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ABSTRACT

Genetic Algorithms (GAs) are population based stochastic search procedures which
have been widely applied in several difficult optimization problems. A common structural
optimization problem is the weight minimization of framed structures subjected to stress,
displacements, and other constraints. The constraints verification usually involves a simulation
(such as the solution of the discretized equilibrium equations from a finite element model), and
for real-world problems this simulation can be time-consuming. As a result, the total computing
time may be too large, rendering the application of a GA impractical or even prohibitive.

To reduce the use of the expensive simulation model during the search performed by
the GA, a metamodel is introduced. Similarity based metamodels for the objective function
as well as for the constraint violation are used, and a stochastic ranking is adopted which
does not require penalty parameters. The proposed procedure is implemented in a binary-
coded generational GA and applied to structural optimization problems involving discrete and
continuous design variables. Numerical experiments are performed in order to assess the
applicability and the performance of the proposed technique.

The results obtained show that the metamodel allows computational gains by reducing the
number of expensive simulations, significantly reducing the total computational time.

1. INTRODUCTION

Genetic Algorithms (GAs) are population based stochastic search procedures which
have been widely applied in several difficult optimization problems. They do not require
differentiability or continuity of the objective function, they are less sensitive to the initialization
procedures and less prone to entrapment in local optima. However, GAs usually require a large
number of fitness evaluations in order to reach a satisfactory solution, and when expensive
simulations are involved, that can become a serious drawback to their application to larger
problems.

The idea of reducing the computation time by performing (approximate) less
computationally expensive fitness function evaluations appeared early in the evolutionary
computation literature but its actual implementation is problem dependent and not
straightforward. The development of methodologies that aim to reduce the computational cost
without substantial loss of quality in the final solution is an active area of research in Genetic
and Evolutionary Computation [1–7].



A common structural optimization problem is the weight minimization of framed structures
subjected to stress, displacements and other constraints.In general, the constraints verification
involves a simulation, performed by a simulation model. A simulation model is a computer
model (computer program), that attempts to simulate an abstract model of a particular system,
such as the solution of a finite element model. For some real-world problems this simulation
can be excessively time-consuming. Due to the characteristics of the constrained optimization
problem, and the number of evaluations needed by GAs, their application in several cases can
be prohibitive.

To reduce computing time, the introduction of metamodels during the search procedure
is proposed. Metamodels are inexpensive models (i) derivedfrom numerical or physical
simplifications of the simulation model, (ii) constructed under less rigorous physical
assumptions, or (iii) based on a set of samples evaluated using the simulation model. A
metamodel for the objective function and another for constraint violation are built. The
constraints are handled here by a stochastic tournament selection procedure which does not
require penalty parameters. The procedure is implemented in a binary-coded generational GA
and the metamodels are updated at each generation by using the simulation model.

The procedure is applied to structural optimization problems involving discrete and
continuous design variables and numerical experiments areperformed in order to verify the
applicability and assess the performance gains of the proposed technique.

The results obtained show that the metamodel leads to computational gains by reducing the
number of simulations, significantly reducing the total computational time. However, there is a
relationship between the frequency of the use of metamodel and the quality of the final solution.
It is clear that, although faster, metamodels are less accurate than the simulation model, and
depending on the rate of application of the metamodel, it mayaffect in a negative manner the
evolutionary process.

2. THE GENETIC ALGORITHM

Pioneered by John Holland [8], GAs have been widely applied in many fields of engineering
and science. GAs differ from the traditional methods of search and optimization, mainly by [9]:
(i) operating upon a codification of the set of parameters instead of the parameters themselves,
(ii) maintaining a population of candidate solutions, (iii) requiring only objective function
values, and (iv) using probabilistic transition rules.

The popularity of GAs is partially due to the facts that (i) they do not require continuity
and/or differentiability of the functions involved, (ii) they do not require extensive problem
(re-)formulation, (iii) are not very sensitive to the initialization procedure, (iv) they are less
prone to entrapment in local optima, and (v) are naturally parallel.

However, there are some drawbacks for the application of GAsin real world applications.
GAs in general require a higher number of evaluations in order to achieve a satisfactory
solution, thus in some computationally expensive problemsthe application of GAs can become
prohibitive.

