experimental results and 
discussion and Section V concludes the paper and points out 
future work. 

II. RELATED WORK 
Many science gateways offer sharing possibilities within a 

community using technologies based on the reusability of 
methods and reproducibility of diverse fields of science [7]. 
There are several initiatives of bioinformatics research groups 
for developing web interfaces, portals or migrating workflows 

                                                        
4http://www.lncc.br/ 

or software for the community. We highlighted for discussion 
some main science gateways that covered HPC technologies. 

MoSGrid [10] is a web-based science gateway for 
structural bioinformatics that provides an intuitive user 
interface to several applications. The security concept applies 
SAML (Security Assertion Markup Language) and allows for 
trust delegation from the user interface layer, middleware 
layer, and Grid middleware layer with HPC facilities.  

Galaxy [11] is an intuitive science gateway that supports a 
large number of communities with overlapping research 
fields. However, Galaxy lacks the support of grid-based 
Distributed Computing Infrastructures (DCIs) and requires the 
installation of a Galaxy instance per underlying DCI. Thus, 
the migration of Galaxy workflows to WS-PGRADE 
workflows allows for flexibly using existing Galaxy 
workflows for various DCIs.  

myExperiment [12] is an online research environment that 
supports the social sharing of bioinformatics workflows. As a 
public repository of workflows, myExperiment allows every 
user to discover those that are relevant to their research, which 
can then be reused and repurposed to their specific 
requirements. Although myExperiment represents a step 
forward, it does not allow users to execute their workflows. 

The CIPRES5 Science Gateway is a public resource for 
inference of large phylogenetic trees. It is designed to provide 
access to NSF XSEDE’s large computational resources 
through a simple browser interface. It released a RESTful API 
to allow integration of CIPRES capabilities into other desktop 
software and web applications. The CIPRES Science Gateway 
is designed to manage data much like an e-mail client. The 
data is then used to stage individual jobs. 

III. PROPOSED APPROACH: BIOINFOPORTAL GATEWAY 

The architecture of BioinfoPortal gateway is composed of 
four layers: User Interface Layer, Management Layer, Data 
Layer, and Resource Layer, as depicted in Fig. 1.  

 
Fig. 1 BioinfoPortal Architecture 

The User Interface Layer dynamically implements the 
BioinfoPortal interface; i.e., it is a front-end where the user 
can submit executions of standalone applications or scientific 
workflows. The User Interface Layer is also responsible for 

5http://www.phylo.org 
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returning the results by the users’ e-mail. The Management 
Layer relies on CSGrid to access the data and job management 
services and provides features for job and workflow 
scheduling, sharing files, restricting anonymous access, and 
tracking provenance data. The Resource Layer is composed of 
the computational resources available for usage (in the context 
of this paper, the clusters, and supercomputers of SINAPAD) 
and hosts the bioinformatics software, libraries, SWfMS, and 
DBMS. The Data Layer provides access to the data storage in 
the relational databases of BioinfoPortal and authenticates the 
users using the repository Lightweight Directory Access 
Protocol (LDAP6). As aforementioned, BioinfoPortal relies on 
the middleware CSGrid and the computational resources of 
SINAPAD that provides functionalities of parallelism, 
distribution, and management of the executions using 
HPC/HTC capabilities. Table 1 presents the main features of 
the SINAPAD network. 

TABLE 1 THE FEATURES AND FUNCTIONALITIES OF SINAPAD 

Features Functionalities 
HPC/HTC - Scalability, performance, optimization, distribution 

Shared 
Architecture 

- Shared memory 
- Types: SMP, UMA, NUMA, GPU, etc. 
- Parallelization: OpenMP6, Threads, PThreads, CUDA 

Distributed 
Architecture 

- Distributed memory, distributed resource management 
application API, storages, parallelization (MPI) 
- Heterogeneous resources: OGE, SGE-Oracle, Sun Grid, 
LoadLeveler, PBS, PBS Pro, TorquePBS, SLURM, LSF, 
- Clusters connected via HPC net (InfiniBand, fibrechannel) 
- Distributed file system: Lustre, NFS, pNFS 

Hybrid 
architecture - Shared + distributed memory 

Cloud 
computing 

- Virtualization 
- Pay-per-use resources 
- Low scale Brazilian academic resources 
- Data providers 

Grid 
environment 

- Types: HPC/HTC and opportunistic (volunteers) 
- Grid tools: Globus, Maui-Moab, Condor, CSGrid, Ourgrid 
- Data provider 
- Typically heterogeneous resources 

A. The User Interface Layer (front-end) 
It allows users to access several services and portals7 of 

SINAPAD through two sub-layers: services and applications. 
The sub-layer of services is composed of the MC2 services 
[9], such as MC2 REST, which dynamically interacts with 
other services in the grid environment of SINAPAD.  

