
Using Java-based
tools in multimedia
collaborative
environments
accessed over the
Internet can increase
an application’s
client base. Most
operating systems
support Java, and its
“compile once–run
everywhere”
architecture is easy
to maintain and
update. The Java-
based tools
presented here let
users share Internet
resources, including
resources originally
designed for single
use.

M
ultimedia collaborative environ-
ments let geographically distrib-
uted users share multimedia
resources. The Internet and

World Wide Web offer a globally accessible net-
work and easy user interface that can extend these
systems to greater numbers of users. To more effec-
tively use the Web for collaboration, developers
have implemented multimedia systems for various
platforms. For example, the Lawrence Berkeley
National Laboratory/University of California,
Berkeley, videoconferencing tool (VIC)1 comes in
several versions compiled for various flavors of
Unix (including Linux), Windows, and so on.

If we had a single build for all platforms, we
would only need to update that code. Java’s
“compile once–run everywhere” architecture
offers one possible solution. Many operating sys-
tems support Java, and any of them could bene-
fit from Java-compliant applications. Java also
uses applets, executable code that runs in a Web
browser. Because applets are downloaded from a
Web server with the Web page, the administrator
need only update the code on the server to ensure
that every client runs the same version. No other
language is so easy to maintain. With Java, devel-
opers don’t have to worry about making new sys-
tems compatible with previous versions.

Java provides acceptable performance in some
rather complicated collaborative multimedia
system prototypes.2–4 (See also the “Related Work
on Java-Based Collaboration” sidebar.) A devel-
oper who adheres to PersonalJava, a subset of

Java, can count on an even greater client base,
because all Java-enabled operating systems are
also PersonalJava enabled. Many operating sys-
tems that can’t handle the complete Java set—for
example, personal digital assistant (PDA) operat-
ing systems such as Windows CE—have a
PersonalJava implementation available.

At the Multimedia Communications Research
Laboratory at the University of Ottawa, we’ve
developed a comprehensive set of Java- and
PersonalJava-compliant multimedia systems for
collaboration. These systems include a video
decoder, shared whiteboard, and shared Web
browser. We’ve also implemented a prototype
system for sharing any existing Java applets and
applications, even those designed for single users.
Several of these tools are based on the Java-
enabled telecollaboration system (JETS) infra-
structure, which we will describe in greater detail.
Performance evaluations show that JETS can sup-
port collaboration sessions with hundreds of con-
current users. In addition, we’ve developed
collaborative virtual environments based on
Java/Java3D.

jStreaming: H.263 video decoder 
jStreaming (http://jStreaming.com/) decodes

standard ITU-T H.2635 video streams. Because it’s
Java-compliant, jStreaming can run as an applet
in any Java-enabled Web browser or as a Java
application in any Java-enabled operating system. 

jStreaming’s core complies with Java develop-
ment kit 1.0.2 (the first widely available release
of Java) and thus also complies with more recent
Java implementations. Such compatibility means
that even older versions of browsers (Netscape
Navigator 3.0 and Microsoft Internet Explorer
3.02, for example) can deploy jStreaming. 

jStreaming also complies with PersonalJava, a
subset of JDK 1.1 that addresses limited devices
such as PDAs. We’ve achieved a 10-frames-per-
second (fps) playback rate, quarter common
intermediate format (QCIF), with a Compaq
iPAQ 3670 PocketPC and have received reports
of jStreaming achieving over 144 fps in
Windows. In 1998, we achieved 34 fps on a 333-
MHz Pentium II. Native code achieves about 55
to 60 fps in the same system. 

jStreaming can stream video from a multi-
threaded video server (also written in Java) using
a simple protocol with sliding window flow con-
trol, or from a Web server using HTTP. Figure 1
shows jStreaming running in a PocketPC and in a
desktop system.
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jStreaming provides a high-level application
programming interface (API), so it can be bun-
dled into other prototypes. 

JETS: Framework for sharing applets and
applications

JETS (http://www.mcrlab.uottawa.ca/jets) is a
client-server framework for sharing Java applets
and applications.6–8 Because JETS uses the core
Java packages, users don’t need to install addi-

tional Java classes on their systems, and can
access the system and share applets using a Java-
enabled browser. JETS 2000, the most recent ver-
sion, also offers videoconferencing through the
Java media framework (JMF). 

