
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Towards a Science Gateway for Bioinformatics:
Experiences in the Brazilian System of High

Performance Computing

Kary Ocaña, Marcelo Galheigo
National Laboratory of Scientific

Computing
Petrópolis, Brazil

{karyann, galheigo}@lncc.br

Daniel de Oliveira
Institute of Computing

Fluminense Federal University
Niterói, Brazil

danielcmo@ic.uff.br

Carla Osthoff, Luiz Gadelha
National Laboratory of Scientific

Computing
Petrópolis, Brazil

{osthoff, lgadelha}@lncc.br

Fabio Porto
National Laboratory of Scientific

Computing
Petrópolis, Brazil
fporto@lncc.br

Antônio Tadeu A. Gomes
National Laboratory of Scientific

Computing
Petrópolis, Brazil
atagomes@lncc.br

Ana Tereza Vasconcelos
National Laboratory of Scientific

Computing
Petrópolis, Brazil

atrv@lncc.br

Abstract—Science gateways bring out the possibility of
reproducible science as they are integrated into reusable
techniques, data and workflow management systems, security
mechanisms, and high performance computing (HPC). We
introduce BioinfoPortal, a science gateway that integrates a
suite of different bioinformatics applications using HPC and
data management resources provided by the Brazilian National
HPC System (SINAPAD). BioinfoPortal follows the Software as
a Service (SaaS) model and the web server is freely available for
academic use. The goal of this paper is to describe the science
gateway and its usage, addressing challenges of designing a
multiuser computational platform for parallel/distributed
executions of large-scale bioinformatics applications using the
Brazilian HPC resources. We also present a study of
performance and scalability of some bioinformatics applications
executed in the HPC environments and perform machine
learning analyses for predicting features for the HPC
allocation/usage that could better perform the bioinformatics
applications via BioinfoPortal.

Keywords—science gateway, bioinformatics, high
performance computing

I. INTRODUCTION
Nowadays, genomics research shows an unprecedented

effort in sequencing and categorizing genomes produced by
new-generation high-throughput DNA sequencing [1]. The
capacity for the biological data generation has led to an
explosive growth of the complexity, heterogeneity, volume,
and geographic dispersion of this biological “big data” [2].
Considering the annual growth of the generated data, it is
estimated that the biological big data will reach 44 zettabytes
in 2020 [3]. Thus, analyzing this volume of data is far from
trivial. The integration of the latest breakthroughs in
biomedical technology from one side and High Performance
Computing (HPC), Scientific Workflow Management
Systems (SWfMS) [4], and Database Management Systems
(DBMS) [5] from another side, enables remarkable advances
in the fields of healthcare, drug discovery, genome research,

1https://www.lncc.br/sinapad
2https://jira.tecgraf.puc-rio.br/confluence/display/CN/CSGrid+Home

computational biology, system biology, data science
(management, sharing, and execution) and so on.

Computational biology and bioinformatics are
interdisciplinary fields that deal with the development of
computational, mathematical, and biostatistics methods to
analyze large biological datasets to infer hypotheses or
discover new solutions. They have emerged as a very
promising area in the analysis of genome sequences. Latin
America has a very active research community interested in
developing and using bioinformatics approaches for
supporting academic, scientific, and industrial demands. The
Brazilian Bioinformatics Network (RNBio) aims at
strengthening the bioinformatics research projects in Brazil in
a multi-institutional format with the training of specialized
human resources in thematic studies involving bioinformatics
and computational biology. RNBio has scientific
collaborations with the Brazilian National System for High
Performance Computing1 (SINAPAD), which offers to users
several heterogeneous and geographically distributed
resources with high performance/throughput computing
(HPC/HTC) capabilities and customized security models.

A science gateway [6] is defined as “a community-
developed set of tools, applications, and data that is
integrated via a portal or a suite of applications” [7].
SINAPAD applies grid computing [8] using the middleware
CSGrid 2 that offers the single access points through web
interfaces (gateways) for the submission of scientific
applications for the use of HPC resources. CSGrid offers two
key entry points for users, a desktop Java client and a service
bus (called OpenBus). OpenBus allows managing services as
jobs (OpenDreams) and files (HDataService), provided as
APIs. Other CSGrid services that can be accessed by science
gateways are the mc2toolset, a RESTful web service (APIs to
develop gateways), and a CLI (Command Line Interface).

CSGrid has been used in different projects, as the
mc2toolset that supports the prototyping of several scientific
portals3 at SINAPAD for physics, meteorology, chemistry,
complex networks, mathematical, bioinformatics, medicine,
etc [9]. However, although CSGrid and their tools represent a
step forward, it may be complex to the regular users to execute

3 https://www.lncc.br/sinapad/portais.php

their experiments, since it may require advanced knowledge
of several tools, frameworks, applications, filesystems, etc.
BioinfoPortal invokes the middleware CSGrid for managing
the requests of users for executing applications in the
HPC/HTC resources of SINAPAD. At the end of the
execution, a link pointing to the scientific results is sent to the
e-mail of the users.

The main goal of this paper is to address the problems and
features of designing a multiuser computational platform for
parallel/distributed executions of large-scale bioinformatics
applications using the Brazilian HPC resources. A grid-based
architecture for the science gateway is introduced. This
architecture allows scientists to design and integrate
components of a heterogeneous architecture for their
experiments. Other goals of the Project called BioinfoPortal
are: 1) to integrate HPC, SWfMS, and DBMS technologies;
2) to dispatch, manage, and execute processes in a transparent
and friendly manner for (non)expert users; 3) to evaluate the
performance of applications; and 4) to manage the provenance
data tracking of records of executions at Bioinfo-Portal.

The results (scientific/performance) of HPC applications
executions at BioinfoPortal were analyzed with the support of
the provenance databases, by submitting high level database
analytical queries. These results show that BioinfoPortal is
functional and capable of processing up to the datasets
required for each one of the bioinformatics applications,
especially HPC applications as RAxML with multithreads and
MPI, which improved the performance. We analyzed the
general features of the application executions (input size,
software parameters, efficiency of machines capacity) using
machine learning techniques to explore the allocation/usage of
computational resources for the gateway. Decision trees
generated with regression models, based on a historic of the
dataset, provided a promisor learning module and proved that
choosing the platform configuration for performing
executions is valuable for exploring the better usage of the
HPC infrastructure in science gateways.

The science gateway BioinfoPortal mediates the execution
of a suite of bioinformatics applications using the
computational resources of SINAPAD. It follows the
Software as a Service (SaaS) delivery model and is built on
top of the middleware CSGrid, which allows managing the
bioinformatics applications (programs, tools, or workflows)
with HPC/HTC. BioinfoPortal is currently supported by the
team of RNBio, National Laboratory of Scientific Computing
(LNCC4) and SINAPAD and it is freely available for the
academic use at https://bioinfo.lncc.br/.

This paper is organized as follows. Section II presents
related works. Section III describes the specification of the
architecture of the science gateway BioinfoPortal and presents
its implementation using CSGrid and the HPC resources of
SINAPAD. Section IV shows the experimental results and
discussion and Section V concludes the paper and points out
future work.

