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ABSTRACT

A genetic dgorithm for multiobjedive optimizaion is presented which tries to evolve an
evenly distributed set of solutions belonging to the Pareto set by: (i) ranking the population
acording to nondomination properties; (ii) defining a filter to retain Pareto set solutions and
(i) using adequate operators. exclusion, addition and single-objedive operator which
improves the individuals from the aurrent filter in order to adiieve abetter distribution of
solutions along the Pareto set.

Numericd experiments are presented in order to illustrate the performance of the proposed
algorithm when applied to multiobjedive optimization problems in structural mechanics.

1. INTRODUCTION

Virtualy all design problems are acdualy multiobjedive optimization problems (MOOP) that
due to the ladk of a better methodology and adequate computational procedures are smplified
by aggregating - usualy via a @nvex combination - all the objedives into a single one. Those
objedives are usualy conflicting and often incommensurable and there is not a single
optimum solution to the problem when al objedives are mnsidered. The set of solutions
which are such that no improvement can be made in one objedive without deteriorating at
least one of the other objedives is cdled the Pareto set of non-dominated solutions and an
approximation of it would be very useful in order to get insight into the problem and asgst the
dedsion making process

Genetic dgorithms (GAs) are seach procedures inspired by natural seledion which have
fedures that make them attradive for the construction of the Pareto set in multiobjedive
optimization problems. they are population-based, require only objedive function values, and
use probabilistic transition rules which make them less prone to locd optimum entrapment.
Besides those fedures, GAs are naturally parallel alowing for the implementation in multi-
procesr architedures as well as in clusters of workstations and/or personal computers.



2. PARETO MULTIOBJECTIVE GENETIC ALGORITHM

The Pareto Multiobjective Genetic Algorithm (PMOGA) proposed here makes use of a filter
to retain Pareto set solutions as presented in [Cheng and Li, 1998]. However, in order to
improve the results of the MOOP, three new operators — the exclusion, the addition and the
single-objective operator — are introduced here.

A drategy of ranking based in nondomination properties is used. The non-dominated
solutions receive the rank 1, then a new nondomination test is made in the population without
these solutions and the new non-dominated solutions receive the rank 2. This procedure is
repeated until all solutions are ranked. After that, a tournament selection based in ranking
position is used and the evolution of the population continues.

Due to the existence of more than one objective, the search space is more complex and a
higher mutation rate can be used in order to test more dispersed solutions, thus better
exploring the search space.

The exclusion operator introduced here finds the closest solution in the current filter to be
removed in order to achieve a better distribution of solutions along the Pareto set. This
exclusion procedure is repeated until the current filter reaches the specified size. The metric
used can be written as:
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This metric results in a process of sum of the percentages of the distances of each objective
between the two solutions j and k.

The addition operator finds the two more distant (in the objective function space) solutions
and recombines them n times, where the value of n is usually between 2 and 6. The idea of
this operator isto find solutions which fill the space between the two far away solutions.

Finally, the single-objective operator finds the two extreme solutions, according to each
objective, in order to perform n recombinations between them. The idea is to better search for
the optimum of each individual objective thus obtaining a better distribution of the solutions
along the Pareto set.

These three operators work at the end of each generation. However, it is possible and in fact
recommended that, after a certain number of generations are processed and a significant
number of Pareto solutions are retained in the filter, additional generations should be
processed using only these three operators. These additional generations are faster than the
standard ones and they significantly improve the quality of the final Pareto set.

3. APPLICATIONS

To illustrate the use of the proposed PMOGA, two engineering design examples from the
literature were selected. Although a real-coded version of the PMOGA can aso be conceived
following the same ideas, the standard binary coding was used here. The recombination
operator adopted was the uniform crossover applied with a probability of 0.85. The mutation
rate was set at 0.05 and the selection procedure used was a tournament based on the
nondomination ranking. In both examples the PMOGA was run only once, starting from a
randomly generated initial population.



3.1. Example 1: Design of an I-beam

In this problem it is necessary to find the dimensions of the bean sketched in Figure 1, that
satisfy geometric and strength constraints and minimize the following conflicting objedives:

e cross ®dion areaof the beam,

o dtatic defledion of the beam under the verticd load P.

Figure 1: The simply supported I-bean [Coello and Christiansen, 1997.
It is asumed that:
« E=2x10"kN/cm? (Young's Modulus of Elasticity);
« k,=16 KN/cm? (permissble bending stressof the beam neterial);
e P=600 KN and Q=50 kN (maximal bending forces).