Figure 2 shows a screen shot of a sample JETS
session. JETS includes many utilities that enable
multimedia viewing and sharing.
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Although many Java-based collaboration systems exist, none
offer management or moderation features similar to those in
Java-enabled telecollaboration system (JETS) or Jasmine. 

Kuhmünch developed a Java remote-control tool, which lets
users control and synchronize distributed Java applications and
applets.1 As in JETS, Java applets and applications are sharable
only when used with the system application programming
interface (API). JavaSoft’s Java shared data toolkit (JSDT) is also
an API-based framework. 

Habanero is another Java-based approach that supports the
development of collaborative environments.2 The Habanero
framework helps developers create shared applications, either
from scratch or by modifying existing single-user applications
to integrate the new collaborative functionality. Instead of using
applets, which can be embedded in almost every browser,
Habanero uses happlets, which require the user to download
and install a proprietary browser. 

The National Institute of Standards and Technology (NIST)
developed the Java Collaborative Environment (JCE), based on
the collaborative abstract window toolkit (C-AWT), an extend-
ed version of the Java-AWT.3 This approach requires replacing
AWT components with the corresponding C-AWT components.

Because these approaches all propose an API, creating a col-
laborative application requires modifying an application’s
source code and reimplementing it, or designing and

implementing a new application.
Another approach is to use an X Window system protocol

such as SharedX4 or technologies based on NetMeeting.5 These
approaches, however, aren’t amenable to all groups of users.
NetMeeting runs only on Windows, and to use SharedX, you
must install an X server and X clients. Moreover, NetMeeting
doesn’t provide the moderation capabilities that jStreaming
and JETS do.  
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Figure 1. A sample jStreaming session in which clients use a

PocketPC and a desktop for video playback.

Figure 2. A sample JETS session with shared applets and audio-

and videoconferencing.



Whiteboard
JETS’ main interface

consists of a control
panel, chatting dia-
logue box, and shared
whiteboard area. The
whiteboard is an inter-
active space where
clients in a virtual ses-
sion can share slides,
text, video, drawings,
and so on. Users can
also annotate images or
start a discussion. A
built-in locking mecha-
nism prevents more
than one user from
modifying the same
object at the same time. 

The simplest way to
interact on the white-

board is with text in the chat area. All group
members with input access to the whiteboard
will see the message originator’s name followed
by the message. 

Users can also draw on the whiteboard. To
draw, a user simply chooses a color from the
color template, presses the left mouse button,
and drags the mouse. Pressing the “clear” button
erases the drawings. 

A client can paste an archived picture onto
the whiteboard by clicking “image” with the
mouse button and choosing a file in the image
file dialog box. The picture will instantly appear

on all members’ whiteboards. Any member with
full access can comment or draw on the picture.

A client can also start an archived slide show
by selecting “slide” with the mouse button and
choosing a file in the slide show dialog box.
Again, a member with full access can comment
or draw on the slide show or go to the next or
previous slide using the VCR buttons. 

Shared video presentation
Users can play ITU-T H.263-compliant video

on the whiteboard using the jStreaming API.
When a user plays a video file, jStreaming
streams the video data to all participants,
decodes it in real time (processor permitting),
and displays it on their whiteboards.  

VRML viewer
Another applet is a shared 3D viewer for

Virtual Reality Modeling Language files that per-
mits real-time collaborative interaction with sim-
ple VRML objects. The applet brings VRML 1.0
files from the server and displays them. Users can
collaboratively interact with the 3D objects, with
all rotations, translations, and zooming reflected
on all participants’ screens. Figure 3 shows the
shared VRML browsing interface.

Videoconferencing and recording
The Java video conference recorder tool pro-

vides services for videoconferencing, recording
sessions, and playing recorded sessions. J-VCR
records sessions in Synchronous Multimedia
Integration Language format—a World-Wide
Web Consortium (W3C) standard. As a result,
any SMIL-player (RealNetwork’s RealPlayer, for
example) can play back the recorded session.9

Session management
JETS implements a management system for

monitoring sessions. A session client logs in as
moderator by clicking the “MOD” button, which
initiates session management. Once session man-
agement is established, only the moderator has
the right to access the shared whiteboard. Other
session clients must request access permission by
clicking the “access” button. The moderator
either grants or rejects the request. If the moder-
ator approves the request, the client becomes a
session participant and can access the shared
whiteboard and annotate files on it. 

