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Abstract. Novel strategies are proposed to deal with multiobjective opti-
mization problems solved via evolutionary computation. The goal of this work is
to introduce procedures that allow for the search over a restricted Pareto front
where all solutions attain acceptable objective functions values in a way that a
minimum of prior knowledge about the objective functions is required.

1 Introduction

The treatment of multiobjective optimization problems (MOPs) is evolving rapidly
in recent years specially by means of Evolutionary Computation (EC) which has
been shown to be adequate and robust to solve this kind of problems. In contrast
with Mathematical Programming (MP) techniques, EC can solve the multicriteria
problem obtaining a large number of elements belonging to the Pareto front in a
single run. MOPs are generally solved in procedures using the decision maker (DM)
knowledge, before, during and after the search takes place in order to reach the
most adequate points of the Pareto front. All MP techniques, such as the Weight
Method, Goal Programming and Min-Max formulation, are DM dependent in the
sense that the parameters chosen by the DM lead to one element of the Pareto
set that represents the preferences of the DM. However, if the parameters are not
properly chosen, the solution will not correspond to the DM expectations. The
non-commensurable objectives in a MOP and the lack of prior information makes
this task very difficult in real world problems.

A MOP solved by means of EC has the advantage of being less sensitive to
prior DM knowledge. But this does not guarantee that good results will indeed be
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obtained. The number of Pareto elements obtained in an EC method is limited
by the size of the population used. In complex real world problems with several
objectives the lack of information about the Pareto front geometry and its extension
can produce a poor or non-representative group of solutions. On the other hand,
the population size required in order to obtain a good representation of the Pareto
front can be prohibitive for the computational resources available for the analysis.

A hybrid method with MP and EC characteristics is developed with the in-
troduction of thresholds, based on the DM aspirations, so that the search will be
performed in a restricted domain of the objective function space.

Furthermore, a procedure is developed to obtain limit points for each objective,
which serve as a basis for the definition of the thresholds, at the same time that
the points of the Pareto set are being searched.

The performance of the proposed procedure is examined by means of numerical
examples.

2 Multiobjective Optimization and Genetic Al-
gorithms

In an unconstrained MOP one seeks to optimize the m components of a vector
of objective functions F(z) = (f1(z), f2(x), ..., fm(x)) where x € Q C R™ is the
vector of design (or decision) variables which belong to the admissible set €. The
function F' : Q — A maps solution (or design) vectors x = (z1,%2,...,%,) t0
vectors y = (Y1, Yo, - - -, Ym), With y; = fi(z), in the objective function space.

Here, the optimization problem associated with each objective will be con-
sidered to be a minimization one, without loss of generality. As the objectives
are in general conflicting there is usually not a solution which minimizes all m
objectives simultaneously. This motivates the concept of dominance: a vector
a = (a1, as,...,a,) dominates a vector b = (b1, bo, ..., b,) if a; < b; Vi and there is
J such that a; < b;. One then defines Pareto optimality: a solution z € D is said
to be Pareto-optimal in D if and only if there is no 2’ € D such that its image
F(2') dominates F'(z). The Pareto-optimal set, P, is thus the set of all z € D
such that F(z) is non-dominated in A. The Pareto front Pr is the image of the
Pareto-optimal set in the objective function space.

Genetic algorithms (GAs) have features that make them attractive for the ap-
proximation of the Pareto set: they are population-based, require only objective
function evaluations, use probabilistic transition rules which make then less prone
to local optimum entrapment and allow for several types of parallel implementa-
tions.

The first application of GAs to MOPs dates back to the mid-eighties[7, 8] and
numerous papers on the application of evolutionary techniques to MOPs have been
published since then (see [4, 5, 11, 2]).

Although other techniques have been used for finding a suitable solution to
MOPs, we are interested here in those that try to approximate the Pareto set.



The most popular techniques seem to be MOGA, due to Fonseca and Fleming]3],
NPGA, due to Horn and Nafpliotis[6] and NSGA, due to Srinivas and Deb[9].

Almost all the work with GAs for MOPs involved algorithms of the so called
generational type, where a large portion of the current population is replaced by
newly generated individuals. Valenzuela-Rendon and Uresti-Charre[10] proposed a
non-generational scheme based on the similarities observed between the tasks faced
by a GA when dealing with a learning classifier system (LCS) using the Michigan
approach and when dealing with a MOP. In [1] Borges and Barbosa proposed an-
other non-generational GA for MOPs that alleviates the task of parameter setting,
and obtain the Pareto front with a good distribution by the conservation of a
population with the best points reached in terms of domination and distribution.
Usually, in GAs the fitness function is to be maximized, i.e., the higher the fitness
value, the better the candidate solution is. However, in [1], the fitness function
was defined in such a way that lower values indicated better solutions. As this
function is used here again to construct a new fitness function, the terminology
fitness function is preserved, although one seeks to minimize it.