The first step in a GA is to encode all the variables corresponding to a candidate solution in
a chromosome. Here we adopted the standard binary coding: each variable is encoded in a string
of binary digits of a convenient length and these strings arethen concatenated to form a single
string which is an individual in the population of candidatesolutions. The following step is to
randomly generate an initial population. Each individual has then an objective function value
and, in cases of constrained optimization, a measure of constraint violation value associated
with it. The population is sorted according to these values in order to establish a “ranking”.
Individuals are then selected for reproduction in a way thatbetter performing solutions have



a higher probability of being selected. The genetic material contained in the chromosome of
such “parent” individuals is then recombined and mutated, by means of crossover and mutation
operators, giving rise to offspring which will form a (hopefully improved) new generation of
individuals. The process is repeated for a given number of generations or until certain stopping
criteria are met.

The baseline GA presented here implements Gray code [10], rank-based selection and
elitism, where the best individual is copied into the next generation along with one mutated
copy. The standard 2-point and uniform crossover operatorsare applied with 0.80 and 0.20
probability respectively. The mutation ratepm is set to the inverse of the chromosome length.

3. THE STRUCTURAL OPTIMIZATION PROBLEM

The discrete structural optimization problem considered here consists in finding the set of
areasa = {A1, A2, ..., An} which minimizes the weight of the truss structure:

w(a) =
n
∑

k=1

γAk

(

NG
∑

j=1

Lj

)

(1)

subject to the normalized displacements constraints

|ui,l|

uadm

− 1 ≤ 0 1 ≤ i ≤M, 1 ≤ l ≤ NL (2)

and the normalized stress constraints

|sj,l|

sadm

− 1 ≤ 0 1 ≤ j ≤ N, 1 ≤ l ≤ NL (3)

whereγ is the specific weight of the material,Lj is the length ofjth bar of the structure,ui

andsj are respectively the nodal displacement of theith translational degree of freedom and
the stress of thejth bar,sadm is the allowable stress for the material, anduadm is the maximum
displacement for each nodal point.M is the number of translational degrees of freedom,N is
the total number of bars in the truss structure,NG is the number of member groups which share
the same cross-sectional area, andNL is the number of load cases applied to the structure.

Although the functionw from Eq. (1) is linear, the constraints (2) and (3) are nonlinear
implicit functions of the design variablesa and require the solution of the equilibrium equations
of the discrete model given by

K(a)ul = fl 1 ≤ l ≤ NL. (4)

K is the symmetric and positive definite stiffness matrix of the structure, derived from the finite
element formulation, given by

K =
N

A
j=1

Kj (5)

whereA denotes the operator used for assembling the matrix contribution Kj of the jth bar,
which is a linear function ofa. The vector of nodal displacements is denoted byul, andfl is the
vector of applied nodal forces for thelth load condition.

For each one of the load conditions, the system is solved for the displacement field

ul = [K(a)]−1
fl. (6)



The stress in thejth bar is calculated according to Hooke’s Law

sj,l = Eε(ul) (7)

whereE is the Young’s modulus andε is the unit change in length of the bar.
From the displacements at the nodal points, and the stressesin the elements, the constraints

can finally be checked. A feasible design satisfies the constraints (2) and (3), and the degree of
constraint violationφ(a) is measured by
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where[x]+ = x if x is positive, and 0 otherwise. Clearly, feasible designs have the constraint
violationφ(a)=0.

To avoid introducing penalty parameters into evolutionaryprocedure, constraints are
handling using the stochastic ranking procedure [11]. In the stochastic ranking technique the
balance between the objective and penalty functions is achieved through a ranking procedure
based on the stochastic bubble-sort algorithm. In this approach a probabilitypf of using only
the objective function for comparing individuals in the infeasible region of the search space is
introduced. Given any pair of two adjacent individuals, theprobability of comparing them (in
order to determine which one is fitter) according to the objective function is 1 if both individuals
are feasible, andpf otherwise . The procedure provides a convenient way of balancing the
dominance in a ranked set. The procedure is halted when no change in the rank ordering occurs
within a complete sweep.