II. RELATED WORK
Many science gateways offer sharing possibilities within a

community using technologies based on the reusability of
methods and reproducibility of diverse fields of science [7].
There are several initiatives of bioinformatics research groups
for developing web interfaces, portals or migrating workflows

4http://www.lncc.br/

or software for the community. We highlighted for discussion
some main science gateways that covered HPC technologies.

MoSGrid [10] is a web-based science gateway for
structural bioinformatics that provides an intuitive user
interface to several applications. The security concept applies
SAML (Security Assertion Markup Language) and allows for
trust delegation from the user interface layer, middleware
layer, and Grid middleware layer with HPC facilities.

Galaxy [11] is an intuitive science gateway that supports a
large number of communities with overlapping research
fields. However, Galaxy lacks the support of grid-based
Distributed Computing Infrastructures (DCIs) and requires the
installation of a Galaxy instance per underlying DCI. Thus,
the migration of Galaxy workflows to WS-PGRADE
workflows allows for flexibly using existing Galaxy
workflows for various DCIs.

myExperiment [12] is an online research environment that
supports the social sharing of bioinformatics workflows. As a
public repository of workflows, myExperiment allows every
user to discover those that are relevant to their research, which
can then be reused and repurposed to their specific
requirements. Although myExperiment represents a step
forward, it does not allow users to execute their workflows.

The CIPRES5 Science Gateway is a public resource for
inference of large phylogenetic trees. It is designed to provide
access to NSF XSEDE’s large computational resources
through a simple browser interface. It released a RESTful API
to allow integration of CIPRES capabilities into other desktop
software and web applications. The CIPRES Science Gateway
is designed to manage data much like an e-mail client. The
data is then used to stage individual jobs.

III. PROPOSED APPROACH: BIOINFOPORTAL GATEWAY

The architecture of BioinfoPortal gateway is composed of
four layers: User Interface Layer, Management Layer, Data
Layer, and Resource Layer, as depicted in Fig. 1.

Fig. 1 BioinfoPortal Architecture

The User Interface Layer dynamically implements the
BioinfoPortal interface; i.e., it is a front-end where the user
can submit executions of standalone applications or scientific
workflows. The User Interface Layer is also responsible for

5http://www.phylo.org

Buillt-in

BioinfoPortal Web

MC2 REST

SINAPAD FACADE

GUI JWS

CSGrid

Applications SWfMSDBMS

SDUMONT
SGA-SLURM

LNCC

ALTIX-ICE
SGA-TORQUE-PBS

LNCC

ALTIX-XE
SGA-SGE

LNCC

SUNHPC
SGA-TORQUE-PBS

LNCC

ALTIX-ICE
SGA-TORQUE-PBS

LNCC

PADUFCO
SGA-SLURM

LNCC

User Interface Layer

Management Layer

Resource Layer

Data Layer

CSGrid Service

Bioinfo
Database

Storage

LDAP

Web
Interface DAEMON

Permissions

SGAs

OpenBus Open
Dreams

Project
Service

returning the results by the users’ e-mail. The Management
Layer relies on CSGrid to access the data and job management
services and provides features for job and workflow
scheduling, sharing files, restricting anonymous access, and
tracking provenance data. The Resource Layer is composed of
the computational resources available for usage (in the context
of this paper, the clusters, and supercomputers of SINAPAD)
and hosts the bioinformatics software, libraries, SWfMS, and
DBMS. The Data Layer provides access to the data storage in
the relational databases of BioinfoPortal and authenticates the
users using the repository Lightweight Directory Access
Protocol (LDAP6). As aforementioned, BioinfoPortal relies on
the middleware CSGrid and the computational resources of
SINAPAD that provides functionalities of parallelism,
distribution, and management of the executions using
HPC/HTC capabilities. Table 1 presents the main features of
the SINAPAD network.

TABLE 1 THE FEATURES AND FUNCTIONALITIES OF SINAPAD

Features Functionalities
HPC/HTC - Scalability, performance, optimization, distribution

Shared
Architecture

- Shared memory
- Types: SMP, UMA, NUMA, GPU, etc.
- Parallelization: OpenMP6, Threads, PThreads, CUDA

Distributed
Architecture

- Distributed memory, distributed resource management
application API, storages, parallelization (MPI)
- Heterogeneous resources: OGE, SGE-Oracle, Sun Grid,
LoadLeveler, PBS, PBS Pro, TorquePBS, SLURM, LSF,
- Clusters connected via HPC net (InfiniBand, fibrechannel)
- Distributed file system: Lustre, NFS, pNFS

Hybrid
architecture - Shared + distributed memory

Cloud
computing

- Virtualization
- Pay-per-use resources
- Low scale Brazilian academic resources
- Data providers

Grid
environment

- Types: HPC/HTC and opportunistic (volunteers)
- Grid tools: Globus, Maui-Moab, Condor, CSGrid, Ourgrid
- Data provider
- Typically heterogeneous resources

A. The User Interface Layer (front-end)
It allows users to access several services and portals7 of

SINAPAD through two sub-layers: services and applications.
The sub-layer of services is composed of the MC2 services
[9], such as MC2 REST, which dynamically interacts with
other services in the grid environment of SINAPAD.

The sub-layer of applications is composed of web clients,
such as our BioinfoPortal Web that presents two components,
Web interface and DAEMON. The Web Interface is used as
front-end of users and has an authentication strategy that
categorizes the type of access (public or private) assigned to
users, which need to be previously registered at SINAPAD
through an electronic form. The public access (for guest users)
is provided with no authentication, but the service
administrator can restrict options for using the computing
resources. The private access (for private users) is provided
with authentication as the service administrator provides more
flexibility or no restriction. DAEMON is a robust fault
tolerance mechanism for dispatching and scheduling
jobs/workflows. It is connected to the Data Layer at Bioinfo
Database for providing an entry for accessing the provenance
data information (records of executions or specific domain-
data provenance of bioinformatics applications).

6https://tools.ietf.org/rfc/rfc4511.txt
7https://www.lncc.br/sinapad/gateways.php?pg=gateways

The actual version of BioinfoPortal has public access that
allows users to choose software, parameters, and input data for
submitting their jobs/workflows. Finally, BioinfoPortal
collects requirements, manages submissions, executes tasks,
and finally report results sent to the browser and trigger sends
on the individual e-mail results record.

B. The Management Layer
It is composed of three sub-layers: Facade, Bus Services,

and CSGrid. The Facade sub-layer enables the configuration
for connecting the services (Bioinfo-Portal, SINAPAD’s
services, HPC resources); searches the information needed for
applications, clients, and users’ authentication; manages files;
and submits/monitors jobs/resources. The sub-layer for Bus
Services 8 are implemented as a service-oriented software
called OpenBus that allows for searching and publishing
services by the client applications and for controlling the
authentication/authorization of clients and services using
internal governance management systems, digital
certifications, and LDAP.

The sub-layer CSGrid is a client application of the
OpenBus services (OpenDreams, ProjectService) that
executes and manages data in the grid environment. It
manages computational resources, clients, users, submissions,
data, applications, and user databases (locally or LDAP) of
BioinfoPortal at SINAPAD. CSGrid uses the Java-based
graphical user interface (GUI) that allows SINAPAD to
manage and implement internal applications.