In [1] the fitness function (to be minimized) is defined as the non-linear expres-
sion

Fa) = (14 D) (1 + N () 1)
where D(z') is the domination measure which expresses the state of domination of
the 4-th individual, z*, with respect to the current population:
p
D(z') =Y nd(z',27)
j=1

where p is the number of individuals in the population and nd(z?, 27) is one if
element 27 dominates element z*, and zero otherwise. The parameter 3 is usually
set to one and A (z) is a neighbor density measure associated with element z°
given by

. p
N(z') = >_sh(dy)
j=1
which is calculated according to the sharing function
1— (%), if dy < o
sh(d;;) = os /7 g § 2
(d) { 0, otherwise. (2)

where d;; is the distance between elements z* and z7 with o4 indicating the size of
the neighborhood of each element. The parameter « is generally set to one.

A standard linear rank-based selection scheme was adopted in [1] and it is
preserved here. It provides a more uniform selection pressure along the evolutionary
process than a fitness-based selection scheme.

3 Restricting the search

In the Weight Method the weights are used to determine the relative importance of
each function in the process and balance the different magnitudes of the objectives.



In Goal Programming the DM chooses a value for each objective function that seems
to be adequate and try to find a point of the Pareto front which is closest to these
goals.

In this paper the goal is to use the entire GA population to search for a particular
region of the Pareto front — which is specified by the user by means of adequate
thresholds — instead of searching for the whole front since it contains regions where
some very good values of a given objective(s) are obtained at the expense of some
other(s) which attain unacceptably poor value(s).

Multiobjective evolutionary algorithms (MOEAs) which are based only in some
form of dominance and density of elements for the fitness definition (such as equa-
tion (1)) have no natural way of incorporating preferences of objectives defined by
the DM. This drawback will be circumvented here by the introduction of an addi-
tional function £(z) — which can be interpreted as a penalty applied to element x
— to be combined with F(z) in order to define a new fitness function in the form:

Fe(x) = g(F(x), L(x))- (3)

It will be assumed that the DM defines the constant vector F' = (f!, fi ... fL)
containing the limit values for each of the objective functions. Given the vector F',
it is clear that the Pareto front can be divided into two sub-regions: an internal
region, comprising points within the bounds, and an external region, with the
remaining points/solutions.

When one is interested in the internal region, the value of each element of F"
represents the maximum (resp. minimum) acceptable value for the corresponding
objective to be minimized (resp. maximized). The idea is to obtain a final popu-
lation with solutions that attain the level of quality specified by the vector F' i.e.
f:(z7) is not greater (resp. smaller) than f! for all objectives i = 1,...,m and all
solutions 27 in the population. The internal region contains solutions which attain
a good compromise among the objectives. The remaining points in the Pareto
front, constitute the external region.

The function £(z) can then be defined as zero if

fel)=fi VEk=1,...,m (4)

where > denotes < (resp. >) for minimization (resp. maximization). Otherwise

one has
B (fr(z) = fi)?
o= 12 (” <f,£”f,:">2> )
Fro(@)# L

where it is understood that the summation is taken over all the objective function
values that do not obey the corresponding bound, thus introducing a penalty for
that candidate solution x. In (5) fM and f{" are respectively the best and worst
values of the k-th objective function for nondominated solutions in the current
population. The constant one guarantees that the result is always greater than
one.



In the new fitness definition, the value of £(z) given by equation (5) and the
value of the standard fitness (corresponding to the unconstrained search along the
Pareto front) such as (1) are nonlinearly combined:

Fe(w) = F(z) (1 + FYL(z)) (6)

where FM is the best fitness (as measured by eq. (1)) in the current population. By
construction, the new fitness definition (equation (6)) ensures that when performing
an internal (resp. external) search, any interior (resp. exterior) point/solution has
a better fitness value than any exterior (resp. interior) solution.