Algorithm 1 shows the stochastic bubble sort procedure usedto rank a group of individuals.
Because one is interested at the end in feasible solutions,pf should be less than 0.5, so that

there is a pressure against infeasible solutions. In this paper the parameterpf is set to 0.40 for
all test problems.

4. METAMODELING APPROACH

The application of GAs in real world engineering optimization problems often requires the
use of a simulation model to evaluate the individuals in the population. In many cases, each
simulation takes a considerable amount of time and thus for optimization problems that require
a high number of evaluations, the overall computational time becomes a critical issue.

In the following the metamodel concept and its relationshipwith simulation models are
explained.

4.1 Simulation models

Simulation models are used to compute the system response corresponding to a given set
of design variables. A simulation model is a representationof the real system, constructed from
information about how the system operates [12]. Simulationmodels are not generic, each of
them strongly related to a specific physical problem.

In structural engineering, a simulation model for stress and displacements is often
constructed by the finite element method [13].

4.2 Metamodels

Metamodels are inexpensive models, numerical or physical simplifications of the
simulation model, constructed under less rigorous physical assumptions or based on a



Algorithm 1 Stochastic Ranking Algorithm

1: procedure STOCHASTIC RANKING (I, f, φ, λ, pf )
2: for j = 1 : λ do
3: Ij = j
4: end for
5: for j = 1 : λ do
6: swap← false
7: for j = 1 : λ− 1 do
8: u = RANDOM(0, 1)
9: if φIj

= φIj+1
= 0 or u < pf then

10: if fIj
> fIj+1

then
11: tmp = Ij+1

12: Ij+1 = Ij

13: Ij = tmp
14: swap← true
15: end if
16: else
17: if φIj

> φIj+1
then

18: tmp = Ij+1

19: Ij+1 = Ij

20: Ij = tmp
21: swap← true
22: end if
23: end if
24: end for
25: if not swap then
26: BREAK

27: end if
28: end for
29: end procedure

set of samples evaluated using the simulation model. Metamodels are approximations of
the input/output relations of the simulation model [14–16]. They aim to reduce model
complexity [17], and may be understood as surrogate evaluation models that are built using
existing information [18].

Others techniques, specific for genetic and evolutionary algorithms, such as evaluation
relaxation [19], fitness estimation [20,21], and genetic inheritance [22,23], can also be referred
to as metamodeling techniques.

The metamodel treats the simulation model as a black box [24]: the simulation model’s
input/output relation is observed, and the parameters of the metamodel are estimated. The
underlying premise of this approach is that, one can construct an approximation of the analysis
codes that is much more efficient to run, and which yields an insight into the functional
relationship between the input variables and the responses[25].

For metamodels to be useful, they must represent the input-output relations accurately.
An advantage of the metamodeling approach is that the metamodel can be applied to all

types of simulation models [24], to provide an insight to theinput-output behavior of the
original model, and to identify key variables. However, it cannot take advantage of the specific



structure of a given simulation model, and depending on the estimation phase may take a long
computation time.

In the following, the metamodel assisted genetic algorithmproposed here is described.

4.3 Metamodel assisted genetic algorithm

In the Evolutionary Computation context, the metamodel, built from previously evaluated
solutions in the search space, is used to predict the fitness of new candidate solutions [26]
avoiding expensive simulations, reducing the amount of computational effort required.

The most simple and transparent approximation model is the nearest neighbor (NN) model.
The approximations are built based on a setV, which storesη individuals evaluated by the
simulation model. The approximation for this method is constructed as follows: given an
offspringxh, the corresponding fitness valuef(xh), based on itsk nearest neighbors, is given
by

f̂(xh) =

k
∑

i=1

wif(xi)

k
∑

i=1

wi

, xi ∈ V (9)

where

wi =
1

d(xh, xi)u
if d(xh, xi) 6= 0, xi ∈ V (10)

andd(xh, xi) is the distance between the individualsxh andxi, andf̂(xh) is the fitness value
to assignedxh. If d(xh, xi) = 0, then the fitness value ofxi is assigned immediately toxh, and
the weights are not calculated. The metricd(·, ·) used here is the Hamming distance, that is the
number of positions for which the corresponding bits are different for two chromosomes. In
this paper the exponentu is set to 2.