The sub-layer of applications is composed of web clients, 
such as our BioinfoPortal Web that presents two components, 
Web interface and DAEMON. The Web Interface is used as 
front-end of users and has an authentication strategy that 
categorizes the type of access (public or private) assigned to 
users, which need to be previously registered at SINAPAD 
through an electronic form. The public access (for guest users) 
is provided with no authentication, but the service 
administrator can restrict options for using the computing 
resources. The private access (for private users) is provided 
with authentication as the service administrator provides more 
flexibility or no restriction. DAEMON is a robust fault 
tolerance mechanism for dispatching and scheduling 
jobs/workflows. It is connected to the Data Layer at Bioinfo 
Database for providing an entry for accessing the provenance 
data information (records of executions or specific domain-
data provenance of bioinformatics applications). 
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The actual version of BioinfoPortal has public access that 
allows users to choose software, parameters, and input data for 
submitting their jobs/workflows. Finally, BioinfoPortal 
collects requirements, manages submissions, executes tasks, 
and finally report results sent to the browser and trigger sends 
on the individual e-mail results record. 

B. The Management Layer 
It is composed of three sub-layers: Facade, Bus Services, 

and CSGrid. The Facade sub-layer enables the configuration 
for connecting the services (Bioinfo-Portal, SINAPAD’s 
services, HPC resources); searches the information needed for 
applications, clients, and users’ authentication; manages files; 
and submits/monitors jobs/resources. The sub-layer for Bus 
Services 8  are implemented as a service-oriented software 
called OpenBus that allows for searching and publishing 
services by the client applications and for controlling the 
authentication/authorization of clients and services using 
internal governance management systems, digital 
certifications, and LDAP.  

The sub-layer CSGrid is a client application of the 
OpenBus services (OpenDreams, ProjectService) that 
executes and manages data in the grid environment. It 
manages computational resources, clients, users, submissions, 
data, applications, and user databases (locally or LDAP) of 
BioinfoPortal at SINAPAD. CSGrid uses the Java-based 
graphical user interface (GUI) that allows SINAPAD to 
manage and implement internal applications.  

The module SGA of CSGrid remotely manages the access 
of computational resources (Resource Layer). SGA is 
responsible for managing, submitting, scheduling, deleting, 
associating, and executing computational resources and jobs. 
SGA uses a pattern nomenclature, which is specific for each 
application executed in each cluster (sga-<sinapadName>-
<schedulerType>-<resourceName>_<queueName>). SGA 
defines the best combination of settings (name, scheduler 
type, queue submission, parameters) to maintain the effective 
connectivity between SINAPAD’s computational resources.  

The “Concept Sandbox” is a mechanism associated with 
the execution of the computational resources. It provides the 
availability, reliability, and security of the data using two 
stages: the stage-in allows users to submit the input data sets 
and the stage-out returns the results of the executions to the 
users of a Project at CSGrid. 

The “Concept Algorithm” (Fig. 2) is the structure at 
CSGrid where the applications are available. This term 
describes the non-interactive applications (using information 
as input/output data, parameters) that are dispatched directly 
by the clients of CSGrid. The Algorithm requires the 
information of applications – name, version, installation and 
compilation features in computational resources – to 
configure the client interface. For instance, as the application 
Align-m is installed in clusters (sun.hpc, altix-xe, ice, 
sdumont); then the Algorithm Align-m can be created at 
CSGrid and consequently, the interfaces of BioinfoPortal are 
able to access the Algorithm Align-m to call and execute the 
application Align-m in sun.hpc, altix-xe, ice, or sdumont. 

The computational resources of SINAPAD are selected 
using two modes of requisitions: by users who need to choose 
the parameters, configurations, and clusters or by schedulers 

8https://jira.tecgraf.puc-rio.br/confluence/display/OPENBUS020/Home 



which automatically decide which resource is eligible for 
submissions. The metric used for schedulers is the number of 
free Central Processing Units (CPUs) in each cluster. Other 
metrics as the amount of free memory, disk space, network 
latency, or job submissions can be included by new plugins. 
The configuration of the actual version of BioinfoPortal uses 
public access (no user authentication) with automatic 
submissions using the mode of the automatic mode by 
schedulers, but it can be re-configured. 

C. The Data Layer 
It presents four sub-layers LDAP, Storage, Bioinfo 

Database, and Scientific Workflow Management Systems 
(SWfMS) Databases. The LDAP sub-layer manages the 
authentication of users for the portals of SINAPAD. The 
Storage sub-layer stores the information of the user data, 
application credentials, algorithm configurations, 
user/application permissions, and execution history 
proceeding of the application portals and CSGrid. The Bioinfo 
Database sub-layer stores the information (job monitoring, 
tasks executions, provenance data) proceeding of the 
applications executed in SINAPAD resources.  

The SWfMS Database sub-layer includes the provenance 
databases of SWfMS SciCumulus [13] and Swift [14]. The 
management of the provenance data [15] records the history 
of executions and supports the analysis of scientific 
experiments. The SciCumulus database follows the data 
model PROV-Dff and W3C PROV and uses the PostgreSQL 
Relational Database Management System (RDBMS) to 
manage at runtime the provenance data information consisting 
of the performance of executions, structure of workflows, and 
domain-data. Swift is a script programming language for 
scientific workflows. It uses the server-less SQLite9 relational 
database for storing the provenance data.  

