
Issues in Large Scale
Collaborative Virtual Environments

By

© Jauvane Cavalcante de Oliveira

A thesis submitted to the University of Ottawa in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

Ottawa-Carleton Institute of Electrical and Computer Engineering
School of Information Technology and Engineering

University of Ottawa

Ottawa, Ontario, Canada

October 2001

 i

Abstract

Collaborative Virtual Environments (CVE) are virtual reality spaces that enable participants
to collaborate and share objects, as if physically present in the same place. CVE concepts
have been used in many systems in the past few years. Applications of such technology range
from military combat simulations to various civilian commercial applications. These
collaboration spaces have strict performance requirements. Today, there are many such
systems developed specifically for collaboration. At the same time, some relatively new
standards that address multiuser virtual environments and shared spaces have become
available; however, most of these standards have been developed assuming that a small
number of users would be interacting at a given time. The architectures available today
provide support for a modest number of users but they fail if too many users are “present”
together in a small “space” in the Virtual World. In this work, we first evaluate the currently
available standards for the case of a very large number of users. An Adaptive Hybrid
Architecture for VEry Large Virtual EnvironmenTs (VELVET) is then introduced. VELVET
allows a large number of users to interact in a CVE. It also supports small groups of users, but
it is in the large environment case that shows its greatest potential. VELVET introduces a
novel adaptive area of interest management, which supports heterogeneity amongst the
various participants. That allows users in a supercomputer with a high-speed networking
connection to successfully collaborate with others in not-so-powerful systems behind a slow
dial-up connection.

In order to make a Collaborative Virtual Environment more interesting to users, it is possible
to “stitch” together copies of areas which users may have interest in from one Virtual World
into another. This procedure augments the physical size of a Virtual World, and creates a
potentially larger number of users within the World, first because of the “embedding” and
second since the added attractions may work as an incentive for some more users to join the
“embedded” World. On the other hand this procedure brings up a series of problems related
with consistency, which are also addressed in the thesis. We introduce a methodology which
ensures that all copies of a given area of a World are kept consistent among them, as well as
with the original world. We also apply this methodology in VELVET, as well as in other
Architectures. Additionally, we introduce other approaches to be used when a less strict
consistency model is sufficient.

 ii

Acknowledgments

First and foremost, I’d like to thank Dr. Nicolas D. Georganas, who has been the perfect
supervisor, creating a great work environment at our lab and also allowing me to work at
home in my unconventional time shift. He is always available for discussions and has been a
true source of inspiration. More than a supervisor, Dr. Georganas has been a great friend,
along with his wife Jacynthe and sons Nikita and Emmanuel;

I would also like to thank my wife Carla, for the support, patience, affection and
understanding during our lengthy stay in Ottawa. She never complained much when I was
awake through the night with the noisy computers at work;

I must also thank Dr. Luiz Fernando Gomes Soares, my Masters supervisor, who gave me
great encouragement to pursue advanced studies abroad;

I would like to express my gratitude to my parents Mrs. Jaudelice and Mr. Santos de Oliveira,
who have always encouraged us to follow through challenges. I am also indebted to my
relatives, specially my sister Jaudelice who visited us while in Ottawa twice and my brother
Jáuber who helped me through the application process;

I would like to thank all members of the MCRLab family, for the great and relaxed work
environment and precious discussions. Special thanks to Dr. Seok Jong Yu, for the helpful
discussions at the last stages of this work and François Malric for the always friendly support.
I would like to extend that to the staff of the University of Ottawa for the always friendly and
relaxed environment.

I would like to express my gratitude to a number of friends, specially Fernando Carvalho and
Rossana Andrade, who helped me preparing my documentation to apply for academic
positions in Brazil (the next step). I would like to extend that to a number of friends (too
many to list) from Ottawa, Rio de Janeiro and Fortaleza for all good moments and relaxed
chat during the last few years;

Last but not least, I would like to thank CAPES, the Brazilian Ministry of Education Agency,
for the financial support provided through a comprehensive scholarship. I would also like to
thank the Ontario Research and Development Challenge Fund for the financial support
provided. Without these financial support this work wouldn’t have ever started. From CAPES
I’d like to thank specially Mrs. Silvia Velho for the trust deposited on me and Mrs. Gláucia
Gusmão for an efficient and friendly support.

 iii

Index

1. INTRODUCTION...1

2. BACKGROUND ...7

2.1 VIRTUAL REALITY RENDERERS... 8
2.1.1. OpenGL...8
2.1.2. DirectX ..10
2.1.3. VRML ..11

2.1.3.1 Historic ...11
2.1.2.2 Basics ...13
2.1.2.3 Advanced Features ...16
2.1.2.4. Extensibility...19

2.1.3 Java 3D ..20
2.2 CVE MIDDLEWARE .. 20

2.2.1 Living Worlds ...21
2.2.1.1 Historic ...21
2.2.1.2 Development ..23

2.2.2. Open Community...24
2.2.2.1 Historic ...24
2.2.2.2 Architecture ..24
2.2.2.3 The World Model ...25
2.2.2.4 Locales ...27
2.2.2.5 Visual and Aural Information...28
2.2.2.6 Ownership Control ...30
2.2.2.7 Interactive Sharing Transfer Protocol (ISTP) ...30

2.2.2.7.1 1-1 Connection Subprotocol ..33
2.2.2.7.2 Object State Transmission..33
2.2.2.7.3 Streaming Audio Subprotocol ..34
2.2.2.7.4 Locale-Based Communication ...34
2.2.2.7.5 Content -Based Communication ..35

2.2.3. Distributed Interactive Simulation (DIS) ..35
2.2.4. High Level Architecture (HLA) ...37

2.2.4.1 Historic ...37
2.2.4.2 HLA Terminology ..39
2.2.4.3 Architecture ..39
2.2.4.4 Run Time Infrastructure ...40

3. VERY LARGE VIRTUAL ENVIRONMENTS ...41

3.1 NPSNET .. 42
3.2 DIVE.. 44
3.3 MASSIVE-2... 45
3.4 SCORE... 47

4 THE PROPOSED VELVET ARCHITECTURE..49

4.1 LIMITATION OF EXISTING MODELS.. 49
4.2 VELVET’S ARCHITECTURE.. 51

4.2.1 Area of Interest Management ...52
4.2.2 Double Layered Boundaries of VELVET’s AoI..54
4.2.3 Parallel Virtual World of VELVET ..56
4.2.4 Degree of Blindness & Support to Heterogeneous Systems of VELVET ..58
4.2.5 Area of Interest Management Revisited ...61

4.3 INTERNAL STRUCTURES AND FUNCTIONALITY OF VELVET... 64

 iv

4.3.1 Awareness Control ...65
4.3.2 Data Transmission Control ..67
4.3.3 Data Structures ..68
4.3.4 Parallel Virtual World and Filtering of Messages ...69

4.4 MODELING AND SIMULATION.. 70
4.5 COMPARISON WITH OTHER ARCHITECTURES .. 78
4.6 COLLISION DETECTION.. 81
4.7 RECOVERY FROM FAILURES.. 82
4.8 SUMMARY... 83

5 ENABLING AND CONTROLLING EMBEDDED WORLDS ...84

5.1 BACKGROUND... 85
5.1.1. Hyperlinking and Embedding of Virtual Worlds...85

5.1.1.1 Hyperlinking...86
5.1.1.2 How to Embed a World Unit ..87

5.1.2 Related Work ..89
5.1.3 Concurrency Control in Collaborative Virtual Environments ...90

5.1.3.1 Pessimistic Concurrency Control ...91
5.1.3.1.1 Locking by Token Passing ...92
5.1.3.1.2 Serialization ...93

5.1.3.2 Optimistic Concurrency Control...93
5.1.3.3 Multi-Level Consistency Management for Embedded Worlds...94

5.2 FULL CONSISTENCY CONTROL.. 95
5.2.1 Consistency Control ...96
5.2.2 Ownership Management...98
5.2.3 Performance Evaluation ..102
5.2.4 Limitation on Other Architectures..104

5.2.4.1 SPLINE ..105
5.2.4.2 NPSNET-IV ...105
5.2.4.3 MASSIVE-2 ...105
5.2.4.4 SCORE...106
5.2.4.5 Other Architectures ..106

5.2.5 Multiarchitectural Consistency Control ...108
5.2.6 Balancing of Trees ...109

5.2.6.1 Tree Rotation and Child Adoption ...110
5.3 PARTIAL CONSISTENCY CONTROL... 111
5.4 SUMMARY... 112

6. CONCLUSION ...114

REFERENCES..118

 v

List of Figures

FIGURE 1: OPENGL API HIERARCHY ...9

FIGURE 2: TWO OF MICROSOFT’S DIRECTX LAYERS ..10

FIGURE 3: A SIMPLE SCENE (VRML CONSORTIUM LOGO)...15

FIGURE 4: SOURCE CODE FOR THE VRML CONSORTIUM LOGO ...16

FIGURE 5: A MORE COMPLEX SCENE (BOUNCING BALL)...16

FIGURE 6: SOURCE CODE FOR THE BOUNCING BALL ...18

FIGURE 7: OC ARCHITECTURE ..25

FIGURE 8: PARTITIONING A WORLD MODEL IN LOCALES ...27

FIGURE 9: VISIBILITY FROM A PONT OF VIEW ..29

FIGURE 10: MOVING THROUGH HEXAGONS IN NPSNET-IV ...43

FIGURE 11: CELLS IN SCORE...47

FIGURE 12: SPACE BASED SOLUTIONS AND THEIR LIMITATIONS...50

FIGURE 13: VELVET’S AREA OF INTEREST SHRINKING ..53

FIGURE 14: VELVET’S AREA OF INTEREST EXPANDING ...53

FIGURE 15: VELVET’S AICI/AICO...54

FIGURE 16: VELVET’S PARALLEL VIRTUAL WORLD..56

FIGURE 17: VELVET AND DEGREE OF BLINDNESS ..59

FIGURE 18: PARAMETERS ∂ AND ρ ..60

FIGURE 19: AOI SHRINKING (A) AND EXPANDING (B) BASED ON THE PVW..............................63

FIGURE 20: RECEIVER’S PROCEDURE ...64

FIGURE 21: AWARENESS CONTROL IN VELVET...65

FIGURE 22: INTERNAL DATA STRUCTURES...68

FIGURE 23: PVW IN THE SCOPE OF INTERNAL STRUCTURES OF VELVET................................69

FIGURE 24: VELVET’S HOST NODE/PROCESS MODELS..71

FIGURE 25: VIRTUAL WORLD...71

 vi

FIGURE 26: INCOMING TRAFFIC – AVERAGE THROUGHPUT IN PACKETS/SECOND73

FIGURE 27: INCOMING TRAFFIC – AVERAGE THROUGHPUT IN PACKETS/SECOND73

FIGURE 28: A TWO-LOCALE WORLD...74

FIGURE 29: INCOMING TRAFFIC – AVERAGE THROUGHPUT IN PACKETS/SECOND74

FIGURE 30: INCOMING TRAFFIC – AVERAGE THROUGHPUT IN PACKETS/SECOND76

FIGURE 31: COMPARISON OF VELVET VS. SPACE BASED SOLUTIONS.......................................77

FIGURE 32: EXPANSION OF WWW: A – HYPERLINKING, B – VARIOUS VIEWS.85

FIGURE 33: HYPERLINKNG AND EMBEDDING IN THE WWW (A) AND A CVE (B)87

FIGURE 34: COPYING A WORLD UNIT..88

FIGURE 35: EXPANSION OF VE THROUGH EMBEDDING WORLD UNITS88

FIGURE 36: TOKEN PASSING ...92

FIGURE 37: SERIALIZATION..93

FIGURE 38: OPTIMISTIC CONCURRENCY CONTROL..94

FIGURE 39: DESERT HOUSE IN DIAMOND PARK & SIGGRAPH’97 DEMO95

FIGURE 40: VIRTUAL WORLD COPY TREE STRUCTURE..97

FIGURE 41: OWNERSHIP MANAGEMENT..99

FIGURE 42: COLLISION OF OWNERSHIP REQUESTS AT ROOT NODE100

FIGURE 43: COLLISION OF OWNERSHIP REQUESTS AT INTERMEDIATE NODE....................101

FIGURE 44: AD-HOC SOLUTION WITH CENTRALIZED CONSISTENCY CONTROL102

FIGURE 45: TEST CASE A ..104

FIGURE 46: CHILD ADOPTION AND BALANCED TREES..110

FIGURE 47: A FOREST – PARTIAL CONSISTENCY BASED ON FULL CONSISTENCY112

 vii

List of Tables

TABLE 1. VELVET’S ⊂⊂⊂⊂ AND ⊃⊃⊃⊃ RELATIONS FOR OBJECTS WITH SIMILAR METRICS.60

TABLE 2. SCOPE OF VELVET AND SPACE BASED ...61

TABLE 3. SUPERFLUOUS DATA...67

TABLE 4. PORTAL VS. WORLD EMBEDDING ..89

TABLE 5. MULTIARCHITECTURAL CONSISTENCY CONTROL...108

 viii

List of Acronyms

AICI / AICO – Area of Interest Check-In / Area of Interest Check-Out

AoI – Area of Interest

CI / CO – Check-In / Check-Out

COR – Collision of Ownership Requests

CVE / DVE – Collaborative Virtual Environment / Distributed Virtual Environment

DIVE – Distributed Interactive Virtual Environment

DIS – Distributed Interactive Simulation

HLA – High Level Architecture

ISTP – Interactive Sharing Transfer Protocol

JNI – Java Native Interface

LSVE – Large Scale Virtual Environments

LTC – Locale Transmission Channel

LVW – Local Virtual World

LW – Living Worlds

MASSIVE – Model, Architecture and System for Spatial Interaction in Virtual Environments

OC – Open Community

OMS – Ownership Management Subsystem

OTC – Object Transmission Channel

PDU – Protocol Data Unit

PVW – Parallel Virtual World

RTI – Runtime Infrastructure

RTP – Real Time Protocol

RVW – Remote Virtual World

RVWA – Remote Virtual World Agent

SIMNET – Simulation Network

SPLINE – Scalable Platform for Large Interactive Networked Environments

VRML – Virtual Reality Markup Language

VW – Virtual Worlds

1

Chapter I

1. Introduction

Human tele-interaction has become a very important feature in the last few years, as people

around the world need to collaborate. Such issue has been historically addressed by Computer

Supported Cooperative Work (CSCW) systems, such as multimedia conferencing [Oliv96].

The term “Virtual Reality” (VR) was initially introduced in the late 80’s. At the time other

terms also used were “Artificial Reality” and “Cyberspace” [Beie01]. VR denotes an artificial

representation of a world. A user may interact with such world through his/her “avatar”. An

avatar is a graphical representation of a user in a Virtual World. An avatar allows the

transmission of non-verbal cues which are common to human beings. Virtual Reality has

been evolving through exploitation of interaction of a single user with a virtual environment.

A few years ago, with the advent of commonly available hardware being able to handle the

load of such systems, some research institutes started exploiting Collaborative Virtual

Environments (CVE), where one user interacts, through a virtual world, with other users via

their avatars. A CVE is a special case of a VR system where the emphasis is more on

collaboration between users rather than on stand-alone simulation. CVEs are used for

applications such as collaborative design, training [OlSG00b, OHSC00], telepresence, tele-

robotics and many others.

2

Many of the applications may have potentially a very large number of users at a time and that

can easily overload a fast network, as well impose huge processing requirements at the user

stations. As computing resources are limited, there are obvious problems which arise once the

number of users in a simulation raises beyond a certain limit. In fact, if no special

mechanisms are provided, one may expect a simulation to produce undesirable effects such as

choppy rendering, loss of interactivity and alike, due to lack of processing power to handle

the ever increasing load. Another problem, which a CVE faces, is that of heterogeneity of

hardware available for end users. That also imposes some limitations to a CVE as users in

very powerful systems and fast networks would need to collaborate with others with very

limited hardware and networking. It is obvious that the second type of systems should not be

required to deal with the same load as the first. The easiest way to control such problems is

either by deploying the simulation based on the slowest and weakest system or by setting up a

minimum requirement and simply denying access to non-conforming systems. The first

approach, while guaranteeing functionality and availability, would greatly under-utilize better

systems; even worse, more limited systems may join the session at any point in time. The

second approach denies access to a potentially large number of users and may still lead to

under-utilization of some systems.

We have designed and implemented a number of CVEs for industrial training and electronic

commerce [OlSG00b, OHSC00]. Such CVEs, while allowing rich collaboration, did not

provide means for handling a large number of users. In such prototypes all users are aware of

(and receive updates from) every other object in the virtual world, which situation does not

scale well.

3

In this thesis, we present and evaluate VELVET, an Adaptive Hybrid Architecture for VEry

Large Virtual EnvironmenTs. VELVET addresses the issues mentioned above, allowing a

virtually unlimited number of users to participate in a CVE while allowing users, with

heterogeneous hardware and available networking, to collaborate the best they can. We also

present a number of approaches to keep consistency amongst “embedded” Virtual Worlds,

where copies of sections of other Worlds are used.

Chapter 2 presents background information, describing some available standards/prototypes,

which are used to deploy CVE. Chapter 3 describes prototypes developed for Very Large

CVEs. Chapter 4 describes VELVET, our proposed hybrid, and adaptive architecture

supporting very large CVEs. Chapter 5 presents a method which would allow a Large-Scale

Virtual Environment (LSVE) through embedding of content from existing CVEs into other

CVEs. A number of novel approaches for keeping total or partial consistency amongst the

various copies of such Worlds are also introduced. Chapter 6 concludes the thesis.

The main contributions of this thesis are:

• Proposal of VELVET, an Architecture to handle VEry Large Virtual EnvironmenTs. This

architecture has been submitted for publication in [OlGe02].

��VELVET gracefully supports Heterogeneous Systems

- Degree of Blindness Concept

- Adaptive mechanism which allows each participant to receive as much as possible

(or requested) of the virtual environment.

4

��VELVET defines a novel Area of Interest Management approach, through the concept

of Parallel Virtual World.

• Parallel Virtual World concept, where the Virtual World is organized based on metric,

rather than Euclidean distance, allowing one to see what matters the most.

• Definition of parameters ∂ and ρ, as well as relations ⊂ and ⊃.

• Proposal of two schemes for Consistency Control in Embedded Worlds. A methodology

for Full Consistency control, as well as Partial Consistency control of Embedded Worlds.

Such novel Consistency Control schemes are introduced in our paper [OlYG02]

submitted for publication. They are built upon common features of existing CVE

architectures, so that the results are also applicable to other architectures. We further

discuss a Multiarchitectural Consistency Control scheme.

Research publications during this doctoral study:

• Oliveira, J. C., Yu, S. J., & Georganas, N. D. (2002) Enabling Embedded Worlds in Very

Large Virtual Environments, IEEE Computer Graphics and Applications (Submitted).

• Oliveira, J. C., Hosseini, M., Shirmohammadi, S., Malric, F., Nourian, S., & Georganas,

N. D. (2002) Java Multimedia Telecollaboration, ACM Multimedia Magazine

(Submitted).

• Oliveira, J. C. & Georganas, N. D. (2002) VELVET: An Adaptive Hybrid Architecture

for VEry Large Virtual EnvironmenTs, Presence: Teleoperators and Virtual

Environments (Submitted).

5

• Oliveira, J. C., Malric, F., Yang, D., Nourian, S., & Georganas, N. D. (2001) Java

Multimedia Telecollaboration, Technical Demo at ACM Multimedia 2001, Ottawa, ON,

Canada.

