
Functionalities in Grid Computing with Active Services

R.B.Leite1, F.S.G. de Oliveira1, C.G.Ribeiro1, J.C. de Oliveira1
B.Schulze1, E.R.M.Madeira2

{fgomes, const, jauvane, schulze}@lncc.br, edmundo@ic.unicamp.br

1. LNCC, Av. Getúlio Vargas 333, 25651-070 Quitandinha, Petrópolis - RJ
2. IC / Unicamp, PoBox 6176, 13083-970, Campinas - SP

Abstract

In this paper we discuss architectural aspects of middleware for grid computing based on an infrastructure of dis-
tributed clusters and/or distributed services, an access portal for a demonstration project in progress, and also some
security issues. We observe, in recent works, activities in the direction of open service architectures for grid services
and for web services. We also see advantages in adding facilities offered by distributed object computing environ-
ments with their interoperable references and services. Open service architectures introduce the possibility of com-
posing structures of nested services. Additionally we discuss some security issues for instance intrusion detection.

1. Introduction

The Middleware is a layer between the operating sys-
tem and the applications that provides open distributed
processing support, allowing applications development,
usage and maintenance. The Middleware layer is a shell
over the operating system, adding new functionalities
to support the distribution of applications. The envi-
ronment is open in the sense that not only the systems
are open but the services are open as well. Exporters
offer services and importers search for services, inde-
pendently of the identity and location of the exporter.
An open service environment is also characterized by
the unlimited access in the sense the environment is
always able to accept a new user. On the other hand, in
this environment, an exporter is autonomous to decide
how to perform the service. The Middleware deals with
this dichotomy: openness and privacy.

This support offered by the Middleware matches with
the requirements for grid computing, distribution, open-
ness and privacy. Two Middleware approaches can be
applied to grid environments, based on object orien-
tation and on service containers.

The former approach supports infrastructure and appli-
cation objects that use object-oriented mechanisms, like
inheritance, polymorphism, encapsulation, and so on.
Examples of infrastructure objects are transactional,
concurrency and naming service. CORBA (Common
Object Request Broker Architecture) [1] is an example
of this kind of Middleware. The last approach supports
containers with infrastructure and application objects
coexisting together. The Web Services standardization
[2] is an example of this kind of Middleware.

Both kinds of Middleware provide access and location
transparencies. The access transparency masks differ-
ences of heterogeneous computer systems with differ-
ent operating systems and the use of different lan-
guages. The location transparency hides the location of
an interface (object).

CORBA specifies the IDL (Interface Definition Lan-
guage) to define services in an object-oriented envi-
ronment. Web Services use WSDL (Web Services
Definition Language), that is based on the XML (Ex-
tensible Markup Language), to define the services, and
may use SOAP (Simple Object Access Protocol) to
transfer data over HTTP or other protocol. Web Ser-
vices are strongly based on Internet protocols.

The GGF (Global Grid Forum) is developing the most
important specification on Grid services, the OGSA
(Open Grid Services Architecture) based on emerging
Web Services standards. This architecture offers inter-
faces to discover services, create dynamic service in-
stances, manage service life-time, notify events and
manage the Grid environment.

Structure: Section 2 presents requirements in Middle-
ware for Grid Computing. Section 3 discusses related
works. Section 4 discusses Middleware with nested
services, and an access portal: Web Services allowing
internet access with simplified access list, no separate
communication servers, simplified security manage-
ment, limited bandwidth, and (mobile) agents in man-
agement, monitoring security and intrusion, collocating
services, load-balancing, among others. Section 5 in-
troduces statistical network formulation and intrusion

detection. Section 6 mentions performance evaluation
and Section 7 presents conclusions and future activities.

2. Middleware for Grid Computing

In this section we discuss some requirements in Mid-
dleware for Grid Computing. Besides the transparen-
cies in access and location, Grid computing needs the
following basic services from the Middleware:

- Naming;
- Creation of transient services;
- Service invocation;
- Service discovery;
- Multiple protocol bindings;
- Life-time management;
- Change management to allow different ver-

sions of the same service;
- Event notification;
- Instrumentation and Monitoring;
- Allocation management to allow task distribu-

tion;
- Security; and
- Concurrency control.

CORBA provides almost all these services through its
Service Objects (infrastructure objects). For instance,
there are the: Naming, Trader (offers service discov-
ery), Property Management (can offer version support),
event notification (can be used as base to develop a
life-time management), Security and Concurrency. The
current version of CORBA does not define support to
Instrumentation, Monitoring and Allocation Manage-
ment, but it is possible and relatively simple to develop
these objects. On the other hand, CORBA provides few
protocol bindings. Interactions between different
CORBA environments are supported.

