
Java-Based Multimedia Collaboration: Approaches and Issues

 Shervin Shirmohammadi, Jauvane C. de Oliveira∗, and Nicolas D. Georganas
Multimedia Communications Research Laboratory
School of Information Technology and Engineering

University of Ottawa, Canada
[shervin | jauvane | georgana]@mcrlab.uottawa.ca

∗ Sponsored by CAPES, the Brazilian Ministry of Education Agency: Bolsista da CAPES - Brasilia/Brasil

ABSTRACT

Real-time collaboration systems, in which participants
share multimedia documents and applications in real
time, have been a subject of interest for many years.
Although computer supported cooperative work
(CSCW) systems have existed for a long time, Web-
based collaboration tools, such as Microsoft NetMeeting,
have started to emerge relatively recently. Moreover,
there has been much advancement in Internet-related
technologies lately. Among them, Java applets seem to
have introduced the most exciting notion: platform-
independent applications provided by the network. From
multimedia collaboration point of view, the next step in
the evolution of applets is their real-time sharing among
many users. In this paper, we will discuss the design
issues of a framework for multimedia collaboration
using Java applets. We will also elaborate on the
implementation matters encountered during our
experimentation with our JETS prototype.

I. INTRODUCTION

The introduction of Java as a platform-independent
programming language for the Internet has had a
significant impact on the related technologies. By
embedding Java applets in HTML documents, the
applications are now going to the user in the form of
applets, instead of the traditional case of the user finding
and installing the applications. Users have only to make
sure they have a Java-enabled Web browser on their
platform. Today, Java is considered by many experts as
the de-facto programming language for Internet
computing. Java’s Web-accessibility and platform-
independence are its most important properties which set
it apart from other type of programs.
Almost parallel to the Java paradigm, the subject of
Web-based telecollaboration has also recently received a
lot of attention. Although computer supported
cooperative work (CSCW) systems have existed for a
long time [6], Web-based collaboration tools that permit
sharing of multimedia applications among participants
on the Internet have recently started to emerge.
Microsoft NetMeeting, Vocaltec ICP, and Netscape
Collaborator are only a few of these types of tools. There
are also some Java-based collaboration tools available
such as the NCSA Habanero and the Java Collaborative
Environment (JCE) which allow sharing of basic
multimedia applets such as whiteboards; however, very

few of these tools use applets as their base for
collaborative applications. Although applets can usually
be converted to applications and be shared using
conventional techniques, there is a fundamental
difference between sharing applets and applications:
In practice, applets can be shared through a Web
browser or a network station. This is not only platform-
independent but also requires no downloading and
installation of the specific application on the user side. A
user simply navigates to a given URL and joins a
session. Furthermore, users will always have the latest
version of the applet. This is not the case with
applications. Generally, applications cannot be shared
using a Web-browser. This means that a package must
be downloaded and installed on the machine of every
user who wants to take part in the collaboration session;
an approach which is very similar to collaboration using
non-Java applications. Hence, the emphasis in the
application sharing method is the portability feature of
Java, whereas the applet sharing method is more a
network-centric approach.
In this article, we present a client-server architecture for
sharing Java applets. We will show the collaboration
issues that we came across based on our experience with
our Java-Enabled Telecollaboration System (JETS)
prototype and its applets.

II. COLLABORATION ARCHITECTURE

There are two main architectural approaches for
telecollaboration: centralized and distributed
architecture. The trade-off is between simpler clients,
avoiding complex distributed algorithms, and ease of
implementation (centralized); as opposed to faster
processing and avoiding an extra bottlenecked entity
performing the duties of a server (distributed). We
believe that in the case of Java applets, using a central
server is more easily justifiable than using a non-
centralized architecture.
In order to join the session and start the applets, the
client machines have to download the Java applets from
a central server. This means that a server already exists
and is not an additional resource utilized by the system;
it is very necessary and part of the system to start with.
Furthermore, as part of Java’s security restrictions,
applets can only make network connections back to the
server from which they were downloaded. Although
future releases of Java will have more flexibility by
means of allowing the user to give more permission to a

Java applet, it is still recommended to write applets that
can work in any environment. Hence, for Java applets,
the use of a server becomes almost mandatory in order
for the client-to-client communication to take place. In
addition, as we will see next, there are many issues that
are solved more easily with a server-based approach than
one without a central server.