• Oliveira, J. C., Shen, X., & Georganas, N. D. (2000) Collaborative Virtual Environment

for Industrial Training and e-Commerce, Invited Paper, IEEE VRTS'2000

(Globecom'2000 Conference's Workshop on Application of Virtual Reality Technologies

for Future Telecommunication Systems), San Francisco, CA, USA.

• Oliveira, J. C., Hosseini, M., Shirmohammadi, S., Cordea, M., Petriu, E., Petriu, D. &

Georganas, N. D. (2000) VIRTUAL THEATER for Industrial Training: A Collaborative

Virtual Environment, Proc. 4th WORLD MULTICONFERENCE on Circuits, Systems,

Communications & Computers (CSCC 2000), Vouliagmeni, Greece.

• Oliveira, J. C., Shirmohammadi, S., & Georganas, N. D. (2000) A Collaborative Virtual

Environment for Industrial Training, IEEE Virtual Reality 2000, New Brunswick, USA.

• Oliveira, J. C., Shirmohammadi, S., & Georganas, N. D. (1999) Collaborative Virtual

Environment Standards: A Performance Evaluation, IEEE DiS-RT'99 (Distributed

Interactive Simulation and Real Time Applications), Greenbelt, MD, USA.

• Shirmohammadi, S., Oliveira, J. C., & Georganas, N. D. (1998) Applet-Based Multimedia

Telecollaboration: A Network-Centric Approach, IEEE Multimedia Magazine, 5(2).

6

• Shirmohammadi, S., Oliveira, J. C., & Georganas, N. D. (1998) Implementation and

Management of Web-Based Collaboration Using Java, Canadian Conference on

Broadband Research (CCBR'98), Ottawa, ON, Canada.

• Shirmohammadi, S., Oliveira, J. C., & Georganas, N. D. (1998) Java-Based Multimedia

Collaboration: Approaches and Issues, Invited Paper, International Conference on

Telecommunications (ICT'98), Porto Carraras, Greece.

7

Chapter II

2. Background

In the early 90's, Virtual Reality (VR) was considered as a leading edge technology which

required very expensive stations and special peripherals, such as data-gloves, Head Mounted

Displays (HMD), Shutter Glasses, etc. At that time VR was mostly used to allow a user

(alone) to interact with a virtual world. After this stage was reasonably accomplished, some

research groups started looking at collaboration aspects, i.e. how should users be allowed to

interact not only with the world but also among themselves in the Virtual world. Since then,

many prototypes and/or standards have been developed. In this section we will have a look at

these technologies, which include rendering facilities such as:

• OpenGL;

• DirectX;

• Virtual Reality Modeling Language (VRML);

• Java3D

We will then discuss standards (and proposed standards) for CVE, including:

• Living Worlds;

• DIS;

8

• Open Community;

• High Level Architecture (HLA)

2.1 Virtual Reality Renderers

2.1.1. OpenGL

OpenGL™ is a graphical library introduced by SGI (formerly Silicon Graphics) in 1992 to

allow developers to write code once, based on the OpenGL API, which is supposed to run in

various platforms (as long as they have an OpenGL library implementation). Since its

inception, OpenGL has been controlled by an Architectural Review Board [OpenGL] whose

representatives are from the following companies: 3DLabs, Compaq, Evans & Sutherland,

Hewlett-Packard, IBM, Intel, Intergraph, NVIDIA, Microsoft, and SGI.

Most of the Computer Graphics research (and implementations) broadly uses OpenGL, which

has become a de facto standard. Virtual Reality is no exception to this rule. The main goals of

OpenGL are:

• Open Standard: OpenGL is now driven by an independent consortium, the OpenGL

Architecture Review Board previously mentioned, with broad industrial support, which

ensures a vendor-neutral, multiplatform, graphics development of the standard.

• Reliability and Portability: All OpenGL implementations allow a consistent presentation

of graphics in multiple platforms, from consumer electronics to PCs, workstations, and

supercomputers.

9

OpenGL provides many graphic functions in its API, grouped in the following categories:

Accumulation buffer, Alpha blending, Anti-aliasing, Automatic rescaling of vertex normals,

BGRA pixel formats and packed pixel formats [OpenGL], Color-index mode, Display list,

Double buffering, Feedback, Gouraud shading, Immediate mode, Level of detail control,

Materials lighting and shading, Pixel operations, Polynomial evaluators, Geometric

Primitives, Raster primitives, RGBA mode (an image format [OpenGL]), Selection and

picking, Specular Highlights, Stencil planes, Texture coordinate edge clamping, Texture

mapping, Three Dimensional Texturing, Transformation, Vertex array enhancements and Z-

buffering.

There are many options available for hardware acceleration of OpenGL based applications.

The idea is that some complex operations may be performed by specific hardware (an

OpenGL accelerated video card such as those based on 3DLab’s Oxygen series or nVidia’s

GeForce chipset for instance) instead of the general CPU which is not optimized for such

operations. Such acceleration allows low-end workstations to perform quite well yet at a low

cost.

Figure 1: OpenGL API Hierarchy

Figure 1 shows how OpenGL interacts with native applications under Windows and Unix.

10

We will see that such is the importance of OpenGL that both VRML and Java3D (described

below) are built on top of it, i.e. if a given workstation has hardware support for OpenGL, the

VRML browser and Java3D, discussed below, will also benefit from it.

2.1.2. DirectX

Microsoft DirectX® [DirectX] is a group of technologies designed by Microsoft to allow

Windows-based computers to run and display applications rich in multimedia elements such

as full-color graphics, video, 3-D animation, and surround sound. DirectX is an integral part

of Windows 98 and Windows 2000, as well as Microsoft® Internet Explorer 4.0 and higher.

DirectX components may also be installed in Windows 95 as an optional package.

Figure 2: Two of Microsoft’s DirectX Layers

DirectX allows a compliant application to run in any Windows based system, independent of

particularities of the hardware of each system. In some sense, it seems similar to OpenGL

however there is a logical limitation in availability, as it is a Windows specific component.

DirectX accomplishes its task via a multilayered structure as shown in Figure 2. The

Foundation layer is responsible for resolving any hardware dependent issue. DirectX also

11

allows developers to deploy the creation and playback of multimedia content via DirectX’s

Media layer. A third layer, Component, completes the high-level protocol layer stack.

We will see that some VRML browsers also provide a Direct3D based version (as well as the

common OpenGL). A good example is blaxxun’s Contact 4.01.

2.1.3. VRML

2.1.3.1 Historic

In 1994, during the First International Conference on the World Wide Web, some concerns

about the specification of a 3D-scene description language were raised after the presentation

of Labyrinth, a prototype three-dimensional interface to the Web.

Just after the conference, work on the VRML specification began. An electronic mailing list

was set, aiming at facilitating discussion of the specification for VRML. The list members

quickly agreed upon the following set of requirements for VRML [VRML]:

• Platform independence;

• Extensibility; and

• Ability to work over low-bandwidth connections.

1 http://www.blaxxun.com/products/contact/

12

SGI offered its Open Inventor ASCII file format as the basis for VRML. The Inventor file

format supported complete descriptions of 3D scenes with geometry, lighting, materials, 3D

 user interface widgets, and viewers. It had all of the features that developers needed to create

highly interactive 3D applications, as well as an existing tool base with a wide installed

presence. A subset of the Inventor File Format, with extensions to support networking, was

then the basis of development of VRML 1.0.

In 1995, some experts on the VRML mail list formed the VRML Architecture Group (VAG),

which aimed to reach consensus in the VRML community in order to develop a scalable, fully

interactive standard for 3D shared worlds.

VAG issued a Request-For-Proposals (RFP) for VRML 2.0. Moving Worlds, one of the

proposals, was unanimously agreed as the working document for VRML 2.0.

On August 4, 1996, the official VRML 2.0 Specification was released at SIGGraph 96 in New

Orleans.

The VRML97 International Standard was developed by the Joint Technical Committee 1

(JTC 1) of ISO/IEC in partnership with the VRML Consortium. The formal processing of

VRML97 to become an International Standard began in June 1996 with the Consortium's

VRML 2.0 draft specification. VRML has been approved as an International Standard in a

record 18 months period.

Nowadays there are many VRML browsers available, almost all of them implemented via

OpenGL; however some also allow one to use a Direct3D (part of MS DirectX) version. SGI

13

had created the Cosmo Player (a free VRML browser based on OpenGL) as well as other

products such as Cosmo Worlds, which support the creation of Virtual Worlds that are

VRML compliant. A few other companies provide today VRML based solutions, such as

blaxxun with its blaxxunContact (a VRML browser available in OpenGL and Direct3D

versions) as well as server side technology for collaboration. Even though there are several

VRML browsers for Windows based workstations, lack of such applications in some other

platforms, such as Linux and some other flavours of Unix and Apple’s Macintosh, has been

noticed.

2.1.2.2 Basics

The Virtual Reality Modeling Language is the standard modeling scheme for 3D multimedia

and shared virtual worlds on the Internet. The file format consists of specification of the

geometry and behaviour of a 3D scene.

At the current stage, VRML has been released in its initial version 1.0 and 2.0 (also known as

VRML'97). The major characteristics of each one are:

VRML 1.0:

• Standard objects (cube, sphere, cone, cylinder, text);

• Arbitrary objects (surfaces, linesets, pointsets);

• Ability to fly through, walk through, examine scenes Lights;

• Cameras (viewpoints);

14

• Textures on objects;

• Clickable links;

• Define and reuse objects.

VRML 2.0:

• All VRML 1.0 features plus:

• Animated objects;

• Switches;

• Sensors;

• Scripts (Java or JavaScript) for behaviours;

• Interpolators (colour, position, orientation, etc.);

• Extrusions;

• Background colours and textures;

• Sound (.wav and MIDI);

• Animated textures;

• Event routing;

• Define and reuse objects and behaviours and effectively add new nodes to the

language with PROTO and EXTERNPROTO.

15

We will focus our discussion to VRML 2.0, as this is the version which introduces behaviours

through Scripts as well as accepts extensions through PROTO and EXTERNPROTO.

Figure 3 shows a pretty simple scene, consisting of the logo of the VRML Consortium. Such

scene consists of basic geometry elements, namely a cube a sphere and a cone, using

respectively the colours red, green and blue.

Figure 3: A Simple Scene (VRML Consortium Logo)

The above scene may be created by the following VRML code (Figure 4). It is easy to check

the above-mentioned standard objects support.

#VRML V2.0 utf8
Transform {

children [
Transform {

translation -3.5 0 1
rotation 1 0 1 1.8
children [

Shape {
geometry Box {}
appearance Appearance {

material Material { diffuseColor 1 0 0 }
}

}
]

}
Transform {

translation 0.5 0 1
children [

Shape {
geometry Sphere {}
appearance Appearance {

material Material { diffuseColor 0 1 0 }
}

}
]

16

}
Transform {

translation 3.5 0 1
rotation 1 0 1 1
children [

Shape {
geometry Cone {}
appearance Appearance {

material Material { diffuseColor 0 0 1 }
}

}
]

}
]

}

Figure 4: Source Code for the VRML Consortium Logo

2.1.2.3 Advanced Features

The following shows an example where a ball falls on the floor and bounces back to its

original position when the user clicks on it. This shows both interactivity and animated

objects, as listed above. Figure 5 shows such world with the described animation.

Figure 5: A more complex scene (Bouncing Ball)

The user's click action is captured through a TouchSensor, which is an example of one more

element of VRML. Sensors are nodes that generate events from non-VRML inputs, such as a

user interaction or the tick of time. The VRML 2.0 sensors are:

17

♦ CylinderSensor: Translates user input into a cylindrical motion;

♦ PlaneSensor: Translates user input into a motion along the X-Y plane;

♦ ProximitySensor: Detects when the user comes within an area around the given object;

♦ SphereSensor: Translates user input into a spherical shape;

♦ TimeSensor: Detects time and gives the scene a sense of time passing (animations);

♦ TouchSensor: Detects when the user touches a given object;

♦ VisibilitySensor: Detects if an object is currently visible to the user.

These sensors are the basis for user interaction, as they are the only way to create new events

from outside the world. For instance, the proximity event may implement a self-opening door,

which opens when the user's avatar is close enough to such door. Any “avatar” is a

representation of a user in the Virtual World. It should be controlled by the user's actions.

Another example of usability of sensors would be the use of the visibility sensor to reduce

processing at the client station. For instance, a lake with fish and ducks could be processed

only when the user is looking at it.

This scene also uses one of the main elements of VRML 2.0, named ROUTE, which is used

to pass information between nodes in the scene. Unlikely programming languages, VRML

does not have function call capabilities. This is why ROUTES are so important. In the

bouncing ball example, a message is passed when the user clicks over the ball (TouchSensor),

as well as during the motion of the ball. This is shown by the three ROUTE commands at the

end of the code (Figure 6). When an object receives a message, it may take the appropriate

18

action, including rerouting the message to some other node. One may point out that this

functionality follows the object-oriented paradigm.

#VRML V2.0 utf8

Group {
children [

DirectionalLight { direction 0 -1 0 },
Viewpoint {

position 0 0 20
description "Bouncing Ball"

},
Shape {

appearance Appearance {
material Material { }

}
geometry IndexedFaceSet {

coord Coordinate {
point [10 -5.5 10, 10 -5.5 -10, -10 -5.5 -10, -10 -5.5 10]

}
coordIndex [0, 1, 2, 3, -1]
color Color { color [1 0 0, 0 1 0, 0 0 1, 1 1 1] }
solid FALSE

}
},
Transform {

translation 8 0 0
children [

DEF touchBall Transform {
children [

DEF TOUCH TouchSensor { },
Shape {

appearance Appearance {
material DEF COLOR Material {diffuseColor 1 1 0}

}
geometry Sphere {}

}
]

}
]

},
DEF TIME TimeSensor {cycleInterval 2.0 },
DEF ball_pos PositionInterpolator {

key [0, .1, .2, .3, .4, .46, .5, .54, .6, .7, .8, .9, 1]
keyValue [0 0 0, 0 -.196 0, 0 -.784 0, 0 -1.764 0, 0 -3.136 0,

0 -4.14 0, 0 -4.8 0, 0 -4.14 0, 0 -3.136 0,
0 -1.764 0, 0 -.784 0, 0 -.196 0, 0 0 0]

},
]

ROUTE TOUCH.touchTime TO TIME.set_startTime
ROUTE TIME.fraction_changed TO ball_pos.set_fraction
ROUTE ball_pos.value_changed TO touchBall.set_translation

}

Figure 6: Source code for the Bouncing Ball

19

If the programmer needs even more control over the world, VRML supports Script, which is

another VRML node. Script nodes allow VRML programmers to create new behaviours

through scripts written in Java, JavaScript or VRMLScript, which is a subset of JavaScript.

When the programmer uses such node, he or she needs to write the node script (in VRML)

and the script itself in one of the previously mentioned languages.

2.1.2.4. Extensibility

A language which doesn't allow extensibility is usually not very successful. For instance Java

allows the C/C++ extensibility through the Java Native Interface (JNI). VRML, as expected,

also allows extensibility through PROTO (prototype) nodes. PROTO defines a new

customized node. Once created, a PROTOtype can be used just like any standard VRML

node.

In addition to prototypes and scripting, VRML provides the External Authoring Interface

(EAI). EAI is a means of interfacing a VRML browser with an external program. So far, a

Java API is defined, so it is possible to control the behaviour of the World (running within a

VRML Browser, such as Cosmo Player or blaxxunContact) from a Java Applet via EAI.

Through EAI, it is possible to establish a connection from the Java Applet to a server, which

may facilitate sharing. Such connection may be established either through Java's built-in

features or through JNI, i.e. C/C++. Such approach is used in the industrial training prototype

described in [OlSG00].

20

2.1.3 Java 3D

The Java 3D API is a set of classes for writing three-dimensional graphics applications and

3D applets. It gives developers high level constructs for creating and manipulating 3D

geometry and for constructing the structures used in rendering that geometry. Like most of the

VRML browsers, there are OpenGL and DirectX versions of Java3D, which should be chosen

accordingly to the configuration of the workstation. That is, if there is OpenGL hardware

acceleration, it is preferable to use the OpenGL version. Otherwise the ActiveX is advisable

(of course, this discussion makes sense only for stations where ActiveX is an option, namely

Windows. WinNT only supports ActiveX 3, which is pretty much obsolete taking into

account the just released version 8 for Win9x, etc.). It is worth to mention that Windows 2000

brought DirectX 7 and over into NT category systems.

Sun Microsystems (the creator of Java and Java3D), along with the Web3D consortium has

formed the Java 3D and VRML Working Group, whose goal aims at improving the

Java3D��VRML interoperation as well as providing a Java3D implementation of a VRML

browser [VJ3D].

Java3D introduces high-quality graphics support into Java, which makes it quite promising

due to its platform independence. Java3D seems to be set to play a key role in the future.

2.2 CVE Middleware

Section 2.1 presented the most important rendering standards available for 3D graphic

presentations. As previously mentioned, some of the engines have been built on top of others,

21

namely OpenGL and ActiveX are usually the basis for the others. We are now going to

comment on current CVE standards (and proposals for standards) for the communication

infrastructure. It will be seen that implementations compliant with each middleware will use

one or more of the former rendering engines to display the content of the world to the various

users.

2.2.1 Living Worlds

2.2.1.1 Historic

Even before VRML 2.0 was formally launched, a number of new working groups had

emerged to push it forward [LW]. One of these, working under the name Living Worlds

(LW), brought together a small group of developers who have already implemented

proprietary systems for inserting dynamic objects - human-controlled avatars and autonomous

bots - into VRML 1.0 scenes and distributing the results in real time over consumer-grade

Internet hookups. The goal of the LW group is to distill the experience gained from these

systems into a proposal for a VRML 2.0 application framework that would enable VRML

developers to populate and share their "Moving Worlds."

The charter of the LW group was to distill its experience with avatar-based interaction in

VRML 1.0 into a proposed standard for distributed object interaction in VRML 2.0. The LW

effort aimed at a single, narrow, well-defined goal: to define a set of VRML 2.0 conventions

that support applications which are both interpersonal and interoperable.

By interpersonal, we mean VRML applications which support the virtual presence of many

people in a single scene at the same time: people who can interact both with objects in the

22

scene and with each other. By interoperable, we mean that such applications can be

assembled from libraries of components developed independently by multiple suppliers, and

visited by client systems which have nothing more in common than their adherence to the

VRML 2.0 standard.

Draft 1.0 of the LW specification, dated February 24th, 1997, includes interfaces for:

♦ coordinating the position and state of shared objects (including avatars);

♦ information exchange between objects in a scene;

♦ personal and system security in VRML applications;

♦ a (small) library of utilities, and some workarounds for VRML 2.0 limitations;

♦ Identifying and integrating at run-time interaction capabilities implemented outside of

VRML and its scripts.

Interoperability is a requirement posed by all participants in shared worlds:

♦ Users want to be able to take with them their Avatars, and their favourite interactive

objects, to different worlds;

♦ Component developers want to focus their efforts on building single components (e.g.

avatars or portable multi-purpose components, such as dice or playing cards), for which

there will be a larger market, as more and more worlds become interoperable;

♦ Application developers (i.e., the authors of worlds and complete applications, such as the

board game) can combine best-of-breed components to yield richer results with less

effort.

23

2.2.1.2 Development

The VRML consortium has been developing a new proposal which aims to achieve

collaboration (sharing) among users of VRML browsers. A first draft of such proposal was

released on February 17, 1997, while the second release of the draft is still under

development. The idea behind Living Worlds is the definition of VRML 3.0, which would

include support for sharing and collaboration.