The decision-making or fault-tolerance predictions are 
possible by extracting the provenance information from the 
databases Bioinfo and SWfMS coupled to data mining and 
machine learning techniques. For instance, obtaining 
information, based on the history of records, about which tasks 
are running in which clusters and if the capacity of processing 
time and memory is enough can be used to predict/prevent 
errors of execution, which could affect all the services and 
portals of SINAPAD (including Bioinfo-Portal). 

D. The Resource Layer  
The computational resources of SINAPAD are formed by 

clusters, grids, and public/private clouds. A heterogeneous 
HPC cluster environment can contain processors and devices 
with different bandwidth and computational capabilities. Due 
to that reason, the installation or compilation of the 
applications and dependencies is made manually by 
developers/clients, following some requirements: (i) using 
parameters that optimize the compilation and installation of 
applications, libraries, and dependencies; (ii) using, as 
possible, mechanisms and technologies to distribute and 
parallelize tasks, i.e., graphics processor unit (GPU), message 
passing interface (MPI), or threads; (iii) using mechanisms for 
optimizing the submissions of schedulers Torque/PBS, SGE, 
SLURM, Load Leveler; (iv) optimizing the use/configuration 
of parameters for SWfMS; and (v) coupling to Data Layer, 
resources as DBMS to register the provenance. 
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The Resource Layer presents two sub-layers. The sub-
layer of applications with 35 software deployed. The sub-layer 
of SWfMS with SciCumulus [13] and Swift/T [14], which 
greatly reducing the complexity of managing experiments by 
providing features for scalable execution, scalable data 
management, fault-tolerance, and provenance data tracking 
[16]. The integration of SWfMS to CSGrid and computational 
resources of SINAPAD required the following steps. For 
SciCumulus, we implemented: (i) a network proxy that allows 
accessing to the SciCumulus provenance database; (ii) 
modification of the scripts of configuration (XML) and 
execution of applications (bash scripts) of SciCumulus, (iii) 
new bash scripts for mining labels (“tags” in the XML scripts 
of SciCumulus); and (iv) a connection between the databases 
of SWfMS and Bioinfo sub-layers. For Swift, we 
implemented bash scripts to (i) configure Swift at the HPC 
resources of SINAPAD; (ii) connect the database SQLite to 
CSGrid and SINAPAD; and (iii) configure the environment to 
manage execution jobs from a submission node to the clusters. 

IV. RESULTS AND DISCUSSION 
This section presents the experimental evaluations for 

supporting the functionality of Bioinfo-Portal. We analyzed 
the performance and scalability of the applications RAxML, 
SciPhy, and SwiftGecko in HPC clusters. Analyses of the 
results were supported by the use of machine learning 
techniques for predicting the allocation/usage of 
computational resources for the gateway, based on the features 
dataset size of input data, software parameters, and efficiency. 

The open source software RAxML is based on Maximum 
Likelihood (ML) algorithms for statistical calculations to 
construct phylogenetic trees used for inferring evolutionary 
life and phylogenetic relationships between genomes. The 
phylogenetic workflow SciPhy is managed with the SWfMS 
SciCumulus and aims at producing phylogenetic trees from 
input DNA, RNA and amino acid sequences. The workflow 
for parallel genome comparison SwiftGecko used the Swift 
parallel scripting system to identify blocks of large 
rearrangements, starting with the simple collection of 
ungapped local alignments. In Bioinformatics, comparative 
and evolutionary analyses of genomes is a traditional problem 
with high memory and CPU time requisites. Those requisites 
can be reduced using HPC techniques in its development. 

The Orange Data Mining Framework [17] was used for 
data mining and machine learning analyses. Decision trees 
were generated with regression models using the provenance 
historic dataset of real application executions of BioinfoPortal 
that were obtained by querying databases from the Layer Data. 
In terms of the amount of data in the BioinfoPortal executions, 
we have queried the sub-layer Bioinfo database that contains 
the execution of 766 applications (performed by Brazilian and 
collaborator users) until 01/02/2019. 

A. The Architecture of the Science Gateway Bioinfo-Portal 
CSGrid provides the central infrastructure for developing 

the Algorithms and managing executions using the 
computational resources of SINAPAD. Each Algorithm 
presents scripts of configuration (“.xml”) and execution 
(“.sh”), which are modified/implemented following the 
requirements of the applications or computational resources. 
The main scripts are portal.xml that configures the main web 
interface of Bioinfo-Portal; config.xml that configures the 



parameters used by each Algorithm; execute.sh that executes 
the Algorithm based on the parameters of config.xml; and 
prescript.sh that presents the parameters to configure the 
environment for the computational resources. Fig. 2 presents 
the structure of CSGrid for the Algorithm RAxML, the scripts, 
and the available computational resources. 

