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Abstract. A common structural design problem is the weight minimization of structures which
is formulated selecting a set of design variables that represent the structural and architectural
configuration of the system. The structures are usually subject to stress and displacement con-
straints and the design variables can be continuous or discrete. In practice, it is often desirable
to choose design variables (such as cross-sectional areas) from commercially available sizes.
The use of a continuous optimization procedure — although usually more straightforward — will
lead to non-available sizes and any attempt to substitute those values by the closest available
commercial sizes can make the design unfeasible or unnecessarily heavier.

In this paper a genetic algorithm is proposed to evolve the structural configuration for
weight minimization of industrial buildings, with rectangular geometry projection, made up of
uniform planar structures (steel truss roofs) along the longitudinal direction which are inter-
connected by purlins. The planar structures are trusses and their number, shape, and topology
are allowed to change during the optimization process.

Keywords: Genetic Algorithms, Optimization, Structural Mechanics



1. INTRODUCTION

A common structural design problem is the weight minimization of structures subject to
stress and displacement constraints. The design variables can be continuous and/or discrete
and the inclusion of the later usually makes the problem harder. In practice, it is often desir-
able (or even mandatory) to choose design variables (such as cross-sectional areas) from com-
mercially available sizes. The use of a continuous optimization procedure — although usually
more straightforward — will lead to non-available sizes and any attempt to “round” or substitute
those values by the “closest” available commercial sizes can potentially make the design un-
feasible (constraints are violated) or uneconomical (the weight is unnecessarily increased). A
good survey of structural shape optimization is presented in Haftka (1986). Using mathemati-
cal programming techniques problems of optimization involving design of trusses with discrete
sizing and shape variables can be found in Hansen and Vanderplaats (1990) and Salajegheh
and Vanderplaats (1993). Combining fully stressed design optimization and conjugate gradi-
ent techniques, shape and cross-section optimization of trusses, is discussed in Gil and Andreu
(2001). Recently, in Smith et al. (2002), a method for designing models of truss structures with
simultaneous optimization of mass and geometry is presented.

From the early paper by Goldberg and Samtani. (1986), where the classic ten-bar truss is
minimized for weight, to the present day, several applications of genetic algorithms (GASs) in
structural optimization have appeared in the literature.

In previous works, Lemonge and Barbosa (2000) and Lemonge et al. (2003), GAs are
applied to evolve the structural configuration considering weight minimization of a space truss
structure (made up of standard modules), presenting both continuous design variables, such as
the coordinates of the nodes, as well discrete variables, such as the cross-sectional areas of the
bars, which are to be chosen from commercially available sizes. Other works involving GA and
shape structural optimization can be found in Duponcheele and Tilley (1995), Lemonge and
Barbosa (1998), and Koumousis and Georgiou (1994). Domain knowledge considered within
an algorithm for optimization of designs and configurations of steel truss roofs can be found in
Hamza et al. (2003).

In this paper a genetic algorithm is proposed to evolve the structural configuration for
weight minimization of industrial buildings, with rectangular geometry projection, made up
of uniform planar structures (steel truss roofs) along the longitudinal direction which are inter-
connected by purlins. The planar structures are trusses and they are able to have their shape and
topology changed during the search process.

These structures can usually be analyzed considering isolated planar structures composed
by one truss, columns and foundations. In a previous work this problem was studied considering
the truss with a fixed topology. Now it is possible to have trusses with different topologies
among the candidate solutions to the optimization problem.

The optimization problem considers continuous as well as discrete design variables: the
number of planar structures along the longitudinal direction (discrete), the number of bays in
each truss roof (discrete), node coordinates defining the shape of the truss (continuous), and the
cross-sectional areas of the bars (discrete).

Additional domain knowledge is introduced in the development (or morphogenesis Ange-
line (1995)) process that generates the phenotype (the structural design) from the genotype (a
string of bits) and also in the fitness evaluation process of each candidate design.

This capability of evolution of the structural configuration in addition to its shape and
sizing is an attractive feature because the designer must often deal with the lack of specific
computational codes, and the difficulty in evaluating a large number of possible solutions.



2.

dem

THE GENETIC ALGORITHM

One reason for GAs popularity is that unlike many traditional optimization methods, GAs
and less from the underlying problem Goldberg (1989):

. GAs do not require the objective function to be continuous and/or differentiable,
. GAs do not require extensive problem formulation,

. GAs are not sensitive to the starting point,

. GAs are less prone to entrapment in local optima, and

. GAs are naturally parallel.

Because of these advantages GAs have been applied to a wide variety of problems in sci-

ence, engineering, finance, etc.