In the scope of Living Worlds, VRML 2.0 is extended by defining a new set of nodes,

through PROTO and EXTERNPROTO (similar to PROTO). The LW basic principles are

[VRML, LW]:

♦ Build on VRML 2.0: It is built entirely with existing VRML 2.0 mechanisms, defining as

"implementation specific" anything that cannot be implemented inside the current

standard;

♦ Standards, not designs: The focus of the LW effort is to identify the minimum set of

system features required to enable shared environments, and to define the minimum set of

standard interfaces required to enable application developers to combine feature-sets from

multiple suppliers;

♦ Architectural Agnosticism: Although all of the LW initiators have based their solutions on

architectures that exploit a central server, the standard should not assume any particular

architecture.

Work in the Living Worlds consortium has been quite slow.

24

2.2.2. Open Community

2.2.2.1 Historic

Open Community (OC) [BaWA96b] is a proposal of a standard for multiuser enabling

technologies from Mitsubishi Electric Research Laboratories. SPLINE (Scalable Platform for

Large Interactive Networked Environments) is an implementation compliant with OC which

provides development APIs. Such libraries provide very detailed and essential services for

real-time multi-user cooperative applications. SPLINE implementations are available in ANSI

C or Java. OC handles issues related to networking, real-time audio transport, application-

independent transport of large and complex objects such as VRML models as well as filtering

which augments the performance at a user' station.

For its communication, SPLINE uses the Interactive Sharing Transfer Protocol (ISTP)

[WaAS97], which is a hybrid protocol supporting many modes of transport for VR data and

information through 5 subprotocols, which are described in section 2.3.2.7.

SPLINE partitions the World Model in Locales which may have any shape. Locales are

detailed in section 2.3.2.4.

2.2.2.2 Architecture

OC defines a middleware solution for sharing virtual worlds amongst users. An OC

application has the general architecture shown in Figure 7. For the application, everything

works just as if all the databases were available locally, as OC provides the entire

communication infrastructure which allows an efficient distribution of data (the box in Figure

7 shows the components which are part of Open Community) [OC].

25

Figure 7: OC Architecture

The user runs an OC application which makes calls on the OC library, exchanging data with

other OC processes to create a local version of the World. The dynamic parts of the World are

transmitted directly though the network, while parts which rarely change are fetched through

HTTP. Once the World Model is complete, it is sent to the rendering software, which is

implementation specific (Raw OpenGL, VRML browser, etc.). OC also makes callbacks into

the user's code to inform about various events.

2.2.2.3 The World Model

The Open Community's world model contains many objects with diverse properties such as

Permanent Objects (e.g., buildings), objects with motion (e.g., an Avatar) and seasonal

objects (like an audio clip explaining characteristics of a given object "touched" by a user),

amongst others.

26

An OC object may have subparts organized in a hierarchy in such a way that when the top-

level object moves, the full hierarchy moves as well.

Each object in an OC world has three references:

• Parent: This is another OC object, which is above the object in the hierarchical graph

of the World Model. When the parent moves, its children move too. The top-level

object is the locale whose parent reference is null. It is then possible to find out in

which locale a given object is located by examining its parents (see the locale section

below).

• Owner: The owner of a given object is a process, possibly remote. Note that it is not

another object. The object's owner represents the user who is allowed to modify a

given object (see the ownership section below).

• Class: Described by an OC class descriptor, which contains some info about the

objects instantiated from it. The class of a method defines which callbacks should be

triggered for a given action.

An OC application almost inevitably has to have a loop calling spWMUpdate, which is the

function that allows OC to update and control the sharing of worlds. Such function is

typically called every 50 to 100 ms.

OC implements automatic cooperation among stations with different update frame rates,

hence the developer doesn't need to worry about synchronization in the case of less powerful

stations. In fact he or she should try to optimize the frame rate to the local hardware.

27

2.2.2.4 Locales

Figure 8: Partitioning a World Model in Locales

An Open Community world is partitioned into Locales. The general idea behind Locales is as

follows: If a user is in a Locale, only the objects present in that Locale and in the directly

adjacent ones are visible. As a comparison let us consider a student in a classroom. Using a

Locale-based architecture, such student would be able to see objects present in the classroom

itself, as well as neighbouring areas (e.g. the corridor besides it). In this example the student

is not able to see objects in a gymnasium, if that doesn’t have direct relationship

(neighbourhood) with the classroom Locale. The designer of a Virtual World should take this

into account while developing such a world. A well-developed world should significantly

improve the performance of its visitors, as less data will be required to be processed. This

increases the scalability to unlimited size worlds. In order to increase the performance even

further, OC uses the built-in hardware of Ethernet cards to instruct them to only interrupt the

processing if some relevant message arrives (from some Locale, or multicast group, the user

is interested on). SPLINE will behave differently depending on how the World Model is

partitioned in Locales. Figure 8 shows a World Model partitioned in two different ways and

28

one can see that the partition to the right allows a user to receive information from relevant

Locales only.

Each Locale has its own coordinate system, which facilitates scalability as many pieces may

be put together without the need for modifications in the coordinate system of each

component. When an object moves from one Locale to another the developer has two

options: Move the object directly into that Locale or let OC decide which Locales such object

best belongs to.

As seen above, Open Community uses the general rule that only the current or adjacent

Locales are viewable for a given user; however, using spObserver it is possible to be

"present" in more than one Locale at a time. spObserver is nothing but an indication that a

given user is interested in a certain Locale and its neighborhood. Internally, a spObserver

makes the local OC engine to listen to the multicast group of that locale (and the

neighbourhood).

2.2.2.5 Visual and Aural Information

The way a user looks at a Virtual World is controlled by a spVisualObserver object. Such

object specifies a camera viewpoint, i.e. the user’s Point of View of the world.

According to the Open Community Locales rule, only objects present into the current locale,

as well as in the neighborhood, are visible. This is shown in Figure 9.

29

Figure 9: Visibility from a Pont of View

The object spVisualObserver does not have a graphical representation, but it still has

attributes such as parent and position, hence it is possible to bundle such object as the child of

a given avatar. With such an approach, spVisualObserver will follow the avatar and allow an

easy rendering of visual information according to the information retrieved at each

spWMUpdate call. It is also easy to conclude that a bird's eye view of the world, or a third-

person-over-the-shoulder view, may be accomplished by placing the Visual Observer

detached from a user's avatar, respectively, in a position above the scene or a bit behind and

higher than the user's avatar. It is also possible for a given user to have "God's eye", when the

spVisualObserver would be respectively in a fix location at the Locale.

Audio information in Open Community is dealt with as any other object, i.e., it has attributes

such as location, parent and so on. A sound source is then placed in a certain location in the

world and a URL for an audio file (if not real-time) is also given. A user receives such

information according to the location of its spHearing object, when the various audio sources

are mixed on the fly and presented to the user taking into account fade due to distance. There

are three different kinds of audio sources in a World: Continuously looping sound; Foley

sound and real-time sound. The first is usually some background music or other sort of

30

continuous sound. Foley sounds are pretty much understood as special effect sounds, such as

the noise of the collision of an avatar with some object in the scene. Finally, real-time sources

are sounds usually emitted by users of a virtual world (this may certainly be the audio track of

a virtual movie as well).

2.2.2.6 Ownership Control

One of the attributes of an object refers to ownership, which indicates which user (process) is

allowed to move or manipulate such object. Any manipulation is performed by modifying

some of the attributes of the owned object (such as position). Every single object in Open

Community has to have an owner. Objects which don't comply with this rule are simply

removed from the world. The ownership of an object may be transferred from one user

(process) to another. If a given process wishes to get ownership of an object it may call the

spRequestOwnershipTransfer, which will throw a callback to the owner process. If this one

agrees with the transfer of ownership, it just calls spTransferOwnership and the object has a

new owner. An object may also be transferred to another process, even though the latest one

didn't require such ownership. This is useful when one wishes to leave a given object in a

world even though he or she will leave that world.

2.2.2.7 Interactive Sharing Transfer Protocol (ISTP)

ISTP is the protocol behind SPLINE (Scalable Platform for Large Interactive Networked

Environments), which is an implementation of Open Community. ISTP is not particularly

attached to SPLINE and vice-versa, i.e. ISTP may certainly be used for any other Virtual

Environment architecture (such as RTI, described in HLA below). Also, SPLINE could use

31

other set of protocols to accomplish its task (Sharing of Virtual Environments). ISTP has

certainly many features which resemble SPLINE, such as support for Beacons and Locales

[WaAS97].

ISTP's goal is to communicate information about objects in a shared world model underlying

a DVE. Such a goal must include features for handling the various objects present in a Virtual

World. The various objects that SPLINE must support carry quite different characteristics,

ranging from very large objects which rarely change, such as a background image, to real-

time objects such as streamed audio. To accomplish such broad range of characteristics, ISTP

contains five subprotocols, namely:

• 1-1 Connection Subprotocol: Used to establish and maintain a TCP connection

between two ISTP processes;

• Object State Transmission Subprotocol: Used to communicate the state of objects

from one ISTP process to another. Such updates may be sent via 1-1 Connection or

UDP Multicast;

• Streaming Audio Subprotocol: Used to stream audio data via RTP;

• Locale-Based Communications Subprotocol: This is the core of ISTP and supports the

sharing of information about objects in the world model; and

• Content-Based Communication Subprotocol: Supports central server style

communication of beacon information.

32

The last two subprotocols are built upon the other three. ISTP does not provide video-

streaming capability to date; however such support could be provided by extending ISTP with

an appropriate subprotocol.

A key feature of ISTP is that it is fully distributed, i.e. a ISTP process plays the role of client

and server for other processes.

ISTP is a hybrid protocol that builds on top of four underlying protocols: TCP, UDP, RTP,

and HTTP.

• TCP is used for the reliable communication of control information.

• UDP and RTP are used for the communication of time critical information. (UDP and

RTP messages are both sent via multicast whenever possible.)

• HTTP is used for the distribution of large or complex pieces of data.

By this hybrid approach, ISTP addresses the communications needed for different sizes and

types of objects in a fairly efficient manner, and provides the reliability and error correction

necessary for operations across various types of network configurations.

Collaborating ISTP Processes keep a local copy of the data they share. Such data, called

World Model in ISTP terminology, are limited by the notion of locales as described above,

i.e. each process only handle objects within the locale it is in, as well as any other locale in

the neighbourhood. This feature allows scalability, while reducing required processing power

in each participant station, as discussed above.

33

2.2.2.7.1 1-1 Connection Subprotocol

1-1 Connection subprotocol is implemented through a TCP connection. The process which is

requesting the channel opens a TCP connection to the other ISTP process and sends an HTTP

Get message asking for connection. If the connection is accepted, an ISTP Connection Status

reply will be sent and the connection will be opened. In case the connection is denied, the

reply consists of a Not Found HTTP reply. At any time either process may close this

connection and keep-alive messages are sent in a regular basis to inform each other that the

processes are still alive. At any time one of the processes may re-open the connection. In such

case, the other party behaves just like if a new connection was just started. This feature is

useful to reinitialize data in a corrupt World Model.

2.2.2.7.2 Object State Transmission

The variables in a given World Model which need to be shared are communicated by ISTP

through Object State messages. Such messages are sometimes dispatched within the 1-1

Connection using TCP and sometimes sent using multicast UDP. When an Object State

message is received by another process, it is used to create/update/remove the copy of the

object it refers to. There are basically three different kinds of descriptions of an object: full

description, differential description and link data differential descriptions. The first contains

the values of all shared variables; the second contains only the variables which have changed

while the last specifies how the data associated with a link has changed. Similarly to ISO

MPEG I and P images [ISO11172-2], the full description images are much larger than

differential description ones, but the latter relies on the existence of all other values at the

34

destination, reason why full descriptions need to be send sometimes (also periodically, just

like I frames).

Each object in ISTP is identified by a Globally Unique ID (GUID), which includes the IP

address to avoid server dependency. For this reason the GUID is quite large, containing a 32

bit Internet address as well as a 64 bit intra-machine unique value. It is easy to conclude that

ISTP need to suffer major changes to accommodate IPv6, reason why SPLINE does not run

over IPv6 as per now.

In order to allow precise specification of timing information, ISTP implements methods for

adjusting the time values among machines, which allows the use of a compact absolute time

stamp. The current version of SPLINE does not implement such service. Thus, it is necessary

to use some external NTP application to synchronize clocks.

2.2.2.7.3 Streaming Audio Subprotocol

This subprotocol is based directly on the Real Time Protocol (RTP) [RTP].

2.2.2.7.4 Locale-Based Communication

The Locale-Based Communication subprotocol communicates information about changes in

the world model through UDP multicast backed by TCP unicast when UDP messages are lost.

A process indicates which locales it is interested in obtaining information about by creating a

spObserving object as described previously. Each Locale has a Locale-Based Communication

server associated with it, with a given server possibly supporting multiple Locales. Each

Locale receives two Multicast addresses, one to communicate changes in the objects in the

35

locale to its "subscribers" and another used for streaming audio communication. When

multicast isn’t available, ISTP uses simulated multicast via a 1-1 Connections. A hybrid

approach may be used, i.e. if 9 out of 10 processes are within a multicast enabled network,

these will be served by a unique multicast address while the one process with no multicast

capability will receive updates through a 1-1 Connection to the Locale server. This allows

scalability, while serving all clients. Such process is transparent to the process in the sense

that, other than an augmented delay, it can’t be noticed.

2.2.2.7.5 Content -Based Communication

Content-Based Communication supports content addressable connections between ISTP

processes. The subprotocol aims at controlling the storage and retrieval of beacons with URL-

like tags. After creating an object, a given process may publish it by creating a beacon object

and registering with some Content-Based Server. At this point, this beacon is visible by any

other process, which may retrieve such information at any time. Whenever a process creates

or modifies a beacon it opens a 1-1 Connection to the server specified by the tag of the

beacon and performs any update that is required [BaWA96, BaWA96b].

2.2.3. Distributed Interactive Simulation (DIS)

Even though not considered a middleware [Mace95], since there is no component mediating

the communication, DIS still has some importance for our discussion, reason why it is

included in this section. DIS (Distributed Interactive Simulation) is a standard [IEEE1278]

which focuses on military simulations and has been created as an improvement of SIMNET.

SIMNET (Simulator Network) has been one of the very first standards developed for military

36

simulations. It was developed by ARPA and the US Army by Bold Beranek and Newman,

Perceptronics, and Delta Graphics [Mace95]. SIMNET has been developed to take full

advantage of Ethernet hardware, when the broadcasting was heavily used, reducing software

selection of packets; however that also brought undesirable dependency of Ethernet facilities

which are only fit for a LAN, which makes easy to determine its limitations for large

simulations. In SIMNET there is no central object repository, i.e. each host is responsible for

maintaining its own copy of the objects participating of the simulation. Stations participating

in a simulation only exchange state messages with the others and dead reckoning is used to

reduce communication requirements, which will be discussed shortly.

DIS (IEEE 1278 standard) has been developed in an attempt to overcome SIMNET

limitations. It is a group of standards developed by the US Department of Defense and

industry. DIS uses similar Protocol Data Units (PDU) as SIMNET, as well as its terminology

and some of its functionality, such as Dead Reckoning. Dead Reckoning is implemented by

the idea of player and ghost [Mace95], when each object is controlled by a unique station (its

owner) and by a player object. Such an object is present on all other stations as a ghost object.

The ghost object is supposed to mirror the actions of the player in each station; however, no

state updates are sent all the time, instead the ghost tries to predict the motion of the player.

The player also calculates such prediction using the same algorithm. Only when there is an

error greater than a pre-defined threshold, the player sends an update which is used to update

the ghost in every station. Such messages are used to correct its position/state. This approach

diminishes the scalability of DIS since all objects are mirrored in every station. For example,

in a 1,000 participant environment, each station would have to process 1,000 ghost objects

(the player’s ghost has to be processed locally as well) and a player (minimum).

37

As DIS does not provide a central server or similar component, there are also problems

related with latecomers, e.g. how is a latecomer supposed to get an updated status of the

simulation in an efficient way? In order to solve this problem, DIS requires all objects to send

periodic update messages even for the objects which do not move, such as a bridge, or are

“dead”. The newcomer then has just to listen for a while until the next refresh cycle happens.

There are some problems as to the selection of an appropriated refresh cycle, as the shorter it

is the higher the load on the network. On the other hand, if it is too long, a newcomer will

have to wait too much before getting information about the simulation. Thus, each player

sends periodically updates, even if the prediction is smoothly matching its actions (the same

thing happens for stationary objects). Moreover, DIS requires that the multiplexing of the

various media be performed at the application layer, which prevents the model from

benefiting from appropriate protocols, such as RTP for real-time audio.

DIS has been broadly used by the American Department of Defense but has been dropped

since its Master Plan was released in 1995. DIS still has historical importance, along with

SIMNET, as they have been some of the very first standards to support collaboration amongst

various users in a Synthetic World. DIS is also known as IEEE 1278, as it is an IEEE

standard.

2.2.4. High Level Architecture (HLA)

2.2.4.1 Historic

In accordance with the US Department of Defense (DoD) Modeling and Simulation (M&S)

Master Plan, the Defense Modeling and Simulation Office (DMSO) is leading a DoD-wide

38

effort to establish a common technical framework to facilitate the interoperability of all types

of models and simulations among themselves, as well as to facilitate the reuse of M&S

components. This Common Technical Framework includes the High Level Architecture

(HLA). Initial definition of the M&S High Level Architecture was accomplished under the

sponsorship of the Defense Advanced Research Projects Agency (DARPA) Advanced

Distributed Simulation (ADS) program. Central to this task was the development of a set of

prototypes which addressed critical issues in the HLA. The HLA Baseline Definition was

completed on August 21, 1996. It was approved by the Under Secretary of Defense for

Acquisition and Technology (USD (A&T)) as the standard technical architecture for all DoD

simulations on September 10, 1996. In December 1997, HLA was accepted as a draft IEEE

standard to be supported by the Simulation Interoperability Standards Organization (SISO). In

February 1998, an Evolved, Stable Specification of HLA was released by DMSO [Weat98,

CaWe96, HLA]. In late 2000, it was approved as IEEE standard 1516 [IEEE1516].

The DoD has defined a set of compliance milestones, known as the "No can" dates:

• "No Can Pay": From the beginning of 1999 on, no funds toward development or

modification of non-HLA simulations will be admitted;

• "No Can Play": From the beginning of 2001 on, all non-HLA compliant simulations

will be completely dropped by the DoD.

Only upon approval of USD (A&T) a non-HLA compliant project may be waived of the HLA

policy.

39

2.2.4.2 HLA Terminology

• Federation: a set of simulations, a common federation object model, and supporting

interoperation facility, which are used together to form a larger model of simulation.

• Federate: a member of a federation; one point of attachment to the infrastructure.

• Federation Execution: a session of a federation executing together.

2.2.4.3 Architecture

The High Level Architecture is composed of three components [Weat98]:

• Object Model Template: Defines a basis for the exchange of data and events between

simulations. It defines the set of objects defined to represent the real world in the

simulation, the attributes and interactions of such objects as well as the level of details

of each object (including spatial and temporal resolution).

• Runtime Infrastructure (RTI): Consists of a collection of software that provides the

required services to simulation systems. Such services are available through a

programming API which should be available for C++, Java, Ada'95 and CORBA IDL;

• HLA compliance rules: Consists of a set of rules that must be accomplished by a

simulation to be considered HLA compliant. Example of such rules includes:

Federations must have an HLA Federation Object model (FOM); All Federates must

have an HLA Simulation Object Model (SOM); All object representation occurs in the

Federates, not in the Runtime Infrastructure.