The module SGA of CSGrid remotely manages the access
of computational resources (Resource Layer). SGA is
responsible for managing, submitting, scheduling, deleting,
associating, and executing computational resources and jobs.
SGA uses a pattern nomenclature, which is specific for each
application executed in each cluster (sga-<sinapadName>-
<schedulerType>-<resourceName>_<queueName>). SGA
defines the best combination of settings (name, scheduler
type, queue submission, parameters) to maintain the effective
connectivity between SINAPAD’s computational resources.

The “Concept Sandbox” is a mechanism associated with
the execution of the computational resources. It provides the
availability, reliability, and security of the data using two
stages: the stage-in allows users to submit the input data sets
and the stage-out returns the results of the executions to the
users of a Project at CSGrid.

The “Concept Algorithm” (Fig. 2) is the structure at
CSGrid where the applications are available. This term
describes the non-interactive applications (using information
as input/output data, parameters) that are dispatched directly
by the clients of CSGrid. The Algorithm requires the
information of applications – name, version, installation and
compilation features in computational resources – to
configure the client interface. For instance, as the application
Align-m is installed in clusters (sun.hpc, altix-xe, ice,
sdumont); then the Algorithm Align-m can be created at
CSGrid and consequently, the interfaces of BioinfoPortal are
able to access the Algorithm Align-m to call and execute the
application Align-m in sun.hpc, altix-xe, ice, or sdumont.

The computational resources of SINAPAD are selected
using two modes of requisitions: by users who need to choose
the parameters, configurations, and clusters or by schedulers

8https://jira.tecgraf.puc-rio.br/confluence/display/OPENBUS020/Home

which automatically decide which resource is eligible for
submissions. The metric used for schedulers is the number of
free Central Processing Units (CPUs) in each cluster. Other
metrics as the amount of free memory, disk space, network
latency, or job submissions can be included by new plugins.
The configuration of the actual version of BioinfoPortal uses
public access (no user authentication) with automatic
submissions using the mode of the automatic mode by
schedulers, but it can be re-configured.

C. The Data Layer
It presents four sub-layers LDAP, Storage, Bioinfo

Database, and Scientific Workflow Management Systems
(SWfMS) Databases. The LDAP sub-layer manages the
authentication of users for the portals of SINAPAD. The
Storage sub-layer stores the information of the user data,
application credentials, algorithm configurations,
user/application permissions, and execution history
proceeding of the application portals and CSGrid. The Bioinfo
Database sub-layer stores the information (job monitoring,
tasks executions, provenance data) proceeding of the
applications executed in SINAPAD resources.

The SWfMS Database sub-layer includes the provenance
databases of SWfMS SciCumulus [13] and Swift [14]. The
management of the provenance data [15] records the history
of executions and supports the analysis of scientific
experiments. The SciCumulus database follows the data
model PROV-Dff and W3C PROV and uses the PostgreSQL
Relational Database Management System (RDBMS) to
manage at runtime the provenance data information consisting
of the performance of executions, structure of workflows, and
domain-data. Swift is a script programming language for
scientific workflows. It uses the server-less SQLite9 relational
database for storing the provenance data.

The decision-making or fault-tolerance predictions are
possible by extracting the provenance information from the
databases Bioinfo and SWfMS coupled to data mining and
machine learning techniques. For instance, obtaining
information, based on the history of records, about which tasks
are running in which clusters and if the capacity of processing
time and memory is enough can be used to predict/prevent
errors of execution, which could affect all the services and
portals of SINAPAD (including Bioinfo-Portal).

D. The Resource Layer
The computational resources of SINAPAD are formed by

clusters, grids, and public/private clouds. A heterogeneous
HPC cluster environment can contain processors and devices
with different bandwidth and computational capabilities. Due
to that reason, the installation or compilation of the
applications and dependencies is made manually by
developers/clients, following some requirements: (i) using
parameters that optimize the compilation and installation of
applications, libraries, and dependencies; (ii) using, as
possible, mechanisms and technologies to distribute and
parallelize tasks, i.e., graphics processor unit (GPU), message
passing interface (MPI), or threads; (iii) using mechanisms for
optimizing the submissions of schedulers Torque/PBS, SGE,
SLURM, Load Leveler; (iv) optimizing the use/configuration
of parameters for SWfMS; and (v) coupling to Data Layer,
resources as DBMS to register the provenance.

9http://www.sqlite.org

The Resource Layer presents two sub-layers. The sub-
layer of applications with 35 software deployed. The sub-layer
of SWfMS with SciCumulus [13] and Swift/T [14], which
greatly reducing the complexity of managing experiments by
providing features for scalable execution, scalable data
management, fault-tolerance, and provenance data tracking
[16]. The integration of SWfMS to CSGrid and computational
resources of SINAPAD required the following steps. For
SciCumulus, we implemented: (i) a network proxy that allows
accessing to the SciCumulus provenance database; (ii)
modification of the scripts of configuration (XML) and
execution of applications (bash scripts) of SciCumulus, (iii)
new bash scripts for mining labels (“tags” in the XML scripts
of SciCumulus); and (iv) a connection between the databases
of SWfMS and Bioinfo sub-layers. For Swift, we
implemented bash scripts to (i) configure Swift at the HPC
resources of SINAPAD; (ii) connect the database SQLite to
CSGrid and SINAPAD; and (iii) configure the environment to
manage execution jobs from a submission node to the clusters.

IV. RESULTS AND DISCUSSION
This section presents the experimental evaluations for

supporting the functionality of Bioinfo-Portal. We analyzed
the performance and scalability of the applications RAxML,
SciPhy, and SwiftGecko in HPC clusters. Analyses of the
results were supported by the use of machine learning
techniques for predicting the allocation/usage of
computational resources for the gateway, based on the features
dataset size of input data, software parameters, and efficiency.

The open source software RAxML is based on Maximum
Likelihood (ML) algorithms for statistical calculations to
construct phylogenetic trees used for inferring evolutionary
life and phylogenetic relationships between genomes. The
phylogenetic workflow SciPhy is managed with the SWfMS
SciCumulus and aims at producing phylogenetic trees from
input DNA, RNA and amino acid sequences. The workflow
for parallel genome comparison SwiftGecko used the Swift
parallel scripting system to identify blocks of large
rearrangements, starting with the simple collection of
ungapped local alignments. In Bioinformatics, comparative
and evolutionary analyses of genomes is a traditional problem
with high memory and CPU time requisites. Those requisites
can be reduced using HPC techniques in its development.

The Orange Data Mining Framework [17] was used for
data mining and machine learning analyses. Decision trees
were generated with regression models using the provenance
historic dataset of real application executions of BioinfoPortal
that were obtained by querying databases from the Layer Data.
In terms of the amount of data in the BioinfoPortal executions,
we have queried the sub-layer Bioinfo database that contains
the execution of 766 applications (performed by Brazilian and
collaborator users) until 01/02/2019.

A. The Architecture of the Science Gateway Bioinfo-Portal
CSGrid provides the central infrastructure for developing

the Algorithms and managing executions using the
computational resources of SINAPAD. Each Algorithm
presents scripts of configuration (“.xml”) and execution
(“.sh”), which are modified/implemented following the
requirements of the applications or computational resources.
The main scripts are portal.xml that configures the main web
interface of Bioinfo-Portal; config.xml that configures the

parameters used by each Algorithm; execute.sh that executes
the Algorithm based on the parameters of config.xml; and
prescript.sh that presents the parameters to configure the
environment for the computational resources. Fig. 2 presents
the structure of CSGrid for the Algorithm RAxML, the scripts,
and the available computational resources.