4 Restricting the search — without prior thresh-
olds

The specification of the limit acceptable values that must be made by the DM
requires some prior knowledge of the behavior of each objective. The solutions
obtained will lay inside this restricted region but to assure that this is indeed a
good region of the search space is not a trivial task. An improvement of the method
is proposed in order to avoid the prior specification of those limits. The idea is
to simultaneously: (i) obtain solutions in the desired region and (ii) construct the
vectors M and F™ which contain in the k-th component, respectively, the greatest
and the smallest values of the k-th objective function in the current population,
thus defining the current extreme points of the Pareto front. Those vectors are
used to automatically define a range of variation for each objective function. The
definition of f! is now given by

=R (=), k=1,...,m (7)

where p; € (0,1). Larger values for p; indicate a smaller range for the k-th objective
function (see Figure 2(a)). The vectors F¥ and F™ are updated every time a
better value appears during the evolution. Also it should be noted that the k-th
component of the vectors FM and F™ are fM and f respectively and that they
are obtained from nondominated solutions. This prevents objective function values
from dominated solutions far from the current non-dominated set from being used
instead.

With the definition (7) the DM only needs to specify a reduction fraction (py €
(0,1)) for each objective function range, with no need to know the actual range of
each objective function.

5 The implementation

The success of the method depends on reasonable values for the vector F! € R™.
The definition proposed here (7) depends on each pair of extreme values f and
fi'. The major difficulty is when the search is not focused on this extreme regions



of the Pareto front and good values may not be obtained. One possible solution
to improve the search in those extreme regions is to initially evolve without the
term L£(z) in the fitness function. Alternatively, it can be useful to determine good
values for FM and F™ by initializing the search in the external region and then
moving to the internal region during the evolution.
A pseudo-code of the restricted search procedure reads:
Begin
Set variables: internal (true or false), px, k=1,...,m
repeat
Compute F(z')i=1,...,p (population size)
Update FM, F™ and F' according to the non-dominated elements
for i=1,p
if( fk(xz) # f]iw and fk(xz) # fl€n7 VEk € {17"' 7m} ) then
if( internal ) then

for k=1,m
if( fr(2%) # fL ) Add contribution to L(z%)
endfor
else
if( fr(2®) = fL, Vk €{1,...,m} ) Compute L(z%)
endif
Fe(a') = F(a') (1 + FM L(z"))
endif
endfor
Generate offsprings °z/ j =1,...,n, (number of offsprings)

Compute F(°z9), j=1,...,n,
for j=1, n,
if ( fe(°2?) # fM and fi(°z?) ¥ f*, Vk € {1,...,m} ) Compute Fr(°z/)
endfor
Update the population (preserving solutions that generated FM and F™)
until(termination criteria satisfied)
Stop
End

This algorithm can be adapted for generational as well as non-generational
reproductive schemes. In the generational scheme the elements that form the vector
FM and F™ should be preserved for the next generation. In a non-generational
procedure these points are automatically preserved because: (i) the function £(z)
is set to zero and (ii) in the internal case the density of elements for these points
is low, leading to good values for F(z), while in the external case they have a low
neighborhood density value since they are at the boundary of the Pareto front.

6 Numerical experiments

In order to investigate the feasibility and performance of the approach proposed
here the corresponding Fortran code was implemented and some numerical ex-
periments were performed. The results shown correspond to typical runs; similar



results were obtained using other values for the seed supplied to the pseudo-random
number generator. For a given test-problem, the results shown for the proposed
algorithm correspond to the same seed so that comparisons can be made.

The procedure for the restricted search was implemented within the non-genera-
tional code described in [1].

6.1 Test-problem 1

The test-problem corresponds to the most difficult one among those solved in [10].
The functions f; and f; to be minimized are given by

fi=xz+y+1 f2::c2—|—2y—1

In this problem f; and f, are functions of two variables z € [—3,3] and y € [—3, 3].
The parameters used in the algorithm are the same used in [10], with a chromosome
length of 20 bits, two-point crossover with 0.85 probability, mutation rate equal to
0.033, a population of 60 individuals with 2000 function evaluations allowed. The
value of oy is set to 0.2. The results are obtained using the neighborhood density
computed in the design variable space.

Figure 1(a) shows the results for two cases: the unconstrained response, that
is the traditional approach used in MOEAs with the elements of the population
distributed all over the Pareto front, and a case with a DM restriction for each
function. In the restricted case it is assumed that f! = —3.0 and f. = —2.0 and
that the value of f; and f5 should be less than those bounds. The results correspond
to the expectations of the DM, with a good representation of the Pareto front in the
specified region. In Figure 1(b) the strategy with no prior thresholds is introduced
with the internal search active and the values of p; = ps = 0.5. According to
the range of each objective function the result should be comprised approximately
for fi < —3.5 and f; < —2.7 as the graphic shows. The extreme points of the
Pareto front obtained for each direction are very similar to those obtained for the
unconstrained case with no additional effort, showing that the method is adequate
for this kind of search.