40

2.2.4.4 Run Time Infrastructure

RTI provides a set of common services that are useful across multiple simulation domains.

These common services fall into six categories, namely:

• Federation Management: Includes 20 services which aims at creating and deleting

federation executions; joining and resigning federation executions, as well as control

checkpoint/pause/resume/restart operations.

• Declaration Management: Establishes intent to publish and subscribe to object

attributes and interactions.

• Object Management: Creates and deletes object instances; controls attributes and

interaction publications as well as creates and deletes object reflections.

• Ownership Management: Transfers ownership of object attributes.

• Time Management: Coordinates the advance of logical time and its relationship to real

time.

• Data Distribution Management: Supports efficient routing of data.

41

Chapter III

3. Very Large Virtual Environments

A CVE is a system through which users may interact with each other and collaborate through

a virtual synthetic world. As computing resources are limited, there are obvious problems

which rise once the number of users in a simulation raises beyond a certain limit. In fact, if no

special mechanisms are provided, one may expect a simulation to produce undesirable effects

such as choppy rendering, loss of interactivity and alike. Systems such as DIS, which are

known not to scale well, suffer from such problems. An example is given in section 2.2.3

where, due to the heavy dead reckoning employed, each station has a “ghost” of every other

player, which requires each station to process all ghosts information in addition to the usual

processing of the user’s actions. For a sufficiently large number of users, even a powerful

station will be overloaded and either the whole system will get slower or such station will

present an incoherent world to the user. In the former example, it is assumed that a few

objects will be presented in the wrong position due to the inability to dead-reckon their new

location. The increased amount of message exchanges required might easily overload a

network, requiring retransmissions, which makes things even worse. One may also consider

delays and jitter, which has strong impact on collaboration coordination [Leig99]. To address

these issues research has been conducted to optimize network and computing resources. In

this chapter, we will present some work developed aiming at enabling a larger number of

42

users to be supported in a CVE system. In the following chapter, we will introduce our own

hybrid adaptive architecture.

A number of standards and prototypes have addressed the issue of allowing a larger number

of users to collaborate through a CVE. In this section, we will discuss briefly several of them,

namely NPSNET-IV, DIVE, SPLINE, MASSIVE-2 and SCORE, which somewhat represent

the other models as well.

3.1 NPSNET-IV

NPSNET-IV [MZPB94] is a prototype developed at the Department of Computer Science at

the Naval Postgraduate School in Monterrey, CA, USA. NPSNET I and II were based on

Ethernet technology, which limited their use to LANs, hence with few stations. An enhanced

version called NPSNETStealth was developed complying with SIMNET and later on

NPSNET IV was designed to comply with DIS 2.0.3. NPSNET IV included enhancements

such as the use of IP Multicast with dynamic multicast groups reflecting a hexagonal partition

of the Virtual World. This guarantees a constant number (three) of hexagons to be added and

deleted when an object moves from one hexagon to an adjacent one [Mace95, MZPB94].

Figure 10 shows such add/remove characteristic. NPSNET IV also implements the

player/ghost paradigm detailed in section 2.2.3 and, as DIS, NPSNET’s communication PDU

include military oriented packets, such as Fire PDU, Detonate PDU and alike, which makes it

somewhat unfit for civilian applications.

43

NPSNET-IV takes advantage of SGI Onyx with Reality Engine2 graphics’ heterogeneous

parallelism and multiprocessor architecture; however this imposes a restriction regarding the

compatibility of hardware, i.e. it requires SGI IRIX based stations.

Figure 10: Moving Through Hexagons in NPSNET-IV

NPSNET-IV achieves better results, compared with DIS, mostly due to the lack of keep-alive

heartbeat messages, as well as the partitioning of the world which ensures that at a given time

only a few hexagons (7 at a time) need to be dealt with. Each hexagon has its own multicast

group and data is sent through the multicast address of the hexagon where the source of such

data flow is located. Figure 10 shows the hexagonal partitioning of the World with an Avatar

moving from one area to the neighbourhood. The avatar will unsubscribe the multicast groups

for the three hexagons to its left and subscribe the new set of three multicast groups defined

by the three hexagons to the right. Since each hexagon has a fix size, the amount of objects in

each hexagon may be large. The hexagonal partition of the world may be thought as a limited

kind of Locale as defined in SPLINE, Section 2.2.2. NPSNET-IV works well for the Military

application it has been designed for.

44

More recently NPSNET-V has been introduced in [CMBZ00, NPSNET-V]. NPSNET-V is

being designed to become a platform for research on infrastructure for Large Scale CVE. It

defines a dynamic partitioning of the World similar to SCORE, with regions being split like

SCORE cells. NPSNET-V implements Ownership Management.

3.2 DIVE

DIVE, Distributed Interactive Virtual Environments, is a prototype developed at the Swedish

Institute of Computer Science (SICS), Sweden.

DIVE [FrSt98, Hags96] implements a shared, distributed database, which is partially

replicated at each client. Modifications are first realized in the local copy of (part of) the

world and sent to the other clients through the network. Each client updates its local copy of

the world once an incoming update arrives. By using this approach, DIVE allows copies of

the world to be slightly inconsistent to each other. It also implements dead reckoning in an

attempt to further reduce network load.

DIVE divides the world into sub-hierarchies, which are similar to SPLINE’s Locales. A

multicast group, called lightweight group, is assigned to each sub-hierarchy. Only the clients

interested in such sub-hierarchy would then join its lightweight group.

Database changes are distributed using a negative-acknowledgement based reliable multicast

communication scheme, which ensures the eventual consistency of the world. Continuous

media streams, on the other hand, are sent using unreliable multicast.

45

Lightweight groups define a hierarchical tree which is used by the communication engine to

select the appropriate multicast group through which a given message should be sent. It is

important to note that the world itself contains a multicast group attached to it. All entities are

required to listen to such multicast group. When a message is to be sent, the communication

engine climbs the hierarchy tree looking for the first available multicast group.

3.3 MASSIVE-2

MASSIVE-2 (Model, Architecture and System for Spatial Interaction in Virtual

Environments) is a prototype developed at the Computer Science Department at the

University of Nottingham, U.K [Gree97].

For the sake of clarity on the description of MASSIVE-2, its terminology follows [Gree97,

GrBe97]:

• World: Place where all interactions occur. A CVE may contain a set of disjoint worlds;

• Artifact: Tangible objects which populate the VE. This include any object present in the

world;

• Aura: Area to which a given artifact if offered or requested. Used for spatial trading;

• Group: Coordinate the use of multicast communication. Used to group artifacts;

• Focus: The area within the world (around a participant) which is visible by the user.

Describes the observer’s centre of attention, or which other artifacts interests a given

artifact;

46

• Nimbus: Describes the observed object’s availability, or which other artifacts can see (or

hear, etc.) the artifact;

• Regions: Subdivision of the World; it is somewhat similar to a locale in Open

Community;

• Participants: Representation of the user, usually represented by an artifact.

The major contribution of MASSIVE-2 is the introduction of the Third-Party Objects, which

allows a hierarchical dynamic space-based embodiment of multicast groups [Gree96]. The

idea behind third-party objects is to allow a group of artifacts (called crowd) to be represented

as a unique object which is seen by others. Only when an artifact gets into a crowd boundary,

it will receive information regarding individuals within the crowd. This model allows an

elaborate hierarchy of groups, as a crowd may be composed of artifacts and other crowds,

recursively. Such an approach requires that media mixing be performed in order to provide a

single audio channel, for instance, representative of the whole group. This processing may be

prohibitive by itself, if we consider that each nested crowd would require a station to process

its media (not only audio) to give a representation of the group.

Focus and Nimbus concern awareness. It is said that “the more you are in my focus, the more

I am aware of you and the more you are within my nimbus, the more you are aware of me”

[GrBe97].

MASSIVE-2 runs in SGI workstations running over IP.

47

MASSIVE-3 has been introduced more recently [GrPS0]. MASSIVE-3 is based on Locales

like in SPLINE, but extended to include subdivisions of Locales, called aspects. Massive-3

also implements a number of Ownership Control policies.

3.4 SCORE

Figure 11: Cells in SCORE

SCORE [LeTB99, Lety00] has recently been introduced. It was developed at INRIA – Sophia

Antipolis, France in 2000. It is based on the division of the World in Cells as suggested in

[HoRC94]. A user interacts with those cells, which fall, at least partially, within an area of

interest. The latter is defined as a square region around a user’s avatar. Each cell has its own

multicast group (MG) and an avatar then subscribes for that set of MGs. SCORE allows for

two policies regarding determination of cell-size: pre-calculation of a fixed cell size and

dynamic re-estimation of the cell-size during the session. The dynamic estimation may be

performed based on some pre-defined parameters, such as number of MGs available, density

48

of participants, etc. Furthermore SCORE allows the partitioning of the World to have cells of

different size, which allows one to have a fine grid at highly populated areas and a sparse grid

of cells in unpopulated areas, as shown in Figure 11.

49

Chapter IV

4 The Proposed VELVET Architecture

VELVET (a Hybrid Adaptive Architecture for VEry Large Virtual EnvironmenTs) is our

Adaptive Hybrid Architecture.

The approaches previously described, while addressing the issues of a Large-Scale Virtual

Environment (LSVE), have been known to fail under certain conditions. In section 4.1, we

will describe such failure potentials. In section 4.2, we will present the VELVET approach in

a high-level overview, whereas section 4.3 will bring details about how the functionality

described in the previous section actually works. We will show that VELVET clearly

performs better under the circumstances discussed in section 4.1.

4.1 Limitation of Existing Models

We may assume that SPLINE is representative of a class of models based on geographic

partitioning of the Virtual World, such as NPSNET-IV and others. In both cases the Virtual

World is partitioned and each user is supposed to receive data from objects which are located

in a well-defined subset of the partition (or Locales for SPLINE).

50

Figure 12: Space Based Solutions and their Limitations

Locale-based models assume that users are somewhat uniformly dispersed in the Virtual

World (Figure 12.A). That is, the idea of reducing the amount of data which each station must

deal with is addressed by reducing the area which is “seen” by each participant. That would

assume that by reducing the area dealt with, the number of visible users would equally be

reduced. If, however, most (or all) users are packed together in a small area of the LSVE, the

number of objects a given user must deal with may still be too large (Figure 12.B). Suppose

we have a Virtual Museum where some dozens of thousands of users are visiting. If all of

them decide to see “The Mona Lisa”, one may notice that all stations would have to deal with

all the dozen of thousands of data flows, as all of them would be in the same Locale (or in the

neighbourhood). The Locale-based approach would hence fail in the task of reducing the

amount of data each host must deal with in such a case. Other examples would be: a Virtual

City, if the mayor calls for a meeting in a central park, or if many users wish to watch a soccer

game in a Virtual Stadium.

51

Another limitation not quite addressed by the existing architectures is that of heterogeneity.

Let us consider a group of 300 hosts participating in a CVE. Yet, let us assume that 290 of

such systems are quite powerful, meaning that they can easily deal with the load, even if

messages from every station successfully arrive. Such systems could also have very good

networking connections which could support such a load gracefully. The remaining 10

stations, however, are assumed to be weak enough not to be able to deal with the load. Space-

based solutions tend to assign an equivalent load to all systems populating the same

neighbourhood. That would work well only if all systems are able to deal with the same load,

which is not true in our example. The workaround in this case is that either all systems would

have to meet a minimum or all systems would have to reduce data transmitted so that the

weakest of the systems could support the load. Both solutions are somewhat inadequate as the

first prevents some users from joining the CVE session while the second would under-use

resources.

4.2 VELVET’s Architecture

VELVET aims at allowing each and every user to interact with the Virtual World to the

maximum extent possible (or optionally as much as paid for). We will first introduce

VELVET’s terminology:

• World: The whole set of objects.

• Area or Locale: A subdivision of the World.

• Object: An object which is located within the World.

• Avatar: Special kind of object which represents a user.

• Bot: Active object which is not an Avatar.

52

• Artifact: An object which is neither Avatar nor Bot.

• Area of Interest (AoI): Radius a user is able to view and directly interact with.

• Check-In: Operation which brings an object into a user’s AoI.

• Check-Out: Operation which removes an object from a user’s AoI.

VELVET is a CVE architecture which allows real time adaptation, according to the local

client needs. At any point in time, a given user may elect to unilaterally reduce or increase

his/her own view of the World. VELVET gracefully supports heterogeneous collaboration.

Such feature allows systems with different processing power and networking facilities to still

collaborate efficiently, since each one may elect to see just as much as possible (or as much as

paid for).

In section 4.2.1, we will discuss about Area of Interest in general terms. That is followed by

the Double Layered Boundaries, the Parallel Virtual World (PVW) and finally the support to

heterogeneity of VELVET. Using the knowledge about the PVW, we will revisit Area of

Interest Management on VELVET, as that can be better defined in terms of the PVW.

4.2.1 Area of Interest Management
The idea behind VELVET is that each avatar will be able to “see” whatever is located within

its AoI. The AoI of a given avatar does not depend on another avatar’s AoI. Such behaviour

allows for each station to manage how large its own AoI is, hence how much of the World

can be seen at a time. The AoI can be enlarged and reduced dynamically so that upon increase

in load, by a higher density of objects around an avatar for instance, one can automatically

reduce the AoI so that the load can be kept within a treatable range. Figure 13 shows a group

of avatars in a room with one avatar, indicated by the arrow (A). One can then see a larger

53

number of avatars (B) which makes the AoI shrink (C) as needed. Only the objects which are

within the AoI are visible and only information from those objects is received.

Figure 13: VELVET’s Area of Interest Shrinking

Whenever the number of objects decreases, that same avatar may have its AoI expanded so

that more objects may again be visible. That is shown in Figure 14.

Figure 14: VELVET’s Area of Interest Expanding

If we let B be the average traffic intensity transmitted by a participant, PA be the number of

participants a user is aware of and PI be the number of participants a user is actually

interested on, we can express incoming traffic for Space based solutions as APB× and for

54

VELVET as IPB × , where AI PP ≤≤0 . A more formal description of AoI Management is

shown in section 4.2.5.

4.2.2 Double Layered Boundaries of VELVET’s AoI

Figure 15: VELVET’s AICI/AICO

A −−−− Single Layer (13); B −−−− Double Layer (7); C −−−− Wider Double Layer (5)

When an object crosses the border of the AoI, it will Check-In (CI) or Check-Out (CO),

depending on the direction being respectively towards the AoI or leaving the AoI. In order to

avoid multiple Check-In/Check-Out operations, VELVET in fact defines two borders named

Area or Interest Check-In (AICI) and Area of Interest Check-Out (AICO), so that only objects

crossing AICI will Check-In and those crossing AICO will Check-Out. The “distance”

between AICI and AICO is also variable and may be used to control the number of CI/CO

operations. Figure 15 (top) shows an example of use of AICI/AICO. Figure 15 A, B and C

shows respectively an AoI with a single border (or AICI and AICO with distance zero), and

55

two different distances between AICI and AICO. One can notice the arrows displaying 13, 7

and 5 CI/CO operations for the same path.

If we define the following parameters:

• pi = the radius of inner boundary of AoIi;

• qi = the radius of outer boundary of AoIi;

• qi, max = the max of qi;

• qi, init = the initial size of qi;

• s = qi-pi;

• n = the allowable max number for checking of boundary collision;

• t = a limited time slice for checking of boundary collision;

• c = number of boundary collision during t.

We can define the procedure for AICI/AICO management as follows:

while (1)

{

if ((c > n) && (qi ≤ qi,max) && timeout) increase qi;

if ((c ≤ n) && (qi > qi, init) && timeout) decrease qi;

}

Where timeout is the minimum time which shall elapse before changes in the AICI/AICO,

which prevents too many changes to happen in a small time interval. Such time interval can

be set, for instance, at 1 second. Note that the procedure above is to be performed locally,

with absolutely no dependency on any other participant.

56

As per the AoI’s rule for expansion/shrinking, we shall add that it is not necessarily based on

virtual space (Euclidean distance) from the avatar but rather on a pre-defined metric in use by

that user’s VELVET management subsystem. That is, one can see what is more important to

him/her rather than what is geometrically closer, as the Figures 13 and 14 indicate. We can

assume that the positioning of the avatars in Figure 13 and 14 is based on such metric, rather

than the virtual distance to the avatar. Of course the metric itself could be that of virtual

distance.

4.2.3 Parallel Virtual World of VELVET
The metric defines a Parallel Virtual World (PVW) in which objects are placed according to

the metric chosen by each participant. Figure 16 shows the PVW.

Figure 16: VELVET’s Parallel Virtual World

The rings define levels in the metric oriented PVW. Each avatar has its own PVW and the

management subsystem decides how many of the rings shown in Figure 16 will be subscribed

57

for. Note that as each Avatar has its own PVW, the rings can be particularly arranged based

on each participant’s interest, for instance each ring may have a single object or a collection

of those.

Let MS be a set of metrics, MS = {M0, M1, …, Mm}, where,

M0 = Metric 1, e.g. Number of Users;

M1 = Metric 2, e.g. Network Throughput;

M2 = Metric 3, e.g. Distance in the Virtual World;

M3 = Metric 4, e.g. Distance in the Network (Number of Hops);

M4 = Metric 5, e.g. Distance in Number of Locale Hops;

M5 = Metric 6, e.g. Average End-to-End Delay;

M6 = Metric 7, e.g. A mix of the above, such as M4×10000+M1;

�

Mm = Metric m+1, e.g. Others.

Assume that in VELVET, an avatar Ai has its own parallel virtual world (PVWi) with a metric

Mγ at a given time t.

PVWi (Mγ) = {R0, R1, …, Rl-1}

Where Mγ ∈ MS,

Rk is (k+1)th level of the metric Mγ, 0 ≤ γ ≤ m, and

l is the number of levels in the current PVWi,

where Rl-1 is the maximum level of Mγ.

58

The AoI will be such that it will include Rk, 0 < k < l, so that () ()��
==

≤≤
k

n
n

j

n
n RTR

00
ξξ ; where

()nRξ is a function which gives the cost associated with the level Rn, e.g. the number of

participants in level n for a metric considering the number of users. T is a value which will be

optimized according to a pre-defined target value for a given metric. For instance, if one is

behind a 56K modem connection and the metric considered is Total Throughput, the Target

could be something like 48Kbps. T would be maximized considering that it must remain

below such target. See section 4.3 for further details on the implementation of PVW in

VELVET.

4.2.4 Degree of Blindness & Support to Heterogeneous Systems of VELVET
Since participants unilaterally decide which objects to subscribe for, based on the PVW, one

may notice that such behaviour can lead to inconsistencies. Such inconsistency shows up

when a given avatar A “sees” an avatar B even though B can’t “see” A. That would happen if

A’s AoI is expanded enough so that B is enclosed while B’s AoI is shrunk enough not to

enclose A. This is called in VELVET’s terminology “degree of blindness”, which limits one’s

vision. That is perfectly legal in VELVET. In fact, it is the very reason why VELVET

graciously supports collaboration among users in heterogeneous systems, when system

collaborate the best they can. Figure 17 illustrates such behaviour, which defines the Degree

of Blindness in VELVET. The smaller the AoI, the greater is the Degree of Blindness. Figure

17 shows users A and B adopting similar metrics; the area around each avatar is that based on

the PVW rather than the Euclidean space.