III. IMPLEMENTATION ISSUES

Figure 1 shows a simple client-server system with
identical client applets. When one user interacts with the
applet, by for example clicking a button, one or more
events are generated. Each event is sent to the server,
which multicasts it to all other clients. The other clients
then process the event as if it was generated locally and
therefore recreate the intended actions of the original
client.

applet

applet

applet

server
event X

event X

event X
user interaction
generates event

event is processed by receivers
as if generated locally

event is multicasted
to other participants

client 1

client 2

client 3

3

1
2

Figure 1. A simple client-server architecture for event-
multicasting.

One can think of many issues that a multi-user
collaboration environment such as that in figure 1 must
address. The main issues are latecomers, participants’
awareness, management, event collision, and
synchronization.

A. Latecomers

When a user joins a session already in progress, the user
must be presented with the current states of the shared
applets. Using a central server, the newcomer can
receive these states in two main ways. One way is to
play back the sequence of events occurred on an
application. This is referred to as event logging [10].
This not only requires huge buffers, but also might be
unstable due to an expired entity such as a temporary file
which was erased. The other approach is to keep track of
the current object state of the applications and send them
to the newcomer. In case of Java, this can be easily
achieved by means of Java’s object serialization. Java
Object Serialization can transparently send objects with
their current state over the network. However, this
requires that the server not only multicast user events,
but also keep a copy of the application object and
execute the received events on it in order to maintain the
application’s current state up to date.

B. Awareness

Awareness is the ability of a given participant of a
collaborative session to have feeling of both existence
and actions of the others. According to the literature [1]
there are as many as eleven different elements that
provide such “feeling” including presence, activity level,

actions, intentions, changes, and abilities.
This issue has been of interest for many years in the field
of teleconferencing systems and virtual reality. In
teleconference systems, video is used to watch the other
participants and to be aware of their existence and
actions. The awareness in VR and 3D simulation
systems is usually implemented through an avatar that
tries to mimic the behaviors and actions of its user; other
participants can then see the user as in the real world. In
non-3D environments; however, this technique is
inadequate.
To achieve awareness, a system can use either explicit
mechanisms, such as direct communication, or indirect
ones, such as simple observation of others work by
noticing the effect of their actions. This can be improved
by the use of a telepointer as used in, for example,
Microsoft NetMeeting. When a user moves the mouse
over an application, the mouse movement is also
reflected on the screen of other participants. However, if
there are many users, this method needs some
enhancements. Let’s say there are 50 users, and all of
them are allowed to interact with the application at the
same time; naturally there will be too many pointers on
the screen to keep track of. A simple solution for this, as
used in NetMeeting, is to allow only one user at a time
to have access to the application which is usually
achieved by some sort of locking mechanism [3].
Again, the use of a central server proves to be beneficial
for this feature. The server can keep track of all
participants and relay them to a newcomer, or notify
others when a user leaves the session.

C. Management

Often overlooked by existing implementations, a session
manager is a key component of a functional
telecollaboration system. There is a need for a
chairperson who controls participants’ access rights for
different applications. This person can dynamically set
individual user’s access rights such as no-access, view-
only, and view/interact. For instance, whenever a user
abuses his/her access rights by taking control over the
application longer than allowed, the chairperson can
intervene by changing the user’s access rights. Although
not many, some collaboration/conferencing systems
today implement session management. The TVS system,
for example, implements a management system that
controls participants' access rights both manually and
automatically [7].
A central server can facilitate the implementation of this
issue. Users’ access rights can be predetermined by the
session manager. These rights can be categorized into
generic rights such as guest, member, and assistant; or
specific rights such as John Smith. Every time a client
tries to perform a certain interaction, the applet first
checks locally to see if the user has the right access; if
no, an “access denied” error message is returned;
otherwise, the user action is executed. During the
session, when a manager changes these access rights, the
server sends these changes to the appropriate client
applet.

