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ABSTRACT 
 

A genetic algorithm for multiobjective optimization is presented which tries to evolve an 
evenly distributed set of solutions belonging to the Pareto set by: (i) ranking the population 
according to nondomination properties; (ii) defining a filter to retain Pareto set solutions and 
(iii ) using adequate operators: exclusion, addition and single-objective operator which 
improves the individuals from the current filter in order to achieve a better distribution of 
solutions along the Pareto set. 
Numerical experiments are presented in order to ill ustrate the performance of the proposed 
algorithm when applied to multiobjective optimization problems in structural mechanics. 
 
 
 
1. INTRODUCTION 
 
Virtually all design problems are actually multiobjective optimization problems (MOOP) that 
due to the lack of a better methodology and adequate computational procedures are simplified 
by aggregating - usually via a convex combination - all the objectives into a single one. Those 
objectives are usually conflicting and often incommensurable and there is not a single 
optimum solution to the problem when all objectives are considered. The set of solutions 
which are such that no improvement can be made in one objective without deteriorating at 
least one of the other objectives is called the Pareto set of non-dominated solutions and an 
approximation of it would be very useful in order to get insight into the problem and assist the 
decision making process. 
 
Genetic algorithms (GAs) are search procedures inspired by natural selection which have 
features that make them attractive for the construction of the Pareto set in multiobjective 
optimization problems: they are population-based, require only objective function values, and 
use probabili stic transition rules which make them less prone to local optimum entrapment. 
Besides those features, GAs are naturally parallel allowing for the implementation in multi-
processor architectures as well as in clusters of workstations and/or personal computers. 
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2. PARETO MULTIOBJECTIVE GENETIC ALGORITHM 
 
The Pareto Multiobjective Genetic Algorithm (PMOGA) proposed here makes use of a filter 
to retain Pareto set solutions as presented in [Cheng and Li, 1998]. However, in order to 
improve the results of the MOOP, three new operators – the exclusion, the addition and the 
single-objective operator – are introduced here. 
 
A strategy of ranking based in nondomination properties is used. The non-dominated 
solutions receive the rank 1, then a new nondomination test is made in the population without 
these solutions and the new non-dominated solutions receive the rank 2. This procedure is 
repeated until all solutions are ranked. After that, a tournament selection based in ranking 
position is used and the evolution of the population continues. 
 
Due to the existence of more than one objective, the search space is more complex and a 
higher mutation rate can be used in order to test more dispersed solutions, thus better 
exploring the search space. 
  
The exclusion operator introduced here finds the closest solution in the current filter to be 
removed in order to achieve a better distribution of solutions along the Pareto set. This 
exclusion procedure is repeated until the current filter reaches the specified size. The metric 
used can be written as: 
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This metric results in a process of sum of the percentages of the distances of each objective 
between the two solutions j and k. 
 
The addition operator finds the two more distant (in the objective function space) solutions 
and recombines them n times, where the value of n is usually between 2 and 6. The idea of 
this operator is to find solutions which fill the space between the two far away solutions. 
 
Finally, the single-objective operator finds the two extreme solutions, according to each 
objective, in order to perform n recombinations between them. The idea is to better search for 
the optimum of each individual objective thus obtaining a better distribution of the solutions 
along the Pareto set. 
 
These three operators work at the end of each generation. However, it is possible and in fact 
recommended that, after a certain number of generations are processed and a significant 
number of Pareto solutions are retained in the filter, additional generations should be 
processed using only these three operators. These additional generations are faster than the 
standard ones and they significantly improve the quality of the final Pareto set. 
 
3. APPLICATIONS 
 
To illustrate the use of the proposed PMOGA, two engineering design examples from the 
literature were selected. Although a real-coded version of the PMOGA can also be conceived 
following the same ideas, the standard binary coding was used here. The recombination 
operator adopted was the uniform crossover applied with a probability of 0.85. The mutation 
rate was set at 0.05 and the selection procedure used was a tournament based on the 
nondomination ranking. In both examples the PMOGA was run only once, starting from a 
randomly generated initial population. 
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3.1. Example 1: Design of an I-beam 
 

In this problem it is necessary to find the dimensions of the beam sketched in Figure 1, that 
satisfy geometric and strength constraints and minimize the following conflicting objectives: 

• cross section area of the beam; 
• static deflection of the beam under the vertical load P. 

 
Figure 1: The simply supported I-beam [Coello and Christiansen, 1997]. 