The moderator can revoke a client’s access
privileges at any time. The client can, however,
request access permission again. Figure 4 shows
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Figure 3. VRML

browser. As users

interact with the 3D

object, JETS reflects all

activity on all session

participants’ screens.

Figure 4. Access control in JETS. Clients request access to the

shared whiteboard from the session moderator by clicking the

“access” button.



two JETS windows. In the front window, the
green “access” icon indicates that the client can
interact with the whiteboard. The red “access”
button in the back window indicates that the
user can see updates to the whiteboard but can’t
interact with it.

Architecture
From a developer’s viewpoint, JETS is a set of

APIs for building shared resources, providing
built-in consistency, access control, and data
passing capabilities.

Figure 5 shows the JETS multithreaded server.
When a user joins the session, the main server
launches a subserver for that user. Subservers are
responsible for processing only the update mes-
sages or requests from their clients. When the
subserver receives an update message, it sends it
to all other session participants, creating fast sys-
tem response but using more resources due to
subserver threads. However, floor control usual-
ly dictates that only one client at a time can con-
trol and interact with an application, and most
threads simply wait. JETS uses transmission con-
trol protocol (TCP)/Internet protocol (IP) and
user datagram protocol (UDP)/IP sockets for
client–server communication. 

In Figure 5, client 1’s interactions with applet
A are reflected to data server 1, which runs as part
of server A for application A. Next, data server 1
relays client 1’s actions to the clients listed in a
client list on server A. Finally, client 2’s applet A
receives the actions and reflects them on that
user’s screen.

Performance evaluation
JETS is a real-time tool in the sense that its

update response time, in network environments
that support real-time applications, is within the
acceptable parameters of human quality of ser-
vice for desktop collaboration. But as with any
TCP-based multiuser system, there’s an upper
bound to how many simultaneous users can be
on the system before those parameters are vio-
lated. This limit depends on system resources,
such as processing and graphics power, memory,
and network bandwidth and delay, as well as the
design of the system’s communication. 

Depending on the quality of service desired,
the application-level end-to-end delay between
two users should be less than 1,000 ms, with 200
ms recommended for tightly synchronized
tasks.9,10 However, these numbers are valid only
if we use the shared application with some type

of media that provides a sense of presence, such
as video and audio. If audio or video or both are
present, users have a sense of awareness of each
other, and the shared application must respond
within a time period that maintains this
awareness. 

For example, say three engineers are collabo-
ratively designing a bridge in a live session. One
engineer highlights a section of the bridge and
says, “I think this part should be redesigned.” If
they are using real-time audioconferencing (end-
to-end audio delay of 100 ms), the shared appli-
cation’s delay must comply with the above
numbers if the other two engineers are to receive
the audio message and the event update quickly
enough to maintain the session’s real-time qual-
ity. This is usually the case in controlled IP envi-
ronments such as local networks or corporate
intranets.

For typical Internet connections, where audio
and video delays aren’t controllable, or in the
absence of audio or video, strict delay parameters
make little sense because users have no time-wise
perception of one another. Thus, a user who
receives an update message has no way of know-
ing when the action occurred. Even a delay of
five seconds or more might be acceptable,
depending on the nature of the application.

Our performance evaluations assume a con-
trollable environment that both requires and
supports real-time interaction.

Parameters of interest. Client-to-client delay
(CCD) is the most common parameter for mea-
suring a collaborative application’s quality. CCD
tries to measure the average time it takes for an
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update message to reach other users. It includes
all layers between the two clients, including
application-, transport-, networking-, and phys-
ical-layer delays. At the application level, how-
ever, CCD only measures the time it takes for a
sender to send or a receiver to receive the update.
It doesn’t include the delay caused by the appli-
cation’s actions with the update because this
delay is application dependent. For example, if a
user opens an image in a whiteboard, we measure
how long the “open image” message takes to
reach all clients. We don’t measure how long it
takes the receivers to download the image and
display it on their screens because the JETS serv-
er doesn’t control those delays.