 
Fig. 2 The management of the Algorithm RAxML at CSGrid 

1) The script portal.xml connects the web interface of 
BioinfoPortal to the Project area of the Algorithms. CSGrid 
defines which Algorithm will be executed by the gateway. 
The user must select the Algorithm; then, the web interface is 
dynamically built in the gateway and provides the fields of 
input/output and parameters that need to be filled by the user. 
The portal.xml allows that multiple versions of the same 
Algorithm be available at the gateway (XML attribute 
multiple-versions); then users can execute several versions of 
the applications. Alg. 1 shows an example of portal.xml for 
Algorithms RAxML [18] and SciPhy [19].  
Alg. 1 The portal.xml configuration file of Algorithms RAxML and SciPhy 

1  <portal-config multiple-versions='true' 
2    resource-choice='true' 
3    auto-generate='true'> 
4    ... 
5    <acronym-name>Bioinfo</acronym-name> 
6    <full-name>Bioinfo-Portal</full-name> 
7    <csgrid-proj-name>Bioinfo</csgrid-proj-name> 
8    <algorithms-config> 
9      <algorithm> 
10        <name>RAxML</name> 
11        <version>1.0.0</version> 
12     </algorithm> 
13     <algorithm> 
14        <name>SciPhy</name> 
15        <version>1.0.0</version> 
16     </algorithm> 
17   </algorithms-config> 
18   ... 
19 </portal-config> 

2) The script config.xml describes the input/output 
arguments required by each Algorithm. It is similar in 
purpose to the files of the JSON Service Description 
Language (JSDL) of the middleware UNICORE [20] and the 
Common Tool Description (CTD) of the OpenMS10 library. 
Nevertheless, config.xml provides more details about how the 
arguments of the Algorithm can be rendered in a user 
interface e.g., to the conditional attributes: “for the Algorithm 
RAxML, the fields A (amino acid type) and B (nucleotide 
type) are mutually exclusive”. These attributes allow users to 
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hide/disable field(s) at the web interface determined by one 
specific value of the flag. The config.xml is used by CSGrid 
for dynamically assembling the web interfaces and by 
OpenDreams service for invocating commands of scripts that 
reify the Algorithm in the underlying computational 
resources. Alg. 2 shows an example of config.xml for 
Algorithms RAxML and SciPhy. 

Alg. 2 The config.xml configuration file of Algorithm RAxML 

1  <?xml version='1.0' encoding='UTF-8'?> 
2  <algorithm='execute.sh' code ='yes' id='yes'> 
3    <format>$NAME_PARAM=$VALUE_PARAM </format> 
4    <group='Input Parameters (Select)'> 
5    <name='INTYPE' label='Input' clue='Input' st='dna'> 
6        <item id='aa' val='aa' clue='aa file'/> 
7        <item id='dna' val='dna' clue='dna file'/> 
8      </name> 
9    </group> 
10   <group='Input Parameters'> 
11     <name='numCPU' label='CPU' min='1' max='16' 
clue='threads' st='16' opt='true'/> 
12     <infile='INPUT_AA' label='aa' clue='aa'/> 
13     <infile='INPUT_DNA' label='dna' clue='dna'/> 
14     <name='BP' min='1' max='2000' clue='bp' st='100' 
opt='true'/> 
15     <text='MODEL_AA' label='Mod aa' clue='Mod aa' 
st='PROTGAMMAWAG' opt='true'/> 
16     <text='MODEL_DNA' label='Model dna' clue='Model 
dna' st='GTRGAMMA' opt='true'/> 
17   </group> 
18   <group='Output Parameters'> 
19     <outfile='OUTPUT' label='dir' clue='dir' 
category='directory'/> 
20   </group> 
21   <display> 
22     <parameter='INPUT_DNA'/> 
23     <parameter='MODEL_DNA'/> 
24     <condition='INTYPE' value='dna'/> 
25   </display> 
26   display> 
27     <parameter='INPUT_AA'/> 
28     <parameter='MODEL_AA'/> 
29     <condition ='INTYPE' value='aa'/> 
30   </display> 
31  </algorithm> 

3) The script execute.sh describes the specific arguments 
used for the execution of Algorithms for each one of the 
bioinformatics applications. Arguments can be extracted 
from the command line used to execute the application. Alg. 
3 shows an example of execute.sh for the Algorithm RAxML. 

Alg. 3 The execute.sh execution file of Algorithm RAxML 

1  #!/bin/bash 
2  . ~/setclasspath.sh 
3  . /hpc/modulos/bash/openmpi-1.8.5-gcc47.sh 
4  function parseArgs { 
5    for arg in $* ; do 
6      typeset name=`echo $arg | sed "s/=.*//"` 
7      typeset value=`echo $arg | sed "s/.*=//"` 
8      export $name=$value 
9    done 
10  } 
11 parseArgs $*          ###CSGrid Arguments### 
12 echo "Id SGE: "$JOB_ID 
13 echo $INTYPE, $INPUT_DNA, $INPUT_AA, $BOOTSTRAP, 
$MODEL_AA, $MODEL_DNA, $OUTPUT 
14 cmdId=`echo $cmdId | sed 
's/\(.*\)\@\(.*\)\.\(.*\)/\1_\2_\3/'` 
15 cd $OUTPUT            ###Execute RAxML DNA### 
16 numCPU=$NSLOTS 
17 CMD="/usr/bin/time -f "%e" -o ${OUTPUT}/.time.log 2 
$ALG_DIR/RAxML/v_1/raxmlHPC-MPI-SSE3" 
18 CMDmpi="/usr/bin/time -f "%e" -o ${OUTPUT}/.time.log 
mpirun -np $numCPU -hostfile $TMPDIR/hostfile 
$ALG_DIR/RAxML/v_1/raxmlHPC-MPI-SSE3" 
19 if [ "$INTYPE" == "dna" ] 
20 then 