Web Services provides some of these services, like
creation of transient services, naming (OGSA defines
GSH – Grid Service Handle, and GSR – Grid Service
Reference), service discovery (through the UDDI –
Universal Description, Discovery and Integration, and
the WS-Inspection), multiple protocol binding, life-
time and change management, security and event noti-
fication. Like CORBA, Instrumentation, Monitoring
and Allocation Management also are possible to be
implemented. Currently, Web Services do not provide
Concurrency Control, but it will be offered in the fu-
ture, always following the container approach. The
interactions between different Web Services are not
completely defined yet.

New functionalities could be incorporated to the Grid
Computing Middleware. For instance, task migration

for load balance is a point to be developed, as well as
the workflow support (called orchestration in Web Ser-
vices). Also, communications between object of the
same application during their executions should be
supported, specially in strongly coupled applications.

Nowadays, the Middleware normally allocates auto-
matically the computing resources to the execution of a
task. However, advanced Grids can require more com-
plex policies of resource allocation. In this case, the
Middleware should provide to the grid administrator
the functionality of defining and applying allocation
policies. This Policy Management requires the devel-
opment of new task schedulers.

3. Related Works

In this section we discuss some related works and the
possibility to use nested application services. There are
several Middlewares for Grid computing nowadays,
following different approaches and focusing on some
different aspects.

Classic grid implementations support scheduling with
dispatch queues. The basic computational units are
processes and the management of the resources' avail-
ability is obtained by monitoring the queues' throughput
and number of waiting processes. The more frequent
communication mechanism is MPI (message passing
interface) [3] which imposes restrictions in inter-
clusters communication, which should be possible for
instance, with a directory service for registration and
localization of separate process instances in different
clusters in the grid.

Globus-3 [4] and Nimrod/G [5] are based on Web Ser-
vices. The first one offers the main services described
in Section 2, while the last extends management and
scheduling functions and defines new Scheduler, Dis-
patcher and Job Wrapper. Legion [6] is based on the
object technology and defines an IDL to allow the use
of different programming languages. Legion also offers
the main Middleware services and permits the use of
object-oriented concepts, like inheritance. There are
CORBA based implementation taking advantage of the
functionalities of this technology, as for example [7],
allowing the task migration for load balancing. Dis-
cover [8] is based on Web Applications and CORBA.
The interaction between the client and the server is
based on Web Applications, taking advantage of the
simplicity of the Internet protocols. In the server side,
the interactions between the several service objects
(Name Server, Registry, and so on) is based on
CORBA, taking advantage of its robustness.

Yet another aspect is scalability, for handling large
amounts of events and specially when they are asyn-
chronous, happening at random and eventually simulta-
neously. For ORBs there is an specification [9] where
the infrastructure dynamically adapts (scales) to allow
larger queuing of (simultaneous) incoming and pend-
ing outgoing requests.

Web Services as much as object-oriented approaches
can be used to develop Middleware platforms for Grid
computing. However, each approach takes advantage of
different aspects. Web Services is based on Internet
protocols, that are de facto standards.

New tools using these protocols are often developed.
Web Services intrinsically use XML, that allows the
service specification in a higher level. On the other
hand, object-orientation based platforms permit the use
of inheritance, encapsulation, polymorphism, and so
on. The infrastructure objects are already defined and
implemented, like the Transactional and Concurrency
Objects. This kind of platform is more mature.

If we consider services as the main approach for having
different kind of computing facilities, we may have a
recursive structure of services being implemented by
using other existing services, as represented in Figure
1. The Globus-3 is being developed following OGSA
and will allow structured services.

Figure 1. Nested applications based on services.

The presence of more and more web infrastructure
leads to web services [10] of all sizes and colors and
strongly dependent on interoperability and portability,
which is present in CORBA as well. Looking into the
direction of services we may consider an alternative
grid structure different from the traditional one which
aims at a flat structure where the backbone bandwidth
should be identical to the clusters' intranet one [11].

4. Large Scale Workbenches

In this section, we have an infrastructure and Middle-
ware allowing nested services, and an access portal to a
demonstration project that we are currently working on.

There is the setup of a demonstration project for inte-
grating (Brazilian national) high performance comput-

ing centers using a grid computing middleware. The
project involves the development of an access portal
with a submission service, securtiy services, migration
tools, monitoring management, among others. The pro-
ject will have to cope with shared and limited band-
width in the internet backbone. The grid platforms used
in this effort, up to now, are the GridEngine [12] and
the Globus toolkit. The use of OGSA is quite appropri-
ate for the reasons of limited bandwidth, use of web
servers for internet (and user) access, no need for sepa-
rate access list of the individual client machines, no
separate communication servers (and port), and simpli-
fied centralized security management.