The vedor of dedsion variables is X = [ X;, X, X3, X4 ]'. Their values will be given in
centimeters and the geometric constraints are:

10<x,<80 10<x,<50 09<x;<5  09<x,<5 (2
The strength congtraint is
M
Y+ & < kg (3)
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where:
* M, and M, are maximal bending momentsinthe Y and Z diredions,
W, and W, are sedion module inthe Y and Z diredions.

The maximal bending moments due to the loads P and Q are M,=30000KN.cm and
M,=2500KN.cm respedively; and the sedion modules can be expressed as follows:

2 2606 =2 + x4 + 3% (¢ - 2x,)| @
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Thus the strength congtraint is:

180000, 15000,

16 -

Finally, the objective functions are:

¢ Cross section area
fl (X) = 2X2X4+X3(X1-2X4) sz

* Static deflection
PL3

f,(x) =
(X 48E|
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where | is the moment of inertia which can be calculated from
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After substitutions, the second objective functionis:
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For this example the length of the chromosome is 43 and a smple penalty method is applied:
for the infeasible points the constants ¢, = 1000 e ¢, = 10 are added to the objectives 1 and 2

respectively, as follow:

i) =fi(x)+c

(11)

A population of 50 individuals is alowed to evolve for 50 generations. The number of
additional generations that act only on the filter is 450. The solutions belonging to the Pareto

set retained by the filter are presented in Figure 2 and Table 1.
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Figure 2: Points in the filter in generation 500.



x1 X2 X3 x4 fol fo2
63,60 40,01 0,90 0,90 127,60 0,0565
68,05 40,34 0,90 0,90 132,20 0,0482
72,35 41,26 0,91 0,91 139,00 0,0409
79,12 40,05 0,90 0,90 141,70 0,0345
78,32 45,70 0,92 0,96 158,10 0,0301
79,65 23,03 0,96 2,15 171,80 0,0273
78,91 40,09 0,92 1,41 183,00 0,0245
78,89 43,89 1,00 1,51 208,70 0,0213
78,56 34,83 0,96 2,42 240,00 0,0181
79,66 46,58 1,02 1,99 262,70 0,0158
77,95 42,21 1,04 2,80 311,50 0,0136
78,62 45,11 0,93 2,92 331,40 0,0123
79,79 40,89 0,93 3,72 372,00 0,0106
79,92 40,04 1,01 4,30 416,70 0,0095
79,99 47,49 1,29 3,97 470,50 0,0085
79,58 50,00 1,15 4,49 529,80 0,0075
80,00 48,67 1,66 4,99 602,30 0,0068
79,59 50,00 2,95 5,00 705,00 0,0064
79,72 50,00 4,42 4,87 796,60 0,0062
80,00 50,00 5,00 5,00 850,00 0,0059

TableI: Values of the design variables and the objective functions for the points in Figure 2.
3.2. Example 2: Welded Beam Design

The problem consists of a beam submitted to a force F in its extremity and that needs to be
welded to another structural component satisfying stability conditions and project limitations.
The four design variables — weld thickness (h); length of weld (I); width of the beam (t) and
thickness of the beam (b) — are indicated in the Figure 3.

Figure 3: The welded beam [Deb, 1998].

The two objectives for this problem are:
* the cost of the beam;
+ the deflection at the end of the beam.

Both objectives are to be minimized but these criteria are again incommensurable and
conflicting as lowering the cost usually leads to a higher deflection while, in order to reduce
the deflection, it is usually necessary to increase the cost.



There are five strength constraints. The two first constraints make sure that the shear stress
and normal stress developed at the support location of the beam are smaller than the allowable
shear strength (1,) and yield strength (0,.) Of the material respectively. The third constraint
makes sure that the allowable buckling load (along t direction) of the beam is greater than the
applied load F. The fourth constraint is a maximum limit (Umax) for the displacement at the
end of the beam. The fifth constraint makes sure that the thickness of the beam is not smaller
than the weld thickness. There are still other geometric constraints on the decision variables
according to the following model:

Min. f, (X) = 1.10471h% + 0.04811tb(14+)
Min. f, (x) = 2.1952 / (t°b)
Subject to
9 (X) » T(X) - Tras0
% (X) = 0(X) - O < 0 (12)
(X)) - F-P.(x)<0
0 (X) » 2.1952/ (°b) - Ux <0
g(X) > h-b<O
0.125<h,b<5.0
0.1<1,t<10.0