 

•name.txt → file with the algorithm name
• versions→ algorithm version
•platform1, platform2, … → SGA platform 
resources used for algorithm execution
• execute.sh → script for application 
execution, used for manipulating variables
•prescript.sh → script with execution 
environmental attributes, used for 
applications with parallel execution 
• config.xml → configuration file of 
applications, with attributes of interface, 
parameterization…

ALGORITHM
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v_001_000_000

bin
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21   EXEC1="$CMD -m $MODEL_DNA -p 112233 -s $INPUT_DNA -
n $cmdId.best -c 4 -f d" 
23  $EXEC1 
24  EXEC2="$CMD -m $MODEL_DNA -p 112233 -s $INPUT_DNA -b 
223344 -# $BP -n $cmdId.bp -c 4 -f d" 
25  $EXEC2 
26  EXEC3="$CMD -m $MODEL_DNA -s $INPUT_DNA -f b -t 
best.$cmdId.best -z bp.$cmdId.bp -n $cmdId.bestML.bp" 
27  $EXEC3 
28  fi 
29  if [ "$INTYPE" == "aa" ] 
30  then 
31  EXEC1="$CMD -m $ MODEL_AA -p 112233 -s $INPUT_AA -n 
$cmdId.best -c 4 -f d" 
32  $EXEC1 
33  EXEC2="$CMD -m $MODEL_AA -p 112233 -s $INPUT_AA -b 
223344 -# $BP -n $cmdId.bp -c 4 -f d" 
34  $EXEC2 
35  EXEC3="$CMD -m $MODEL_AA -s $INPUT_AA -f b -t 
Tree.$cmdId.best -z bp.$cmdId.bp -n $cmdId.ML.bp" 
36  $EXEC3 
37  fi 
38  if [ $? != 0 ] 
39   then 
40      echo "RAxML returned an error." 
41      exit 1 
42  fi 

4) The script prescript.sh describes arguments used for 
the configuration of the environment. Alg. 4 shows an 
example of prescript.sh for the Algorithm RAxML. 

Alg. 4 The prescript.sh execution file of Algorithm RAxML 

1    #$ -N JOB_RAXML 
2    #$ -cwd 
3    #$ -V 
4    #$ -pe mpi 16 
5    #$ -l h_rt=216000 

B. Implementation and Analyses of Performance 
The experiments of RAxML, SciPhy, and SwiftGecko 

were executed in the cluster Altix ICE (Altix 11 ) and 
supercomputer Santos Dumont (SDumont12). Altix consists of 
25 diskless machines (execution nodes), each node is given by 
an SGI ICE 8400 server with 2 Intel Xeon X5650 2.67GHz 
Hexa Core processors (totaling 12 cores) and 48 GB DDR3 
DIMMs of memory. The cluster has one login node with a 
gross storage capacity of 5TB. SDumont consists of 16 TB 
RAM, storage totaling 1,7 PetaBytes (Seagate 1.5 Buster), 
10.692 cores, 1.1 PetaFlops, Intel Xeon E5-2695v2, 30 MB 
cache, 12 cores – 3.2 GHz. Machine learning analyses using 
regression models with decision trees were performed using 
results of executions, as will be detailed in Sub-section IV (C). 

a) The Software RAxML. The compilation of the code of 
RAxML was adapted to the capabilities of the CPU(s) 
infrastructures. Depending on the processor features, 
RAxML supports three instructions used to substantially 
accelerate the likelihood and parsimony computations: the 
Streaming SIMD Extensions 3 (SSE3), the faster Advanced 
Vector Extensions (AVX), and the even faster AVX2 vector. 
RAxML presents four options for execution using multi-core 
shared memory systems; one sequential and three parallel 
using MPI, PThreads, or Hybrid (MPI + PThreads) 
instructions. The sequential version is used to process small 
to medium datasets. The parallel efficiency of the PThreads 
version depends on the alignment length. However PThreads 
works well for very long alignments, the performance is 
extremely hardware-dependent. The efficiency depends on 
the number of states of the data; the more states the data have 
(4 for DNA, 20 amino acid), the fewer site patterns are 

                                                        
11http://www.lncc.br/ice/ 

needed for an efficient parallel execution per thread/core. The 
parallel efficiency also depends on the rate of heterogeneity 
of the model; the GAMMA model entails more computations 
than the CAT model, which needs approximately 1/4 of the 
computations than the GAMMA model requires.  

Fig. 3 shows (A) the web interface of the application 
RAxML at BioinfoPortal and (B) the layout of the Algorithm 
RAxML at CSGrid. The web interface of RAxML is 
automatically generated by the configuration script 
config.xml (Alg. 2) and the execution scripts execute.sh (Alg. 
3) and prescript.sh (Alg. 4). The arguments required to 
execute RAxML through BioinfoPortal are defined by users, 
which must upload the input file (alignment in PHYLIP 
format) and fill options as input file type (nucleotide or amino 
acid), bootstrap value (default 100), substitution model 
(GTRGAMMA for nucleotide or PROTGAMMAWAG for 
amino acid), e-mail, and the output directory. 