59

Figure 17: VELVET and Degree of Blindness

Define () ijji AA ∂≡∂ , as the distance between participant Ai and Aj in the PVW of participant

Ai and iρ the radius of the AoI in participant Ai’s PVW, as shown in Figure 18. We can

define that jjiji AA ρ≤∂⇔⊂ , i.e. if Ai is within Aj’s Area of Interest. Similarly we can

define that iijji AA ρ≤∂⇔⊃ . In other words ⇔⊃ ji AA Aj is within the Ai‘s AoI, i.e. if Ai

can “see” Aj. Considering space based solutions, for two avatars Ai and Aj within the same

Locale Ln, ijji AAAA ⊃⇔⊃ holds, because jiji ,;∀= ρρ and jijiij ,;∀∂=∂ . In VELVET

jiij ∂=∂ may not necessarily hold, as after all Ai and Aj may be using completely different

metrics. Furthermore, in VELVET ji AA ⊃ does not lead to ij AA ⊃ because the metrics can

be different, and, in the event that both participants use the same metric, ji ρρ ≠ may hold as

well, which is the reason for the existence of different Degree of Blindness for each user.

Degree of Blindness allows heterogeneous systems to collaborate the best they can, for

instance, if one is participating in a VELVET session with a processor-weak system or behind

60

a dial-up 56k modem, it would still be possible to interact with a limited number of

participants (high degree of blindness). At the same time another user joining a VELVET

session with a supercomputer with a very fast networking connection would be able to

interact with a comprehensive view of the World (if desired).

Figure 18: Parameters ∂ and ρ

Table 1 shows some ⊂ and the equivalent ⊃ relations of VELVET in the event that both Aj

and Ai use the same metric Mδ.

Table 1. VELVET’s ⊂⊂⊂⊂ and ⊃⊃⊃⊃ relations for objects with similar metrics.
VELVET jji ρ≤∂ jji ρ>∂

iij ρ≤∂ ij AA ⊂ , ji AA ⊂ ij AA ⊂ , ji AA ⊄

iij ρ>∂ ij AA ⊄ , ji AA ⊂ ij AA ⊄ , ji AA ⊄

From Table 1 we can deduct relations such as if ji AA ⊂ and ij AA ⊄ , then ij ρρ > .

61

Table 2 below shows several relations supported by VELVET, with the double grid box

showing the scope of Space Based Solutions. This table assumes that that both Aj and Ai use

the same metric Mk.

Table 2. Scope of VELVET and Space Based solutions regarding ⊂⊂⊂⊂ and ⊃⊃⊃⊃
relations.

VELVET ji ρρ > ji ρρ = ji ρρ <

jiij ∂>∂ N/A jiij AAAA ⊂�⊂ ijji AAAA ⊂�⊂

jiij ∂=∂ jiij AAAA ⊂�⊂
jiij AAAA ⊂⇔⊂ ijji AAAA ⊂�⊂

jiij ∂<∂ jiij AAAA ⊂�⊂ jiij AAAA ⊂�⊂ N/A

4.2.5 Area of Interest Management Revisited
In this section, we will detail how the AoI management works, now in terms of the PVW.

Section 4.2.1 brought a high-level overview of AoI, which could shrink and expand. We will

now define how that happens based on the PVW of VELVET.

AoI management basically consists of managing the AICO and AICI, which automatically

defines participants to be subscribed for or dropped by the AoI management thread in a

VELVET compliant system.

The AoI management in VELVET greatly depends on the PVW, which was not clear in

section 4.2.1. Figure 16 shows a generic PVW with levels R0 to Rl, being Rk and Rj

respectively the levels of AICO and AICI, with 0 ≤ j ≤ k ≤ l. Let us assume that the PVW in

question is that of participant Ai (PVWi), without loss of generality. At any moment, if

Ki ρβ >∂ , Aβ will check-out (CO) from the PVWi, in the next cycle of the AoI management

thread (if it was checked in previously). That happens because Aβ is by definition outside of

62

the Area of Interest of Ai (see section 4.2.3). On the other hand, if Ji ρβ <∂ at a given time, Aβ

would check-in (CI) into the AoI of Ai, in the next AoI management cycle (assuming that it

was not checked-in already).

Additionally, kij ρρα α ≤∂≤∀ ; , if iAA ⊂α at a given time t+1 ⇔ iAA ⊂α at time t. Similarly,

kij ρρα α ≤∂≤∀ ; , if iAA ⊄α at a given time t+1 ⇔ iAA ⊄α at time t, i.e. if the object Aα is

located between the AICI and the AICO it will keep the same CI/CO status it had before.

If the AoI management detects too many CI/CO operations, it will act as follows:

• If the CI count is high, the AICI will get closer to Ai (i.e. j=j-1) so that jk∂ will increase

and an object will have to move further towards Ai, in the PVWi, before it checks-into the

AoI of Ai. jk∂ is defined as the distance between the AICI at level j and the AICO at level

k, or kj ρρ − .

• If the CO count is high, the AICO will move further away from Ai (i.e. k=k+1), so that

jk∂ will increase and an object will have to move further away from Ai before checking-

out of the AoI of Ai.

Similarly, if the CI/CO count is low the inverse procedure may be used so that JK∂ decreases.

If a user experiences overload based on the metric (or other parameters, such as incoming

traffic, processing power and any other bottleneck), both levels j and k (namely AICI and

AICO) will be reduced, e.g. k’=k-1 and j’=j-1 (Figure 19.A). That will immediately lead to

CO operations αA∀ so that 'ki ρα >∂ and ki ρα <∂ , where k is the former level of the AICO

and k’ is the new shrunk level of the AICO. That is how the AoI shrinks based on the PVW.

63

Similarly, if the AoI management decides to expand the AoI that is accomplished by

increasing both AICI and AICO levels (Figure 19.B). That will lead to CI operations for those

objects which were not within the AoI before the expansion and which get enclosed after such

expansion. More formally there will be CI operations αA∀ so that 'ji ρα <∂ and ji ρα >∂ ,

where j is the former level of the AICI and k’ is the new shrunk level of the AICI.

Figure 19: AoI Shrinking (A) and Expanding (B) based on the PVW

64

It is important to notice that the distances based on the function ∂ are distances in the PVW

of a given avatar, it is not a distance in the Euclidean World. Remember that a PVW is built

based on a chosen metric, as defined in section 4.2.3.

4.3 Internal Structures and Functionality of VELVET

Figure 20: Receiver’s Behaviour

In VELVET, the World is partitioned into Areas and each Area has a multicast address like in

SPLINE and NPSNET-IV. VELVET accomplishes the flexible functionality described in the

previous section by assigning a multicast group for each object which generates a flow of data

(such as avatars and bots). That defines an Object Transmission Channel (OTC). Each client

has three threads running in parallel. The first thread is the one responsible for sending data

through the network, the second receives and acts upon arriving packets while a third thread

performs management of AoI, joining and leaving Areas and OTCs as appropriated. Figure 20

65

shows the way the receiver thread works. Each Locale has similarly its own Locale

Transmission Channel (LTC).

4.3.1 Awareness Control

Figure 21: Awareness control in VELVET

In VELVET, a given avatar Ai may enter or join Locales L1, L2, …, Ln. Ai enters a Locale, if it

goes physically into that Locale. Ai joins a Locale, if it happens to have interest in such

Locale, even though it is not physically in it. Once Ai enters or joins a Locale, it sends an

66

appropriated message to the communication channel of that Locale. Every other active object

which is located within the Locale sends an INFORMLOCALE message back to Ai, which

learns in this way about the other objects. Ai can then consider these objects in the next cycle

of its AoI management thread. On the other hand, the other avatars receiving an

ENTERLOCALE message from Ai will become aware about it and will consider it in the next

cycle of their local AoI management thread as well. An Avatar sends a LEAVELOCALE

message once it is leaving a Locale. This message allows the others to remove it from the list

of participants of such Locale.

The way an avatar A1 becomes aware of other active objects is through the procedure depicted

in Figure 21. The shaded area represents the areas which the local user has awareness about.

Initially A1 enters a Locale, such as L1, Figure 21.A. At this stage A1 sends an

ENTERLOCALE message in L1’s communication channel. This message is received by the

active objects located in L1, which send a INFORMLOCALE message back to A1, which

learns in turn about them. Similarly A2 has learnt that A1 has just entered L1. Let us supposed

that A1 is following metric M1 to subscribe to no more than 10 avatar’s communication

channels. At stage B in Figure 21 only 1 avatar is known to A1 (namely A2). As A1’s metric

target is larger than 1 it joins the next level (the first in this case) of neighbouring Locales,

namely L3 in Figure 21.B and 21.C. A1 then sends JOINLOCALE messages to L3 and

receives INFORMLOCALE replies from A3 and A4. Only 3 objects – A2, A3 and A4 – are

known, which is still under A1’s metric M1. A1 goes on and subscribes to the next level of

neighbouring Locales, namely L4 and L5 (Figure 21.C and 21.D). Such procedure goes on

one step further until the metric M1 has been met or a sufficient large number of Locales has

been subscribed for. At the stage E in Figure 21, A1 has awareness of 11 active users, which

67

are then filtered through the AoI management thread, so that the parameter T described in

section 4.2.3 is kept below the target selected, e.g. 10 users in the example above.

For the case of a very large number of users, an avatar will likely have awareness of a single

Locale, with further filtering provided by the AoI management.

4.3.2 Data Transmission Control
Each object is supposed to send data only on its own OTC and only those who have explicitly

signed for that channel will receive such data. That ensures that no host will ever receive

unsolicited user data. Moreover each VELVET system can pinpoint exactly which users

should be receiving data from, based on a given metric. Table 3 shows the amount of

superfluous data received by participants in various architectures.

Table 3. Superfluous Data
MASSIVE-2 Transmission from objects in the appropriate areas, which

are of no interest to the local participant.
SPLINE
NPSNET-IV

Transmission from objects in the appropriate areas, which
are of no interest to the local participant.

SCORE Transmission from objects in the appropriate areas, which
are of no interest to the local participant, as well as objects
which, even though not in the Area of Interest, are located
in cells which fall partially within the AoI.

VELVET Minimum superfluous data, based on the metric used.

VELVET is adaptive because each system may choose to sign for a larger or smaller number

of groups on the fly. For instance, if a given system is connected to a VELVET World and

experiences network overload, it may simply unilaterally shrink its own AoI (reducing its

parameter T), which immediately reduces the flow of data arriving at that end. Additionally

VELVET allows a heterogeneous set of hosts to successfully collaborate, since each user can

68

have his/her AoI reduced as much as necessary to make it treatable, while increasing its

Degree of Blindness. That would allow people in a supercomputer, as well as very limited

systems, to collaborate in a CVE session.

4.3.3 Data Structures
Figure 22 shows how data are organized in a VELVET client. All starts with a linked list of

Locales, each of which contains a list of boundaries, i.e. pointers to other Locales which are

neighbouring each Locale, as well as a list of Active Objects (e.g. Avatars), which are located

within that Locale. There is also a list of known avatars, i.e. those which the local user has

awareness of through the procedure described above (Figure 21). Each known avatar has a list

of metrics which are initialized with values provided by each active object and updated with

corrected statistical values (such as average delays, jitter, etc.).

Figure 22: Internal Data Structures

69

The list of Avatars shown in Figure 22 is ordered according to the metric currently in use by

the local user. One should note that all the information stored in these structures is

dynamically gathered, unilaterally, by the local user.

4.3.4 Parallel Virtual World and Filtering of Messages

Figure 23: PVW in the scope of Internal Structures of VELVET

Figure 23 shows how the PVW actually works in the light of the structures shown in Figure

22. The list shown in Figure 23 is just the “Avatars” list from Figure 22. The idea as that as

such list is ordered based on the metric chosen. The levels R0, R1, …, Rl, are defined based on

the metric values known at the moment. For instance, if we consider that the metric chosen is

the traffic required by a given avatar, the levels in the PVW could be set as 1Kbps, 2Kbps, …,

α Kbps, where α would represent the maximum transmission rate known at the moment. The

active objects which have transmission rates within the [0, R0] interval, namely [0kbps,

1Kbps] would be in the first level of the PVW and so on. The AoI would be defined as the

70

levels Rj and Rk, respectively for AICI and AICO. j and k are chosen so that T,

��
==

≤≤
k

n
n

j

n
n RTR

00
)()(ξξ , is optimized and kept under the target maximum metric as defined

in section 4.2.2.

VELVET is a hybrid protocol because it builds on top of existing Locale based systems. The

Area’s multicast group (LTC) is used to send/receive only management packets, such as

ENTERLOCALE, JOIN LOCALE and LEAVELOCALE (i.e. packets which are related with

Awareness management). The VELVET’ Session Management entity will frequently analyze

the structures shown in Figure 22 and 23 based on their profile and will choose which ones to

sign up for/drop.

4.4 Modeling and Simulation

VELVET has been modeled using OPNET Modeler 6.0 PL12. In such modeling, we created a

multicast enabled router which allowed VELVET to perform exactly as described in section

4.3, with all procedures and data structures as described in sections 4.3.1 and 4.3.3. Figure 24

(A) shows the Node Model for a VELVET station. The three main threads of the VELVET

architecture (namely transmitter, receiver and management) are represented as three

independent nodes. Figure 24 (B) shows the process model for the Management Node. Such

model consists of a startup procedure required due to the DHCP server mentioned above

followed by an infinite loop where the thread wakes up every once in a while (TIMEOUT) to

analyze the current content of the structures presented in Figure 24 and perform changes that

may be required. Such changes include subscribing/dropping OTCs, joining/leaving Locales,

etc.

71

Figure 24: VELVET’s Host Node/Process Models

The modeling of VELVET uses external configuration files which allow one to select the

statistical behaviour of each station along with the geography of the VELVET World. For

most simulations, we used the World shown in Figure 25, where 9 Locales exist with well-

defined neighbourhoods. Several stations were placed and different profiles were chosen.

Figure 25: Virtual World

72

In order to make the setup of the simulation yet more convenient, we have introduced a

DHCP server in the simulation. Each station requests this server to assign an IP address for it

at start up. This allows easy reconfiguration since it is possible to add many stations to the

simulation with no need for manual configuration. This DHCP setup leads to unnaturally high

packet traffic at startup, but such high traffic only occurs approximately in the first 500 ms of

the simulation. All packet exchanges after this time interval are those of VELVET

management, along with data packets sent by the many stations.

Figure 26 shows the Average Number of Packets received by four stations selected in the

network. Those are four stations with profiles to view 1, 5, 9 and 12 stations respectively. It is

obvious to see that the lines well separated in the graph represent a clear relationship of the

number of users a station chooses to join and the number of packets received. The graph does

not show a station changing the metric on the fly but, if the station with metric target set at 12

reduces its metric target to 9 stations, the AoI manager is led to drop 4 stations. The number

of packets would then fall from 110 to the 75 packets/second average experienced by the

station with metric target set at 9.

Figure 27 shows results from 13 stations. One can see 12 somewhat well-defined data flow

levels, which reflect the fact that the hosts were set to “see” from 1 to 12 stations. For this

simulation all stations were sending packets according to an exponential distribution with a

mean rate of 0.125 seconds (an average of 8 packets per second). The probability of an avatar

changing a Locale was set to 0.15.

73

Figure 26: Incoming Traffic – Average Throughput in packets/second

Figure 27: Incoming Traffic – Average Throughput in packets/second

The graphs of Figure 26 and 27 show that VELVET supports heterogeneity well, since each

station may select a different level of service. This can be extended for Quality of Service

purposes where a user could stay in the level most adequate according to paid fees (or load in

74

the network). Such levels could be for instance those with metric targets set at 1, 5, 9 or 12 in

Figure 26.

Figure 28: A Two-Locale World

The simulation has also been executed in a two Area World (Figure 28). In such a World,

SPLINE would lead to the rendering of all users populating the World, since all objects in the

current Locale, as well as the immediate neighbour Locales, are subscribed for. A given user

would, hence, receive packets from every active object in this specific World. Figure 29

shows the performance of such simulation.

Figure 29: Incoming Traffic – Average Throughput in packets/second

75

The station behaving like SPLINE matches with that of the VELVET station receiving

information from all hosts, averaging 115 packets per second, as shown in Figure 29. In our 2

Locales World, SPLINE would receive packets from absolutely all objects within the World.

VELVET allows for filtering even within a single Locale, since the World is seen through the

PVW for the AoI Management protocol of VELVET. If a given avatar chooses to expand

both AICI and AICO so that they would coincide with the last level known, then all objects

would check into the AoI of the avatar. More formally, if j=k=l so that 0=∂ jk �

αρα ∀≤∂ ,ji , for an avatar Ai. In this special case, the avatar Ai in VELVET would receive

packets from every object as well. For the other avatars, different values of ρj were chosen,

leading to the various levels shown in Figure 29.

It is worthy to mention that the high traffic experienced at the first 500 ms is initially due to

the use of a DHCP server, which has been introduced into the in order to allow fast automatic

configuration of the stations. At the beginning of the simulation, all stations request IP

addresses from the DHCP server through the use of broadcast packets. The response from the

server is also sent via broadcast, which increases the number of incoming packets at startup.

This section has shown advantages of VELVET compared with Locale based architectures

such as SPLINE and NPSNET-IV. In fact, if one defines a metric in VELVET of subscribing

to all objects in the avatar’s Locale as well as the immediate neighbours, VELVET would

behave just like SPLINE; hence they can be thought as a subset of VELVET.

Figure 30 shows results of a simulation with up to 209 users and 25 users increments. The

line shown at the top varying from about 280 incoming packets per second (when 34 users are

in the Virtual World) up to about 1600 incoming packets per second (when 209 users are

76

within the Virtual World) shows how Space Based Solutions (e.g. SPLINE) behave when the

user population grows. VELVET on the other hand stays stable between 70 and 100 incoming

packets per second.

Figure 30: Incoming Traffic – Average Throughput in packets/second

Comparison of VELVET (12 lower lines) vs. Space Based Solutions (upper line)

77

With 34 users, VELVET stations had incoming traffic between 40 and 70 packets per second

while space based solutions (SBS) had over 275 incoming packets per second (Figure 30.A).

When 59 users were in the World, the results stayed almost identical for VELVET at 45 to 75

packets per second, while SBS achieved over 475 packets per second (Figure 30.B). SBS

went further to about 690 packets per second with 84 users (Figure 30.C), 890 packets per

second with about 109 users (Figure 30.D), etc., achieving over 1600 packets per second with

209 users (Figure 30.H). In contrast VELVET stations were stable at around 100 packets per

second (Figure 30.A-H).

VELVET vs. Space Based Solutions

0

200

400

600

800

1000

1200

1400

1600

1800

0 34 59 84 109 134 159 184 209
Number of Users in the World

A
ve

ra
ge

 In
co

m
in

g
Th

ro
ug

hp
ut

(P

ac
ke

ts
/S

ec
on

d)

VELVET SPLINE

Figure 31: Comparison of VELVET vs. Space Based Solutions

Figure 31 shows a better comparison of VELVET vs. Space Based Solutions, using data

gathered from simulation results shown in Figure 30. In this graph, we selected the VELVET

station with the highest Incoming Throughput (i.e. that with the AoI more expanded amongst

the various VELVET stations in Figure 30). We can see that this VELVET station keeps a

relatively stable Average Incoming packet count, while Space Based Solutions grow steadily.

78

These simulation results shows how VELVET behaves when compared with Locale based

architectures. Such results are somewhat obvious, since VELVET, being a superset, can

behave exactly like SPLINE, as well as allow a more aggressive filtering of incoming data,

hence reducing incoming traffic. It is important to mention that a VELVET station could have

its AoI expanded enough so that it could achieve the same packet count shown above for

Space Based Solutions. For example, assume a user Ai whose metric allows subscription to

up to 250 other users. One advantage of VELVET is exactly this flexibility, allowing each

user to unilaterally choose a metric appropriate to its own needs.

