
 1

Collaborative Virtual Environments 
for Industrial Training and e-Commerce 

 
JAUVANE C.OLIVEIRA1,2, XIAOJUN SHEN1 AND NICOLAS D.GEORGANAS1  

 

1 Distributed & Collaborative Environments Research Lab. 
School of Information Technology and Engineering 

 University of Ottawa 
161 Louis Pasteur Priv. 
Ottawa, ON  K1N 6N5 

CANADA 
+1 (613) 562-5800 x 6248 

2 COMCIDIS Research Group 
Department of Computer Science 

National Laboratory for Scientific Computation 
Av. Getúlio Vargas, 333 

Petrópolis, RJ  25651-070 
BRAZIL 

+55 (24) 2233-6022 
 

jauvane@acm.org shen@discover.uottawa.ca  georganas@discover.uottawa.ca         
 
 
Abstract: Collaborative Virtual Environment (CVE) concepts have been used in many systems in the past few 
years. Applications of such technology range from military combat simulations to various civilian commercial 
applications. This paper presents CVE as a medium for Industrial Training and Electronic Commerce. 
 
Key-Words: Collaborative Virtual Environments, Virtual Reality, Collaboration, Java3D, VRML, Multimedia, 
Industrial Training, E-Commerce. 
 

1 Introduction 
Over the past few years, a number of interactive virtual reality (VR) systems have been developed. A 
Collaborative Virtual Environment (CVE) is a special case of a VR system where the emphasis is more on 
“collaboration among users” rather than on simulation. CVEs are used for applications such as collaborative 
design, training, telepresence, and tele-robotics. 

We have exploited CVEs for Industrial Tele-Training aiming at reducing expenses and saving time while 
training remote users/engineers to operate some equipment. We also have been exploiting CVEs for Electronic 
Commerce aiming at providing the user with a much enjoyable experience while shopping online. In both cases 
the users, represented by avatars, can join a Virtual World and then manipulate and interact with the objects as 
in the real world. For training purposes the users are expected to perform some tasks under supervision of a 
trainer (or unattended) while the e-Commerce client would be able to see a model of the products he/she wishes 
to buy. If questions need to be answered an Intelligent Agent may pop-up and assist the user with detailed 
information and walk through features of the virtual objects. One can extend the Virtual World to be similar to a 
real shopping mall, which would facilitate the adaptation of users not used to browser-based interfaces. 

Motivated by these advantages, we have designed and implemented prototypes in those two areas, namely an 
Industrial Teletraining prototype for ATM switching equipment, as well as a Virtual Shopping Mall. Section 2 
focuses on the Industrial Training prototype, while section 3 focuses on the e-Commerce one. 

2  Industrial Training 
From an industry perspective, CVEs can be an attractive solution for reducing training expenses [1]. Instead of 
users working with physical objects, the latter are represented by virtual objects that can then be placed in a 
virtual environment accessible to many users. The users, represented by avatars, can then manipulate and 
interact with the objects as in the real world, gaining valuable experience and training before using the real 
equipment 



 2

Motivated by these advantages, we have designed and implemented an industrial teletraining prototype. At the 
request of our industrial sponsors, the prototype has been created for training operators of ATM switching 
equipment; however it can be modified for other types of training. Such a prototype can be fully controlled in a 
wireless fashion where speech commands and user gestures are used as input, allowing for a more comfortable 
interaction among the human participants. 

2.1 Prototype 
Our prototype is a multiuser teletraining application, which allows users, represented by avatars, to learn how to 
repair a faulty ATM switch. The avatars repair the switch in steps, which precisely reflect the steps necessary to 
perform the same actions in the real world. The prototype consists of two general modules: user interface, and 
network communication. The user interface itself consists of a graphical interface (GUI), a 3D interface (VR), 
and media interfaces (speech recognition, voice streaming, head tracking). Figure 1 shows the user interface of 
the prototype. 

The upper right area of the interface, which takes the largest part, is the 3D environment. On the left and below 
the 3D environment are the controls used by the trainer and trainees to interact with objects and navigate in the 
environment. At the top left is the head-tracking facility which will be discussed in more detail later in sections 
2.2.6 and 2.3. Below the head-tracking window there is window for playing training video clips (e.g., how to 
“ground” a user before touching an electronic part) Below that there is a utility panel that is used for different 
purposes as will be discussed later. There is also a chat space where users can exchange textual messages. In 
order to avoid navigation problems with inexperienced users, it is possible to view the world from a set of 
predefined camera views as shown in Figure 2a. 