 
It is assumed that: 
 

• E = 2 x 104 kN/cm2 (Young’s Modulus of Elasticity); 
• kg = 16 kN/cm2 (permissible bending stress of the beam material); 
• P = 600 kN and Q = 50 kN (maximal bending forces). 

 
The vector of decision variables is x = [ x1, x2, x3, x4 ]T. Their values will be given in 
centimeters and the geometric constraints are: 
 

10 ≤ x1 ≤ 80;     10 ≤ x2 ≤ 50;     0,9 ≤ x3 ≤ 5;     0,9 ≤ x4 ≤ 5                     (2) 
 
The strength constraint is 
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where: 
• My and Mz are maximal bending moments in the Y and Z directions; 
• Wy and Wz are section module in the Y and Z directions. 

 
The maximal bending moments due to the loads P and Q are My=30000kN.cm and 
Mz=2500kN.cm respectively; and the section modules can be expressed as follows: 
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Thus the strength constraint is: 
 

               ( ) ( )[ ] ( ) 0
22

15000

23422

180000
16 3

24
3

341

2

411
2

442
3

413

1 ≥
+−

−
−++−

−
xxxxx

x

xxxxxxxxx

x
             (6) 

 
Finally, the objective functions are: 
 

• Cross section area 
                                                         f1 (x) = 2x2x4+x3(x1-2x4) cm2                                           (7) 

 
• Static deflection 
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where I is the moment of inertia which can be calculated from 
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After substitutions, the second objective function is: 
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For this example the length of the chromosome is 43 and a simple penalty method is applied: 
for the infeasible points the constants c1 = 1000 e c2 = 10 are added to the objectives 1 and 2 
respectively, as follow: 
 
                                                               fi (x) = fi (x) + ci                                                        (11) 
 
A population of 50 individuals is allowed to evolve for 50 generations. The number of 
additional generations that act only on the filter is 450. The solutions belonging to the Pareto 
set retained by the filter are presented in Figure 2 and Table I. 
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Figure 2: Points in the filter in generation 500. 
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x1 x2 x3 x4 fo1 fo2
63,60 40,01 0,90 0,90 127,60 0,0565
68,05 40,34 0,90 0,90 132,20 0,0482
72,35 41,26 0,91 0,91 139,00 0,0409
79,12 40,05 0,90 0,90 141,70 0,0345
78,32 45,70 0,92 0,96 158,10 0,0301
79,65 23,03 0,96 2,15 171,80 0,0273
78,91 40,09 0,92 1,41 183,00 0,0245
78,89 43,89 1,00 1,51 208,70 0,0213
78,56 34,83 0,96 2,42 240,00 0,0181
79,66 46,58 1,02 1,99 262,70 0,0158
77,95 42,21 1,04 2,80 311,50 0,0136
78,62 45,11 0,93 2,92 331,40 0,0123
79,79 40,89 0,93 3,72 372,00 0,0106
79,92 40,04 1,01 4,30 416,70 0,0095
79,99 47,49 1,29 3,97 470,50 0,0085
79,58 50,00 1,15 4,49 529,80 0,0075
80,00 48,67 1,66 4,99 602,30 0,0068
79,59 50,00 2,95 5,00 705,00 0,0064
79,72 50,00 4,42 4,87 796,60 0,0062
80,00 50,00 5,00 5,00 850,00 0,0059  

Table I: Values of the design variables and the objective functions for the points in Figure 2. 
 
3.2. Example 2: Welded Beam Design 
 
The problem consists of a beam submitted to a force F in its extremity and that needs to be 
welded to another structural component satisfying stability conditions and project limitations. 
The four design variables − weld thickness (h); length of weld (l); width of the beam (t) and 
thickness of the beam (b) − are indicated in the Figure 3. 

 
Figure 3: The welded beam [Deb, 1998]. 

 
The two objectives for this problem are: 

• the cost of the beam; 
• the deflection at the end of the beam. 