In a more realistic structure we expect a hierarchy of
clusters as in Figure 2, with clusters (for the nodes) and
the network backbone (for the edges). Consequently the
structure is not flat and contiguous with the clusters
intranet but rather an heterogeneous structure.

Figure 2. Cluster hierarchy with a network backbone.

In order to deal with different and limited bandwidths,
we expect to have (mobile) agents [13] support, as rep-
resented in Figure 3, and benefit from collocated client
and server [14] communication facilities. This aspect is
associated with the relationship service in CORBA.
Mobile agents can be used for: management [15],
monitoring security conditions and flaws, intrusion
detection [16], deployment of (Grid) Web Services
(information and code), optimization of performance by
collocating services, load-balancing, resource availabil-
ity, among others.

The access portal and submission service are being
implemented as a web service using Java servlets and
XML for a Jakarta tomcat webserver. The submission
service has a web interface for declaring the code to be
submitted, passing parameters, negotiating the neces-
sary resources, and dispatching the execution. It has to
rely on security infrastructure for secure connection,
authentication, and authorization. In Figure 4 there is a
representation of the demonstration project (in pro-
gress) with the local grid and connections to be estab-
lished to other HPC centers.

Cluster Tier 1

Clusters Tier 2

Internet

Clusters Tier 3

App 3

App 2
App 1

Figure 3. Upper part: Middleware supporting Web Ser-
vices and (mobile) agents, Lower part: Infrastructure.

Figure 4. The demonstration project: the local grid
(solid) and future connections to HPC centers (dashed).

5. Security Issues and Services – Distrib-
uted Denial of Service Attacks

In this Section we discuss the formulation of statistical
network modeling in intrusion detection. Security in
Grids is a fundamental matter. Grid implementations
support security based on services that provide func-
tionalities such as: secure connection protocols, public
key infrastructure, and certification authorities. How-
ever, additional functionalities may be necessary based
on real life grid experiences, as for instance intrusion
detection, among others.

Security services in distributed systems constitute a
new area in computer science, although there has been

considerable research about this matter. Security ser-
vices have seen a significant evolution, as well as their
counter parts like worms, viruses and distributed denial
of service attacks. Fundamental components in security
architectures are firewall functionalities, based basi-
cally on a set of rules that tell the kernel what packets
are to be let through the IP stack. Firewall vendors
guarantee their products are not vulnerable to attacks,
but in practice this is not true. As they incorporate all
the complexity of the rules to describe the security
policies in a virtual organization, they become more
complex. A general concern about security services is
that they must be tested against distributed denial of
service attacks. The behavior of a distributed system or
traffic network may be modeled by agent based sys-
tems, expert systems or statistically based systems.

We introduce basic concepts of statistical network
modeling [17], where traffic modeling studies are re-
lated to collecting, measuring and analyzing traffic
variables. The major point is to investigate the estima-
tion of a set of interest variables. The estimation con-
sists of the analysis of the data set generated by the
observation of these variables, while the observations
are measurements of network quantities. Basically a
node is chosen in the network and some characteristics
of the connections between this node and others con-
nected to it need to be quantified and measured.

Let H be the number of host machines connected to a
single one. The H hosts will be denoted by the set

),...,(1 HxxX = . Let)(jj xuu = be a variable of
interest at the jth node. A variable of interest could be
the transit package time between nodes, inter arrival
times of connections to a server, etc. In fact we have a
multivariable problem. Let S the total number of in-
terest variables and []T

SuuU ,...,1= be a S-
dimensional random variable. Then rjrjrj uy ε+=
will be the rth observation at the jth node. For each node

jY we will take jr observations, i.e. the set
T

jrj
i
j j

yyY],...,[1= . We assume that no changes in
the value we are estimating occur during the collection
of the observations. The error terms ijε are random
variables assumed to have zero mean and to be uncorre-
lated with variance 2σ , independent of the node. The
covariance matrix is

[]() ()()[] [] SnmUEUUEUEK mn
T ≤≤≤=−−= 1κ

This set of nodes is called the experimental design of
size S. The predictor will assign a weight to each node,
and the prediction will be a weighted sum of the obser-
vations. Thus, we are considering a linear predictor in

Intranet & Internet

Ad-Hoc Cluster
Servers

Clients Dedicated Cluster

Web Server
Web container

Middleware

Mobile
Agent

Web Access
Portal

Linux
Cluster

Solaris
Sun 6800

Solaris
Cluster

HPC
Center 1

HPC
Center 7

...