 
Figure 1. Training Application’s Interface 

 



 3

A user is able to approach and verify the operation of the switch and its cards, remove a faulty card, put it on the 
repair table, and replace it by installing a new card into the switch. Other parties will be able to watch that user’s 
avatar performing such actions. All of the above actions can be performed by directly navigating in the scene 
and manipulating objects with the mouse or by selecting the action in a menu as shown in Figure 2b. Figure 3 
shows a sequence of screenshots illustrating the execution of the previously mentioned steps performed by a 
trainer and watched by a trainee. 

 
a                                b 

Figure 2. Camera View/Action Choice Menu 

As can be seen from figure 3, a trainee can adjust his/her viewpoint to whichever angle/position that is more 
suitable in order to watch the trainer’s actions. These adjustments can be done quickly by choosing the 
appropriate views from the camera view menu. When the trainer selects a new view of the World, the trainees 
get the same view as well. That was implemented based on feedback from users and trainers, which is aimed at 
enhancing the trainee’s experience by viewing the actions through the best angle suggested by the trainer. A 
trainee may change the view if he/she so desires. 

 
Figure 3. Replacing a Faulty Card. 

In addition to receiving help from the trainer, a user can also view video segments showing the correct 
procedure for performing certain actions. The utility panel is used to display the video clips, as shown in Figure 
4b. If chosen by the trainer, the video will be displayed in every participant’s screen. 



 4

Another use for the utility panel is the secondary-view feature, where a user can simultaneously watch the 
current actions from an alternative point of view as shown in Figure 4a. 

 
Figure 4. Utility Panel functionality: 

a) secondary view (top) b) video clips (bottom) 

In addition to the above explained interfaces, the prototype offers voice recognition technology, whereby the 
user simply enters commands by talking into the computer's microphone. In this case, the user may simply give 
verbal pre-defined commands, such as for example “Go to the table”, for the avatar to perform, or may change 
views by saying “Table Top View”, and so on. 

2.2 Architecture 
Rather than developing the system from scratch, we decided to make use of a wide spectrum of available 
technologies, reuse software packages, and concentrate our efforts in integrating them. Hence, the system brings 
together a large number of components and technologies as shown in Figure 5, namely for 2D graphics and 
interface design, 3D rendering, multi-user communications, voice recognition, audio and video streaming, and 
head tracking. In this section we will briefly describe the prototype architecture and the role of each component. 
Such components are detailed in Figure 7. 

Sp
ee

ch
R

ec
og

ni
tio

n

V
oi

ce
St

re
am

in
g

V
is

ua
l

R
en

de
rin

g

V
id

eo
D

ec
od

er

H
ea

d
Tr

ac
ki

ng

Control

Communication  
Figure 5. System Architecture. 

2.2.2 Communication 
The communication layer is responsible for all exchange of information amongst users. There are three 
components in this layer: directory server, control communication, and media communication layers. 

The directory server is an entity which holds information about the participants in a session; the directory server 
is also responsible for checking on the status of every participant through alive bits. 

The control communication layer is responsible for all communications with the exception of audio data. 
Packets have the format shown in Figure 6, where the field command indicates what kind of information lies 
within the packet. 



 5

 
Figure 6. Control Packet Format. 

The directory server has been written in ANSI C and the client side of the control communication in C++, 
resulting in a Dynamically-Linked Library (DLL) to be loaded at run time. There are IPv4 and IPv6 
implementations available so that, depending on their capabilities, a group of users can choose whichever 
version they find appropriate by selecting the corresponding DLLs and directory server. The IPv6 
implementation will eventually make use of quality of service parameters, multicast groups and flow labels 
when the users would benefit from better behaviour of the system. 

The communication layer decouples all networking issues from the upper layers. The native-platform 
communication DLL is loaded into the Java environment using the Java Native Interface (JNI). Incoming 
messages are sent to the Java core via callback of Java methods from the native code. 

2.2.3 Rendering and Interface 
For the GUI part, we used JavaSwing, which is a set of high-level graphics APIs for more advanced and 
sophisticated graphical components. Java technology was chosen due to its easy utilization of high-level APIs. 
When designing the 3D interface, we examined both Java3D and various VRML browsers. Other works have 
shown that Java3D is faster, easier to control and manipulate, and more interactive than the interface offered by 
VRML browsers [2]. Java3D also eliminates certain complexities that are inherent to using VRML along with 
its Java External Authoring Interface, Web browser and VRML browser. On the other hand Java3D has no 
specific file format and a developer must convert 3D descriptions of other famous formats to Java3D code. 