The convenience in using the nearest neighbor method is thatthe approximation requires
only storing points evaluated using the simulation model. If the sizeη of the archived setV is
large, then the calculation of̂f(xh) from Eq. (9) takes longer, since the entire set must be sorted
to define the nearest neighbors.

To avoid the sorting step, the proposed approach consists inchoosing the neighbors by
means of a tournament selection, wherep individuals are draw randomly out of the archiveV,
the Hamming distances are calculated and the nearest one is selected to be a neighbor. The
procedure is repeated until all thek neighbors are chosen. The procedure described above is
named (k,p)-tournament approximation, and the weightswi are computed according to Eq. (10).
If k=1, the algorithm assigns tof(xh) the fitness value of the individual nearest toxh according
to thep-tournament.

In the experiments conducted here the sizeη of the archiveV is equal to the population size
and the tournament sizep is set to 20.

To improve the quality of the approximations in Eq. (9) the metamodel is updated every
generation. According to sequential policy, an individualis chosen to be replaced inV. The
policy adopted is to choose an individual according to the number of evaluations performed by
the simulation model. In this way, the individuals inV are uniformely replaced along to the
generations.

The nearest neighbor metamodel is introduced in the GA according to an user defined
parameterpsm, which gives the probability of an individual to be evaluated according to
the simulation model. Aspsm decreases, greater is the interference of the metamodel in



the evolutionary process. The number of individuals evaluated by the metamodel is thus
proportional topmm = 1− psm.

The metamodel assisted genetic algorithm implemented hereis displayed in Algorithm 2.

Algorithm 2 Metamodel Assisted Genetic Algorithm

1: procedure MA-GA
2: t← 0
3: Initialize the populationPt

4: Evaluate each chromosome inPt

5: Rank the populationPt

6: Initialize the archiveV ← Pt

7: while t ≤ maxgen do
8: repeat
9: Select 2 individuals inPt

10: Apply recombination on selected individuals
11: Apply mutation with ratepm

12: Insert new individuals inGt

13: until populationGt complete
14: repeat
15: r=RANDOM(0, 1)
16: if r < psm then
17: Evaluate individual by the simulation model
18: else
19: Evaluate individual by the metamodel
20: end if
21: until all individuals in populationGt evaluated
22: Rank the populationGt

23: Pt+1 ← Gt

24: UpdateV with the individuals evaluated by the simulation model
25: t← t + 1
26: end while
27: end procedure

5. NUMERICAL EXPERIMENTS

In order to investigate the performance of the implemented algorithms, they are applied to
some truss weight minimization problems.

In the following, the test problems are described and the results are discussed. The size of
the archiveV is set equal to the population size, and the tournament size is set to 20 individuals.
The results are compared for different number of neighbors from Eq. (9) and several values of
psm. A total of 30 independent runs were performed for each test-problem.

5.1 The 22-bar truss

The first structure considered is the plane truss shown schematically in Fig. 1, where a
vertical loadP is applied at the rightmost node. The weight of the structureis to be minimized,
and the design variables are the cross-sectional areas of the barsa = {A1, A2, ..., A8} which
are to be chosen from the 32 values in the setK = {0.1, 0.2,. . . , 3.1, 3.2}.
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Figure 1: The 22-bar truss.

As an isostatic structure, the forces acting in each bar (compression or tension) do not
depend on the value of the cross-sectional areas adopted. Itfollows that each bar should be
working at the maximum allowable stress,

fi

Ai

= sc or
fi

Ai

= st,

if the ith bar is in compression or tension, respectively, andsc andst are the corresponding
allowable limits. The optimal design is thus a “fully stressed” structure. It can also be shown
that in the structure considered (Fig. 1), all vertical barsare working under the same conditions,
and that the same can be said of the diagonal bars, resulting in 8 design variables. Additionally,
for the case of equal material behavior in tension and compression,st = sc = sadm. A consistent
set of units is assumed and the following values are adopted:P = 12, andsc = st = sadm = 25.
The exact solution for the optimization problem can be foundanalytically (the minimum volume
is equal to 68.20) and controlled numerical experiments andcomparisons can more easily be
performed.