Middelware

Intranet

Intranet 1 ... Intranet 7
Middleware 1 ... Middleware 7

Internet

this work. The experimental design of size n lower than
S denoted by nξ is defined to be

{ } SnXxrN
N
r

pxp j

N

j
j

j
j

n
jjn ≤∈=== ∑

=

,;;,,
1

ξ

The quantities jp denote the weight on the node or the
proportion of the observations to be taken at node j.
The values of jx are the design points of the experi-
ment, i.e. the nodes at which the observations are to be
made. Note that 1

1
=∑

=

N

j
jp , so the set of jp can be

seen like the probability density function of the jth com-
ponent of the random vector U. The estimators are ob-
tained from the observation vector. Then

()
















=





















=

∑

∑

=

=

n

r

i
in

n

r

i
i

n

Y

Y

y
r

y
r

Y
n ˆ

ˆ

1

1

ˆ
1

1

1
1

1

1

MMξ .

Each value of jr corresponds to the sample size of
each node defined in nξ . The estimator above gives the
sample average for each node. This vector will be the
prediction vector. The averaging could be thought as a
method of “denoising” (such as 0][=jE ε), or reduc-
ing the variance of the estimate. Instead of averaging,
one could consider a robust estimate of location, such
as the median, but we will focus on averaging in this
work. Another way to reduce the impact on the network
would be to make our measurements during non-peak
hours. However, if we aim at measuring delays, for
example, this would defeat the initial intent. For some
quantities (inter arrivals package time, for example), we
have no choice but to make our measurements during
peak hours. It is important to keep in mind that we are
predicting the activity across the entire collection of
nodes from measurements collected at a subset of
nodes. As mentioned earlier, this is often necessary due
to lack of resources or a desire to reduce the impact of
the data collection on the network. We want to design
our experiment – select the monitored nodes – and to
estimate it as accurate as possible. To this end we need
a way to measure the accuracy of our estimate. Given
Û an estimate of U, the matrix of expected squares
residuals associated to the experiment nξ is

() ()() 



 −−=

T

n UUUUEUD ˆˆˆ,ξ .

The quantity)ˆ,(UD nξ gives us the accuracy of the
estimator Û .

An intrusion detection service should have an early
detection of Distributed Denial of Service Attacks
(DDSA). We work with the Management Information
Base (MIB) traffic variables collected in the hosts par-
ticipating in the attack. Cabrera et al [18] uses this ap-
proach to analyze a database generated from a network
operation monitoring of these variables. They use a
simple Autoregressive Moving Average (ARMA)
model of lag A to explain the relation between observa-
tions Yj and variables Uj. Then

[]∑
=

−−− ++=
A

a
jaiajaiajaiaij uyy

0
,,, εγβα .

The determination of constants sss aaa ',',' γβα and
the model lag A involves using statistical tools for test-
ing its significant information about the variable jy .

A DDSA is characterized by pieces in the database of
anomalous behavior, so the variables don’t obey the
model above and the values of)ˆ,(UD nξ are excep-
tionally high. The parameters of the model are fitted
using a database sample without attack interference.

The Network Management System program measures a
total of 91 MIB variables (TuuU],...,[911=), for in-
tervals of 2 hours at a sample rate of 5 seconds. The
topology suggested to this experiment is a master sys-
tem connected to 5 slaves nodes (for instance Web
servers) represented by the set),...,(51 xxX = . These
slave nodes are connected to the target node (a single
node). An attack is triggered from the master node. It
installs the attack tool software in the slave nodes pro-
ducing a denial of service into the target (single) node.
The U variables are observed in the connections be-
tween the slaves with the target node.

Further work is needed to validate this methodology
under more realistic traffic loads. A realistic network
condition involves multiple domains environment. This
work is in progress at this stage.

6. Evaluation

Here we discuss shortly first performance evaluations.
For evaluating the behavior of different technologies
and implementations involved, we start with a basic
benchmark that compares the execution of a program in
a collocated run on a single node, with a distributed run
over specified computing nodes. We are currently
working on the comparison of two study cases for a
parallel program based on MPI and for a distributed
program based on ORBs. The examples are different,
i.e., they are not the same computation, but both of

them are either executed collocated on a single comput-
ing node, or spread over several computing nodes. This
should provide some input to establish comparison fig-
ures and identify critical points, and bottlenecks. Fur-
ther effort is needed in selecting a set of benchmarks.