Our prototype makes use of VRML objects designed in PowerAnimator. In order to make such objects treatable 
under Java3D a comprehensive optimization is performed in the original VRML objects aiming at simplifying 
the geometry (reducing redundant polygons). The VRML behavior of the objects is converted to Java3D code 
using VRML to Java3D conversion tools. A view of a world created in this manner is then presented in a 
Canvas3D. Hot spots are defined in the world in order to allow the user to interact with them in a point-and-
click fashion. User actions are sent to the communication layer, which in turn informs the other parties involved 
in or affected by such actions, creating thus a collaborative environment. Figure 7 shows the various 
components of the system along with the communication paths among them. 

 
Figure 7. Prototype Modules/Connection 



 6

2.2.4 Speech Recognition 
We use the Microsoft Speech API (SAPI) to provide a speaker independent recognition of pre-defined 
commands described by a SAPI grammar. This way commands such as "go to the table", "pick up the card", are 
recognized by the SAPI module. An example of SAPI code is shown below: 

[<Animation>] 
<Animation>=go to the "go to the" <Select3> 
<Select3>=billboard "billboard" 
<Select3>=switch "switch" 
<Select3>=table "table" 
 

In the above example, all the "go to the X" commands are programmed into the SAPI engine, in which X is one 
of the three options, namely, “billboard”, “switch”, or “table”. These commands will invoke the appropriated 
actions. 

The speech recognition module is implemented using ActiveX components and its integration to the prototype 
is made via another native DLL loaded by JNI. The speech recognition module works independently from the 
other modules, by sending recognized commands into the prototype via a pre-defined local socket. 

2.2.5 Audio Conferencing 
The audio capturing module allows participants to enter into an audio-conferencing session. The module is 
based on the Microsoft NetMeeting SDK. Due to Soundcard limitations, this module will compete with the 
voice recognition module described above. Text chat facilities are also optionally provided and can be used in 
cases where audio is not supported. 

2.2.6 Video Player 
The Video Decoder module is an H.263 Video Decoder developed entirely in Java which is able to receive and 
decode streamed video from a video server [13]. The video is presented in the utility panel. 

2.2.7 Head Tracking 
The head-tracking module captures the user’s head motion wirelessly by video processing techniques using a 
simple camera installed on the user's computer. Head movements are sent to the prototype and are used to 
control the corresponding avatar’s head. The head-tracking module is implemented using ActiveX components 
which generate a series of rotation parameters which are sent to the prototype via a JNI connection through yet 
another DLL. More details are disclosed in section 2.3. 

2.2.8 Control 
The control layer is implicitly included in the other layers and is composed of a set of rules which ensures that 
all components work together. The coordination of the DLLs, which enable the exchange of data between the 
Java core of the prototype and the native components, comprises the Control Layer. 

2.3 Video Processing 
Model-based video coding (MBVC) has recently emerged as a very low bit rate video compression method 
suitable for Collaborative Virtual Environment (CVE) applications [9]. The MBVC increases coding efficiency 
by using knowledge about the scene content and describing the real world geometry of 3D model objects. The 
principle of this compression is to generate a parametric model of the image seen at the emission end and to 
transmit only the characteristic parameters that show how the model changes in time. These differential 
parameters are then used to animate the model of the image recovered at the reception end.  

The first step in a full automatic MBVC system is the face detection allowing the identification and location of 
the face in first image frames.  The next step is motion estimation encompassing global 3D-motion recovery, 
local motion estimation, expression and emotion analysis, etc. The problem is technologically difficult, as 3D 
motion parameters have to be extracted from a sequence of 2D images of the performer’s head-and-shoulders.  

In our system [14], we use a 3D tracking method for the real-time measurement of six head motion parameters, 
namely 3D position and orientation, and the focal length of the camera. This method uses a 3D wireframe head 
model, a 2D feature-based matching algorithm, and an Extended Kalman Filter (EKF) estimator. Our global 



 7

motion tracking system is meant to work in a realistic CVE without makeup on speaker's face, with uncalibrated 
camera, unknown lighting conditions and background. 

The EKF converts the 2D feature position measurements, using a perspective camera model into 3D estimates 
of the position and orientation of the head [3, 4, 5]. The EKF recursive approach captures both the cause-effect 
and the dynamic nature of the tracking, offering also a probabilistic framework for uncertainty representation. 