For this experiment, the population size was set equal to 50,80 generations were performed
in 30 independent runs, and 5 bits were used for each one of the8 variables, resulting in a 40-bit
chromosome, and a mutation ratepm = 1/40.

The results for 22-bar truss are presented in Table 1. The first line shows the results obtained
using only the simulation model to evaluate the individuals. The number of neighborsk from
Eq. (9), the size of the tournamentp, the parameterspsm andpmm which control how many
individuals are evaluated using the simulation model or themetamodel are also displayed. In
this Table, FR denotes the number of runs (among the 30) whichproduced a feasible final
solution. Also are displayed the minimum (best) and maximum (worst) weights found as
well as the average (avg) and standard deviation observed (std) in the 30 runs. It is important
to notice that the average is calculated considering only the runs which produced feasible
solutions.

From the Table 1 it can be noticed that the values of the best values do not suffer significant
modifications as the parameterpsm increases, although the average in 30 runs increases, that is,
as the number of individuals evaluated by the metamodel increases, the evolutionary process
is affected, leading in average to worse solutions, as expected. The same behavior is observed
when the worst values are compared, and when only 30% of the individuals are evaluated by
simulation model (in average), the final solutions have a considerable decrease of quality, as
can be seen in the last five lines of the Table 1.

It can also observed that, for larger values ofpsm, the best results in terms of best, average
and standard deviation values are found for the smaller values ofk. However, for smaller values
of psm, where more individuals are evaluated using the metamodel,better results are found
using larger values ofk.

It is important to notice that, although the evolutionary process is affected and the quality of
the solutions decreases, the introduction of the metamodelrepresents substantial computational



Table 1: Results for 22-bar truss.

k p psm pmm FR best avg worst std
– – 1.00 0.00 30 68.20 68.33 68.80 0.25

1 20 0.90 0.10 29 68.20 68.38 69.10 0.31
2 20 0.90 0.10 30 68.20 68.34 69.40 0.31
3 20 0.90 0.10 30 68.20 68.45 69.40 0.39
5 20 0.90 0.10 30 68.20 68.43 69.40 0.34
10 20 0.90 0.10 30 68.20 68.56 72.40 0.80

1 20 0.80 0.20 30 68.20 68.57 70.00 0.54
2 20 0.80 0.20 29 68.20 68.54 70.60 0.59
3 20 0.80 0.20 30 68.20 68.52 70.30 0.54
5 20 0.80 0.20 30 68.20 68.64 70.60 0.58
10 20 0.80 0.20 30 68.20 68.68 70.90 0.70

1 20 0.70 0.30 30 68.20 68.95 70.30 0.71
2 20 0.70 0.30 30 68.20 68.72 70.60 0.66
3 20 0.70 0.30 30 68.20 68.55 70.00 0.49
5 20 0.70 0.30 30 68.20 68.70 71.20 0.66
10 20 0.70 0.30 30 68.20 68.99 72.10 0.94

1 20 0.60 0.40 30 68.20 69.66 72.70 1.22
2 20 0.60 0.40 30 68.20 69.19 71.20 1.01
3 20 0.60 0.40 30 68.20 69.21 71.50 0.93
5 20 0.60 0.40 29 68.20 69.09 71.20 0.77
10 20 0.60 0.40 29 68.20 68.97 70.90 0.74

1 20 0.50 0.50 30 68.20 71.04 75.00 1.87
2 20 0.50 0.50 30 68.20 70.23 79.90 2.57
3 20 0.50 0.50 30 68.20 69.25 71.50 0.88
5 20 0.50 0.50 29 68.20 69.25 73.00 1.07
10 20 0.50 0.50 30 68.20 69.53 71.80 0.96

1 20 0.40 0.60 28 68.20 73.24 86.20 3.81
2 20 0.40 0.60 30 68.20 70.09 73.30 1.39
3 20 0.40 0.60 30 68.20 69.90 72.40 1.16
5 20 0.40 0.60 29 68.20 69.82 71.80 1.13
10 20 0.40 0.60 30 68.20 70.07 73.60 1.49