In addition, the server processing time per
packet increases with the number of simultane-
ous users. This is because of the one-to-one TCP
connection-oriented nature of the system: the
server must send the update to the clients one by
one. This server processing delay (SPD) adds to the
system’s overall end-to-end delay, and we must
consider it when calculating the maximum num-
ber of users the system will support. 

Another interesting parameter is the floor con-
trol delay (FCD), the average time it takes for the
system to grant or to deny access to a user. FCD
measures a system’s intuitiveness. A system with
a smaller FCD is easier to use because the user
receives feedback from the system faster and in a
more real-time fashion.

Testing and results. We tested the CCD, SPD,
and FCD of JETS over both a 100-Mbps local area
network (LAN) and a 28.8-Kbps telephone
modem. All machines were running their typical

network and operating system background
processes during testing.11

To test CCD, we had a sender applet send an
event to a receiver applet. On receiving the event,
the receiver applet extracted all necessary data
from the packet, reassembled the event, and sent
the event back to the sender. The sender likewise
extracted the data, reassembled the event, sent it
back to the receiver, and so on. This was repeated
for 10 minutes. Figure 6a shows the test results
when performed over a 100-Mbps Ethernet. 

We measured packet size by the number of
integers sent per packet. Typical packet sizes
ranged from three integers (draw a point with
given colors) to eight (draw a line from point A
to B with a given color) and larger. Although it’s
unlikely that a 300-integer message would be
sent in one packet, we extended our test to that
limit to see the effect of very large update mes-
sages. Figure 6b shows the CCD test performed
over a 28.8-Kbps modem.

In the SPD test, the sender applet flooded the
server with event updates. The receivers (ranging
from 1 to 45) then calculated the average delay
for adjacent packets. As Figure 7a shows, the
delay increased with the increasing number of
users. Figure 7b shows the same test performed
for updates of various sizes. Because of floor con-
trol and moderation, no more than one client at
a time could send events to the server, a typical
scenario in collaborative applications.

Because the server spends equal processing
time per packet per client, delay increases linear-
ly as the server sends messages to more clients. 

In the FCD test, a client constantly requested
control and then released it on receipt for a given
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Figure 6. Client-to-client delay results for packet-based communication in JETS: (a) over a 100-Mbps Ethernet; (b) over

a 28.8-Kbps modem line.



amount of time. The average FCD was less than
5 ms, which affirms the intuitiveness of the sys-
tem’s floor-control mechanism.

Analysis. As mentioned previously, the rec-
ommended overall end-to-end delay is less than
1,000 ms, with less than 200 ms required for
closely coupled collaboration. This is true for
CCD, SPD, and the application-dependent on-
screen rendering and display delay. The ren-
dering delay (RD) isn’t constant and depends
on the hardware, operating system, and plat-
form used.

From the CCD and SPD tests, we can approxi-
mate the overall delay as delay = CCD + SPD + RD;
and, as Figure 7a shows, SPD ≈ 0.142 × N, where N
is the number of users. Hence,

delay ≈ CCD + 0.142 × N + RD, 

which roughly represents the delay from the
time a client’s interaction generates a typical
event to the time the interaction appears on
other clients’ screens. 

Figure 8a (next page) shows the achievable
number of users based on the expected overall
delay for different rendering delays. Figure 8b
shows the number of users, but focuses on tight-
ly synchronized tasks (delay is less than 200 ms).
Finally, Figure 8c shows the number of users JETS
can support over a 28.8-Kbps modem.

The graphs in Figure 8 show that the system
can support many users. However, although the
plots suggest that JETS can support thousands

of users, the actual number is smaller. The sys-
tem’s linear behavior diminishes with more
users: Server performance decreases substan-
tially as we approach the maximum allowable
socket connections on the equipment, and the
underlying physical network slows as the num-
ber of users increases. Nevertheless, JETS’ under-
lying communication module can support
collaboration sessions of hundreds of users,
resources permitting.

Jasmine: Environment for collaboration-
unaware applets

The Java application sharing in multiuser inter-
active environments (Jasmine)11 prototype exploits
the many useful resources and objects that have
been developed as Java applets and applications
and are available on the Internet. It lets users share
these applets and applications in real time without
modifying the code. Jasmine targets collaborative-
unaware applications and applets, enabling the use
of almost all single-user applets and applications
in a collaborative way. Jasmine’s architecture can
help people collaborate in the growing number of
computing environments in which Java applica-
tions and applets run over IP.