When a GA is used as a minimization (or maximization) algorithm, it differs from the more

familiar mathematical programming techniques by
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. employing a population of candidate solutions,
. operating upon the coding of a solution and not on the solution itself,
. using probabilistic transition rules, and

. not requiring additional information (like derivatives) about the function to be optimized.

As a result, the search can be performed over non-convex (and even disjunct) sets for non-
convex, non-differentiable functions of variables that can be of different types (e.g. continuous,
discrete, boolean).

A generic GA can be stated as:

begi n
Initialize the popul ation P
Eval uate each string in the popul ation
repeat
repeat
Select 2 or nore individuals in P
Apply reconbi nati on operators with probability p.
Apply nutation operator with rate p,
Insert new individuals in P
until (population P conplete)
Eval uate individuals in population P

P+ P
until (term nation criterion)
stop
end

In the following, the coding, selection, recombination, mutation and evaluation procedures

of the GA used in this paper are summarized.



2.1 The coding procedure

The first step is to encode all the variables corresponding to a candidate solution in a chro-
mosome. In this paper we adopted the standard binary coding: each variable is encoded into
a string of binary digits of a chosen length and these strings are then concatenated to form a
single string which is an individual in the population of candidate solutions.

2.2 The Selection Scheme

In this paper, the rank-based selection scheme is adopted. Given the current population, this
selection scheme starts by sorting the population according to the values of the fitness function
constructing a ranking, i.e. better solutions have higher rank. Individuals in the population are
then selected in such a way that higher ranking individuals have a higher probability of being
chosen for reproduction. This leads to an intermediate population whose elements will then be
operated upon by the recombination and mutation operators.

2.3 The Recombination Operators

The recombination of the genetic material of the selected “parent” chromosomes in order to
generate the offspring chromosomes will be accomplished here using three crossover operators
— one-point, two-point and uniform Syswerda (1995). The recombination operation is usually
performed with a user-defined probability p. and, consequently, with probability 1 — p., the
operation is not performed and both parents are just copied and sent to the mutation operation
step.

2.4 The Mutation Operator

After the recombination step and again inspired in Nature, a mutation operator is introduced
to simulate the errors that may arise during the copy process. With a (low) given mutation rate
P the mutation operator is applied to each bit in the offspring chromosomes. The effect of this
operator in the case of a binary alphabet is simple: just change a 1 into a 0 and vice-versa.

2.5 The Evaluation Step

After a new population is created each individual/solution must be evaluated in order to
have a fitness value assigned to it. The genotype development, sometimes called morphogenesis
(a term also borrowed from Biology), is the process that builds from each chromosome its
corresponding phenotype and, in this case, the complete individual to be evaluated.

3. OPTIMIZATION OF AN INDUSTRIAL BUILDING CONFIGURATION

Ina previous work Lemonge et al. (2003) a GA is applied to evolve the structural configura-
tion considering weight minimization of a space truss structure (consisted of standard modules
that includes a steel truss roof), presenting both continuous design variables, such as the co-
ordinates of the nodes, as well discrete variables, such as the cross-sectional areas of the bars,
which are to be chosen from commercially available sizes.

The Figure 2 shows two possible solutions for the configuration of an industrial building
built by standard modules as shown in the Figure 1. Each module is made up of two columns
and a planar truss. As observed, it is possible to have the planar truss with different number
of bars as candidate solutions during the evolution process. In the Figure 2, distinct structural
solutions are shown for the same area to be covered: the first one, at the left side, presents four
regular modules whereas the second one, at the right side, three modules. The first solution uses



a greater number of modules, probably with “thinner” cross-sectional areas, whereas the second
solution uses a smaller number of modules, probably with “thicker” cross-sectional areas. It can
also be observed the different number of bays between the trusses in the Figure 1. The role of
the GA is to find the better configuration of the steel truss roof and consequently the complete
configuration of the industrial building.
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Figure 1. Options of structural configurations for a frame presenting different numbers of bays.
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Figure 2: Distinct options for structural configurations for an industrial building.
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3.1 The optimization problem

The optimization problem proposed here involves as design variables the number of frames,
the height of the extreme nodes of the truss and the height of the node in the middle of the truss
(continuous). Also, the number of bays, and the cross-section areas of the bars (discrete),
linked in three groups, are design variables. One has a mixed discrete-continuous optimization
problem and the total number of design variables is equal to 7.

The objective is to minimize the weight of the structure which can be written as:

i=1
where L; is the length of the i-th bar of the spatial grid and p is the specific weight of the
material. The problem is subject to the stress constraints
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The material properties and constraints are displayed in the Table 1.
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Table 1: Material properties and constraints for the industrial building.