1 20 0.30 0.70 30 70.00 78.15 103.00 8.60
2 20 0.30 0.70 29 68.20 71.46 76.00 2.00
3 20 0.30 0.70 30 68.20 71.84 78.70 2.42
5 20 0.30 0.70 30 68.50 71.31 75.80 1.91
10 20 0.30 0.70 30 68.80 71.43 78.70 2.06



savings, since an expensive simulation is replaced by a simple computation using an ensemble
of stored values.

5.2 The 10-bar truss

This test-problem corresponds to the weight minimization of the classic 10-bar truss [27]
shown in the Fig. 2.

The constraints involve the stress in each member and the displacements at the nodal points.
The design variables are the cross-sectional areas of the bars a = {A1, A2, . . . , A10}. The
allowable stress is limited to±25 ksi and displacements are limited to 2 in, in thex and y
directions. The density of the material is 0.10 lb/in3, Young modulus isE = 104 ksi and
vertical nodal loads of 100 kips are applied at nodes 2 and 4.

The values of cross-sectional areas, in square inches, are to be chosen from the setL = {
1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87,
3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50,
16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50} resulting in 42 options for each
bar in the structure.
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Figure 2: The 10-bar truss.

The population size was set to 100 individuals and 900 generations were performed in 30
independent runs. Each one of the 10 variables was coded using 6 bits, leading to a 60-bit
chromosome. The mutation rate was equal topm = 1/60. For each run, 90000 evaluations
were performed.

The Table 2 presents the results for the 10-bar truss problem. The first line of the Table
shows the results using only the simulation model to evaluate the individuals. Again, the best,
average, worst, and standard deviation values found in the 30 runs are displayed, together with
the number of neighborsk and the values ofpsm. FR indicates the number of runs (among the
30) which produced a feasible final solution.

The results shown in Table 2 present a similar behavior when compared to those obtained
for the 22-bar truss problem. Here, it can also be noticed that the values of the average in 30
runs increase aspsm decreases, independent of the number of neighborsk. Also, for larger
values ofpsm, the best results in terms of best, average and standard deviation values are found
for the smaller values ofk, better results are found for larger values ofk when smaller values
of psm are set.

5.3 The 25-bar truss

This classical problem [27] is the weight minimization of a truss with 25 bars shown in the
Fig. 3. The allowable stress for each member issadm = 40 ksi and the displacements must not
exceeduadm = 0.35 in, in thex andy directions. The material has a Young modulusE = 107



Table 2: Results for 10-bar truss.

k p psm pmm FR best avg worst std
– – 1.00 0.00 30 5490.738 5496.452 5513.418 8.673

1 20 0.90 0.10 30 5490.738 5508.265 5569.510 19.894
2 20 0.90 0.10 30 5490.738 5511.478 5599.918 28.988
3 20 0.90 0.10 30 5490.738 5499.333 5537.516 13.062
5 20 0.90 0.10 29 5490.738 5510.825 5593.193 25.002
10 20 0.90 0.10 30 5490.738 5501.639 5536.965 14.266

1 20 0.80 0.20 30 5490.738 5507.823 5549.423 16.265
2 20 0.80 0.20 29 5490.738 5504.085 5545.250 15.876
3 20 0.80 0.20 30 5490.738 5508.440 5567.509 22.407
5 20 0.80 0.20 30 5490.738 5506.981 5585.147 20.813
10 20 0.80 0.20 30 5490.738 5509.895 5550.386 15.375

1 20 0.70 0.30 30 5490.738 5517.552 5650.360 32.311
2 20 0.70 0.30 30 5490.738 5518.282 5576.705 26.825
3 20 0.70 0.30 30 5490.738 5512.095 5582.307 23.564
5 20 0.70 0.30 30 5490.738 5515.692 5593.529 25.705
10 20 0.70 0.30 30 5490.738 5510.055 5549.446 17.102