The stress and buckling terms are given as follows [ Deb, 1998]:
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The remaining data for the problem are [Coello, 1998]:
F = 6000 Ib T = 13600 psi
E =30x 10° psi Omex = 30000 psi (18)
G=12x10°ps Unex = 0.25 N
L = 14 in (free length)
The chromosome is 54 bits long and a simple penalty method is applied:
fi(X) « fi (X) +c . nvial (19)

where ¢,=100; ¢,=0,01 and nviol is the number of violated constraints. The values of the ¢
constants make sure that a solution violating one constraint is worst than a feasible one and
that a solution violating two constraints is worst than one violating a single constraint and so
on.



The population size is 200 and the number of generations is 100. In Figure 4, the feasible
solutions in the initial generation and in generation 100 are shown. The efficiency of the new
operators is indicated in Figure 5 which displays the solutions in the filter in generation 100,
with (right) and without (left) the use of these operators respectively.
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Figure 4: Feasible solutions in the initial generation and in generation 100, respectively.
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Figure 5: Solutions in the filter in generation 100: without (left) and with
(right) the use of the addition and single-objective operators respectively.

The results can be improved if we increase the number of additional generations that act only
on the filter to 400, asit can be observed in Figure 6 and Table 1.
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Figure 6: Solutions in the filter in generation 500 (100 + 400).



h | t b fol fo2
0,393 2,888 9,304 0,430 3,742 0,00634
0,317 3,662 9,926 0,439 4,112 0,00511
0,396 3,091 9,981 0,508 4,707 0,00434
0,393 2,927 9,933 0,582 5,209 0,00385
0,413 3,004 9,810 0,666 5,909 0,00349
0,393 2,898 9,926 0,765 6,672 0,00293
0,454 2,471 9,948 0,893 7,600 0,00250
0,739 1,498 9,937 1,005 8,348 0,00223
0,798 1,246 9,966 1,140 9,213 0,00195
1,182 0,787 10,000 1,343 10,770 0,00163
1,136 0,782 10,000 1,648 12,830 0,00133
1,184 0,748 9,942 1,953 14,930 0,00114
1,182 0,903 10,000 2,181 17,030 0,00101
1,182 0,753 10,000 2,519 19,040 0,00087
0,870 1,057 10,000 2,867 21,650 0,00077
1,184 0,787 9,922 3,324 24,680 0,00068
1,182 0,754 9,923 3,753 27,590 0,00060
1,334 0,750 10,000 4,086 30,470 0,00054
1,182 0,748 10,000 4,524 33,250 0,00049
1,182 0,748 10,000 5,000 36,630 0,00044

Tablell: Values of the design variables and the objedive functions for the pointsin Figure 6.

4. CONCLUSIONS

The proposed algorithm can find Pareto-optimal solutions in a single run, even without the
introduction of sensitive parameters for the resolution of the problem. This $ows that a good
approximation of the Pareto set can be atieved in pradice, improving the understanding and
fadlitating the solution of optimizaion problems and, as a @nsequence, the task of the
designers.

No niche strategy or sophisticated penalty method were used, highlighting the dfedivenessof
the proposed algorithm.

Most part of the merit for the successof this optimization procedure is attributed to the new
operators. exclusion, addition and single-objedive operator. This last operator alows, in case
of need, that the presented algorithm be used in the optimizaion of a single objedive.

5. REFERENCES

Cheng, F. Y. and Li, D, 1998 Genetic Algorithm Development for Multiobjedive
Optimization of Structures, AIAA Journal, Vol. 36, No. 6, June.

Coello, C. A. C. and Chrigtiansen, A. D, 1997 Two New GA-based Methods for
Multiobjedive Optimization, Department of Computer Science, Tulane University, New
Orleans, LA 70118 USA.

Codlo, C. A. C, 1998 Sdf-Adaptive Pendties for GA-based Optimization, Nationa
Laboratory of Advanced Computer Science, Rébsamen 80, Xalapa, Veraauz 91090 Mexico.

Deb, K, 1998 Non-linea Goa Programming Using Multi-Objedive Genetic Algorithms,
Tednicd Report No. CI-60/98, Department of Computer ScienceXl, University of
Dortmund, Germany.