The EKF procedure is applied to nonlinear systems and consists of two stages: time updates (or prediction) and 
measurement updates (or correction). At each iteration, the filter provides an optimal estimate of the current 
state using the current input measurement, and produces an estimate of the future state using the underlying 
state model. The values, which we want to smoothen and predict independently, are the tracker state parameters.  

The EKF state and measurement equations can be expressed as [14]: 

)()()1( kkAsks ξ+=+  (1) 
)()()( kkHskm η+=   (2) 

where s is the state vector, m is the measurement vector, A is the state transition matrix, H is the Jacobian that 
relates state to measurement, and )(kξ  and )(kη  are error terms modeled as Gaussian white noise.  

The observations are the 2D feature coordinates (u,v),  which are concatenated into a measurement vector )(km  
at each time step. The observation vector is the back-projection of the s state vector containing the relative 3D 
camera-scene motion, and the camera internal geometry, namely the focal length. In our case the state vector is 

)_,,,( lengthfocalvelocityrotationntranslatios  that contains the relative 3D camera-object translation, 
rotation and their velocities, and camera focal length.  

The EKF requires a physical dynamic model of the motion and a measurement model relating image feature 
locations to motion parameters. Additionally, a representation of the object (user's head) is required.  
The dynamic model is a discrete-time Newtonian physical model of a rigid body motion, moving with constant 
velocity. The measurement model relates the state vector s to the 2D-image location ),( kk vu  of each image 
feature point, using a perspective projection model. 

We employ a three-parameter incremental rotation ),,( zyx ωωω , similar to that used in [4] and [6] to estimate 
inter-frame rotation. The incremental rotation computed at each frame step is combined into a global quaternion 
vector ),,,( 3210 qqqq used in the EKF linearization process and rotation of the 3D-model [7].  

 
Figure 8. Hotspot in Video and Correspondent 3D Head  



 8

2.3.1 EKF Initialization 
The 3D-model provides the initial structure parameters of the Kalman filter. Each 2D-feature point 

),( ii vu corresponds to a structure point ),,( iiii ZYXp . As shown in Figure 8, these ),( ii vu  points are obtained by 
intersecting the 2D image plane with a ray rooted in the camera’s center of projection COP and aiming to the 
3D structure point on the head model. Figure 9 shows the EFK Initialization. 

Figure 9. The EKF “Boot” Algorithm  

The typical point identification problem of the 3D pose recovery from 2D images is solved in our case by 
identifying corresponding points in both the 2D live image of the subject and the 3D model of the subject’s 
head. In order to aid the point identification process, we are using an augmented reality technique by projecting 
in the 2D live image the 3D mesh used to model the head. A multiple “point identification” procedure using this 
augmented reality technique is summarized in Fig. 8. At this development stage it is still up to the user to 
arrange the scale matching between the live face image and the projected mesh. Figure 10 shows the user’s head 
moving and its avatar matching the 3D model. 

 
Figure 10. Tracking the head motion 

2.3.2 EKF Update  
At each iteration, the EKF computes an estimate of the rigid 3D motion that must probably correspond to the 
motion of the 2D live image. We employ the Kanade-Lucas-Tomasi (KLT) [8] 2D-gradient feature tracking 
method, which robustly performs the tracking reinforced by the EFK estimation output. An estimate of motion 
and camera focal length is found at each step. After the 3D-motion and focal length are recovered, a perspective 
transformation will project feature points back onto the image to determine an estimated position of the 2D 
feature trackers. At the next frame in the sequence a 2D tracking is performed starting at this 2D estimated 
position. The current matching coordinates of tracked features are fed back into the Kalman filter as the 
observation vector, and the loop continues. The feedback from EFK is used to update the 3D-model pose 
parameters, i.e. provides the 3D head tracking information. 

Step 1.  The user positions his/her face at the 
center of the screen, and adjust the 
matching of the live image  and the 
projected mesh , so that the projected 
mesh covers the entire facial region. 

Step 2.  Left mouse click on every rigid feature 
point of interest on the live image. An 
automatic program function takes care to 
properly align the selected live feature 
point to a vertex of the projected mesh. 

Step 3.  Right mouse click anywhere on the 
active Windows “live” image triggers the 
tracking process (booting EKF module). 



 9

The recovered 3D position and orientation are propagated to the Head Modeling block of the CVE system, 
which renders a new posture of the 3D-model as illustrated in Fig. 9. 