7. Conclusion

We point out that a (heterogeneous) grid computing
infrastructure altogether with a Middleware based on
open (grid and web) service architectures and the addi-
tion of mobile agents support in the context of web
infrastructure allows for instance the possibility of
composing applications based on nested services and
other functionalities as monitoring agents (manage-
ment, security, intrusion detection, among others), de-
ployment of new services, migration of services for
load-balancing, for collocation and so on. This also
contributes to the building of an access portal and deal-
ing with some security issues as intrusion detection.

In this work we considered computing nodes as part of
a dedicated cluster with closely coupled nodes and geo-
graphically distributed clusters, meanwhile another
kind of clustering can be observed in what we call ad-
hoc clusters with volunteered loosely coupled comput-
ing nodes. Other aspects in this 2nd kind of cluster are
for instance security, communication and persistence.

Acknowledgments: This work is supported by Brazil-
ian funding from CNPq and PCI/MCT.

References

1. OMG Common Request Broker: Architecture and
Specification, Version 3.0.2, 2002 www.omg.org

2. W3C Architecture Domain, “Web Services”,
www.w3.org/2002/ws

3. The Message Passing Interface Standard, www-
unix.mcs.anl.gov/mpi

4. I.Foster, et al. “The Physiology of the Grid: An
Open Grid Services Architecture for Distributed
System Integration”, 2002
www.globus.org/research/papers/ogsa.pdf

5. R.Buyya, D.Abramson, and J.Giddy, “Nimrod/G:
An Architecture for a Resource Management and
Scheduling System in a Global Computational
Grid”, Fourth IEEE Int. Conference on High Per-
formance Computing in the Asia-Pacific Region,
pp. 283-289, 2000

6. A.S.Grimshaw, A.Ferrari, F.C.Knabe and
M.Humphrey, “Wide-Area Computing: Resource
Sharing on a Large Scale”, IEEE Computer, 32 (5),
pp. 29-37, 1999

7. S.Vanhastel, F.D.Turck and P.Demeester, “Design
of a Generic Platform for Efficient and Scalable
Cluster Computing based on Middleware Technol-
ogy”, 1st IEEE/ACM International Symposium on
Cluster Computing and the Grid, pp. 40-47, 2001

8. V.Mann and M.Parashar, “Middleware Support for
Global Access to Integrated Computational Col-
laboratories”, 10th IEEE Int. Symposium on High
Performance Distributed Computing, pp. 35-46,
2001

9. A.Gokhale and D.C.Schmidt, "Measuring and Op-
timizing CORBA Latency and Scalability Over
High-speed Networks", IEEE Transactions on
Computing, Vol.47 No.4 April 1998

10. S.Kleijnen and S.Raju, "An Open Web Services
Architecture", ACM Queue Tomorrow's Comput-
ing Today, February 2003,
www.acmqueue.org/issue

11. K.Schmaranz, "On Second Generation Distributed
Component Systems", Journal of Universal Com-
puter Science - JUCS, Vol.8 No.1 (2002) 97-116

12. GridEngine, Sun Microsystems Inc., griden-
gine.sunsource.net

13. B.Schulze and E.R.M.Madeira, "Contracting and
Moving Agents in Distributed Applications Based
on a Service-Oriented Architecture", Mobile
Agents LNCS 1219 pp. 74-85, Springer, April 1997

14. B.Schulze and E.R.M.Madeira, "Migration Trans-
parency in Agent Systems", IEICE Trans. on
Communications, IEICE/IEEE Joint Special Issue
on Autonomous Decentralized Systems, Vol. E83-
B No.5 (2000/5) 942-950

15. B.Schulze et al, "Momenta: Service Management
using Mobile Agents in a CORBA Environment",
Journal of Network and Systems Management
Vol.9 No.2 June 2001, pp. 203-222

16. W.A.Jansen, "Intrusion Detection with Mobile
Agents", Computer Communications No.25 (2002)
pp. 1392-1401

17. D.J.Marchette, Computer Intrusion Detection and
Network Monitoring: A Statistical Approach,
Springer-Verlag 2001

18. J.B.Cabrera et al, "Proactive Detection of Distrib-
uted Denial of Service Attacks using MIB Traffic
Variables – A Feasibility Study", Proceedings 7th
IFIP/IEEE International Symposium on Integrated
Network Management, Seattle, WA – May 2001

19. W.Dillon and M.Goldstein, "Multivariate Analysis
Methods and Applications", J. Wiley & Sons 1984

20. T.Amemiya, "Multivariate Regression and Simul-
taneous Equation Models when the Dependent
Variables are Truncated Normal”, Econometrica,
Vol. 42 No. 6 November 1974