Fig. 2 The management of the Algorithm RAxML at CSGrid

1) The script portal.xml connects the web interface of
BioinfoPortal to the Project area of the Algorithms. CSGrid
defines which Algorithm will be executed by the gateway.
The user must select the Algorithm; then, the web interface is
dynamically built in the gateway and provides the fields of
input/output and parameters that need to be filled by the user.
The portal.xml allows that multiple versions of the same
Algorithm be available at the gateway (XML attribute
multiple-versions); then users can execute several versions of
the applications. Alg. 1 shows an example of portal.xml for
Algorithms RAxML [18] and SciPhy [19].
Alg. 1 The portal.xml configuration file of Algorithms RAxML and SciPhy

1 <portal-config multiple-versions='true'
2 resource-choice='true'
3 auto-generate='true'>
4 ...
5 <acronym-name>Bioinfo</acronym-name>
6 <full-name>Bioinfo-Portal</full-name>
7 <csgrid-proj-name>Bioinfo</csgrid-proj-name>
8 <algorithms-config>
9 <algorithm>
10 <name>RAxML</name>
11 <version>1.0.0</version>
12 </algorithm>
13 <algorithm>
14 <name>SciPhy</name>
15 <version>1.0.0</version>
16 </algorithm>
17 </algorithms-config>
18 ...
19 </portal-config>

2) The script config.xml describes the input/output
arguments required by each Algorithm. It is similar in
purpose to the files of the JSON Service Description
Language (JSDL) of the middleware UNICORE [20] and the
Common Tool Description (CTD) of the OpenMS10 library.
Nevertheless, config.xml provides more details about how the
arguments of the Algorithm can be rendered in a user
interface e.g., to the conditional attributes: “for the Algorithm
RAxML, the fields A (amino acid type) and B (nucleotide
type) are mutually exclusive”. These attributes allow users to

10https://www.openms.de

hide/disable field(s) at the web interface determined by one
specific value of the flag. The config.xml is used by CSGrid
for dynamically assembling the web interfaces and by
OpenDreams service for invocating commands of scripts that
reify the Algorithm in the underlying computational
resources. Alg. 2 shows an example of config.xml for
Algorithms RAxML and SciPhy.

Alg. 2 The config.xml configuration file of Algorithm RAxML

1 <?xml version='1.0' encoding='UTF-8'?>
2 <algorithm='execute.sh' code ='yes' id='yes'>
3 <format>$NAME_PARAM=$VALUE_PARAM </format>
4 <group='Input Parameters (Select)'>
5 <name='INTYPE' label='Input' clue='Input' st='dna'>
6 <item id='aa' val='aa' clue='aa file'/>
7 <item id='dna' val='dna' clue='dna file'/>
8 </name>
9 </group>
10 <group='Input Parameters'>
11 <name='numCPU' label='CPU' min='1' max='16'
clue='threads' st='16' opt='true'/>
12 <infile='INPUT_AA' label='aa' clue='aa'/>
13 <infile='INPUT_DNA' label='dna' clue='dna'/>
14 <name='BP' min='1' max='2000' clue='bp' st='100'
opt='true'/>
15 <text='MODEL_AA' label='Mod aa' clue='Mod aa'
st='PROTGAMMAWAG' opt='true'/>
16 <text='MODEL_DNA' label='Model dna' clue='Model
dna' st='GTRGAMMA' opt='true'/>
17 </group>
18 <group='Output Parameters'>
19 <outfile='OUTPUT' label='dir' clue='dir'
category='directory'/>
20 </group>
21 <display>
22 <parameter='INPUT_DNA'/>
23 <parameter='MODEL_DNA'/>
24 <condition='INTYPE' value='dna'/>
25 </display>
26 display>
27 <parameter='INPUT_AA'/>
28 <parameter='MODEL_AA'/>
29 <condition ='INTYPE' value='aa'/>
30 </display>
31 </algorithm>

3) The script execute.sh describes the specific arguments
used for the execution of Algorithms for each one of the
bioinformatics applications. Arguments can be extracted
from the command line used to execute the application. Alg.
3 shows an example of execute.sh for the Algorithm RAxML.

Alg. 3 The execute.sh execution file of Algorithm RAxML

1 #!/bin/bash
2 . ~/setclasspath.sh
3 . /hpc/modulos/bash/openmpi-1.8.5-gcc47.sh
4 function parseArgs {
5 for arg in $* ; do
6 typeset name=`echo $arg | sed "s/=.*//"`
7 typeset value=`echo $arg | sed "s/.*=//"`
8 export $name=$value
9 done
10 }
11 parseArgs $* ###CSGrid Arguments###
12 echo "Id SGE: "$JOB_ID
13 echo $INTYPE, $INPUT_DNA, $INPUT_AA, $BOOTSTRAP,
$MODEL_AA, $MODEL_DNA, $OUTPUT
14 cmdId=`echo $cmdId | sed
's/\(.*\)\@\(.*\)\.\(.*\)/\1_\2_\3/'`
15 cd $OUTPUT ###Execute RAxML DNA###
16 numCPU=$NSLOTS
17 CMD="/usr/bin/time -f "%e" -o ${OUTPUT}/.time.log 2
$ALG_DIR/RAxML/v_1/raxmlHPC-MPI-SSE3"
18 CMDmpi="/usr/bin/time -f "%e" -o ${OUTPUT}/.time.log
mpirun -np $numCPU -hostfile $TMPDIR/hostfile
$ALG_DIR/RAxML/v_1/raxmlHPC-MPI-SSE3"
19 if ["$INTYPE" == "dna"]
20 then

•name.txt → file with the algorithm name
• versions→ algorithm version
•platform1, platform2, … → SGA platform
resources used for algorithm execution
• execute.sh → script for application
execution, used for manipulating variables
•prescript.sh → script with execution
environmental attributes, used for
applications with parallel execution
• config.xml → configuration file of
applications, with attributes of interface,
parameterization…

ALGORITHM

name.txt

versions

v_001_000_000

bin

platform1

execute.sh

prescript.sh

platform2

configuration

v_002_000_000

. bioinformatic application or workflow

21 EXEC1="$CMD -m $MODEL_DNA -p 112233 -s $INPUT_DNA -
n $cmdId.best -c 4 -f d"
23 $EXEC1
24 EXEC2="$CMD -m $MODEL_DNA -p 112233 -s $INPUT_DNA -b
223344 -# $BP -n $cmdId.bp -c 4 -f d"
25 $EXEC2
26 EXEC3="$CMD -m $MODEL_DNA -s $INPUT_DNA -f b -t
best.$cmdId.best -z bp.$cmdId.bp -n $cmdId.bestML.bp"
27 $EXEC3
28 fi
29 if ["$INTYPE" == "aa"]
30 then
31 EXEC1="$CMD -m $ MODEL_AA -p 112233 -s $INPUT_AA -n
$cmdId.best -c 4 -f d"
32 $EXEC1
33 EXEC2="$CMD -m $MODEL_AA -p 112233 -s $INPUT_AA -b
223344 -# $BP -n $cmdId.bp -c 4 -f d"
34 $EXEC2
35 EXEC3="$CMD -m $MODEL_AA -s $INPUT_AA -f b -t
Tree.$cmdId.best -z bp.$cmdId.bp -n $cmdId.ML.bp"
36 $EXEC3
37 fi
38 if [$? != 0]
39 then
40 echo "RAxML returned an error."
41 exit 1
42 fi

4) The script prescript.sh describes arguments used for
the configuration of the environment. Alg. 4 shows an
example of prescript.sh for the Algorithm RAxML.