2.4 Immersive Environment 
A later enhancement to this prototype was the possibility to have the same environment in a more immersive 
fashion. Figure 11 shows the immersive version of this prototype projected in a wall as well as in a computer’ 
screen. The immersive version of the prototype benefits from alternative input methods such as voice 
recognition and head-tracking previously introduced. This Prototype shows the potential that CVE has for 
Industrial training. 

 
Figure 11. Immersive version of Prototype 

3 e-Commerce 
Existing electronic commerce applications only provide the user with a relatively simple browser-based 
interface to access the available products. Buyers, however, are not provided with the same shopping 
experience, as they would have in an actual store or shopping mall. With the creation of a virtual shopping mall, 
simulations of most of the actual shopping environments and user interactions can be achieved. The virtual mall 
brings together the services and inventories of various vendors. Users can either navigate around from one 
vendor to the other, adding items into virtual shopping carts, or perform intelligent searches through “user 
search agents”. The user may find items of interest in the normal navigation process or use the search agent 
without having to navigate through the maze; he/she can then negotiate with sales agents to bargain for the best 
price and make a secure transaction. The virtual mall prototype also allows the user to communicate with an 
“intelligent assistant” using simple voice commands. This assistant interacts with the shopper using voice 
synthesis and helps him/her use the interface to navigate efficiently in the mall.  

Real-time interactions among entities in the virtual environment are implemented over the Run Time 
Infrastructure of High Level Architecture (RTI/HLA), an OMG and IEEE standard for distributed simulations. 
This High Level Architecture (HLA) standard is a general architecture for simulation reuse and interoperability 
developed by the US Department of Defense. 

The HLA standard [11, 15] promotes reuse of simulations and their components. It attempts to specify the 
general structure of the interfaces between simulations without making specific demands on the implementation 
of each simulation. 

3.1. Virtual Mall Overview 
This Virtual Mall project focuses on e-commerce and the infrastructure that is needed to implement an Internet-
based version of this e-commerce application. The main aspects of technology that pertain to e-commerce were 
addressed as follows:  



 10

• Using user interface design, virtual reality, and intelligent agents to make electronic commerce 
applications more attractive and usable,  

• Ensuring electronic payments are secure -- essential to the success of electronic commerce,  
• Using data warehousing, mining, and management to add value to an application, or to handle the 

application's data flow,  
• Designing architectures for various applications and solutions,  
• Measuring quality of service, given available resources. 

This section only discusses the CVE-based user interface and intelligent agents design.  

Figure 12 provides the overview of the Virtual Mall project. A user uses his/her web browser, logs on to a given 
URL and follows proper authentication/access control. Registration is required if it is a new user. The user 
needs to give his/her personal information such as name, birthday, or credit card number. The information will 
be stored in the User Profile Database. The user then may choose the browsing mode that he/she prefers – 
search engine or virtual mall. Search engine plays a major role in the traditional electronic shopping on the 
Internet. The user can check all sorts of information he/she wants, evaluate the products or services he needs, 
compare prices and makes a purchase right away on a “flat” web page. 

Virtual
Shopping

Mall

HLA/RTI

Collaborative Virtual Environment

WWW Server WWW ServerQoS Broker

User Profile
Manager

CGI Scripts

Registration/Login

Virtual
Shopping

Mall

Multimedia Catalog

Secure
Transaction
 Manager

Vendors

 
Transactions

Sales
 Agent

Search
Agent

 
Figure 12. Overview of Virtual Mall Project 

Virtual Mall is a CVE user interface through which the user can retrieve the virtual world of interest realized in 
VRML (Virtual Reality Modeling Language). He/she then can navigate the virtual world, where both the users 
and agents are represented on the screen by 3D animation avatars. Human to human interaction is possible in 
the distributed virtual environment, such as communication between users via non-verbal means, like gestures. 

In terms of Quality of Service (QoS), an architecture that introduces a brokerage function between clients and 
servers has been defined. QoS brokers continuously monitor the performance of affiliated servers and assign 
them to clients according to a defined server selection policy that optimizes the capacity of the system based on 
server performance characteristics and user requirements.  

There is a number of data management issues that need to be addressed in electronic commerce applications. 
These include, among others, the development of virtual catalogs, intelligent query access of these catalogs, and 
support for the management of transactions between customers and vendors. The multimedia catalog enables 
users to access multiple, distributed and potentially heterogeneous catalogs in a uniform and transparent 
manner. The user queries the database through CGI scripts. The user search agent is responsible for generating 
the CGI scripts, parsing the responses from database, which is in CGI format as well, and showing the results on 



 11

a query window.  The user may pick up his interest items into the virtual shopping cart and negotiate with 
vendor sales agent to bargain for the best price. After that, the Secure Transaction Manager helps the user to 
make the deal.  