 
Fig. 3The Algorithm RAxML of BioinfoPortal  

Three experiments with RAxML were performed in Altix 
and SDumont. The maximum number of cores per node for 
Altix is 12 and for SDumont is 24. RAxML was compiled 
with SSE3 in Altix and with AVX in SDumont. 

1. The total execution time of the RAxML versions. 
RAxML HPC Serial was executed in one single core, RAxML 
PThreads in 12 cores, RAxML MPI in 120 cores, and RAxML 
Hybrid in 120 cores. Table 2 presents the features of the 
superalignments used as input data.  

TABLE 2 FEATURES OF THE SUPERALIGNMENTS 

Name 
Features 

Category Number 
of Taxa 

Number of 
Amino Acid 

Size in 
KB 

D1 (TotalAlignConc) Large 74 21,260 2,091 
D2 (TrimmedAlignConc) Large 74 12,807 1,260 
D3 (C1Total) Medium 26 22,906 792 
D4 (C1Trimmed) Medium 26 16,068 553 
D5 (C2Total) Small 12 4,941 79 
D6 (C2Trimmed) Small 12 4,481 72 
D7 (C3Total) Medium 36 3,490 168 
D8 (C3_trimmed) Medium 36 3,270 157 

12http://sdumont.lncc.br/ 
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The input file is one superalignment of amino acid 
sequences in format PHYLIP (called D5). The superalignment 
has a size of 79 KB and is formed of 31 concatenated universal 
orthologous (UO) genes belonging to 12 protozoan genomes. 
The parameters used for setting RAxML versions are JTT as 
an evolutionary model, GAMMA as the rate of model 
heterogeneity, and 100 as the bootstrap value of replications. 

Fig. 4 presents the Total Execution Time (TET) in minutes 
obtained after the execution of the versions of RAxML. The 
TET decreases using the parallel versions PThreads, MPI, and 
Hybrid of RAxML in comparison to the version RAxML HPC 
Serial and using SDumont in comparison to Altix. For Altix, 
the RAxML MPI was the version that presented the best 
performance, with the TET reduced from 285,57 minutes (one 
single core) to 4.59 minutes (using 120 cores). For SDumont, 
the RAxML Hybrid was the version that presented the best 
performance, with the TET reduced from 161,29 minutes 
(using one single core) to 1.88 minutes (using 120 cores).  

 
Fig. 4 The TET of the versions of RAxML executed in Altix and SDumont 

- superalignment D5 

2.  The scalability of RAxML MPI (Altix) and RAxML 
Hybrid (SDumont) using one superalignment. This 
experiment aims to evaluate the performance gains of the 
versions of RAxML that outperformed Altix (RAxML MPI) 
and SDumont (RAxML Hybrid) according to the number of 
cores in minutes, using one superalignment. The performance 
of RAxML was measured on a single processor machine (one 
core) to analyze the local optimization before scaling up the 
number of cores. After that, the performance and scalability of 
RAxML were measured using from 2 up to 120 cores. The 
superalignment used as input data is D5. Fig. 5 presents the 
scalability in minutes obtained after the execution of RAxML 
MPI in Altix and RAxML Hybrid in SDumont, using the 
superalignment D5.  

 
Fig. 5 The scalability of RAxML MPI in Altix and RAxML Hybrid in 

SDumont - superalignment D5 

The TET decreases, in both cases, when more cores were 
provided to use. The RAxML Hybrid (SDumont) presented 
the best performance, when it processes one superalignment, 
the TET was reduced from 161.29 minutes (using one single 
core) to 10.39 minutes (using 24 cores) with a performance 
improvement of up to 93.56% and to 1.88 minutes (using 120 
cores) with a performance improvement of up to 98.83%. 
Using one core, RAxML Hybrid at SDumont outperforms 
RAxML MPI at Altix; the TET was reduced from 285.57 
minutes to 161.29 minutes with a performance improvement 
of up to 43.52%. 

3. The TET of RAxML MPI (Altix) and RAxML Hybrid 
(SDumont) using eight superalignments. The executions of the 
RAxML versions used as input files eight superalignments, 
varying features of the number of taxa, number of amino acid, 
and size (KB). The parameters used for setting RAxML 
versions are JTT as the evolutionary model, GAMMA as the 
rate of the heterogeneity of the model, and 100 as the bootstrap 
value of replications. 

Fig. 6 presents the TET in hours of RAxML MPI and 
RAxML Hybrid in Altix using eight superalignments. The 
TET decreases, for all superalignments, when the RAxML 
parallel versions were executed. The eight superalignments 
files were categorized as Large (D1, D2), Medium (D3, D4, 
D7, D8), and Small (D5, D6), depending on the features 
Number of Taxa, Number of Amino Acid, and Size in KB, as 
depicted in Table 2.  