Alg. 4 The prescript.sh execution file of Algorithm RAxML

1 #$ -N JOB_RAXML
2 #$ -cwd
3 #$ -V
4 #$ -pe mpi 16
5 #$ -l h_rt=216000

B. Implementation and Analyses of Performance
The experiments of RAxML, SciPhy, and SwiftGecko

were executed in the cluster Altix ICE (Altix 11) and
supercomputer Santos Dumont (SDumont12). Altix consists of
25 diskless machines (execution nodes), each node is given by
an SGI ICE 8400 server with 2 Intel Xeon X5650 2.67GHz
Hexa Core processors (totaling 12 cores) and 48 GB DDR3
DIMMs of memory. The cluster has one login node with a
gross storage capacity of 5TB. SDumont consists of 16 TB
RAM, storage totaling 1,7 PetaBytes (Seagate 1.5 Buster),
10.692 cores, 1.1 PetaFlops, Intel Xeon E5-2695v2, 30 MB
cache, 12 cores – 3.2 GHz. Machine learning analyses using
regression models with decision trees were performed using
results of executions, as will be detailed in Sub-section IV (C).

a) The Software RAxML. The compilation of the code of
RAxML was adapted to the capabilities of the CPU(s)
infrastructures. Depending on the processor features,
RAxML supports three instructions used to substantially
accelerate the likelihood and parsimony computations: the
Streaming SIMD Extensions 3 (SSE3), the faster Advanced
Vector Extensions (AVX), and the even faster AVX2 vector.
RAxML presents four options for execution using multi-core
shared memory systems; one sequential and three parallel
using MPI, PThreads, or Hybrid (MPI + PThreads)
instructions. The sequential version is used to process small
to medium datasets. The parallel efficiency of the PThreads
version depends on the alignment length. However PThreads
works well for very long alignments, the performance is
extremely hardware-dependent. The efficiency depends on
the number of states of the data; the more states the data have
(4 for DNA, 20 amino acid), the fewer site patterns are

11http://www.lncc.br/ice/

needed for an efficient parallel execution per thread/core. The
parallel efficiency also depends on the rate of heterogeneity
of the model; the GAMMA model entails more computations
than the CAT model, which needs approximately 1/4 of the
computations than the GAMMA model requires.

Fig. 3 shows (A) the web interface of the application
RAxML at BioinfoPortal and (B) the layout of the Algorithm
RAxML at CSGrid. The web interface of RAxML is
automatically generated by the configuration script
config.xml (Alg. 2) and the execution scripts execute.sh (Alg.
3) and prescript.sh (Alg. 4). The arguments required to
execute RAxML through BioinfoPortal are defined by users,
which must upload the input file (alignment in PHYLIP
format) and fill options as input file type (nucleotide or amino
acid), bootstrap value (default 100), substitution model
(GTRGAMMA for nucleotide or PROTGAMMAWAG for
amino acid), e-mail, and the output directory.

Fig. 3The Algorithm RAxML of BioinfoPortal

Three experiments with RAxML were performed in Altix
and SDumont. The maximum number of cores per node for
Altix is 12 and for SDumont is 24. RAxML was compiled
with SSE3 in Altix and with AVX in SDumont.

1. The total execution time of the RAxML versions.
RAxML HPC Serial was executed in one single core, RAxML
PThreads in 12 cores, RAxML MPI in 120 cores, and RAxML
Hybrid in 120 cores. Table 2 presents the features of the
superalignments used as input data.

TABLE 2 FEATURES OF THE SUPERALIGNMENTS

Name
Features

Category Number
of Taxa

Number of
Amino Acid

Size in
KB

D1 (TotalAlignConc) Large 74 21,260 2,091
D2 (TrimmedAlignConc) Large 74 12,807 1,260
D3 (C1Total) Medium 26 22,906 792
D4 (C1Trimmed) Medium 26 16,068 553
D5 (C2Total) Small 12 4,941 79
D6 (C2Trimmed) Small 12 4,481 72
D7 (C3Total) Medium 36 3,490 168
D8 (C3_trimmed) Medium 36 3,270 157

12http://sdumont.lncc.br/

A

B

a2

a3

a1

a4

b1

b2

A

B

The input file is one superalignment of amino acid
sequences in format PHYLIP (called D5). The superalignment
has a size of 79 KB and is formed of 31 concatenated universal
orthologous (UO) genes belonging to 12 protozoan genomes.
The parameters used for setting RAxML versions are JTT as
an evolutionary model, GAMMA as the rate of model
heterogeneity, and 100 as the bootstrap value of replications.

Fig. 4 presents the Total Execution Time (TET) in minutes
obtained after the execution of the versions of RAxML. The
TET decreases using the parallel versions PThreads, MPI, and
Hybrid of RAxML in comparison to the version RAxML HPC
Serial and using SDumont in comparison to Altix. For Altix,
the RAxML MPI was the version that presented the best
performance, with the TET reduced from 285,57 minutes (one
single core) to 4.59 minutes (using 120 cores). For SDumont,
the RAxML Hybrid was the version that presented the best
performance, with the TET reduced from 161,29 minutes
(using one single core) to 1.88 minutes (using 120 cores).

Fig. 4 The TET of the versions of RAxML executed in Altix and SDumont

- superalignment D5

2. The scalability of RAxML MPI (Altix) and RAxML
Hybrid (SDumont) using one superalignment. This
experiment aims to evaluate the performance gains of the
versions of RAxML that outperformed Altix (RAxML MPI)
and SDumont (RAxML Hybrid) according to the number of
cores in minutes, using one superalignment. The performance
of RAxML was measured on a single processor machine (one
core) to analyze the local optimization before scaling up the
number of cores. After that, the performance and scalability of
RAxML were measured using from 2 up to 120 cores. The
superalignment used as input data is D5. Fig. 5 presents the
scalability in minutes obtained after the execution of RAxML
MPI in Altix and RAxML Hybrid in SDumont, using the
superalignment D5.

Fig. 5 The scalability of RAxML MPI in Altix and RAxML Hybrid in

SDumont - superalignment D5

The TET decreases, in both cases, when more cores were
provided to use. The RAxML Hybrid (SDumont) presented
the best performance, when it processes one superalignment,
the TET was reduced from 161.29 minutes (using one single
core) to 10.39 minutes (using 24 cores) with a performance
improvement of up to 93.56% and to 1.88 minutes (using 120
cores) with a performance improvement of up to 98.83%.
Using one core, RAxML Hybrid at SDumont outperforms
RAxML MPI at Altix; the TET was reduced from 285.57
minutes to 161.29 minutes with a performance improvement
of up to 43.52%.