HLA/RTI Interface

Graphics Rendering Layer

Java Layer

Object Management
Subscription/Publish

Object Ownership
Management

DDM
Subdividing Large VE

Object
Repository

Object
Reference

Speech
recognition /

synthesis
MAS

VRML-Enabled Browser Java3D-Based Browser

 
Figure 13. System Architecture 

3.1.1 System Architecture 
The CVE is a shared 3D virtual world over HLA/RTI on the Internet where users from homes, offices, can 
explore, interact and work. Figure 13 depicts the basic three-layer system architecture.  

The top layer is the graphics rendering layer, where there are two kinds of browser modes that the user can 
choose: VRML-enabled web browser, i.e. Netscape, or Java3D-based browser. Even thought a Java3D-based 
browser is a pure Java solution, the scene description of virtual worlds is written in VRML (Figure 14).  

 
Figure 14. Browser-Based User Interface 



 12

The Java layer plays a pivotal role in the creation of CVEs. It not only controls the virtual scenes (VRML 
scenes) but also communicates with the RTI through the Java Native Interface (JNI). The Java layer also 
implements the service that RTI provides, such as RTI Object Declaration, Object Ownership Management and 
Data Distribution Management (DDM), which will be addressed in detail in the following sections.  

3.1.2 Object Management in CVE 
The virtual world consists of various types of entities, each of which has a visible body containing its state. In 
particular, it contains its geometry and physical characteristics. One entity often needs information about other 
entities: it is affected by them, and may need to interact with them. At first sight it appears that there is a 
fundamental distinction among active entities (such as avatars), passive entities (such as the objects that need to 
be co-manipulated) and inactive entities (like the background objects in the virtual worlds). 

Different entities may have different behaviors, for example, the way they move, fly or walk. Different objects 
are used to embody a certain entity in the virtual environment at each of the three layers of the application – 
VRML, Java and RTI. For example, at the VRML layer, a VRML PROTOTYPE node defines the avatar’s 
geometry and the animation of its actions/gestures, the latter of which are implemented by VRML sensors, 
events and scripts. At the Java level, a Java object consists of attributes like position, rotation and gesture to 
describe the avatar inside the CVE. Simulated entities in the RTI context are represented by RTI objects 
containing attributes and state definitions.  

HLA Declare Management (DM) provides the services to federates to declare their intention to generate and 
consume information [12]. Object Management (OM) deals with the registration, modification, and deletion of 
object instances and the sending and receiving of interactions. The basic activities of DM and OM services for 
object class operations are shown in Figure 15. 

Fe
de

ra
te

 A

H
LA

/R
TI

Fe
de

ra
te

 B

(1) Publish Object Class
class = C, attribute ="position"

(2) Subscribe Object Class
class = C, attribute ="position"

(3) ID Request (get ID=x)

(4) Instantiate Object

(5) Instantiated Discovered
Object

class = C, ID = x

(6) Update Attribute Values
ID = x, attribute ="position"

(7) Reflect Attribute Values
ID = x, attribute ="position"

 
Figure 15. RTI/HLA Object Declaration 

The execution mechanism of VRML in a standalone browser supports sensors, events and scripts, which allow 
the animation of a local scene graph. To support our goal of shared interactive scenes, we allow scripts to 
communicate events to the scene graphs managed by other browsers via RTI. Our approach provides a simple 
mechanism to share user’s (avatar) interaction, which offers methods for non-verbal clues between 
collaborators, within all browsers in the 3-D world. The model is a replicated script mode with each browser 
downloading the same script and executing it locally. Typically these scripts would be associated with objects 
that are in the initial downloaded VRML file. 

In Figure 16, we can see the message flow as a result of a user selection. A user selection (1) causes a local 
script to run (2). This in turn invokes the callback event by External Authoring Interface (EAI) in the Java 
applet, which then retrieves the event (3) and asks the RTI to send attribute update through JNI (4). RTI passes 
the event and invokes the remote federate ambassador to reflect updated attribute. The latter one is “RTI 
initiated” service (5). The Java applet retrieves the message to its browser (6), which then converts the message 
to an event that causes execution of the local script (7). 