D. Event Collision

Event collision is not a new issue. It has existed for
many years in database management systems (DBMS),
for example. The problem occurs when the events of two
or more users which are generated at approximately the
same time affect the same data and create unwanted
results. For instance in an on-line presentation, one user
might advance the presentation to the next slide while
another is trying to annotate on the previous slide. As a
result, the annotation might appear on the new slide.
This situation is depicted in figure 2. It is apparent that
only one of these events should have been allowed.

Slide 1

A B

Slide 2

a b

User X annotates

Figure 2. Event collision a)what user X intended b)what
actually happened because another user changed the
slide.

Event collision is usually addressed by some type of
access control. Optimistic techniques, such as validation
[11], are usually not suitable for these situations. In
validation, all checking for collisions is done at once and
after execution of operations. The assumption in
optimistic approaches is that there are not many user
interactions being performed at the same time. Although
sometimes true, this is often not the case with
telecollaboration sessions. Pessimistic techniques, which
perform a certain degree of checking before execution of
events, seem to be more appropriate for
telecollaboration. One of the common pessimistic
approaches is locking. When a client wants to interact
with an applet, the applet checks with the central server
whether the shared application is free. If so, it locks the
application such that other clients will be denied
availability. After it is finished, it releases the lock so
others can use the applet.

E. Synchronization

Another important aspect of collaboration is
synchronization. Typically, individual users in the same
session have different processing powers and different
network access in terms of network bandwidth and
network latency. This creates the possibility that the state
of one copy of the applet is different form the state of
another copy. Lack of synchronization will lead to both
temporal and application state inconsistencies. For
example, it will be possible for a user with high-
bandwidth access to quickly bring up an image from a
server and edit it, while another user with lower
bandwidth has not even finished downloading the image.
Hence, it is crucial for a synchronization scheme to exist
in a collaboration space. Such a synchronization scheme
must support timeliness, causality, and state awareness
in order to insure consistency among participants [13].
This is not a trivial task. For instance in the above

example, one can implement a mechanism such that no
one can start editing until all participants have
downloaded the image. Obviously, this will not be very
efficient in a case where every user has a 1.5 Mbps
network access except for one participant who has a 28.8
kbps network access. Another approach is to have the
editing process of the faster stations buffered and played
back for a slower station. However, this approach will
not give the users of the slower stations a fair chance to
participate in the editing process.

IV. PROTOTYPE IMPLEMENTATION

In order to implement the above collaboration
techniques, we developed the JETS system. JETS is a
groupware toolkit, written fully in Java, that also
includes some basic Java applets specifically designed
for collaboration.

Annotation
color

palette

Public
chat space

Open
image

Listing
of images

Open
presentation

Figure 3. Whiteboard and its features.

One these applets is a multimedia whiteboard. Other
than being a window for shared color drawings, the
whiteboard is capable of bringing up images in JPEG or
GIF format from the Web server and displaying them.
The users can then annotate on these images and start a
discussion. As seen in figure 3, the whiteboard is
equipped with a shared chat space which can be used by
participants to exchange textual massages. The
whiteboard is also an on-line presentation tool since it is
capable of bringing slides from the Web server and
displaying them. These slides can be PowerPoint slides
saved in HTML format, or simple sequences of images.
In addition, the whiteboard has the ability to play ITU-T
H.263 compliant video [8]. When a user opens a video
file and starts playing it, the video data is streamed down
from the server to all participants, decoded in real-time,
and displayed in their whiteboard.
When we first decided to write the H.263 video-decoder
in Java, we were expecting slow performance of the
decoder because of Java performance problems.
However, we were able to obtain up to 25 frames per
second for a QCIF video with the whiteboard running in
the Netscape Communicator 4.04*.
A management system was also implemented to enable
monitoring of the session. Each client is provided with a

* Tested on a 200 MHz Pentium with 64MB RAM
running Windows NT 4.0 workstation.

session bar that displays the client’s access rights for
each application. A client joins a session by entering
username and password into a login menu (figure 4a).

a b

c d

Figure 4 a) User “Pete” tries to join the session. b) The
session chair sees that Pete has joined, c) access rights
are indicated via colored buttons d) chairperson can
deny or grant an access request sent by a user.