4.5 Comparison with Other Architectures

In this section we’ll be comparing VELVET with other architectures, namely MASSIVE-2

and SCORE.

Greenhalgh presents studies [Gree97] of the total throughput of MASSIVE-2 as a means of

comparison with MASSIVE-1. In such studies, the following parameters are used:

• IA: number of artifacts in the World.

• IP: number of participants in the Scope of Interest.

• S: average size of the state of an average object (in bytes).

• M: number of times an avatar changes its scope of interest.

• TS: average amount of time spent by a user in the Virtual Environment (in seconds).

• BP: average traffic generated by a participant (in bytes per second).

79

Traffic is given as the number of packets sent by each object in a given time and
S

P

T
MSI

accounts for multicast announcement/state transfer of mobile users [Gree97]. When an Avatar

changes its scope of interest (e.g. when entering in a different room with new content for

instance), all objects will need to be loaded; hence we should expect ()
S

PA

T
MIIS + average

traffic due to the change of scope of interest. In addition to that, we also expect PPBI which

accounts for data transferred by the various participants.

Using this approach regarding incoming traffic, we can see that MASSIVE-2’s incoming

traffic is all together given by:

() PP
A

PP
S

PA IB
TS
SM

TS
SMIBI

T
SMII �

�

�
�
�

� ++=++ 22 (Eq. 1)

VELVET’s incoming traffic is similarly given by:

() ''' 22 PP
A

PP
S

PA IB
TS
SM

TS
SMIBI

T
SMII �

�

�
�
�

� ++=++ (Eq. 2)

Where 0 ≤ I’
P ≤ IP, i.e. VELVET has the second term of the left hand side half of Equation 2

which is responsible for incoming data such as audio, video, motion, etc., in a range from

zero all the way up to the same IP that MASSIVE-2 receives. If we assume that on the average

each participant is interested in about 50% of objects he/she is aware of, it would lead

VELVET to receive about 50% less data than MASSIVE-2. In other words, VELVET’s users

will not need to receive data from 50% of the objects they are not interested in.

80

Additionally, MASSIVE-2 has quite an overhead, not disclosed in the expressions above,

which has to do with the management of Third Party Objects (see section 3.3). It should be

remembered that some entity will be responsible for the non-trivial task of mixing the media

of the objects, which are part of a third party object so that the mixed medium is transmitted

at the level where the third party object is located.

SCORE’s division of the World in cells brings heavy management overhead. Imagine that a

given area of the World has a large number of users. SCORE should try to reduce traffic by

increasing the number of the cells into a fine grid so that one can have a smaller Area of

Interest. It happens that if the cells are small and a given user is moving around, that user will

need to insistently subscribe for the new cell’s multicast groups as well as leaving a number

of them. Considering that more than one user would be moving at a given point in time, the

number of join/leave multicast messages would grow to a significant amount of traffic,

somewhat bringing back the traffic problem. In VELVET, it is of no relevance, in this regard,

if users are moving around since the multicast groups one subscribes to are associated to the

metric used and not the physical location of the objects. Only when a user crosses the borders

of a Locale, will it send an enter/leave Locale message (Figure 20).

Also when SCORE decides to change sizes of cells, one may expect a peak of multicast group

management messages sent by all users in the affected area.

Considering the situation where SCORE has a fix sized cell grid defined at start up leads to

something similar to a Locale based World where each Locale is smaller. Similar problems

found in those Worlds would be observed and the extra multicast group join/leave issue

81

would lead to higher management traffic than standard Locale based solutions where Locales

are usually larger.

4.6 Collision Detection

Collision detection brings some extra challenges to VELVET. It may happen that due to the

allowed flexibility it is possible to have users A and B, where A is geographically aware of B

while B has no geographical awareness of A as shown in Figure 17. If users A and B were to

physically engage in collision, in the Euclidean World, only one of the parties would be aware

of such collision. Remember that each user selects the objects that will be checked into the

AoI based on its own PVW, which is not necessarily related to the Euclidean World. The

collision issue discussed above is optionally resolved through Emergency Collision Packets

(ECP) sent from the party who is able to detect collision to the party blind to it. In our

example, shown in Figure 17, A would send such packet to B letting it know about the

collision. B can create a representation of the object it is colliding with, so that it would be

aware of such an event. As disclosed in section 3.3, each VELVET process signs up for some

Areas (similar to SPLINE’s Locales) and by doing so becomes aware about users who are in

those Areas. An Avatar Ai may compare the list of users who are in a given area with the list

of users which have subscribed for the local transmission channel of Ai. Such comparison

allows an avatar Ai to determine whether or not another given entity Aj is geographically

aware of Ai, allowing it to know if an ECP needs to be sent.

Some other collision detection schemes [Sing96] suggest the use of a server which would

know about position and orientation of every object so that it would be able to inform objects

about collisions. VELVET, aiming at an environment with a very large number of users, tries

82

to avoid any kind of server; the reason why the collision detection scheme discussed above is

advantageous. A disadvantage of this scheme is that the collisions between two objects which

are not geographically aware of each other are not detected. Let us assume that object C is

aware and has subscribed for both A and B. Object C may see A and B passing through each

other, if A and B are not aware of one another, i.e. if CA ⊂ and CB ⊂ but BA ⊄ and

AB ⊄ as defined in section 3.2.4. The ECP scheme can be extended to allow third party

collision detection in which case C could send an ECP to both A and B letting them know

about the collision. This extension would still allow collisions to occur, if both parties are

unaware of each other and no other entity is aware of both A and B simultaneously. It is

possible to choose a mixed metric which also takes into account position so that one object is

more likely to “see” another one which is in the neighbourhood, if desired.

4.7 Recovery from Failures

Distributed systems should be able to recover as smoothly as possible from isolated failures.

Systems that rely on a server for instance are challenged by the problem that arises when a

failure happens at the Server station. In some cases that means that the session is immediately

compromised and possibly aborted. VELVET does not use any server for transmission of data

or management of the session. If one participant gets disconnected due to local failure, all that

happens is that no more updates from that participant will be multicasted. VELVET processes

which had subscribed for such resource will eventually drop it from their lists, after a certain

time interval has elapsed, without communication. The procedure is not different from what

happens when a client actually chooses to leave the Virtual Environment. The major

difference is that before leaving an entity may let other interested parties know about it.

83

4.8 Summary

In this chapter we have introduced VELVET, a novel Adaptive, Hybrid Architecture for VEry

Large Virtual EnvironmenTs. VELVET is one of the very first architectures to support

heterogeneous collaboration, i.e. allowing participants in powerful computers and fast

networks to successfully collaborate with others in more modest systems and 56K dial-up

connectivity. VELVET also allows each participant to filter incoming data based on a metric

chosen by that user alone. At the same time, we introduced the concept of Parallel Virtual

World, which consists on a different arrangement of a Virtual World based on a user’s metric.

There are several Parallel Virtual Worlds, one for each metric. PVWs are built independently

and transparently by each participant’s Area of Interest management module of VELVET.

VELVET is a powerful architecture, which allows a larger number of users to interact, since

limitations of space-based architectures are worked out in VELVET, which is shown in the

simulation results presented in this chapter.

84

Chapter V

5 Enabling and Controlling Embedded Worlds

Collaborative Virtual Environment (CVE) designers have long relied on reuse of content

while creating other CVEs. Figure 39 shows just one such example of reuse from

SIGGGRAPH’1997 [WaAC97b, OC-SG97]. CVE content reuse has been historically

performed manually, when a CVE designer would need to extract a portion of code of a CVE

and reattach it to a new project, mostly saving just the repetitive description of the geometry

of such environment. It has not been possible to copy sections of a CVE within another one in

real time, i.e. without reprogramming.

Some recent work [KaSh00] has introduced the concept of real-time copying of sections of a

given CVE into another one. That allows for quick creation of a large scale CVE, as a large

number of pieces individually designed may be brought together into a single larger CVE.

This Chapter introduces a novel distributed approach which allows copies of a given section

of a CVE to be kept consistent amongst all copies, as well as the original CVE area. Such

approach is built upon existing functionality of CVEs, which allows its deployment without

much interference on the way a CVE is designed. Additionally, this thesis introduces another

approach to be used when less strict consistency is sufficient.

Section 5.1 presents background information. Section 5.2 introduces an approach for Full

Consistency Control, as well as an analysis of compatibility with existing architectures.

85

Section 5.3 introduces some approaches for a less strict Consistency Control, and is followed

by a conclusion.

5.1 Background

5.1.1. Hyperlinking and Embedding of Virtual Worlds

The World Wide Web (WWW) is a complete hypertext system. In the web, the unit of a page

shown is a single HTML document. The hyperlinking mechanism enables the Web to be

easily expanded and intuitively accessible as depicted in Figure 32.A. This may be one reason

of the success of today’s Internet. Hyperlinks also allow users to browse the same pages under

different perspectives, depending on which page they came from before finding a given page

(Figure 32.B). In CVEs, the function of portals resembles that of hyperlinking in the WWW.

Even though current portal mechanisms have several problems, they are obviously an

essential element for this kind of large scalable systems.

A B

Figure 32: Expansion of WWW: A – Hyperlinking, B – Various Views.

Page1

Page2 Page3

Page4 Page1

Page2

Page3

Page4

Page3

86

This thesis presents a useful mechanism which is new in the CVE area, but common to other

existing systems, such as hypermedia systems. Such mechanism is the idea of embedding

objects.

5.1.1.1 Hyperlinking
Hyperlinking has similar characteristics as those of traditional portals in CVE. With regard to

Hyperlinking, the conceptual object (anchor) is replaced with the real visual content when the

linked area is activated. On the other hand, an embedded world is visible within the world in

which it is inserted. The greatest difference between the two methods is whether or not a

participant can see and interact with the expanded world and the current world

simultaneously.

Similarly, portals are used as a method to overcome spatial limitations in CVEs. Besides a

pure portal mechanism and Locales partitioning [Brol97, BaWA96b], some additional

features are required to expand the scalability of CVEs.

Limitations of the Portal mechanism

• It performs world replacement to expand a CVE.

• It causes an inevitable navigation delay due to the world replacement.

Figure 33 describes common features in WWW and CVE regarding hyperlinking and

embedding. A Hyperlink in an HTML document is analogous to a Portal of a CVE in that

they both provide a way of expanding the local world view and teleporting to another virtual

space. There was no such a mechanism in a CVE like embedding an object in an HTML

87

document. It is possible to embed a world unit in CVEs as in the WWW. This gives new

advantages but requires more considerations in CVEs.

 A

 B

Figure 33: Hyperlinkng and Embedding in the WWW (A) and a CVE (B)

5.1.1.2 How to Embed a World Unit
Let us consider the following scenario, illustrated in Figure 34: Suppose that a participant P is

navigating in a CVE world which supports World Embedding. When P finds a nice building

and wants to use it in his/her own virtual world, P may simply copy this object’s region and

stitch it together with his/her own local World Space. If allowed, after embedding a region of

the virtual world, P may also customize the shape and color of the embedded building, as well

as to replace some components in the newly copied area.

Provided that the CVE supports certain consistency mechanisms for embedded worlds, the

user P can see other participants moving within the newly copied object or, optionally, just

the building itself.

hyperlink

embedding

image.jp

anchor to portal

embedde
d

teleport

synchronized VE

VE

VE2’

88

Figure 34: Copying a World Unit

Advantages of Embedded Worlds:

• Expandability: World Embeddeding may be used as a means of easily building a very

large virtual world which can be seamlessly seen by several participants simultaneously.

• Navigation Delay Avoidance: When the Portal Paradigm is used, there is a delay when

crossing the border between two worlds due to loading time. On the other hand,

Embedded Worlds have no such additional delay when a participant enters the Embedded

World. After all that is nothing but a part of the CVE in which it is embedded.

• Customizability: A user may freely customize its own world, depending on the

consistency model in use.

Figure 35: Expansion of VE through Embedding World Units

Source world

Embedded world

Destination

copy

VE2 VE1

B

WU1

A

C

X

WU2

WU3 WU4

B

E

X

WU5 WU6

WU7’WU2’

VE3

G

F

WU7 WU8

WU10WU9

F

89

Disadvantages of embedded virtual worlds:

• It is not trivial to maintain consistency among multiple copies of an original world area.

• A mechanism to coordinate the relationship among the several copies of each section of a

world needs to be defined.

Table 4 summarizes the characteristics of both Hyperlinking and Embedding mechanisms of

CVEs. From such comparison, it is possible to notice that World Embedding requires some

procedures for consistency maintenance among multiple copies of the world areas. Some

approaches for consistency are introduced in sections 3 and 4.

Table 4. Portal vs. World Embedding
 Portal World Embedding

How to Expand Hyperlinking Importing (copying) a world unit.
Number of
Copies

One Number of times the world was
copied plus one.

Characteristics - Current world and linked world
are not shown at the same time.
- Current world must be replaced
when navigation to a linked world
is activated.
- World navigation delay.

- Without any replacement
process, the whole worlds is
seamlessly seen, and one can
freely navigate through several
different world areas.
- No navigation delay after the
initial pre-loading process.

Consistency - Doesn’t need to keep consistency
because there is only one copy of
the World.

- Must keep consistency because
there are many copies of the
World.

5.1.2 Related Work
Previous work [KaSh00] has suggested the idea of allowing various Virtual Worlds (VW) to

be hyperlinked. The basic idea is to allow a user to copy a section of a CVE to a local

“personal cyber-space world” [KaSh00], so that it can be used as a means of increasing the

number of users in such local World (which is now “more abundant” [KaSh00]). That would

90

easily lead to a Large-Scale Virtual Environment (LSVE), with a potentially large number of

users. Such expansion may be implemented via portals, which are a path from one World to

another. The use of such portals would require both Worlds to support such notion; after all

there would be a new area neighbouring the area where the portal is placed (and both Worlds

would need to know what to do, if a user gets through the Portal).

One other option for such hyperlinks is suggested at [KaSh00], where a local copy of the

remote World, or part of it, should be made so that such VW would in fact become part of the

local one. This, for example, would facilitate the duplication of the Desert House of Figure

39. Such approach brings as an advantage a reduced complexity and as disadvantage some

consistency control concerns. The complexity is reduced by the fact that participants in the

original remote World do not need to be represented locally, and a VW designer wouldn’t

need to create content from the scratch, as useful areas in existing Worlds could be imported

into others. Consistency issues lie in the fact that modifications made to a copy of the World

should be reflected in the original VW, and possibly in the other copies of it. This introduces

some challenges not covered by [KaSh00], one of which is the need of a mechanism to keep

consistency amongst the various copies of an Area of a World.

5.1.3 Concurrency Control in Collaborative Virtual Environments
In a Collaborative Virtual Environment (CVE), when several participants are going to access

a shared object simultaneously, a certain control mechanism is needed to coordinate such

concurrent actions. Awareness, responsiveness and consistency are considered as the

principal requirements that CVEs have to satisfy. In particular, the trade-off between

responsiveness and consistency causes a dilemma in the design of a CVE. According to the

91

priority between consistency and responsiveness, concurrency control approaches are

categorized as pessimistic and optimistic ones [SuYW99].

The followings are the related terminology when controlling concurrency of actions in a

virtual environment:

• Requester: A participant who needs a token to manipulate an object

• Facilitator: A single central server that coordinates the request competition by message

serialization.

• Token: A permit that allows a participant to change the state of an object

• Object Ownership Database: A database that manages the object token ownership

• Version Number: A number updated whenever there is a modification in the state of an

object.

5.1.3.1 Pessimistic Concurrency Control
If a system guarantees that there is no inconsistency caused by concurrent operations at any

time, it is called a pessimistic concurrency control. Early versions of DIVE (Distributed

Interactive Virtual Environment) [Hags96] that was developed at the Swedish Institute of

Computer Science employed a locking mechanism. CoCAD, a collaborative CAD system, has

a central communication server, called the facilitator, which serializes all updates [GiSa94].

These are appropriate for systems that require a strong consistency, for example, database

systems. The biggest problem of the pessimistic approach is a slow responsiveness. It was

reported that this approach did not scale to more than 10 peers on a local area network, partly

because the locking mechanism did not scale well [Hags96]. Such approach is especially unfit

92

for the case where not many users wish to manipulate the same object at a given time (for

instance, consider a CVE with few participants).

5.1.3.1.1 Locking by Token Passing
A locking mechanism is a concurrency control method that a node has to acquire the lock

(token) before each manipulation to the virtual environment and then sent the update message

to its peers. A token is assigned to each object that must be obtained before manipulation of

the object.

Figure 36 shows a scheme of token passing, in which case a requester (participant) must, in

order to move an object, check the object for availability through the Object Ownership

Database (1). If such object is available, the requester gets a token and is able to manipulate

the object (2). Otherwise, the requester is notified who the current token owner is. The

requester, then, asks the token owner for the token (3), and the owner, eventually, sends the

token to the requester (4).

Figure 36: Token Passing

� check if available
� token / token owner
� token request
� token

Requester Object
�

Token

�

�

�

93

5.1.3.1.2 Serialization
A facilitator is a central communication server which coordinates all actions of each

participant. To manipulate an object, the participant must send an update request to the

facilitator (1), which serializes the update requests by a certain ordering policy (2). The

consistency of the environment is easily kept because all updates are processed in a single

server. However, there can be a bottleneck in a central facilitator when the number of

participants increases.

Figure 37: Serialization

5.1.3.2 Optimistic Concurrency Control
The concept of optimistic concurrency control has been used by various systems [ElGi89,

ElGi91, GrMa94]. Figure 38 shows such control [SuYW99]. In the optimistic approach, a

participant can operate an object without any waiting, and send a notification message

containing the object identifier, the version number, and its action (1). The token owner

receives the message, and verifies whether the version number is valid. If it is valid, then the

owner validates the action by sending a message that the ownership is transferred to the node

that started the manipulation (2). This validation message can cancel other concurrent

Facilitator

Requester 1 Requester 2

� �

�
�

� all notification messages
� ordered update messages

94

manipulation of the same object. Compared to others, the advantage of this approach is an

instant responsiveness to the virtual object.

The Optimistic Concurrency Control has disadvantages in the case where many users are

consistently requesting ownership of a given object in parallel, since many will send update

requests just to have them refused. One such example of CVE with potential problems is that

with a large number of users, which raises the probability of more than one user expecting to

manipulate the same object at a given time.

Figure 38: Optimistic Concurrency Control

5.1.3.3 Multi-Level Consistency Management for Embedded Worlds
A system supporting world embedding should provide various consistency options for world

embedding.

Such a system has the following choices to keep the consistency among the embedded worlds.

��No consistency policy after copying a world.

��Partial consistency policy.

��Full consistency policy.

Token

Requester 1 Requester 2

� �

�
�

� notification/request
� validation (token or
cancel)

95

The full consistency policy covers all copied nodes and supports strict concurrency control.

The partial consistency policy is useful when there is interest in keeping just some of the

nodes consistent, providing a flexible concurrency control. The no consistency policy is the

simplest scheme, which may be used when no consistency after embedding is required.

Each node can choose an appropriate consistency policy and degree from other nodes

according to its own maximum throughput.

The first policy is nothing but a trivial copy of content with no consistency control. That

could be seen as a set of one-nodded trees in a forest as shown in section 5.3. The second

policy is covered in section 5.3, while the last policy is discussed in the section 5.2.

5.2 Full Consistency Control

Figure 39: Desert House in Diamond Park (top) & SIGGRAPH’97 Demo (right).