 13

HLA/RTI

RTI
Interface

Java Layer

Browser

RTI
Interface

Java Layer

Browser1

2 7

3 6

4 5

 
Figure 16. Sharing User Interactions 

3.1.3 Ownership Transfer Mechanism 
Multi-user CVE worlds is subject to conflicts. Conflicts, for example, may arise if one user tries to open a 
window while another user is trying to close it. These conflicts must be avoided or resolved. One method to 
determine the attributes of objects that may be modified by certain users is to assign temporary ownership to 
objects. Manipulation of objects may include the change of the object’s coordinate system and the change in the 
scene graph: users may grasp objects and take them to a different world. Operations like this are essential for 
applications like virtual shopping.  

One of the attributes of an object in the virtual worlds is its ownership, which indicates which user (process) is 
allowed to access or manipulate the object. The manipulation is performed through modifying some of the 
attributes of an owned object (such as position and rotation). In the RTI implementation, a given object instance 
has one single owner at any given time. However, attribute ownership may change during the execution. This 
mechanism allows two or more users to handle the same object through the transfer of ownership within the 
CVE. 

The RTI allows federates to share the responsibility for updating and deleting object instances with very few 
restrictions.  It is possible for an object instance to be wholly owned by a single federate.  In this case, the 
owning federate has responsibility for updating all attributes associated with the object and for deleting the 
object instance.  It is possible for two or more federates to share update responsibility for a single object 
instance.  When update responsibility for an object is shared, each of the participating federates has the 
responsibility for a mutually exclusive set of object attributes. Only one federate can have update responsibility 
for an individual attribute of an individual object at any given time.  Also, only one federate has the privilege to 
delete an object instance at any given time. 

The ownership management methods provide a facility for exchanging attribute ownership among federates in a 
federation execution using a "push" and/or a "pull" model. A federate can try to give away responsibility for one 
or more attributes of an object instance – or push ownership.  Alternatively a federate can try to acquire 
responsibility for one or more attributes of an object instance – or pull ownership.  The push model cannot 
thrust ownership onto an unwitting federate.  Similarly, the pull model cannot usurp ownership. 

Figure 17 depicts the procedure of two federates passing the ownership of a specified object from one to the 
other by using pull/push approach. Pull and push approaches for transferring attribute ownership may be 
applied in different scenarios. For instance, when a customer wants to view merchandise, he/she needs to 
request the ownership of the object from the vendor by using the “pull” scheme, before he/she takes it from 
shelves whose owner is the vendor. After that, he/she can put the object back onto the shelf by “pushing” back 
the ownership to its original owner.  



 14

Fe
de

ra
tio

n 
A

.
 W

is
hi

ng
 to

 ta
ke

 o
w

ne
rs

hi
p

H
LA

/R
TI

RequestAttributeOwnership
Assumption

NegotiatedAttributed
OwnershipDivestiture

AttributeOwnership
Acquisition NegotiatedAttribute

OwnershipDivestiture

Fe
de

ra
tio

n 
A

.
 R

el
ea

si
ng

 o
w

ne
rs

hi
p

AttributeOwnership
DivestitureNotification

  (b) "Push" Mode

Fe
de

ra
tio

n 
A

.
 W

is
hi

ng
 to

 ta
ke

 o
w

ne
rs

hi
p

H
LA

/R
TI

AttributeOwnershipAcquisition
RequestAttributeOwnership

Release

NegotiatedAttributeOwnership-
Divestiture

AttributeOwnershipAcquisition
Notification

AttributeOwnershipDivestiture
Notification

Fe
de

ra
tio

n 
A

.
 R

el
ea

si
ng

 o
w

ne
rs

hi
p

  (a) "Pull" Mode

 
Figure 17. Ownership Interaction Diagrams 

3.2. Multi-Agent System in e-Commerce 
In the context of a public virtual mall with multiple independent vendors, our goal is to create a software entity 
(which we call Sales Agent or SA) that will represent each of these vendors. More specifically, we are 
interested in enabling the consumer to negotiate the price of a commodity by making a binding offer to the SA. 
The SA is able to respond to such consumer’s offer by making use of decision rules based on private 
information (such as cost prices and inventory numbers) not available in the public catalogue of the mall. A 
response consists of either an acceptance or rejection of the offer. In case of acceptance, the user is notified and 
the transaction is recorded at the consumer’s offered price. In case of refusal, the user is also notified and the 
SA has the liberty of making a counter-offer or not. If a counter-offer is made and accepted by the consumer, 
the SA records the transaction at the counter-offer price. 