In Figure 2(a) the goal is to show extreme cases for the p; variable setting: for
one objective the value is 0.9 and for the other it is set to zero. The results obtained
were as expected: only the extreme of the Pareto front for each case. The use of
1.0 and 0.0 for the p; variable reduces the response to only the two extreme points
of the Pareto front. Finally, in Figure 2(b) the internal search is not active and one
sets p; = po = 0.5 in order to obtain the extremes of the Pareto front. This is a
good strategy to be combined with the internal search for reaching good values for
the extreme points of the Pareto front. The initial evaluations can be made with
the internal search not active to force a better determination of the extreme values.
Then the internal search can be set to active with good extreme values guaranteed.
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6.2 Test-problem 2

The second test-problem is a case of optimization with 3 objective functions. The
problem consists in minimizing the distance of a point in the plane to 3 given
straight lines, P, P,, P,P; and P3P, where the points have coordinates P;(1,6),
Py(5,9) and P5(9, 2).

The Pareto front corresponds to the interior and the boundary of a triangle in
the three-dimensional objective space. The problem can also be analyzed in the



design variable space, where the Pareto set is the interior and the boundary of the
triangle formed by the 3 points in the x-y space. Here a population of 100 elements
is used evolving during 30000 evaluations. A chromosome length of 40 bits is used
with the variables x and y in the range [—5,15], two-point crossover with 0.85
probability and mutation rate equal to 0.01. For the o, parameter 3 values were
used. When the variable internal is undefined oy = 0.7, when internal is set to
false o, = 0.5 and when internal is set to true o, = 0.3. This is to make the value
of o5, more adequate to the size of the region searched. The results correspond to
a typical run of the genetic algorithm.

Figure 3(a) represents the initial population in an unconstrained case in the
design variable space. The Figure 3(b) shows the final response in the uncon-
strained problem in the design variable space. Figures 3(c), 3(d) and 3(e) are the
projections of the solutions obtained for the Pareto front over f; — fo, fi — f3 and
fo — f3 planes respectively. The solid lines in the figures represent the Pareto set
and Pareto front boundaries for the design variables in Figure 3(a), 3(b) and for
the objective functions values in Figures 3(c), 3(d) and 3(e). In Figure 3(f) the
three-dimensional graphic of the Pareto front is plotted.

Now we assume a restriction value for each objective. The values correspond to
half the maximum possible distance in the Pareto front for each line. So f; = 4.000,
fo =2.480 and f3 = 2.236. Figure 4(a) shows the results when the variable internal
is set to true in the design variable space. This means that the admissible region
has values less or equal than the limits adopted, that is f; < 4.000, f < 2.480 and
f3 < 2.236. The restricted Pareto region is indicated by the area of the solid line
triangle. Figures 4(b), 4(c) and 4(d) are the projections in the planes of objective
functions. The same is shown in Figures 5(a), 5(b), 5(c) and 5(d) when the variable
internal is set to false. The Pareto front is defined by the region outside of the
solid-line triangle and inside the dashed-line triangle.

Figures 6(a) and 6(b) are the tri-dimensional objective functions graphic for
internal set to true and internal set to false respectively.

The prior bounds independent search is applied with p; = py = p3 = 0.5 for
internal set to true and the results can be seen in Figures 7(a), 7(b), 7(c) and 7(d).
The Pareto region should be the same of the previous case (prior bounds are given).
The analysis of the results shows that the extreme values are not well determined
causing a translation in the Pareto region obtained. In Figures 8(a), 8(b), 8(c) and
8(d) the results are obtained with the variable internal set to false.

In the Figures 9(a), 9(b), 9(c) and 9(d) another strategy is used to define the
bounds in the case where internal is set to true. Now, in the initial evaluations (one
third of the total), the variable internal is set to false. Then the value of internal is
inverted to true and the remaining of the evolutionary process is dedicated to the
search in the interior of the triangles but using better extreme values. Comparing
Figures 7 with Figures 9 it is clear that this strategy produced better results.
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7 Conclusions

In this work a technique for guiding the search and consequently the response
in terms of the Pareto front obtained for a multiobjective problem solved via an
evolutionary algorithm is proposed. The method uses the whole population to
search in a restricted region of the objective function space where all objective
functions attain acceptable values. This is an important step to encourage users to
model real world problems as true MOPs since conveniently located solutions in the
objective function space can be obtained in a robust way. Numerical experiments
performed so far are promising. Tests in more complex situations with several
objectives and real world problems constitute the next steps.

Additional ideas can be developed such as dividing among parallel processors
the task of searching in different regions of the objective space, with the final
response being the union of all sets found.
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