The session chair, a predetermined participant who acts
as a moderator, can see who has entered the session and
can extract specific information about each participant’s
access rights (figure 4b). The type of access for each
application is indicated by colored buttons. Red for no
access, yellow for view-only access, and green for
view/interact access (figure 4c). A client can request for
higher access rights from the chairperson and receive
those rights upon chairperson’s approval.
The chairperson can also change the access rights of a
participant dynamically during the session and without
the participant’s request.
Another feature of the session management system is the
ability to vote on a subject. The chairperson can permit
participants to vote on a subject that has been indicated
on the chat utility of the whiteboard. Users can express
their vote by pressing yes or no on a vote pop-up menu.
The result of the vote is reported back to the chairperson.

V. TESTING AND PERFORMANCE ANALYSIS

During testing, we had to replace the event broadcasting
mechanism by a message multicasting system
architecture where applets, upon user interaction, send
predefined messages, instead of events, to other clients
through the server [12]. This was due to the
inconsistencies discovered in the event handling of the
applet. Although many events were intercepted and sent
to the other clients without any problem, some events
such as typing in a TextField were not handled properly
by the receiving clients. We believed this to be a
problem of implementation of Java AWT by either the
Web browser or the Java Development Kit (JDK) itself.
A paper by Begole et al [4] confirms the existence of
this problem and proposed solutions that must be
considered by JavaSoft itself.
To evaluate JETS in terms of system delay and response,
it was tested on both local and wide-area networks and
for both ATM and regular Internet connections. A test
applet was designed to measure the effective client-to-
client delay (CCD) of the system. CCD is an indication

of the average time it takes for a byte of data to travel
from one client to another and includes the delays
caused by all protocol levels such as the application
level, the transport level, and the network level. The
CCD results were compared with QoS parameters for
Multimedia Desktop Collaboration (MDC) published by
the Multimedia Communications Forum [9]. It was
shown that on LANs and ATM WANs the JETS system
has acceptable quality in terms of user interaction and
human perceptions. Typical CCD values were in the 50-
60 msec range [12].

VI. RELATED WORK

As mentioned earlier, there are other Java collaboration
systems that have emerged. These are the NCSA
Habanero, the Java Collaboration Environment (JCE)
[2], and Java Applets Made Multiuser (JAMM) [5].
Among these, JAMM is a system that more closely
compares with JETS in terms of its objective since it
tries to achieve collaboration using Java applets rather
than Java applications.
The main difference between JAMM and JETS is their
collaboration enabling architectures. JAMM uses
transparent collaboration. This means that the events are
automatically intercepted and sent to the other copies by
the collaboration engine. A developer writes a single-
user applet and won’t have to know that the applet will
be a collaborative one. This however requires that the
core JDK be modified. Hence, in order to run JAMM,
one requires to download and install a modified version
of the JDK. On the other hand, JETS uses the standard
JDK and can run in any Java-enabled Web browser
without any modifications although it requires the
developer to handle the events once they are intercepted.
Even though a transparent collaboration system makes it
easier for the developer to write typical applets, it
doesn’t always work for the case of multimedia applets.
Consider the following scenario for a shared video
player. Assume the video data is streamed from the
server to every client. Due to the difference in access
parameters such as network bandwidth and delay,
different users will have different views of the video file.
If someone presses the pause button in this case, simply
intercepting the pause event and sending it to all applets
is not enough because when other applets receive the
pause event, they will not necessarily freeze on the same
frame as the originating one and most likely different
users will see a different frame.
To avoid this problem, one has to specify on what frame
pause was pressed. In other words, additional
information must be sent together with the event.
Consequently, one can see that pure transparent
collaboration techniques will not be sufficient in such
instances. Even though a secondary system with its own
communication channels can be used between the clients
to handle this problem, this will create redundancy since
a communication infrastructure for event passing already
exists and ideally that should be enough to pass
messages among all copies of the applet. Subsequently, a
collaboration system must offer either an optional
message passing mechanism or make the underlying

communication channels available to the developer.