 
Fig. 6 TET of RAxML MPI and RAxML Hybrid in Altix - eight 

superalignments 
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The versions RAxML MPI and RAxML Hybrid 
outperformed the versions RAxML HPC Serial and RAxML 
PThreads. With RAxML Hybrid, the TET of the largest file 
D1 was reduced from 820.60 hours (using one single core) to 
30.10 hours (using 120 cores) and the TET of the smallest file 
D6 was reduced from 4.10 hours (using one single core) to 
0.10 hours (using 120 cores). A relation was observed 
between the increment of the size of the superalignments files 
and the improvement of performance of approximately 90% 
between 1 and 120 cores. D1: 2,091 KB and 96.33%; D2: 
1,260 KB and 95.99%, D3: 792 KB and 95.78%; D4: 553 KB 
and 95.47%; D7: 168 KB and 95.63%; D8: 157 KB and 
94.75%; D5: 95.83 KB and 97.83%; D6: 72 KB and 97.50%. 
These values indicate that parallelization benefits from larger 
files and that have more taxa and/or longer sequence lengths. 

b) The Workflow SciPhy is composed of four activities: 
construction of multiple sequence alignment (MSA) with 
MAFFT; format conversion of MSA with ReadSeq; election 
of the evolutionary model with ModelGenerator; and (4) 
construction of trees with RAxML. The provenance database 
of SciCumulus stores the information of the workflow 
execution and data of SciPhy; and it is connected to the 
database Bioinfo that provides the access to the information 
of all Bioinfo-Portal’s applications and all SINAPAD’ 
services/portals. Queries to the provenance database of 
SciCumulus can be performed at runtime, which allows to the 
web interface report automatically the messages of the status 
of executions of SciPhy e.g., which activity is finished or if 
an error is presented (Fig. 7).  

 
Fig. 7 The output of SciPhy executions at Bioinfo-Portal 

The arguments used as input files and parameters required 
to execute SciPhy through BioinfoPortal are: to upload the 
input file (alignment in FASTA format) and to fill the 
following options, input file type (e.g., amino acid), e-mail, 
and output directory. Fig. 7 shows print messages at the final 
of each activity execution of SciPhy at Bioinfo-Portal, 
obtained by querying the SciCumulus provenance database. 
The activities that were successfully finished were printed in 
the web interface in green; on the other hand, those ones that 
reported an error in the execution were printed in red. 

We have evaluated the performance of the parallel 
execution of SciPhy in Altix. SciPhy was executed with 200 
multifasta input files of amino acid sequences and three 
different configurations: on a single processor cluster (16 
cores) through Bioinfo-Portal, on a single processor cluster 
(16 cores) directly at the cluster through CSGrid, and on three 
processor clusters (16 cores each) directly at the cluster 
through CSGrid. Fig. 8 presents the TET in minutes of SciPhy, 
which presents the best performance with the third 
configuration i.e., when it is executed directly at CSGrid with 

three clusters (in green). The TET was reduced from 374.75 
minutes (using one single cluster through Bioinfo-Portal) to 
180.19 minutes (using three clusters through CSGrid). 

 
Fig. 8 The TET of the workflow SciPhy in Altix 

c) The workflow SwiftGecko: maps the application 
GECKO [21] to Swift for providing parallelization and 
provenance data tracking. GECKO was designed to identify 
collections of high-scoring segment pairs (HSPs) by genome 
comparisons. The conceptual view of the workflow 
SwiftGecko is composed of three modules (M1 to M3) 
formed of 10 activities. (M1) The dictionary calculation: 
creates dictionaries for the sequence input and is composed 
for the activities 1-4; (M2) the detection of high-scoring 
segment pairs (HSP): detects the hits that identify the HSP 
locations and is composed for the activities 5-9; and (M3) The 
post-processing: performs the statistical calculations and 
functional annotations and is composed by the activity 10.  

The provenance database of Swift stores the provenance 
data information as the TET and the scientific domain data 
information. By querying the provenance database of Swift, 
specialists can infer about the evolutionary and taxonomic 
relationship of genomes based on the number of fragments, 
also crossing with computational information of CPU 
consumed. The input arguments required by SwiftGecko at 
BioinfoPortal are one input file (genomes in FASTA format), 
one selection option for GECKO parameters (length, 
similarity, word length, FixedL), and an e-mail. 

The executions (resulting in 135 task executions) were 
performed in a cluster with 72 nodes, 16GB of RAM, and 
eight computing cores per node. The input data is formed by 
five genomes of bacteria completely annotated. The TET was 
based on three metrics: a sequential execution directly at the 
cluster (in red); a parallel execution directly at the cluster (in 
blue); and a parallel execution through CSGrid via Bioinfo-
Portal (in green). Fig. 9 presents the TET in minutes of 
SwiftGecko, which presents the best performance with the 
second configuration i.e., using a parallel execution directly at 
the cluster (in blue). The TET was reduced from 8.2 minutes 
(sequential execution directly at the cluster) to 4.23 minutes 
(parallel execution directly at the cluster). 

It is worth mentioning that SwiftGecko applications use an 
out-of-core strategy and are I/O intensive. Then, scalability 
could be improved by using higher throughput storage 
systems or more efficient data management strategies. Finally, 
the parallel execution through CSGrid via BioinfoPortal 
measures the time required for submission, execution, and file 
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transference between CSGrid/SINAPAD and the cluster, 
which increment the time of response via Bioinfo-Portal. 