Property Value

Young modulus (E) 2100000.00 kgf/cm?
Specific weight — steel (p) 7850.00 kgf/cm?
Stress limit (042) 2500.00 kgf/cm?
Euler buckling constraint (c5) 4EA/L?
Displacement limit (t,,,42) 5.00 cm

3.2 The design variables

The optimization problem involves a total of seven design variables. The design variable
1 refers to the number of frames, the design variables 2 and 3 refer to the height of the nodes
placed at the extreme and in the middle of the truss, respectively given in cm. The fourth
variable is the number of bays in a half of the truss roof and, finally, the variables 5, 6 and 7
are the cross sectional areas of the bars, linked in three groups. These design variables are to be
chosen from the 32 commercial values listed in the Table 2. The Figure 3 shows details of the
design variables 2, 3 and 4.

al

Number of bays

Figure 3: Design variables

Y,

In the Figure 3 the red color corresponds to the top chord and the fifth design variable A,
the green color corresponds to the bottom chord and the sixth design variable A, and, finally,
the blue color corresponds to the vertical and diagonal bars and the seventh design variable As.
The variables 5, 6 and 7 are to be chosen from the 32 discrete values of commercially available
sizes presented in the Table 2.

Table 2: Commercial cross-sectional areas (cm?) for the industrial building.

section area section area section area section area
1 0.71613 9 3.88386 17 10.08385 25 18.58061
2 0.90968 10 4.94193 18 10.45159 26 18.90319
3 1.26451 11 5.06451 19 11.61288 27 19.93544
4 1.61290 12 6.41289 20 12.83868 28 20.19351
5 1.98064 13 6.45160 21 13.74191 29 21.80641
6 2.52258 14 7.92256 22 15.35481 30 22.38705
7 2.85161 15 8.16773 23 16.90319 31 22.90318
8 3.63225 16 9.40000 24 16.96771 32 23.41191




3.3 The fitness function

The fitness function (to be minimized) is given by the expression:
2 2 2
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where « is a constant penalty coefficient set to 106 for all experiments, and [z]* = z if z > 0,
and [z]™ = 0 otherwise. The objective function is the weight of one standard module multiplied
by the total number of modules and can be written as:

=1
where NN is the number of frames (the first design variable) of a given candidate solution.

3.4 Remark

Since the number of standard modules is a design variable here, the distance between each
of them is variable. In this case the loads applied on the nodes of the truss are computed
considering influence areas that depend on the distance between the frames leading to different
values of equivalent nodal loads for each candidate solution. This scheme is illustrated in the
Figure 4. For the experiments reported here only a distributed accidental load p=150.0 Kgf/m?
is considered. The dead load, wind load, or any other external loads can be included without
modifications to the GA code.

( resultant force

frame node

h

influence area

Figure 4: Influence area used to determine equivalent nodal loads to be applied at the standard module.

3.5 Experiments

Four experiments were performed in this optimization problem, varying according to the
imposed constraints, as following:

1. Case 1 — constraints in normal stresses;
2. Case 2 — constraints in stresses and displacements;

3. Case 3 — constraints in normal stresses and Euler buckling limits;



4. Case 4 — constraints in normal stresses, Euler buckling limits and displacements.

For each one of these cases, three distinct geometries of the orthogonal in-plan industrial
building, are analyzed.The first one is a rectangular area of [, = 20 m x [, = 150 m, the second
oneis !, =30m x [, = 300 mand, finally, the third one is I, =40 m x [, = 300 m.

3.6 The GA in industrial building optimization

The parameters of the GA, for all experiments are:
1. number of runs: 20,
2. population size: 200,
maximum number of generations: 200,

crossover probability: p.=0.8,

a > w

mutation probability: p,,=0.03.

The binary-coded generational GA implemented uses a Gray code, linear rank-based se-
lection, and elitism (the best element is always copied into the next generation along with 9
copies where one bit has been changed). Standard one-point, two-point, and uniform crossover
operators were applied with probabilities p! = 0.16, p? = 0.32, and p* = 0.32, respectively.

The Table 3 presents the lower z” and the upper 2V bounds of the 7 design variables for
the first and second geometries. The Table 4 presents the lower and the upper bounds for the
third geometry.

Table 3: Design variables, lower and upper bounds, and the number of bits used — first and second
geometries.

i Designvariable  zt zV  nbits
1 No. of frames 20 40 5
2 m 60.00 120.00 9
3 Y2 130.00 250.00 10
4 No. of bays 3 9 3
5 Ay 1 32 5
6 A 1 32 5
7 As 1 32 5

3.7 Results

The Tables 5, 6 and 7 show the design variables and the total weight of the industrial
building found in the three optimization problems analyzed. All of them are feasible solutions.