VII. CONCLUDING REMARKS

We briefly described some of the main implementation
issues that are encountered in telecollaboration systems
and we discussed that a client-server approach is
appropriate for a Java applet collaboration system.
Although distributed approaches could also be used to
implement many of the issues described in section 3, the
inherent properties of Java applets make a client-server
approach more justifiable. These properties include the
primary existence of a server which is part of the system
and from which the applets are downloaded, as well the
security restrictions such as communication channels,
which are only allowed between the applet and the
server, and file manipulation limitations.
One of the main issues left open is synchronization
between clients, or inter-client synchronization. As we
saw in section 3.5, this is very important for multimedia
collaborative applets. Unlike intra-client
synchronization, which ensures synchronization between
multiple media on a single client, inter-client
synchronization addresses the issues of synchronizing
media between multiple clients. As illustrated earlier in
the video decoder example, when one client presses the
pause button during the video playback, the video on all
other clients must freeze on the exact same frame.
Taking the pause-initiating client as the reference, this
means that some mechanism must be developed to
accommodate both the clients who lag behind and the
clients who have already moved ahead in the video
presentation. Furthermore, this mechanism must work in
a real-time fashion. This argument can be extended to
other multimedia applications as well. This area of Web-
based collaboration requires more research.
JETS is a working example of an applet-based
multimedia collaboration system. Although at its early
stages of development, JETS successfully demonstrates
that Java collaboration frameworks are not only possible
but also can perform at acceptable levels of quality if
designed correctly, despite the performance deficiencies
pointed to by Java critics.

REFERENCES

[1] C. Gutwin and S. Greenberg, “Workspace
Awareness for Groupware”, Proc. ACM Computer-
Human Interface (CHI ’96), ACM press, New York,
1996.

[2] H. Abdel-Wahab, J. Favereau, O. Kim and P.
Kabore, J. Favereau “An Internet Collaborative
environment for Sharing Java Applications” IEEE
Computer Society Workshop on Future Trends of
Distributed Computing Systems (FTDCS'97), Tunis,
Tunisia, October 29 - 31, 1997

[3] H. P. Dommel and J. J. Aceves, “Floor Control for
Multimedia Conferencing and Collaboration”, ACM
Multimedia Systems, Vol. 5, No. 1, 1997, pp. 23-38.

[4] J. Begole, C. Struble and C. Shaffer, “Leveraging
Java Applets: Toward Collaboration Transparency
in Java”, IEEE Internet Computing, March-April
1997, pp. 57-64

[5] J. Begole, C. Struble, C. Shaffer and R. Smith,
"Transparent Sharing of Java Applets: A Replicated
Approach," Proceedings of the 1997 Symposium on
User Interface Software and Technology (UIST'97),
ACM Press, NY, 1997, pp. 55-64.

[6] J. Grudin, "Computer-Supported Cooperative Work:
History and Focus", IEEE Computer, Vol. 27, No.
5, pp 19-26, May 1994.

[7] J.C. Oliveira, "TVS - A Videoconferencing
System"; Master Dissertation (in Portuguese),
Computer Science Department, Pontifical Catholic
University of Rio de Janeiro, Brazil, August 1996

[8] K. Rijkse, "H.263: Video Coding for Low-Bit-Rate
Communication", IEEE Communications Magazine,
December 1996.

[9] Multimedia Communication Forum Inc.,
“Multimedia Communication Quality of Service”,
MMCF document MMCF/95-010, Approved Rev
1.0, September 24, 1995.

[10] O. Kim, P. Kabore, J. Favereau and H. Abdel-
Wahab, “Issues in Platform-Independent Support
for Multimedia Desktop Conferencing and
Application Sharing”, Proceedings of the Seventh
IFIP Conference on High Performance Networking
(HPN'97), White Plains, NY, April 18 - May 2,
1997

[11] R. Elmasri and S. B. Navathe, Fundamentals of
Database Systems 2nd edition, Benjamin/Cummings
Publishing Company, California, 1994, Chapter 8.

[12] S. Shirmohammadi and N. D. Georganas, “JETS: a
Java-Enabled Telecollaboration System”, Proc.
IEEE ICMCS, IEEE Computer Society, Los
Alamitos, Calif., 1997, pp. 541-547.

[13] W. Robbins and N. D. Georganas, “Shared Media
Space Coordination: Mixed Mode Synchrony in
Collaborative Multimedia Environments”, Proc.
IEEE ICMCS, IEEE Computer Society, Los
Alamitos, Calif., 1997, pp. 466-473.