 
Both objectives are to be minimized but these criteria are again incommensurable and 
conflicting as lowering the cost usually leads to a higher deflection while, in order to reduce 
the deflection, it is usually necessary to increase the cost. 
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There are five strength constraints. The two first constraints make sure that the shear stress 
and normal stress developed at the support location of the beam are smaller than the allowable 
shear strength (τmax) and yield strength (σmax) of the material respectively. The third constraint 
makes sure that the allowable buckling load (along t direction) of the beam is greater than the 
applied load F. The fourth constraint is a maximum limit (umax) for the displacement at the 
end of the beam. The fifth constraint makes sure that the thickness of the beam is not smaller 
than the weld thickness. There are still other geometric constraints on the decision variables 
according to the following model: 
 

Min. f1 (x) = 1.10471h2l + 0.04811tb(14+l)  
Min. f2 (x) = 2.1952 / (t3b)     
Subject to 

g1 (x) → τ (x) - τmax ≤ 0    
g2 (x) → σ (x) - σmax ≤ 0                                        (12) 
g3 (x) → F – Pc (x) ≤ 0    
g4 (x) → 2.1952 / (t3b) - umax ≤ 0   
g5 (x) → h - b ≤ 0     
0.125 ≤ h, b ≤ 5.0     
0.1 ≤ l, t ≤ 10.0     

 
The stress and buckling terms are given as follows [Deb, 1998]: 
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The remaining data for the problem are [Coello, 1998]: 
 

F = 6000 lb    τmax = 13600 psi 
E = 30 x 106 psi   σmax = 30000 psi                        (18) 
G = 12 x 106 psi   umax = 0.25 in 
L = 14 in (free length) 

 
The chromosome is 54 bits long and a simple penalty method is applied: 
 
                                                         fi (x) ← fi (x) + ci . nviol                                                 (19) 
 
where c1=100; c2=0,01 and nviol is the number of violated constraints. The values of the ci 
constants make sure that a solution violating one constraint is worst than a feasible one and 
that a solution violating two constraints is worst than one violating a single constraint and so 
on.  
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The population size is 200 and the number of generations is 100. In Figure 4, the feasible 
solutions in the initial generation and in generation 100 are shown. The efficiency of the new 
operators is indicated in Figure 5 which displays the solutions in the filter in generation 100, 
with (right) and without (left) the use of these operators respectively. 
 

0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0 25 50 75 100 125 150

    

0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0 25 50 75 100 125 150

 
Figure 4: Feasible solutions in the initial generation and in generation 100, respectively. 
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Figure 5: Solutions in the filter in generation 100: without (left) and with  
(right) the use of the addition and single-objective operators respectively. 

 
The results can be improved if we increase the number of additional generations that act only 
on the filter to 400, as it can be observed in Figure 6 and Table II. 
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Figure 6: Solutions in the filter in generation 500 (100 + 400). 
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h l t b fo1 fo2
0,393 2,888 9,304 0,430 3,742 0,00634
0,317 3,662 9,926 0,439 4,112 0,00511
0,396 3,091 9,981 0,508 4,707 0,00434
0,393 2,927 9,933 0,582 5,209 0,00385
0,413 3,004 9,810 0,666 5,909 0,00349
0,393 2,898 9,926 0,765 6,672 0,00293
0,454 2,471 9,948 0,893 7,600 0,00250
0,739 1,498 9,937 1,005 8,348 0,00223
0,798 1,246 9,966 1,140 9,213 0,00195
1,182 0,787 10,000 1,343 10,770 0,00163
1,136 0,782 10,000 1,648 12,830 0,00133
1,184 0,748 9,942 1,953 14,930 0,00114
1,182 0,903 10,000 2,181 17,030 0,00101
1,182 0,753 10,000 2,519 19,040 0,00087
0,870 1,057 10,000 2,867 21,650 0,00077
1,184 0,787 9,922 3,324 24,680 0,00068
1,182 0,754 9,923 3,753 27,590 0,00060
1,334 0,750 10,000 4,086 30,470 0,00054
1,182 0,748 10,000 4,524 33,250 0,00049
1,182 0,748 10,000 5,000 36,630 0,00044  

Table II : Values of the design variables and the objective functions for the points in Figure 6. 
 
4. CONCLUSIONS 
 
The proposed algorithm can find Pareto-optimal solutions in a single run, even without the 
introduction of sensitive parameters for the resolution of the problem. This shows that a good 
approximation of the Pareto set can be achieved in practice, improving the understanding and 
facili tating the solution of optimization problems and, as a consequence, the task of the 
designers. 
 
No niche strategy or sophisticated penalty method were used, highlighting the effectiveness of 
the proposed algorithm. 
 
Most part of the merit for the success of this optimization procedure is attributed to the new 
operators: exclusion, addition and single-objective operator. This last operator allows, in case 
of need, that the presented algorithm be used in the optimization of a single objective. 
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