3. The TET of RAxML MPI (Altix) and RAxML Hybrid
(SDumont) using eight superalignments. The executions of the
RAxML versions used as input files eight superalignments,
varying features of the number of taxa, number of amino acid,
and size (KB). The parameters used for setting RAxML
versions are JTT as the evolutionary model, GAMMA as the
rate of the heterogeneity of the model, and 100 as the bootstrap
value of replications.

Fig. 6 presents the TET in hours of RAxML MPI and
RAxML Hybrid in Altix using eight superalignments. The
TET decreases, for all superalignments, when the RAxML
parallel versions were executed. The eight superalignments
files were categorized as Large (D1, D2), Medium (D3, D4,
D7, D8), and Small (D5, D6), depending on the features
Number of Taxa, Number of Amino Acid, and Size in KB, as
depicted in Table 2.

Fig. 6 TET of RAxML MPI and RAxML Hybrid in Altix - eight

superalignments

285,57

161,29

0,00

50,00

100,00

150,00

200,00

250,00

300,00

HPC (serial)

To
ta

l e
xe

cu
tio

n
tim

e
(m

in
ut

es
) 46,45

4,59 5,34
8,54

2,96
1,88

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

PThreads (12 cores) MPI (120 cores) Hybrid (120 cores)

RAxML versions

Altix ICE Santos Dumont

285,57

35,26
21,01 11,96

4,59

161,29

10,39 4,61 4,53 1,88

-50,00

0,00

50,00

100,00

150,00

200,00

250,00

300,00

1 core 24 cores 48 cores 96 cores 120 cores

To
ta

l e
xe

cu
tio

n
tim

e
(m

in
ut

es
)

Number of cores

Altix ice (RAxML MPI) Santos Dumont (RAxML Hybrid)

820,6

132,9

26,0 30,1

631,8

105,6
23,9 25,4

0

100

200

300

400

500

600

700

800

900

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

To
ta

l e
xe

cu
tio

n
tim

e
(h

ou
rs

)

D1 D2

71,1

12

2,8 3

61,8

10,7

2,7 2,8

43,5

7,8

1,7 1,9

38,1

7,1
1,8 2

0

10

20

30

40

50

60

70

80

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

RAxML versions - Altix ICE
D3 D4 D7 D8

4,8

0,9

0,2 0,2

4,1

0,7

0,1 0,1
0

1

2

3

4

5

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

D5 D6

820,6

132,9

26,0 30,1

631,8

105,6
23,9 25,4

0

100

200

300

400

500

600

700

800

900

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

To
ta

l e
xe

cu
tio

n
tim

e
(h

ou
rs

)

D1 D2

71,1

12

2,8 3

61,8

10,7

2,7 2,8

43,5

7,8

1,7 1,9

38,1

7,1
1,8 2

0

10

20

30

40

50

60

70

80

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

RAxML versions - Altix ICE
D3 D4 D7 D8

4,8

0,9

0,2 0,2

4,1

0,7

0,1 0,1
0

1

2

3

4

5

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

D5 D6

820,6

132,9

26,0 30,1

631,8

105,6
23,9 25,4

0

100

200

300

400

500

600

700

800

900

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

To
ta

l e
xe

cu
tio

n
tim

e
(h

ou
rs

)

D1 D2

71,1

12

2,8 3

61,8

10,7

2,7 2,8

43,5

7,8

1,7 1,9

38,1

7,1
1,8 2

0

10

20

30

40

50

60

70

80

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

RAxML versions - Altix ICE
D3 D4 D7 D8

4,8

0,9

0,2 0,2

4,1

0,7

0,1 0,1
0

1

2

3

4

5

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

D5 D6

820,6

132,9

26,0 30,1

631,8

105,6
23,9 25,4

0

100

200

300

400

500

600

700

800

900

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

To
ta

l e
xe

cu
tio

n
tim

e
(h

ou
rs

)

D1 D2

71,1

12

2,8 3

61,8

10,7

2,7 2,8

43,5

7,8

1,7 1,9

38,1

7,1
1,8 2

0

10

20

30

40

50

60

70

80

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

RAxML versions - Altix ICE
D3 D4 D7 D8

4,8

0,9

0,2 0,2

4,1

0,7

0,1 0,1
0

1

2

3

4

5

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

D5 D6

820,6

132,9

26,0 30,1

631,8

105,6
23,9 25,4

0

100

200

300

400

500

600

700

800

900

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

To
ta

l e
xe

cu
tio

n
tim

e
(h

ou
rs

)

D1 D2

71,1

12

2,8 3

61,8

10,7

2,7 2,8

43,5

7,8

1,7 1,9

38,1

7,1
1,8 2

0

10

20

30

40

50

60

70

80

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

RAxML versions - Altix ICE
D3 D4 D7 D8

4,8

0,9

0,2 0,2

4,1

0,7

0,1 0,1
0

1

2

3

4

5

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

D5 D6

820,6

132,9

26,0 30,1

631,8

105,6
23,9 25,4

0

100

200

300

400

500

600

700

800

900

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

To
ta

l e
xe

cu
tio

n
tim

e
(h

ou
rs

)

D1 D2

71,1

12

2,8 3

61,8

10,7

2,7 2,8

43,5

7,8

1,7 1,9

38,1

7,1
1,8 2

0

10

20

30

40

50

60

70

80

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

RAxML versions - Altix ICE
D3 D4 D7 D8

4,8

0,9

0,2 0,2

4,1

0,7

0,1 0,1
0

1

2

3

4

5

HPC (serial) PThreads (12c) MPI (120c) Hybrid (120c)

D5 D6

The versions RAxML MPI and RAxML Hybrid
outperformed the versions RAxML HPC Serial and RAxML
PThreads. With RAxML Hybrid, the TET of the largest file
D1 was reduced from 820.60 hours (using one single core) to
30.10 hours (using 120 cores) and the TET of the smallest file
D6 was reduced from 4.10 hours (using one single core) to
0.10 hours (using 120 cores). A relation was observed
between the increment of the size of the superalignments files
and the improvement of performance of approximately 90%
between 1 and 120 cores. D1: 2,091 KB and 96.33%; D2:
1,260 KB and 95.99%, D3: 792 KB and 95.78%; D4: 553 KB
and 95.47%; D7: 168 KB and 95.63%; D8: 157 KB and
94.75%; D5: 95.83 KB and 97.83%; D6: 72 KB and 97.50%.
These values indicate that parallelization benefits from larger
files and that have more taxa and/or longer sequence lengths.

b) The Workflow SciPhy is composed of four activities:
construction of multiple sequence alignment (MSA) with
MAFFT; format conversion of MSA with ReadSeq; election
of the evolutionary model with ModelGenerator; and (4)
construction of trees with RAxML. The provenance database
of SciCumulus stores the information of the workflow
execution and data of SciPhy; and it is connected to the
database Bioinfo that provides the access to the information
of all Bioinfo-Portal’s applications and all SINAPAD’
services/portals. Queries to the provenance database of
SciCumulus can be performed at runtime, which allows to the
web interface report automatically the messages of the status
of executions of SciPhy e.g., which activity is finished or if
an error is presented (Fig. 7).