96

When a designer is creating a new CVE, it is useful to have some parts of some previously

designed CVEs used. As an example, we can see that the SPLINE demo presented at

SIGGRAPH’97 [OC-SG97] by the MERL team has used the “Desert House” which was

originally designed within the Diamond Park [WaAC97b], as shown in Figure 39.

Reuse of parts of a CVE within others, even though convenient, has always been a rather

labourious procedure. The CVE designer needs to manually extract a section of a given CVE

geometry definition and include it within the target CVE. No provision exists to keep

consistency among a number of copies of sections of a CVE.

Subsequent sections present our contributions. Section 5.2.1 introduces a new approach,

aiming at keeping consistency among the various copies of sections of a CVE, whose

Ownership Management is presented in section 5.2.2. Section 5.2.3 presents some analysis of

the approach introduced, while section 5.2.4 comments on limitations of such algorithm.

Finally, section 5.2.5 comments on multi-platform consistency control and section 5.2.6

introduces a methodology which may be used to achieve better performance.

5.2.1 Consistency Control
The copies of sections of a CVE build up a tree, where the original VW is located in the root

and the copies (as well as copies of copies etc.) are branches and leaves. In order to copy a

section of a CVE a user would just need to know the location of such section and copy it from

there. It is important to notice that the location a user is copying from may already be a copy

of some other CVEs (and recursively a copy of a copy etc.). Figure 40 shows such a tree

structure, in which W is the original world (root), with first level copies W1, W2, …, Wn. A

97

copy Wi may have copies made out of it as well, which is shown in Figure 40 as Wi.1, Wi.2,

etc.

Figure 40: Virtual World Copy Tree Structure

We can assume that copies are made based on Locales [Bawa96b, BaWa96], being possible

to copy a number η, 0<η<∞, of Locales from a given CVE. At the same time one may choose

to copy sections from various CVEs in parallel, where several trees (one for each Locale is

created).

As long as a given user is able to join a CVE, the procedure described in this section allows

consistency control to maintain all copies consistent. VELVET [OlGe02] supports the above-

mentioned idea of Hyperlinked Worlds. In VELVET, when a copy of a Locale Wi…j.k is

made, an object Θk is placed in the original Locale Wi…j, which is the parent in the tree

structure. The terminology in VELVET defines the copy as Local Virtual World (LVW), the

original Locale as Remote Virtual World (RVW), and the object Θk as RVW Agent

(RVWA). The RVWA will act on behalf of the whole community which is located in the

corresponding LVW. When a modification is performed in the RVM, the RVWA performs

98

such change in the LVW, so that consistency is kept. When a user in the LVW wishes to

perform a modification in the LVW, the RVWA will attempt to get ownership of the objects

involved in the RVW. Upon successful ownership transfer the RVWA allows the local user to

make the desired change, which is then performed in the RVW by the RVWA. This

procedure ensures consistency between a LVW and its parent in the tree – the equivalent

RVA.

Consistency with siblings is available automatically through the procedure mentioned above.

When a RVWA Θk makes changes in the RVA it is located at, other RVWA Θl, Θm, etc. from

siblings which similarly reside on the same RVW, will notice such modifications and perform

them in their own LVW, hence ensuring consistency among siblings. A similar procedure will

allow changes to reach every node in the tree.

As an example, let us consider an avatar which pushes a chair away from a table in a LVW.

The appropriate RVWA will perform such operation in the RVW, so that both Worlds are

kept consistent. Moreover, such change will be forwarded to parents and other children in the

tree structure, again keeping all copies consistent.

5.2.2 Ownership Management
The Distributed Ownership Control Mechanism requires that an ownership request be

successfully forwarded upwards, with successful ownership transfer granted at the root node,

i.e. if a given user wishes to handle an object, an ownership request would be sent to the

parent node and further up in the tree. If no one else wishes to handle the same object at the

moment, the ownership request will be granted once it hits the root of the tree successfully. If,

however, such request reaches a node whose other child has been granted the ownership of

99

the object in question, the original ownership request fails and such request is not sent any

further, just the denial is sent back to the requester. Figure 41 shows such procedure, where

the shaded area indicates nodes where an ownership request is outstanding. Let us suppose

that some avatar residing the RVW W1.1 wishes to modify some object α1.1 (Figure 41.A).

Such action leads the RVWA which resides at W1 to try to get ownership of the object in that

level (Figure 41.B). Such request keeps on going up on the tree, until it reaches the root

(Figure 41.C). If that’s the only request for the object α in question the ownership is

successfully transferred and the avatar residing in W1.1 may finally handle the object.

Figure 41: Ownership Management

In the event that more than one avatar tries to handle the same object β in various RVW, the

procedure is depicted on Figure 42. Let us suppose, without loss of generality, that, at the

same time, an avatar residing on the RVW W1.1 and another avatar residing in another RVW

Wn.2 wish to handle the same object β, represented as β1.1 and βn.2 respectively in the W1.1

and Wn.2 RVWs (Figure 42.A). Such a request will go up the tree (Figure 42.B, until, if

successful, it reaches the root node (Figure 42.C). At this stage, the Ownership Management

Subsystem (OMS) will verify that more than one avatar wishes to handle the same object β.

At this stage, the OMS will use some metric to choose which request should be granted and

100

which should be refused. Such metric may be as simple as “the first request that arrives” or as

elaborated as the request which comes from the smallest depth in the tree or according to

some pre-defined priority scheme. The use of a metric ensures that several methodologies

may be employed, depending on the choice made by the VW designer.

Figure 42: Collision of Ownership Requests at Root Node

It is important to notice that a Collision of Ownership Request (COR) doesn’t necessarily

happen at the root level. Figure 43 shows an example where the collisions happen at some

lower level. In such an example, avatars residing on the RVW W1.1.1 and RVW W1.n.2 request

ownership of an object δ at the same time (Figure 43.A). Such object is represented in the

RVWs respectively as δ1.1.1 and δ1.n.2. Such request goes up the tree as usual (Figure 43.B),

until a level where a COR happens, which in our example happens on level W1 (Figure 43.C).

Such requests are not sent any further and the OMS of W1 will elect the request which should

continue the path upwards and those which should be denied right away, according to the

metric in use. Such behaviour releases the load from the root node (the original copy of the

VW), as descendents may cut off several requests, forwarding a single request per branch (in

the worst case).

101

Figure 43: Collision of Ownership Requests at Intermediate Node

A request will need to travel no more than the depth of the tree, which has an average at

Ο(lg n) for a balanced tree, with n being the number of copies of the original VW (nodes in

the tree). That means that as the number of RVWs grows, the delays, due to forwarding of

ownership requests, grow slowly. One may also expect a user to make a copy of a given area

of a CVE from a known repository which is relatively close (geographically wise) to such

user. For instance, suppose that each country hosts a copy of the Museum of Louvre. A

second level copy is more likely to come from the local copy in a given country than from the

original VW. Assuming that such behaviour holds true, the networking delay from a node to

its descendents is expected to be small, which allows minimization and approval of

Ownership Transfer Requests to be processed quickly and efficiently.

The support for Hyperlinked Worlds in VELVET is built upon the simple ownership locking

mechanism, which is a built-in feature of most CVE architectures. The procedure mentioned

above could be used by other architectures as well. Both token based and serialized

architectures are possible. In the case of serialization, one can notice that each node works as

a facilitator of its children. Such architecture avoids the bottleneck which a central facilitator,

102

as mentioned in section 2.2.1.2. Such facilitator is in fact distributed amongst the various

branch nodes in the trees shown in this section.

5.2.3 Performance Evaluation
In this section we’ll compare the approach introduced by this thesis with an ad-hoc solution in

which consistency is maintained through a single server, which may as well be understood as

the original CVE. In other words, such ad-hoc solution would have all nodes being children

of the same (root) node, as depicted in Figure 44.

Figure 44: Ad-hoc solution with centralized consistency control

If we define:

• α : The average number of children a node has in the tree, which is also referred to as

“degree of node” [CoLR90];

• β : The depth (height) of the tree;

• η : The Number of nodes in the tree (number of copies of the CVE section).

• δ : The average node-to-node networking delay between nodes in the tree; and

We can conclude initially that ��
=

−

=

≤≤+
ββ

αηα
0

1

0
1

i

i

i

i , while)(logηβ Ο= [Knut97, CoLR90],

assuming that such tree is balanced (see section 4.7 for the case in which the tree is not

balanced). More specifically for a binary tree, � � 1)1(log −+= ηβ α and 11 −≤≤ +ββ αηα .

103

The ad-hoc solution, as shown in Figure 44, also builds up a tree, with height β=1 and degree

of node 1−= ηα (all nodes, except the server node – root in the tree).

The maximum delay for an ownership request to be granted will be βδ2 , or ()[]ηδ log2 Ο for

our approach and 2δ (fix). It is important to add that for the analysis in this section we assume

that processing time for an ownership request is negligible, for the sake of simplicity (one can

also assume that such cost is built into δ).

We can further define λ the average rate of ownership requests for a given object σ. The

expected number of requests, related with the object σ alone, reaching the root of the tree

would be expressed by αλ, being expressed as ()λη 1− for the ad-hoc solution shown in

Figure 44. It is worth to mention that η grows steadily, as it is number of nodes in the tree,

while α may be constant. In fact, for a balanced tree in the worst case ()λη 1− will lead to

λα
β

�
�

�
�
�

�
−��

�

	

�

�
�

=
1

0i

i , or ()λα βΟ to simplify. That shows the advantage of the approach introduced

in this thesis, especially for a Large-Scale CVE, with many objects, participants and,

therefore, many ownership requests being sent. In short, the delay in the new approach grows

slowly, with a complexity of ()ηlogΟ , while the number of requests grows quickly with a

complexity of ()ηΟ for the ad-hoc solution.

For an example with numbers, let us assume that a given CVE has been copied 14 times, and

that such copying builds up a balanced tree as shown in Figure 45.

104

Figure 45: Test Case A

One can notice that in this tree 2=α , 15=η and 3=β . That means that the expected

number of requests arriving at the root is expressed by 2λ, while the ad-hoc solution would

have 14λ requests arriving per unit of time, just for one of the objects in the CVE. On the

other hand, the delay is expected to be 6δ (or lower) for the new approach and 2δ for the ad-

hoc approach.

For a Test Case B with 31 nodes in the tree (a full balanced tree with depth 4 and 2 children

per node), the results would be as follows:

• The original CVE receiving the same 2λ requests per unit of time, while the ad-hoc

solution would jump to 30λ such requests per unit of time.

• The maximum delay would rise to 8δ for our new approach and stay at 2δ for the ad-hoc

solution.

5.2.4 Limitation on Other Architectures
The architecture above makes very few assumptions about a CVE in order to enable

consistency control over copies of CVE areas, but there are still a few issues which may

introduce limitations on its usage with other architectures. In this section, we’ll discuss briefly

105

how the Consistency Control algorithm described in section 5.2.2 and 5.2.3 could be

implemented in CVEs based on SPLINE, NPSNET-IV, MASSIVE-2 and SCORE.

5.2.4.1 SPLINE
Sharing of Locales in SPLINE [BaWA96] would work as described in section 5.2.2 and 5.2.3

with no need for modifications. SPLINE implements the spatial division of the CVE in areas,

called Locales, which would be the natural unit of copying/sharing for which a tree as shown

in Figure 40. Additionally, SPLINE provides Ownership Management. Exactly one object at a

time has ownership of a given object. Before being able to manipulate an object which is

owned by another object, one must request ownership through a pair of

spOwnershipRequest() and spOwnershipRequestGrant() calls.

5.2.4.2 NPSNET-IV
NPSNET-IV [Mace95, MZPB94] also has the CVE partitioned in well-defined hexagonal

areas. Such areas would also work well as a unit to be considered for copying/sharing in the

tree structure described above. Regarding Ownership Management, NPSNET-IV… NPSNET

was designed to comply with DIS 2.0.3 [Mace95], adding multicasting and the lack of keep-

alive heartbeat messages. Regarding Ownership control, since NPSNET-IV is build upon

DIS, such feature is not fully supported, as entities are not expected to interact with each other

(but shoot them). Section 3.4.5 discusses options for the event that ownership control is not

fully implemented. The newly introduced NPSNET-V implements full Ownership Control.

5.2.4.3 MASSIVE-2
MASSIVE-2 [Gree97, GrBe97] implements Ownership Control to some extent since “each

artifact is (and remains) under the control of a single object”, as disclosed on [Gree97]. As

106

per partitioning of the CVE, MASSIVE-2 does not implement the idea of Locales, but rather

that of third party objects. Third party objects recursively groups a number of objects and

other third-party objects. At a first level a MASSIVE-2 may have third party objects defining

what would resemble a Locale. These first level third party objects would make a good

partitioning mechanism candidate, i.e. the unit to be copied as described above.

MASSIVE-3 implements both partitioning and ownership control through the notion of

Locale and a comprehensive Ownership Control mechanism.

5.2.4.4 SCORE
SCORE [Lety00, LeTB99] brings some challenges with regard to the partitioning of the CVE.

It happens that SCORE divides the world in small cells, as suggested on [HoRC94]. There are

basically two methods of cell partitioning: static and dynamic. In the static partitioning all

cells are pre-defined and hard coded in the CVE. Such cells could work as the unit for

copying sections of a SCORE CVE; however, as such cells may be rather small, this may lead

to an undesirable large number of units (cells) to be managed through copy trees as presented

above. To make things worse, SCORE also allows for dynamic cell allocation, in which case

such cells may be merged and split according to the concentration of objects in the CVE.

With such merge/split option, it becomes impossible to keep track of a well-defined area in

the CVE, which hence prevents the use of the copying scheme presented above.

5.2.4.5 Other Architectures
In general, there are two simple requirements for the mechanism defined in sections 5.2.2 and

5.2.3 to be usable:

107

• The CVE has some well defined, and fixed, partitioning, which may be used as a basis for

users to copy individual areas, which are generally called Locales, as introduced by

SPLINE.

• The CVE provides some means to allow a single user at a time to manipulate a given

object.

There are alternatives for CVEs where no ownership management control is offered, i.e.

CVEs which permit more than one user at a time to handle a single object. Such work around

may consist of allowing the RVWA to manipulate a given object on behalf of the child

(descendent to be more precise) and, upon multiple manipulation, forward the resulting

position/shape of the object as a result of the action of the various users. For instance, if a

descendent object is pushing a chair southwards with intensity 5, and another object is

pushing the same object in the opposite direction with intensity 3, what the RWMA will

forward to all descendents is the resulting motion of both forces applied simultaneously. In

our example a motion southwards of intensity 2.

In short, as long as it is possible to have a well-defined area of a CVE copied, with ownership

control being beneficial, the procedure described in sections 5.2.2 and 5.2.3 would allow for

consistency control amongst several copies of such area of a CVE.

One example of other architecture not mentioned above would be the High-Level

Architecture (HLA) [ZhGe01], which has been developed by the Department of Defence of

the US to replace DIS. HLA became an OMG and IEEE standard [IEEE1516]. HLA provides

both ownership management through the Ownership Management Service. An object must

acquire the ownership of another object prior to being allowed to modify it. The two

108

requirements mentioned above are, hence, available, which means that the approach presented

in this thesis would also apply to HLA compliant CVEs.

5.2.5 Multiarchitectural Consistency Control
The above procedure is obvious in the case where all copies of a given CVE area are running

under the same architecture. For instance, if all nodes shown in the trees of Figures 40

through 16 are all VELVET compliant CVEs, one can notice that no potential problems exist.

Similarly, if all nodes are based on SPLINE, all should be fine as well. If, however, some of

those copies are built into VELVET compliant CVEs, while others are based on SPLINE, for

instance, it is not obvious that it would all work smoothly.

Table 5 shows a case-by-case analysis, indicating those combinations which would work

smoothly, as well as those which would work partially or not at all.

Table 5. Multiarchitectural Consistency Control
 VELVET SPLINE NPSNET MASSIVE SCORE HLA

VELVET OK OK OK♠ OK* Partially OK
SPLINE OK OK OK♠ OK* Partially OK

NPSNET-IV OK♠ OK♠ OK♠ OK*♠ Partially♣♠ OK♠
MASSIVE-2 OK* OK* OK*♠ OK* Limited*♣ OK*

SCORE Partially Partially Partially♣♠ Limited*♣ Partially Partially
HLA OK OK OK♠ OK* Partially OK

* Assuming that, in MASSIVE-2, the first level Third Party Object is fix and can hence be

used as a unit for copying. MASSIVE-3 implements the idea of Locale, which is a natural

choice for partitioning, in which case no problems exist.

♣ It is rather problematic, but if the SCORE world has fixed sized cells it could still be

possible.

♠ NPSNET-IV provides a well-defined partitioning scheme, which is the basic requirement

109

for consistency control. There are some potential issues regarding Ownership Control, but

that is manageable as mentioned in section 5.2.5.5. NPSNET-V provides full Ownership

Control.

Additionally one must expect to render content from other architectures as well. Most

architectures mostly provide means for communication and consistency control. It is usually

up to each implementation to render each object in the required position. For instance,

SPLINE has the rendering implemented in the spVisualBody() function. By default SPLINE

uses OpenGL to render the interface to the user; however such function could be rewritten to

use other technologies, such as Java3D, ActiveX, etc. Integration of various architectures

must allow a user to receive the content of a world and allow such content to be rendered

independently. One would be able to render the content of a VELVET Area into a SPLINE

World. Most architectures are friendly in this regard.

5.2.6 Balancing of Trees
The approach presented in this thesis works quite well if the tree resulting of copies is

balanced, i.e. if ∀ external node ωi in the tree, the depth of the branch of the tree which

reaches such node is either β-1 or β, where β is the depth of the tree. It is easy to see why

such feature is beneficial, since the maximum delay associated with an ownership transfer is

upper bounded by the depth of the tree and a balanced tree has the minimum depth for each

degree of node α [CoLR90], as defined in section 4.4. In this section a procedure to be

employed when a tree is not balanced will be presented. Such procedure will allow a non-

balanced tree to become balanced.

110

5.2.6.1 Tree Rotation and Child Adoption
As performed in data structures, when a tree is not balanced and one desires to transform it

into a balanced tree a number of “rotations” is required [CoLR90]. A simplification of such

mechanism consist in simply allowing the adoption of a child node by another branch which

is at a lower depth and which still has some missing child. A branch node has a missing child

if the number of children of such node is smaller than the degree of the nodes of the tree α

[CoLR90].

In the case of our CVE area copying tree, an adoption of a child would mean that a CVE

which has originally been copied from a given location will end up transferred to have

another location as a parent. In other words, a node ωi.n which was originally keeping

consistency through a branch node ωi, will be required to keep consistency through another

branch node ωj. Such node adoption may be performed in such a way to minimize delay. I.e.

amongst a set of candidate adopters (ωj, ωk, ωl, etc.) of a node ωi.n, the system may elect the

candidate adopter node ωα so that the delay between the adoptee and the chosen candidate

adopter δ(ωi.n, ωα) is minimized.

Figure 46: Child Adoption and Balanced Trees

111

This procedure allows a tree to eventually become balanced, which is the optimum case for

the approach presented in this thesis. Figure 46 shows an unbalanced tree (left) with a series

of candidate parents to adopt the marked node. Once the adoption takes place the tree is

balanced (right). Of course this procedure doesn’t need to be enforced continuously. In fact, it

is beneficial to allow the tree to be unbalanced to some degree in order to avoid unnecessary

node adoptions when additional nodes may be added and naturally bring the tree to balance.

The adoption procedure may be performed just when the tree unbalance is greater than some

pre-defined threshold, for instance if the difference in depth of two leaves is found to be

greater than 3.