1 20 0.60 0.40 30 5490.738 5529.881 5610.702 29.964
2 20 0.60 0.40 30 5490.738 5519.181 5602.136 26.181
3 20 0.60 0.40 30 5490.738 5511.048 5574.393 22.721
5 20 0.60 0.40 30 5490.738 5521.369 5582.463 26.069
10 20 0.60 0.40 29 5490.738 5521.167 5593.224 30.022

1 20 0.50 0.50 30 5503.934 5600.230 5730.343 69.106
2 20 0.50 0.50 30 5490.738 5536.888 5753.562 51.106
3 20 0.50 0.50 30 5490.738 5518.768 5588.854 24.380
5 20 0.50 0.50 30 5490.738 5528.218 5658.424 36.497
10 20 0.50 0.50 30 5490.738 5528.106 5579.044 28.042

1 20 0.40 0.60 30 5511.358 5644.434 5783.558 69.006
2 20 0.40 0.60 30 5497.218 5556.216 5677.276 49.299
3 20 0.40 0.60 30 5490.738 5541.256 5660.241 41.053
5 20 0.40 0.60 30 5490.738 5533.438 5615.039 35.296
10 20 0.40 0.60 30 5490.738 5536.082 5631.113 39.218

1 20 0.30 0.70 30 5522.221 5702.771 6056.010 118.014
2 20 0.30 0.70 29 5507.758 5603.588 5759.292 63.341
3 20 0.30 0.70 29 5507.539 5602.149 5782.929 67.988
5 20 0.30 0.70 30 5490.738 5557.172 5682.782 44.967
10 20 0.30 0.70 30 5490.738 5546.229 5632.076 40.723



psi and density of 0.10 lb/in3. The loads applied in the structure are displayed in the Table 3.
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Figure 3: The 25-bar truss.

The design variables are the cross-sectional areas which are organized into eight groups,
as shown in Table 4. This arrangement results in a structuraloptimization problem with eight
discrete variables, to be chosen from the set of 34 values (insquare inches)M = { 0.1, 0.2,0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5,
2.6, 2.7, 2.8,2.9, 3.0, 3.1, 3.2, 3.3, 3.4}.

Table 3: Load case for 25-bar truss.

Node Fx (kips) Fy (kips) Fz (kips)
1 1.00 -10.00 -10.00
2 – -10.00 -10.00
3 0.50 – –
6 0.60 – –

The population size was set to 100, and 200 generations were performed. Five bits were
used for each one of the 8 variables, resulting on a 40-bit chromosome, and a mutation rate
pm = 1/40. A total of 20000 evaluations are performed for each run.

The results for the 25-bar truss problem are shown in Table 5.The first line of the Table
shows the results obtained using only the simulation model to evaluate the individuals. Again,
30 independent runs were performed for each number of neighborsk and value of the parameter
psm.



Table 4: Member groups for 25-bar truss.

Group Connectivities
A1 1-2
A2 1-4, 2-3, 1-5, 2-6
A3 2-5, 2-4, 1-3, 1-6
A4 3-6, 4-5
A5 3-4, 5-6
A6 3-10, 6-7, 4-9, 5-8
A7 3-8, 4-7, 6-9, 5-10
A8 3-7, 4-8, 5-9, 6-10

The results displayed in Table 5 show a similar behavior as that observed for both the 22-
bar and the 10-bar truss problems, although for this test problem the results for smaller values of
psm are significantly worse than the results obtained with larger values ofpsm, when compared
the values of average in 30 runs, the worst solution and the standard deviation. In Table 5 that
can be seen whenpsm = 0.40 andpsm = 0.30.

It can be noticed that the algorithm produces satisfactory solutions up to a certain level
of metamodel insertion: as the metamodel insertion grows, the quality of the results decrease.
However, the computational gains increase in the same way. There is a trade off between
the quality of the solutions found and the computation time of the optimization procedure,
and for time-consuming problems, the use of metamodels is anattractive alternative to obtain
computational gains which allow for the solution of more complex problems with a given
computational budget.