Our architecture is that of a Multi-Agent System (MAS) (Figure 18) 1. Each vendor in the mall has one instance 
of a SA. Consumers are represented by User Agents. Each instance of an agent is a separate entity and is 
running asynchronously in its own process and possibly on its own machine (SAs are assumed to be 
continuously running). On the client side, a user agent remembers the user’s personal user information through 
the proper authentication. The client queries the multimedia catalog database through CGI scripts. The user 
agent is responsible for generating the CGI scripts, parsing the responses from database, which is in CGI format 
as well, and showing the results on a query window. 

Communication between agents is completed through a message passing system that uses a broker agent with a 
name resolution service to register agents. The broker agent is also considered an agent and run in a predefined 
machine at a predefined port. It is responsible for registering agents and relaying messages to the appropriate 
agent. Each SA is identified by the unique name of the vendor it represents (e.g. Sears) and each consumer is 
identified by the unique user ID provided upon registration in the virtual mall.  

                                                           
1 This part of work is completed by Prof. T. Radhakrishnan and his team at Concordia University 



 15

Multimedia Catalog

User Profile Database

Query Form

Result
Presentation

Order Form

User
Agent

Sales
Agent

CGI Scripts Query

CGI Scripts

Negotiation

 

Figure 18. Multi-Agent System in E-Commerce Application 

Acknowledgments 
The authors acknowledge the research and development contributions of Mojtaba Hosseini, François Malric, 
Marius Cordea, Prof. T. Radhakrishnan and his team at Concordia University and Ramsey Hage, as well as the 
financial assistance of Newbridge/Alcatel and CITO. We also acknowledge the financial assistance of the 
Brazilian Ministry of Education Agency’s CAPES scholarship, and the Natural Sciences and Engineering 
Research Council of Canada (NSERC) Scholarship Program. 

References 
[1]  J. Leigh (1999) A Review of Tele-Immersive Applications in the CAVE Research Network, Procedings of the 

IEEE International Conference on Virtual Reality, Texas, USA.. 
[2]  J. C. de Oliveira; S. Shirmohammadi and N. D. Georganas (1999) Collaborative Virtual Environments Standards: 

A Performance Evaluation, IEEE DiS-RT’99, Greenbelt, MD, USA. 
[3]  A. Azarbayejani, T. Starner, B. Horowitz, and A. Pentland (1993) Visually controlled graphics, IEEE Trans. 

Pattern Analysis and Machine Intelligence, 15(6), 602-605. 
[4]  T.J. Broida and R. Chellappa (1986) Estimation of object motion parameters from noisy images, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 8(1), 90-99. 
[5]  D.B. Gennery (1992) Visual tracking of known 3-dimensional object, International Journal of Computer Vision, 

7(3), 243–270.  
[6]  A. Azarbayejani and A Pentland (1995) Recursive estimation of motion, structure, and focal length, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 17(6). 
[7]  K. Shoemake – Quaternions, Department of Computer and Information Science, University of Pennsylvania, 

Philadelphia, PA 19104. 
[8]  J. Shi, and C. Tomasi (1994) Good Features to Track, IEEE Conf. on Computer Vision and Pattern Recognition 

(CVPR94) Seattle, WA, USA. 
[9]  K. Aizawa, T.S. Huang (1995) Model Based Image Coding: Advanced Video Coding Techniques for very Low 

Bit-Rate Applications, Proc. IEEE, 3(2). 
[10]  X. Shen, R. Hage and N.D.Georganas (1999) Agent-aided Collaborative Virtual Environments over HLA/RTI, 

IEEE DiS-RT’99, Greenbelt, MD, USA. 
[11]  HLA Homepage, URL at http://hla.dmso.mil/hla 
[12]  E. T. Powell (1996) The Use of Multicast and Interest Management in DIS and HLA Applications, Proceedings of 

the 15th DIS Workshop, #96-14-125. 
[13]  jStreaming – http://jStreaming.com 
[14]  M. D. Cordea, E. M. Petriu , N.D. Georganas, D.C. Petriu, and T. E. Whalen (2000) Real-Time 2½D Head Pose 

Recovery for Model-Based Video-Coding, IEEE Transactions on Instrumentation and Measurement, IMTC/2000 
special issue. 

[15]  Institute of Electrical and Electronics Engineers, International Standard 1516 (2000) IEEE Standard for Modeling 
and Simulation (M&S) High Level Architecture (HLA) - Framework and Rules. 