Fig. 7 The output of SciPhy executions at Bioinfo-Portal

The arguments used as input files and parameters required
to execute SciPhy through BioinfoPortal are: to upload the
input file (alignment in FASTA format) and to fill the
following options, input file type (e.g., amino acid), e-mail,
and output directory. Fig. 7 shows print messages at the final
of each activity execution of SciPhy at Bioinfo-Portal,
obtained by querying the SciCumulus provenance database.
The activities that were successfully finished were printed in
the web interface in green; on the other hand, those ones that
reported an error in the execution were printed in red.

We have evaluated the performance of the parallel
execution of SciPhy in Altix. SciPhy was executed with 200
multifasta input files of amino acid sequences and three
different configurations: on a single processor cluster (16
cores) through Bioinfo-Portal, on a single processor cluster
(16 cores) directly at the cluster through CSGrid, and on three
processor clusters (16 cores each) directly at the cluster
through CSGrid. Fig. 8 presents the TET in minutes of SciPhy,
which presents the best performance with the third
configuration i.e., when it is executed directly at CSGrid with

three clusters (in green). The TET was reduced from 374.75
minutes (using one single cluster through Bioinfo-Portal) to
180.19 minutes (using three clusters through CSGrid).

Fig. 8 The TET of the workflow SciPhy in Altix

c) The workflow SwiftGecko: maps the application
GECKO [21] to Swift for providing parallelization and
provenance data tracking. GECKO was designed to identify
collections of high-scoring segment pairs (HSPs) by genome
comparisons. The conceptual view of the workflow
SwiftGecko is composed of three modules (M1 to M3)
formed of 10 activities. (M1) The dictionary calculation:
creates dictionaries for the sequence input and is composed
for the activities 1-4; (M2) the detection of high-scoring
segment pairs (HSP): detects the hits that identify the HSP
locations and is composed for the activities 5-9; and (M3) The
post-processing: performs the statistical calculations and
functional annotations and is composed by the activity 10.

The provenance database of Swift stores the provenance
data information as the TET and the scientific domain data
information. By querying the provenance database of Swift,
specialists can infer about the evolutionary and taxonomic
relationship of genomes based on the number of fragments,
also crossing with computational information of CPU
consumed. The input arguments required by SwiftGecko at
BioinfoPortal are one input file (genomes in FASTA format),
one selection option for GECKO parameters (length,
similarity, word length, FixedL), and an e-mail.

The executions (resulting in 135 task executions) were
performed in a cluster with 72 nodes, 16GB of RAM, and
eight computing cores per node. The input data is formed by
five genomes of bacteria completely annotated. The TET was
based on three metrics: a sequential execution directly at the
cluster (in red); a parallel execution directly at the cluster (in
blue); and a parallel execution through CSGrid via Bioinfo-
Portal (in green). Fig. 9 presents the TET in minutes of
SwiftGecko, which presents the best performance with the
second configuration i.e., using a parallel execution directly at
the cluster (in blue). The TET was reduced from 8.2 minutes
(sequential execution directly at the cluster) to 4.23 minutes
(parallel execution directly at the cluster).

It is worth mentioning that SwiftGecko applications use an
out-of-core strategy and are I/O intensive. Then, scalability
could be improved by using higher throughput storage
systems or more efficient data management strategies. Finally,
the parallel execution through CSGrid via BioinfoPortal
measures the time required for submission, execution, and file

374,75

300,27

180,19

0

100

200

300

400

SciPhy-Portal
(1 cluster)

SciPhy-CSGrid
(1 cluster)

SciPhy-CSGrid
(3 clusters)

To
ta

l e
xe

cu
tio

n
tim

e (
m

in
ut

es
)

SciPhy executions - Altix ICE

transference between CSGrid/SINAPAD and the cluster,
which increment the time of response via Bioinfo-Portal.

Fig. 9 The TET of the workflow SwiftGecko

C. Statistics of the Gateway
The database of Bioinfo and provenance databases of the

SWfMS were integrated into the statistical tools of Google
Analytics. The information of jobs executed per month, jobs
executed per applications, or session per country can be
accessed to Bioinfo-Portal. Fig. 10 shows the TET in hours
per applications executed until 01/11/2018. The applications
most accessed were FragGeneScan, Align-m, and Phylip.
Until 01/02/2019, the portal was accessed 2,812 times and 766
applications were executed.

Fig. 10 TET of the applications of BioinfoPortal

An exploratory data analysis using classification trees was
performed with the available data of the database of Bioinfo
to infer knowledge about the most adequate computational
resource to execute the applications. Data mining algorithms
were used to discover patterns; we apply regression models
with decision trees [22] using the Orange data mining tool for
statistical analyses. Orange implements the core algorithm
ID3 and employs a top-down, greedy search through the space
of possible branches with no backtracking.

Nevertheless, before generating the decision tree, we had
to evaluate the statistics that each attribute used in the model
(i.e., threads, datasize, and node attributes). The main idea of
the attribute analysis is to identify potential problems with the
chosen attributes and decide if an action needs to be taken that
may require collecting more data. In Fig. 11(a), Fig. 11(b),
Fig. 11(c), we can state that there is no one dominant attribute

value and the distribution is not even; and for our analyses,
results indicate that attributes can be used in the predictions.

Fig. 11 The attribute statistics: (a) threads (number of threads), (b) datasize

(data size of the alignment in KB), and (c) node (number of nodes)

In Fig. 11(a) evaluating the threads attribute, we can
observe that 75% of the number of threads used was 24, from
an interval of 24 to 240. Fig. 11(b) shows that 75% of data
input presented size of 204 KB, from an interval of 3.2 to
610,000. Moreover, evaluating the node attribute in Fig.
11(c), we observed that 75% of the number of nodes used was
1, from an interval of 1 to 10. This information can assist users
to distinguish outlier points to find anomalies or specific
biological characteristics. By using these attributes to build
estimation models, we can discover, using classification or
regression algorithms, the relation of biological input data
(size in KB) and the number of threads that can be used for the
executions that generate maximum values of efficiency. Now
we observed that the applications of BioinfoPortal consume
low computational resources, which is due to the restriction
for size and number of inputs assigned to the Projects of users.

Fig. 12 presents the inferred rules for exploring the
efficiency of the executions of applications at Bioinfo-Portal.
In this analysis, we can state that the efficiency of
computational resources of BioinfoPortal applications is
determined by two parameters: the number of threads
(threads), the size of the alignment in KB (datasize), and the
number of nodes (node) i.e., the combination of values of
these three parameters defines the efficiency of the executions.