5.3 Partial Consistency Control

In this section, we introduce a more relaxed consistency control mechanism, in cases where

full consistency control is not required (or desired). This mechanism provides a greater

flexibility at the price of lack of full consistency.

The approach we introduce for partial consistency control is based on the full consistency

control mechanism presented in section 5.2. The idea is that instead of having a single tree for

each section of a Virtual World, we may have a forest, with consistency kept just within each

tree of such forest. The basic idea is that a user would have two options while copying a

World:

• keep consistency with the parent: the new node becomes a leaf of the tree where the VW

area was copied from.

112

• not keep consistency with the parent: the new node becomes the root of a new tree in the

forest related to a given VW area.

Figure 47 shows an example of a forest, with a couple of single nodes (single-node trees –

left) as well three trees (right). The first would be examples of an individual who copied a

World and decided not to keep it consistent with any other copies of that world, while the

latter have consistency control at each tree level. It is important to notice that at some point

some other user may decide to copy from such a single-nodded tree, hence creating a branch

in such tree.

Figure 47: A Forest – Partial Consistency Based on Full Consistency

All that was commented in Section 5.2 applies to each tree of a forest, such as the ones shown

in Figure 47. In fact, Section 4 discloses a special case in which all nodes have chosen to keep

consistency with their “parents”. Each section of a Virtual World which is eventually copied

will define a forest with one or more trees in it.

5.4 Summary

This chapter has presented the notion of Embedded Worlds, which is a useful mean to create

Large-Scale Virtual Environments through the replication of sections of existing CVEs within

other CVEs. We have introduced a number of approaches for Full Consistency Control and

113

Partial Consistency Control, as well as presented an analysis of usability of some of the

Consistency Control mechanisms proposed with existing CVE architectures.

The idea of Embedded Worlds is attractive, since it allows a Large-Scale Virtual

Environment to be built quickly. Some of the consistency control mechanism may also be

used to allow multiplatform collaboration. As they only depend on existing partitioning and

ownership control management, such techniques may be deployed in today’s CVE Worlds.

114

Chapter VI

6. Conclusion

In this thesis, we have studied a number of issues on Very Large Collaborative Virtual

Environments. That includes a mechanism which may be used to create Large Scale

Collaborative Virtual Environments, through the idea of embedding world areas within other

worlds. We introduce two new methods for consistency control among the various copies of a

given world area, namely full consistency and partial consistency control among the various

copies.

We also presented VELVET, a novel Adaptive Hybrid Architecture for Large Scale Virtual

EnvironmenTs (LSVE). VELVET has been shown to be flexible, allowing a broad range of

LSVE, which would otherwise fail, to work gracefully. VELVET allows heterogeneous

systems to successfully collaborate, i.e. users in supercomputers and very fast network

connections to successfully collaborate with other users in not-so-powerful stations behind a

56K modem connection. That has been recently suggested as a desirable feature in CVEs

[NPSNET-V, GrPS00]. VELVET also allows a greater level of adaptation, which translates to

a greater number of users being able to collaborate through a CVE.

The combination of Embedded Worlds and the VELVET architecture shows great potential

for Large Scale Collaborative Virtual Environments.

115

One disadvantage over other architectures is that VELVET makes use of a potentially larger

number of Multicast Addresses, which leads to a potentially large number of entries in

routing tables of various routers. More specifically, VELVET uses a Multicast Group (MG)

for each Area, as well as for each non-artifact object, hence the cost regarding MGs in

VELVET has an upper bound O(M+P), with M being the number of Areas in the Word

(Locales) and P the number of participants. SPLINE’s lower bound MG is O(M) since each

Locale has a multicast group. MASSIVE-2 has an upper bound at O(M+P) as well, when

considering the case where every couple of objects creates a third party object. SCORE has a

lower bound MG usage at O(C), where C is the number of cells, which is much larger than

the number of Areas (Locales) M.

It is worth mentioning that, even though VELVET has an O(M+ P) number of MGs, each

router only needs to deal with those subscribed for stations whose traffic goes through it. Part

of the metric of a given station could also include some cost measurements of the load in

routers in the neighbourhood. That would allow a VELVET-based system to drop MGs, if

some multicast table in some router on the way to that station is overloaded. The adaptability

of VELVET and asymmetric presentation of the World for the various participants allows

such features without much overhead, since all changes can be performed unilaterally by each

participant.

It is also worthy of mention that, as technology evolves, routers get faster and more powerful

and such limitations tend to be diminished as time goes by. Regarding the number of

multicast addresses available, IPv6 is increasing their number to the same range of the total

IPv4 unicast addresses available today.

116

One other way of seeing VELVET’s advantage is to consider a precision parameter Pr,

defined as the amount of desired data divided by the amount of data received. In other words,

the rate of “unsolicited” traffic compared with the traffic which is of interest for a given user.

In the ideal case Pr would be 1. We discuss below a case-by-case comparison of the various

architectures:

• In an ad-hoc scheme where every user receives updates from all objects (such as

SIMNET), Pr would reduce as the number of objects rise, approaching zero at the extreme

case.

• Locale based solutions would have Pr decreasing, as a greater number of users join a

single Locale; This parameter would approach zero in the extreme case as well.

• MASSIVE-2’s case would be similar to SPLINE’s, potentially having Pr approaching zero

as well. Additionally one could have special interest in an object which is part of a

(potentially recursive) third-party object. That would mean that such user would not

receive updates from that specific object unless the third-party object boundary is crossed.

This could bring Pr to a value greater than 1.

• SCORE, also being space based, would suffer from similar degradation of Pr since

unsolicited data from objects which happen to be outside of the AoI may still be

“subscribed” for, if the cell where they are located is partially within the AoI.

VELVET on the other hand would allow one to subscribe only to those objects one is really

interested in. Some objects of interest may be dropped due to lack of resources rather than the

inability of subscribing for them. Additionally objects that get dropped will be those of lower

priority among all objects that one is aware of. VELVET would hence optimize Pr to be as

117

close to 1 as possible, taking into account the user’s processing power, networking connection

and routing as well as the metric chosen by that user.

Suggestions for further research:

It would be beneficial to allow a participant to choose amongst several levels of detail of

objects within a given Virtual World. That would allow a user with a slow speed connection

and not as powerful station to choose a lower quality level, filtering out yet more incoming

data. Such feature could be included in VELVET to enable such enhanced filtering

mechanism.

Security in CVEs is an issue not broadly addressed. An architecture could provide encryption

and authentication services in order to protect sensitive content, as LSVE systems are

expected to be used through the Internet Worldwide. We also consider developing such

features within the VELVET architecture.

Results from Hysteresis curves should be inspected as a methodology for AICI/AICO control.

As per Embedded Worlds, we expect to develop new consistency control mechanisms which

would allow a more flexible and fast control.

More work is needed to allow truly collaborative Virtual Environments, i.e. those in which

several users can manipulate a single object simultaneously. Some enhanced Ownership

Control mechanism is required to enable such feature, such as that presented in [GrPS00].

118

References

[BaWA96] Barrus, J.W.; Waters, R.C. and Anderson, D.B. (1996) "Locales and Beacons:

Efficient and Precise Support for Large Multi-User Virtual Environments",

Mitsubishi Electric Research Laboratory TR-95-016a.

[BaWA96b] Barrus, J. W., Waters, R. C., & Anderson, D. B. (1996). Locales: Supporting

Large Multi-User Virtual Environments. IEEE Computer Graphics and

Applications, 16(6), 50-57.

[BeGa92] Bertsekas, D., & Gallager, R. (1992) Data Networks, Second Edition, Prentice

Hall.

[Brol97] Broll, W. (1997) Populating the Internet: Supporting Multiple Users and

Shared Applications with VRML. Proceedings of the VRML'97 Symposium,

Monterey, CA, ACM SIGGRAPH, 87-94.

[CaWe96] Calvin, J.; Weatherly, R. (1996) An Introduction to the High Level

Architecture (HLA) Runtime Infrastructure (RTI), Technical Report

DMSO/Mitre Corporation, 1996.

[CMBZ00] Capps, M., McGregor, D., Brutzman, D., & Zyda, M. (2000) NPSNET-V: A

New Beginning for Dynamically Extensible Virtual Environments, IEEE

Computer Graphics and Applications, 20(5), pp. 12-15.

[CoLR90] Cormen, T., Leiserson, C., & Rivest, R. (1990). Introduction to Algorithms.

MIT Press.

119

[DiGa99] Diot, C., & Gautier, L. (1999). A Distributed Architecture for Multiplayer

Interactive Applications on the Internet. IEEE Network (July/August).

[DuFo98] Durbach, C.; Fourneau, J-M (1998) Performance Evaluation of a Dead

Reckoning Mechanism, IEEE DIS-RT 1998.

[ElGi89] Ellis, C. A., and Gibbs, S. J. (1989) Concurrency Control in Groupware

Systems, ACM SIGMOD International Conference on the Management on

Data, pp. 399-407.

[ElGi91] Ellis, C. A., and Gibbs, S. J. (1991) Groupware Some Issues and Experience,

Communications of the ACM, 34(1), pp. 38-58.

[FaTo98] Farcet, N. & Torguet, P. (1998) Space-Scale Structure for Information

rejection in Large-Scale Distributed Virtual Environment, IEEE Virtual

Reality Annual International Symposium (VRAIS’98), Atlanta, GA.

[FrSt98] Frécon, E., & Stenius, M. (1998). DIVE: A Scalable Network Architecture for

Distributed Virtual Environments. Distributed Systems Engineering Journal,

5(3), 91-100.

[GiSa94] Gisi, M. A., and Sacchi, C. (1994) Co-Cad: A collaborative Mechanical CAD

System, Presence, MIT Press, Vol. 3, No. 4, pp. 341-350.

[GrBe97] Greenhalgh, C., & Benford, S. (1997). A Multicast Network Architecture for

Large Scale Collaborative Virtual Environments. Multimedia Aplications,

Services and Techniques – ECMAST’97, Lecture Notes in Computer Science,

Vol. 1202, ISBN 3-540-63078-3, Springer-Verlag, 1997.

120

[GrMa94] Greenberg, S., and Marwood, D. (1994) Real Time Groupware as a

Distributed System: Concurrency Control and its Effect on the Interface, ACM

CSCW 1994, pp. 207-217.

[Gree96] Greenhalgh, C. (1996). Dynamic Embodied Multicast Groups in MASSIVE-2.

Technical Report NOTTCS-TT-96-8, Department of Computer Science, The

University of Nottingham, UK.

[Gree97] Greenhalgh, C. (1997) Large Scale Collaborative Virtual Environments. Ph.D.

Thesis, Computer Science Department, University of Nottingham, UK.

[GrPS00] Greenhalg, C., Purbrick, J., & Snowdon, D. (2000) Inside MASSIVE-3:

Flexible Support for Data Consistency and World Structuring, Proceedings of

the third international conference on Collaborative Virtual Environments,

119-127.

[Hags96] Hagsand, O. (1996) Interactive Multi-user Virtual Environments in the DIVE

System. IEEE Multimedia (Spring), 30-39.

[HoRC94] Hook, D. J. V., Rak, S. J., & Calvin, J. O. (1994) Approaches to Relevance

Filtering. Proceedings of 11th DIS Workshop.

[IEEE1278] Institute of Electrical and Electronics Engineers, International Standard,

ANSI/IEEE Standard 1278-1993 (1993) Standard for Information Technology,

Protocols for Distributed Interactive Simulation.

121

[IEEE1516] Institute of Electrical and Electronics Engineers, International Standard 1516

(2000) IEEE Standard for Modeling and Simulation (M&S) High Level

Architecture (HLA) - Framework and Rules.

[ISO11172-2] ISO/IEC 11172-2 1993 - Information technology - Coding of moving pictures

and associated audio for digital storage media at up to about 1,5 Mbit/s -- Part

2: Video.

[KaSh00] Kato, K., & Shimamura, K. (2000) Reproductive Cyberspace for User

Proliferation, Globecom’2000 VRTS Workshop, San Francisco, CA, USA.

[Knut97] Knuth, D. E. (1997) The Art of Computer Programming, Volume 1:

Fundamental Algorithms. Third Edition, Addison Wesley.

[Leig99] Leigh, J. at al., (1999) A Review of Tele-Immersive Applications in the CAVE

Research Network, IEEE Virtual Reality – VR’99, Houston, TX, 1999.

[LeTB99] Lety, E., Turletti, T., & Bacelli, F. (1999). Cell-based Multicast Grouping in

Large-Scale Virtual Environments. Techinical Report 3729 INRIA.

[Lety00] Lety, E. (2000). Une Architecture de Comunication pour Environnements

Virtuels Distribues à Grande-Echelle sur l’Internet. Ph.D. Thesis, L’Universite

de Nice-Sophia Antipolis, France.

[Lora92] Loral Systems Company, (1992) Straeman Distributed Interactive Simulation

Architecture Description Document Volume 1, Technical Report, Advanced

Distributed Simulation Technology Program Office, Orlando, FL March 1992.

122

[LZGS84] Lazowska, E. D.; Zahorjan, J.; Graham, G. S. and Sevcik, K. (1984)

Quantitative System Performance: Computer System Analisys Using Queueing

Network Models, Prentice Hall, 1984.

[Mace95] Macedonia, M. (1995). A Network Software Architecture for Large-Scale

Virtual Environments. Ph.D. Thesis, Computer Science Department, Naval

Postgraduate School, Monterey, CA, USA.

[MIL3] Mil3 Inc. OPNET Modeler – Simulation Kernel Manual. Vol. 1 and 2.

[MZPB94] Macedonia, M., Zyda, M., Pratt, D., Barham, P., & Zeswitz, S. (1994).

NPSNET: A Network Software Architecture for Large Scale Virtual

Environments. Presence, 3(4), 265-287.

[Oliv96] Oliveira, J.C. (1996) TVS - Um Sistema de Videoconferência, M.Sc. Thesis,

Computer Science Department, Pontifical Catholic University of Rio de

Janeiro.

[OlGe02] Oliveira, J., & Georganas, N. (2002) VELVET: An Adaptive, Hybrid

Architecture for Very Large Virtual EnvironmenTs. Submitted for publication.

[OlSG00] Oliveira, J. C., Shen, X., & Georganas, N. D. (2000). Collaborative Virtual

Environment for Industrial Training and e-Commerce. IEEE VRTS'2000

(Globecom'2000 Conference's Workshop on Application of Virtual Reality

Technologies for Future Telecommunication Systems), San Francisco, CA,

USA.

123

[OHSC00] Oliveira, J. C., Hosseini, M., Shirmohammadi, S., Cordea, M., Petriu, E.,

Petriu, D., & Georganas, N. D. (2000). VIRTUAL THEATER for Industrial

Training: A Collaborative Virtual Environment. Proc. 4th World Multi-

Conference on Circuits, Systems, Communications & Computers (CSCC

2000), Vouliagmeni, Greece.

[OlSG99] Oliveira, J. C., Shirmohammadi, S., & Georganas, N. D. (1999). Collaborative

Virtual Environments Standards: A Performance Evaluation. IEEE DiS-RT’99,

Greenbelt, MD, USA.

[OlSG00] Oliveira, J. C.; Shirmohammadi, S. and Georganas, N. D. (2000) A

Collaborative Virtual Environment for Industrial Training, IEEE Virtual

Reality 2000 (VR’2000).

[OlSG00b] Oliveira, J. C., Shen, X., & Georganas, N. D. (2000). Collaborative Virtual

Environment for Industrial Training and e-Commerce. IEEE VRTS'2000

(Globecom'2000 Conference's Workshop on Application of Virtual Reality

Technologies for Future Telecommunication Systems), San Francisco, CA,

USA.

[OlYG02] Oliveira, J. C., Yu, S. J., & Georganas, N. D. (2002) Enabling Embedded

Worlds in Very Large Virtual Environments, Submitted for publication.

[Sing96] Singhal, S. (1996). Effective Remote Modeling in Large-Scale Distributed

Simulation and Visualization Environments. Ph.D. Thesis, Computer Science

Department, Stanford University, CA, USA.

124

[SiZy99] Singhal, S., & Zyda, M. (1999). Networked Virtual Environments, Design and

Implementation. ACM Press/Addison Wesley.

[SuYW99] Sung, U. J., Yang, J. H. and Wohn, K. Y. (1999) Concurrency Control in

CIAO, IEEE VR'99, pages 22-28, Houston, Texas USA, March 1999.

[Tane97] Tanembaum, A. S. (1997) Operating Systems: Design and Implementation,

Prentice-Hall International, 1997

[WaAS97] Waters, R. C., Anderson, D. B., & Schwenke, D. L. (1997). The Interactive

Sharing Transfer Protocol Version 1.0”, MERL Technical Report TR-97-10.

[WaAC97b] Waters, R., Anderson, D., Casey, M., Yerazunis, & Sterns, I. B. (1997)

Diamond Park and Spline: A Social Virtual Reality System with 3D

Animation, Spoken Interaction, and Runtime Modifiability, Presence, MIT

Press, Vol. 6, No. 4, pp. 461-480.

[Weat98] Weatherly, R. (1998) DoD High Level Architecture for Modeling and

Simulation, Software Engineering and Economics Conference.

[Yu00] Yu, S. J. (2000). Dynamic Update Message Filtering Schemes for Distributed

Virtual Environments. Ph.D. Thesis, Computer Science Department, Yonsei

University, South Korea.

[ZBDM97] Zyda, M., Brutzman, D., Darken, R., McGhee, R., Falby, J., Bachmann, E.,

Watsen, K., Kavanagh, B. & Storms, R. (1997) NPSNET - Large-Scale Virtual

Environment Technology Testbed, Proceedings of the International

Conference on Artificial Reality and Tele-Existence, Tokyo, Japan, pp.18-26.

125

[ZhGe01] Zhao, H., & Georganas, N. D. (2001) Collaborative Virtual Environments:

Managing the Shared Spaces, Networking and Information Systems Journal ,

Vol. 3, No.2.

[Zyda96] Zyda, M. (1996) Networking Large-Scale Virtual Environments, Proceedings

of Computer Animation '96, 3-4 June 1996, Geneva, Switzerland, IEEE

Computer Society Press, pp. 1-4.

[Beie01] Beier, K.-P. (2001) Virtual Reality: A Short Introduction

http://www-vrl.umich.edu/intro/

[COVEN] COVEN – http://chinon.thomson-csf.fr/projects/coven/

[DirectX] Microsoft DirectX – http://www.microsoft.com/directx/

[HLA] HLA Web-Site – http://hla.dmso.mil

[LW] Living Worlds draft specification

http://www.vrml.org/WorkingGroups/living-worlds/draft_2/index.htm

[NPSNET-V] NPSNET-V Research Group – http://movesinstitute.org/~npsnet/v/

[OC] High Level Overview of Open Community –

http://www.opencommunity.com/ov.html

[OC-C] Open Community ANSI-C API Specification

http://www.opencommunity.com/opencom-c-api.htm

[OC-SG97] Open Community Exhibit at Siggraph '97

http://www.opencommunity.com/sig.html

http://chinon.thomson-csf.fr/projects/coven/
http://www.microsoft.com/directx/
http://hla.dmso.mil/
http://www.vrml.org/WorkingGroups/living-worlds/draft_2/index.htm)

126

[OpenGL] OpenGL Architecture Review Board (http://www.opengl.org).

[RTP] http://www.ietf.org/rfc/rfc1889.txt

[VJ3D] VRML-Java3D Working Group

http://www.web3d.org/WorkingGroups/vrml-java3d/

[VRML] VRML Web Site – http://www.vrml.org

http://www.oprngl.org/
http://www.web3d.org/WorkingGroups/vrml-java3d/
http://www.vrml.org/