Figure 9a shows the Jasmine framework wrap-
ping around an applet to be shared. The frame-
work listens to the events occurring in an applet’s
GUI, capturing both Java abstract window tool-
kit (AWT)-based and Swing-based events. After
capturing an event, Jasmine sends it to the com-
munication module, which sends the event to all
other session participants (Figure 9b).
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Figure 10 shows a sample Jasmine session with
arbitrary applets and resources users have brought
in from the Internet. Because users can bring any
Java applet or application into the session,
Jasmine has an unlimited extendibility, with each
resource enhancing the system dynamically.

Jasmine also lets users dynamically manage
the collaborative session and grant access. This
feature is useful in environments requiring tight
control. In teletraining applications, for example,
an instructor might use this feature to prevent
students from changing the presentation with-
out permission. 

Moderation and permission components
manage access to Jasmine’s shared resources. An
instructor logs into a session with a special pass-
word and presses the “moderation” button to
enable session moderation. After this button has
been pushed, any participant wishing to interact
with the shared applications must request per-
mission by pressing the “permission” button.
The moderator receives users’ requests and can
either grant or deny them. A green light on a par-
ticipant’s permission button indicates that per-
mission has been granted, and the user can
interact with the application. The moderator can
cut off any participant by pressing the “cut” but-
ton next to the participant’s name.

The Jasmine client is responsible for capturing
events, sending events to the server, receiving
events from the server, and reconstructing events
locally. The client, which is a Java application,
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has four important components: 

❚ The collaboration manager is the main compo-
nent on the client side. It oversees communi-
cation between clients and the server and
provides a GUI.

❚ The listener adapter implements several AWT
listeners. It converts events into remote
events and forwards them to the collabora-
tion manager.

❚ The component adapter maintains a list of refer-
ences from all applications and applets to their
GUI components. This list is created in the
same order on each client, so components have
the same reference numbers on all clients.

❚ The event adapter works opposite the listener
adapter, converting remote events to local
events and applying them to corresponding
components.

Figure 11 presents a dataflow diagram of
Jasmine’s client-side architecture. The system
consists of two main data paths: 

❚ Path 1 (labeled 1–3). The listener adapter catch-
es Java events occurring in a Java application.
If the event is local, the listener adapter con-
verts it into a remote event and forwards it to
the collaboration manager, which sends it to
the Jasmine server. 

❚ Path 2 (labeled 4–7). The collaboration man-
ager forwards the remote event to the compo-
nent adapter, which gets information about
the event source and sends this information
with the event to the event adapter. The event
adapter converts the remote event to a local
AWT event and dispatches the event to the
corresponding component.

Because the Jasmine server uses the same com-
munication techniques as the JETS server, its per-
formance characteristics are similar to JETS’ in
terms of network delay and other parameters.
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Jasber: Framework for sharing Web
browsers

The Java shared browser (Jasber) lets users
share a Netscape browser. Figure 12 shows the
Jasber interface. Jasber is a client applet that com-
municates with a JETS server. Loading the applet
establishes a client–server connection. The user
can then open a shared browser by clicking on
the appropriate button. Any change made in the

browser’s HTML content (changing the URL, for
example) is detected by Jasber, which updates the
HTML content of the other shared browsers by
forwarding the new URL through the server.

Jasber ensures consistency among shared
browsers by:

❚ Detecting when a user types a URL into the
shared browser’s address field to load a Web
page, and forwarding the URL to the server.
The server forwards the address to all Jasber
clients in the session. Consequently, all
shared browsers connected to the server will
load the new Web page. 

❚ Detecting when a user’s action (such as click-
ing on a hyperlink) causes a Web page address
to change in one or more frames belonging to
a shared Web page, and updating the modi-
fied frames in all other shared browsers.

The Jasber applet, and its corresponding
HTML page, can be stored in a single, known
Web server. When a client browser loads the
HTML page from this server, Jasber starts up as an
applet and opens a communication channel to
the appropriate JETS server. Users interested in a
shared browsing session simply visit the known
Web server and launch the shared browser.

As a pure-Java applet, Jasber works on any plat-
form with a standard Java virtual machine (JVM)
implementation. Jasber uses standard Java libraries
(such as java.util) to store the list of URLs gathered
from the current browser page. JETS libraries,
which provide a simple yet effective framework
for Jasber, enable client–server communication. 