6. SUMMARY AND CONCLUSIONS

In this paper a metamodel-assisted genetic algorithm, which implements the nearest-
neighbor approximation is presented. Essentially, the approach consists in the correct evaluation
of only a fraction of the population. The proposed procedureis applied to structural
optimization problems involving discrete design variables.

The introduction of the nearest neighbor metamodel reducesthe use of the simulation
model during the search procedure performed by the GA, allowing for computational gains.
However there is a relationship between the frequency of useof the approximation model and
the quality in the final solutions.

From the results presented here, satisfactory solutions are found for values ofpsm as low as
0.5, which means that the results can be trusted at a limit when in average 50% of the evaluations
are done using the simulation model. Besides, according to the obtained results, for smaller
values ofpsm, which is desirable when dealing with computationally expensive problems, larger
values ofk lead to better results.

It is clear that, although faster, metamodel evaluations are less accurate and, depending on
the rate of application of the metamodel during the search procedure, it may affect in a negative
manner, leading to unsatisfactory solutions.

Although implemented here in a binary-coded GA, the procedures can be easily
implemented in a real-coded GA, where a wide range of approximation techniques exist, and
may potentially lead to better results. The procedure presented here make use only of stored
instances, and due to the features of the approximation techniques, it is possible to approximate



Table 5: Results for 25-bar truss.

k p psm pmm FR best avg worst std
– – 1.00 0.00 30 484.854 485.780 488.443 0.822

1 20 0.90 0.10 30 484.854 485.920 489.885 1.262
2 20 0.90 0.10 30 484.854 486.004 491.385 1.253
3 20 0.90 0.10 30 484.854 485.835 488.769 0.969
5 20 0.90 0.10 30 484.854 486.087 490.140 1.401
10 20 0.90 0.10 30 484.854 485.886 488.438 0.925

1 20 0.80 0.20 30 484.854 486.412 489.165 1.084
2 20 0.80 0.20 30 484.854 486.022 489.691 1.083
3 20 0.80 0.20 30 484.854 486.329 491.114 1.416
5 20 0.80 0.20 30 485.049 486.131 488.574 0.959
10 20 0.80 0.20 30 485.049 486.220 489.413 1.168

1 20 0.70 0.30 30 485.574 487.150 497.880 2.573
2 20 0.70 0.30 30 484.854 486.534 492.496 1.735
3 20 0.70 0.30 30 484.854 486.180 489.938 1.289
5 20 0.70 0.30 30 484.854 487.658 501.313 3.246
10 20 0.70 0.30 30 484.854 486.857 493.529 1.756

1 20 0.60 0.40 30 484.854 487.259 491.260 1.857
2 20 0.60 0.40 30 485.049 487.123 490.871 1.587
3 20 0.60 0.40 30 484.854 487.084 497.078 2.603
5 20 0.60 0.40 30 484.854 488.113 503.067 4.145
10 20 0.60 0.40 30 484.854 488.157 507.378 4.652

1 20 0.50 0.50 30 485.049 489.772 502.086 3.674
2 20 0.50 0.50 30 484.854 487.840 494.326 2.869
3 20 0.50 0.50 30 484.854 488.122 496.553 2.922
5 20 0.50 0.50 30 485.380 488.899 503.540 3.858
10 20 0.50 0.50 30 484.854 489.032 501.891 3.536

1 20 0.40 0.60 30 485.049 492.527 523.659 7.994
2 20 0.40 0.60 29 484.854 491.293 505.463 5.318
3 20 0.40 0.60 30 485.380 491.477 506.617 5.359
5 20 0.40 0.60 30 485.049 491.582 508.436 6.546
10 20 0.40 0.60 30 485.049 490.049 499.618 4.309

1 20 0.30 0.70 30 485.769 495.835 520.019 9.080
2 20 0.30 0.70 30 485.380 493.638 514.072 7.972
3 20 0.30 0.70 30 485.049 493.489 519.726 7.651
5 20 0.30 0.70 30 485.049 492.811 505.618 6.355
10 20 0.30 0.70 30 484.854 492.309 509.740 6.492



the responses for problems with discrete, continuous, as well as mixed discrete-continuous
variables.

Moreover, the procedure is simple and can be implemented in aGA,or any other
population-based algorithm.
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