For example, Fig. 12 presents that the efficiency that
consumes the number of threads between 100 and 81 with less
than 36,000 of size in KB of data size and will obtain, on
average, 100 of efficiency. The machine-learning strategies
appoint, for the actual scenario, that the best machine setup in
a heterogeneous environment for executing applications
presented at least 75% of efficiency. However, results
obtained are interesting and provide an idea about the behavior
of application executions in HPC computational resources via
BioinfoPortal, more refined experiments with more data must
to be reevaluated in future analyses.

samtools; 4

Alignments (ClustalW2,
Kalign2, MAFFT, MUSCLE,

ProbCons, T-Coffee); 5
PHYLIP; 5

ReadSeq; 5
Bowtie 2; 10

HMMER 3; 10

MetaGeneMark; 10

codeml; 15

ModelGenerator; 15

FragGeneScan; 20

GeneMarkS; 20Glimmer 3; 20

RAxML; 20

Ray; 20

SciPhy; 20

SPAdes; 20

SwiftGecko; 20

Time (hours)

threads datasize node

521 total values
6 distinct values

(a)

521 total values
43 distinct values

(b)

521 total values
6 distinct values

(c)

Fig. 12 The decision tree associated with the efficiency of the executions of

the BioinfoPortal applications

V. CONCLUSIONS
We introduce our science gateway BioinfoPortal as a user-

friendly interface that manages executions of bioinformatics
applications with HPC/HTC technologies in computational
resources, including clusters of supercomputers.
BioinfoPortal is implemented over the grid middleware
CSGrid and uses the computational resources of the Brazilian
network SINAPAD, which bring-out grid computing
management services. The experiences of SINAPAD at
developing science gateways demonstrated the feasibility of
the use of the technologies HPC/HTC [9].

Data analytics in science gateways are essential to support
the exploratory nature of science. Large-scale experiments can
benefit from data analytics facilities to evaluate the results,
reduce the incidence of errors, decrease the total execution
time, and sometimes reduce the financial cost. The data
analysis process in science gateways needs to explore the
statistics of applications execution, performance issues, and
the content of data files. Each application execution in science
gateways may consist of hours or days of processing, thus, it
is unfeasible to perform an analysis without automatic
semantic computational database support.

This paper evaluates the architecture of Bionfo-Portal,
coupled with technologies of management systems and HPC
resources to explore the processes of bioinformatics
applications in an efficient manner. We are also concerned of
coupling to BioinfoPortal with the best configurations for the
efficient use of the computational resources, especially for the
MPI and multithreading applications RAxML, SPAdes,
FragGeneScan, MAFFT, Ray, Bowtie, and HMMER.
However BioinfoPortal is free available and functional, there
are several open challenges concerning to the maintenance of
security in science gateways and coupling management
systems for databases and workflows, which can be supported
by machine learning technologies.

ACKNOWLEDGMENT
The funding for this research was provided by the

Brazilian Advanced Network on Computational Biology
(Grant no. CAPES 051/2013), Brazilian Bioinformatics
Network (Grant no. CNPq 456644/2013-0), CNPq/Universal
(Grant no. 429328/2016-8), and FAPERJ/JCNE (Grant no.
232985/2017-03). We are also grateful to the comments made
by the anonymous referees.

 This is a post-peer-review, pre-copyedit version of an
article published in the Proceedings of the 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). The final version is available online
at: https://doi.org/10.1109/CCGRID.2019.00082.

REFERENCES
[1] D. C. Koboldt, K. M. Steinberg, D. E. Larson, R. K. Wilson, and E.

R. Mardis, ‘The next-generation sequencing revolution and its impact
on genomics’, Cell, vol. 155, no. 1, pp. 27–38. 2013.

[2] E. Bertino et al., ‘Challenges and Opportunities with Big Data’, 2012.
[3] L. Dai, X. Gao, Y. Guo, J. Xiao, and Z. Zhang, ‘Bioinformatics clouds

for big data manipulation’, Biology Direct, vol. 7, no. 1, p. 43, 2012.
[4] W. Aalst and K. Hee, Workflow Management: Models, Methods, and

Systems. The MIT Press, 2002.
[5] R. Ramakrishnan and J. Gehrke, Database management systems,

Third edition, International edition. New York: McGraw-Hill, 2003.
[6] S. Gesing et al., ‘Gathering requirements for advancing simulations in

HPC infrastructures via science gateways’, Future Generation
Computer Systems. 2017.

[7] S. Gesing, J. Krüger, R. Grunzke, S. Herres-Pawlis, and A. Hoffmann,
‘Using Science Gateways for Bridging the Differences between
Research Infrastructures’, Journal of Grid Computing, vol. 14, no. 4,
pp. 545–557. 2016.

[8] I. Foster, C. Kesselman, and S. Tuecke, ‘The Anatomy of the Grid:
Enabling Scalable Virtual Organizations’, Lecture Notes in Computer
Science, vol. 2150, 2001.

[9] A. Gomes, B. F. Bastos, V. Medeiros, and V. M. Moreira,
‘Experiences of the Brazilian national high-performance computing
network on the rapid prototyping of science gateways’, Concurrency
and Computation: Practice and Experience, vol. 27, no. 2, pp. 271–
289. 2015.

[10] S. Gesing et al., ‘A Single Sign-On Infrastructure for Science
Gateways on a Use Case for Structural Bioinformatics’, Journal of
Grid Computing, vol. 10, no. 4, pp. 769–790. 2012.

[11] J. Goecks, A. Nekrutenko, and J. Taylor, ‘Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences’, Genome Biology, vol. 11,
no. 8, p. 86, 2010.

[12] C. A. Goble et al., ‘myExperiment: a repository and social network
for the sharing of bioinformatics workflows’, Nucleic Acids Res., vol.
38, no. Web Server Issue, pp. 677–682. 2010.

[13] D. De Oliveira, E. Ogasawara, F. Baião, and M. Mattoso,
‘SciCumulus: A Lightweight Cloud Middleware to Explore Many
Task Computing Paradigm in Scientific Workflows’, in International
Conference on Cloud Computing, Washington, DC, USA, 2010, pp.
378–385.

[14] L. Gadelha, M. Wilde, M. Mattoso, and I. Foster, ‘MTCProv: a
practical provenance query framework for many-task scientific
computing’, Distrib Parallel Databases, vol. 30, no. 5, pp. 351–370,
2012.

[15] L. Moreau et al., ‘Special Issue: The First Provenance Challenge’,
Concurrency and Computation: Practice and Experience, vol. 20, no.
5, pp. 409–418, 2008.

[16] M. Mattoso et al., ‘Towards supporting the life cycle of large scale
scientific experiments’, International Journal of Business Process
Integration and Management, vol. 5, no. 1, pp. 79–92, 2010.

[17] J. Demšar et al., ‘Orange: Data Mining Toolbox in Python’, Journal
of Machine Learning Research, vol. 14, pp. 2349–2353, Aug. 2013.

[18] A. Stamatakis, ‘RAxML version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies’, Bioinformatics, vol. 30, no.
9, pp. 1312–1313, 2014.

[19] K. Ocaña, D. Oliveira, E. Ogasawara, A. Dávila, A. Lima, and M.
Mattoso, ‘SciPhy: A Cloud-Based Workflow for Phylogenetic
Analysis of Drug Targets in Protozoan Genomes’, in Adv. in
Bioinformatics and Computational Biology, Angra dos Reis, Brazil,
2011, pp. 66–70.

[20] K. Benedyczak, M. Wroński, A. Nowiński, K. S. Nowiński, J.
Wypychowski, and P. Bała, ‘UNICORE as Uniform Grid
Environment for Life Sciences’, in Adv. in Grid Computing - EGC
2005, vol. 3470, P. Sloot et al, Eds. Springer Berlin Heidelberg, 2005,
pp. 364–373.

[21] O. Torreno and O. Trelles, ‘Breaking computational barriers of
pairwise genome comparison’, BMC Bioinformatics, vol. 16, no. 1.
2015.

[22] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Third
Edition, 3 edition. Burlington, MA: Morgan Kaufmann, 2011.