Jasber also uses two essential libraries from
Netscape: 

❚ It uses netscape.javascript to read and change
Netscape browsers’ content. 

❚ It uses netscape.security to negotiate security
permissions with the users. 

These Netscape libraries are compatible only
with Netscape Communicator browsers.

Figure 13 shows the three main modules of
the Jasber architecture: 

❚ URLApp communicates with the server using
JETS classes. 

❚ WatchBrowser, a subclass of Java thread, con-
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Reads the current URL
 and sets new URL

URLApp

Communicates changes
in URL with the server

WatchBrowser

Continually receives URL
from  BrowserControl and
compares it with previous
URL.

Set new
URL

Start
monitoring

URL change
observed

Get current URL

Figure 13. Jasber

architecture. Three

main modules enable

communication with

the server, URL

monitoring, and reads

and writes to the

browser.  



tinually monitors the shared browser’s cur-
rent URL. 

❚ BrowserControl directly reads and writes to
the shared browser. It uses Netscape security
classes to meet user permission requirements
for reading and changing browser properties.

Java and virtual environments
One area in which Java is perhaps not consid-

ered a viable option is distributed virtual envi-
ronments. The Java3D API lets developers quickly
and easily create 3D applications and applets
entirely in Java. 

We developed a 3D application to provide
remote industrial training in a virtual setting. In
the application, two geographically distant users
engage in a session in which a trainer teaches a
trainee how to install various hardware compo-
nents. Java provides the core technology, ren-
dering, user interface, communication, and
multimedia integration. Figure 14 shows the
application’s architecture and the component
Java technologies.

While Java3D provides a flexible and powerful
3D-rendering API, we’ve used the Java native inter-
face (JNI) to connect our applications with several
input devices such as Immersion’s CyberGlove
(http://www.immersion.com), Ascension Tech-
nology’s 6DoF miniBird (http://www.ascension-
tech.com), and SensAble Technologies’ Phantom
haptic device (http://www.sensable.com). We use
Java media framework (JMF) to integrate video and
audio capabilities with the application. 

We’ve used these Java technologies to devel-
op sophisticated distributed virtual environment
applications involving immersive and stereo-
scopic displays, multiple input devices, and
mixed-media environments (such as video inside
a 3D world). 

Figure 15 shows a training application using a
CyberGlove to track the hand’s movements and
a Phantom for haptic feedback (both connected
via JNI). A JMF transmits the trainer video and
renders it inside a Java3D scene. 

Java’s main advantage in distributed virtual
environments is its platform independence, as was
demonstrated during our recent move from PC-
based solutions to SGI-based ONYX machines. We
easily transferred our Windows-based applications
to run on the Irix platform without having to
recompile the Java code. Hence we can run our dis-
tributed virtual environment applications on both
platforms. Furthermore, Java3D’s flexible API

allows for the 3D content to be displayed in immer-
sive multiple-screen environments, head-mounted
display (HMD) as well as on a regular monitor.  

In addition to Java’s interoperability and other
features, Java3D’s high-level programming inter-
face allows quick development of 3D applications
without requiring computer graphics expertise.
The ability to include synthetic media (3D graph-
ics) in Java applications and applets opens up yet
another avenue in multimedia collaboration in
which Java can have a significant impact.

Ongoing and future work
The telecollaboration systems described in

this article have received much attention from
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both academia and industry, including many
citations and license agreements. 

Both jStreaming and JETS have been certified
in Sun’s 100-percent Pure Java program and
Novell’s “Yes” logo program. An earlier version
of jStreaming won third prize in the ACM/IBM
Quest for Java 97, and an earlier version of JETS
won first prize in the ACM/IBM Quest for Java
98. Several companies worldwide have licensed
jStreaming and JETS. jStreaming also led to the
Ottawa Centre for Research and Innovation
(OCRI) 2001 Futures Award: Student Entre-
preneur of the Year.

Current research includes techniques for late-
comer support and client synchronization, and
multiparty videoconferences in 3D virtual envi-
ronments that includes haptic/touch feedback as
a new medium of communication. The scalabili-
ty and feasibility of such media-rich applications
over best-effort internetworks is thus of special
interest. MM
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