 
Fig. 9 The TET of the workflow SwiftGecko 

C. Statistics of the Gateway 
The database of Bioinfo and provenance databases of the 

SWfMS were integrated into the statistical tools of Google 
Analytics. The information of jobs executed per month, jobs 
executed per applications, or session per country can be 
accessed to Bioinfo-Portal. Fig. 10 shows the TET in hours 
per applications executed until 01/11/2018. The applications 
most accessed were FragGeneScan, Align-m, and Phylip. 
Until 01/02/2019, the portal was accessed 2,812 times and 766 
applications were executed. 

 
Fig. 10 TET of the applications of BioinfoPortal  

An exploratory data analysis using classification trees was 
performed with the available data of the database of Bioinfo 
to infer knowledge about the most adequate computational 
resource to execute the applications. Data mining algorithms 
were used to discover patterns; we apply regression models 
with decision trees [22] using the Orange data mining tool for 
statistical analyses. Orange implements the core algorithm 
ID3 and employs a top-down, greedy search through the space 
of possible branches with no backtracking. 

Nevertheless, before generating the decision tree, we had 
to evaluate the statistics that each attribute used in the model 
(i.e., threads, datasize, and node attributes). The main idea of 
the attribute analysis is to identify potential problems with the 
chosen attributes and decide if an action needs to be taken that 
may require collecting more data. In Fig. 11(a), Fig. 11(b), 
Fig. 11(c), we can state that there is no one dominant attribute 

value and the distribution is not even; and for our analyses, 
results indicate that attributes can be used in the predictions. 

 
Fig. 11 The attribute statistics: (a) threads (number of threads), (b) datasize 

(data size of the alignment in KB), and (c) node (number of nodes) 

In Fig. 11(a) evaluating the threads attribute, we can 
observe that 75% of the number of threads used was 24, from 
an interval of 24 to 240. Fig. 11(b) shows that 75% of data 
input presented size of 204 KB, from an interval of 3.2 to 
610,000. Moreover, evaluating the node attribute in Fig. 
11(c), we observed that 75% of the number of nodes used was 
1, from an interval of 1 to 10. This information can assist users 
to distinguish outlier points to find anomalies or specific 
biological characteristics. By using these attributes to build 
estimation models, we can discover, using classification or 
regression algorithms, the relation of biological input data 
(size in KB) and the number of threads that can be used for the 
executions that generate maximum values of efficiency. Now 
we observed that the applications of BioinfoPortal consume 
low computational resources, which is due to the restriction 
for size and number of inputs assigned to the Projects of users. 

Fig. 12 presents the inferred rules for exploring the 
efficiency of the executions of applications at Bioinfo-Portal. 
In this analysis, we can state that the efficiency of 
computational resources of BioinfoPortal applications is 
determined by two parameters: the number of threads 
(threads), the size of the alignment in KB (datasize), and the 
number of nodes (node) i.e., the combination of values of 
these three parameters defines the efficiency of the executions.  

For example, Fig. 12 presents that the efficiency that 
consumes the number of threads between 100 and 81 with less 
than 36,000 of size in KB of data size and will obtain, on 
average, 100 of efficiency. The machine-learning strategies 
appoint, for the actual scenario, that the best machine setup in 
a heterogeneous environment for executing applications 
presented at least 75% of efficiency. However, results 
obtained are interesting and provide an idea about the behavior 
of application executions in HPC computational resources via 
BioinfoPortal, more refined experiments with more data must 
to be reevaluated in future analyses.  
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Fig. 12 The decision tree associated with the efficiency of the executions of 

the BioinfoPortal applications 

V. CONCLUSIONS 
We introduce our science gateway BioinfoPortal as a user-

friendly interface that manages executions of bioinformatics 
applications with HPC/HTC technologies in computational 
resources, including clusters of supercomputers. 
BioinfoPortal is implemented over the grid middleware 
CSGrid and uses the computational resources of the Brazilian 
network SINAPAD, which bring-out grid computing 
management services. The experiences of SINAPAD at 
developing science gateways demonstrated the feasibility of 
the use of the technologies HPC/HTC [9]. 

Data analytics in science gateways are essential to support 
the exploratory nature of science. Large-scale experiments can 
benefit from data analytics facilities to evaluate the results, 
reduce the incidence of errors, decrease the total execution 
time, and sometimes reduce the financial cost. The data 
analysis process in science gateways needs to explore the 
statistics of applications execution, performance issues, and 
the content of data files. Each application execution in science 
gateways may consist of hours or days of processing, thus, it 
is unfeasible to perform an analysis without automatic 
semantic computational database support. 

This paper evaluates the architecture of Bionfo-Portal, 
coupled with technologies of management systems and HPC 
resources to explore the processes of bioinformatics 
applications in an efficient manner. We are also concerned of 
coupling to BioinfoPortal with the best configurations for the 
efficient use of the computational resources, especially for the 
MPI and multithreading applications RAxML, SPAdes, 
FragGeneScan, MAFFT, Ray, Bowtie, and HMMER. 
However BioinfoPortal is free available and functional, there 
are several open challenges concerning to the maintenance of 
security in science gateways and coupling management 
systems for databases and workflows, which can be supported 
by machine learning technologies. 
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