The GA shown tendentious to chose a smaller number of bays, in several cases, with
“thicker” cross-sectional areas of the bars and it might be a logical occlusion. A truss made
up of a smaller number of bars with “thick” cross-sectional areas is better than a truss made up
of a great number of bars with “thin” cross-sectional areas.

The design variables 2 and 3 correspond to the basic heights of the truss roofs shown
tendentious to search values in the direction of the upper limits and it can be justified by the fact
of a gain of stiffness using these values.



Table 4: Design variables, their lower and upper bounds, and the number of bits used — third geometry.

i Designvariable  z! 2V nbits
1 No. of frames 20 40 5
2 Y1 60.00 300.00 10
3 Yo 130.00 450.00 11
4 No. of bays 5 12 3
5 Ay 1 32 5
6 A 1 32 5
7 As 1 32 5

The limits of the design variables 2, 3, and 4 for the third geometry are different from the

first and second geometries due to the larger area to be covered.

These results were obtained using a Pentium 1V PC (2 GHz) which spent approximately
30 second in each independent run. So as to illustrate the configuration of the steel truss the
Figures 5, and 6 7 show the final shapes of the first, second and third geometries, respectively.

Table 5: Design variables and the final weight of the structure considering distinct sets of constraints —
I, =20m x [, =150 m.

) Design variables  Case 1 Case 2 Case 3 Case 4

1 No. frames 38 30 24 21

2 Y1 116.008 117.065 119.530  119.882

3 Y1 239.091 242.023 250.0 234.633

4 No. of bays 3 3 5 4

5 Ay 6.41289 7.92256 9.40000 11.61288

6 A 3.63225 4.94193 6.41289  7.92256

7 As 5.06451 6.41289 6.41289  8.16773
Weight (Kgf) 11157.737 11248.878 11568.006 11764.01

116,002 ﬁ m
117.065 ﬁ m
w1 SN
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Figure5: The final shape of the steel roofs of the first geometry.

The Table 8 presents the value of each equivalent nodal load applied at the final optimized
steel truss roof respect to each case where P, and P; are the loads at the extreme and interior
nodes, respectively, of the steel truss roof.



Table 6: Design variables and the final weight of the structure considering distinct sets of constraints —
l, =30m x I, =300 m.

Case 2

Case 3

Case 4

) Design variables  Case 1
1 No. frames 30 27 23 23
2 i 116.947 119.882 118.591 119.295
3 Y1 249.531 248.006 246.012 245.308
4 No. of bays 3 5 5 5
5 Ay 16.90319 18.90319 22.38705 22.38705
6 A, 10.08385 12.83868 15.35481 15.35481
7 As 13.74191 11.61288 13.74191 13.74191
Weight (Kgf) 33271.567 33585.727 33889.26 33890.981
116.947 1: __249'531
119.882 1: __248.006
118501 1: | 26012

Figure 6: The final shape of the steel roofs of the second geometry.

Table 7: Design variables and the final weight of the structure considering distinct sets of constraints —
I, =40m x [, =300 m.

i Design variables  Case 1 Case 2 Case 3 Case 4

1 No. frames 31 31 22 22

2 Y1 292.727 294.135 261.759 261.525

3 Y1 449.531 449.687 448.280 437.962

4 No. of bays 5 5 6 6

5 Ay 1535481 15.35481 22.38705 22.90318

6 A 10.08385 10.08385 15.35481  15.35481

7 As 9.40000 9.40000  12.83868 12.83868
Weight (Kgf) 46231.197 46264.915 48863.260 48985.867

4. CONCLUSIONS

In this paper a GA is proposed to solve the shape, sizing and structural configuration weight
minimization problem for an industrial building consisted of steel roof structures. In a previous
work similar structures were submitted to an optimization problem where the steel roof had a

fixed topology.
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Figure 7: The final shape of the steel roof of the third geometry.

Table 8: Equivalent nodal loads (in Kgf) applied at the final optimized steel truss roof.
Geometry load Casel Case 2 Case 3 Case 4

1 P, 1013514 1293.104 978.261 1406.250
P, 2027.027 2586.207 1956.522 2812.500

2 P, 1293.104 865.385 1022.727 1022.727
P, 2586.207 1730.769 2045.455 2045.455

3 P, 750.000 750.000 892.857 892.857
P, 1500.000 1500.000 1785.714 1785.714

The advantage of considering the different topologies for the steel roofs can be justified
by the fact that it is not necessary to chose a pre-defined number of bars for the truss. If this
choice has a range of options it can be set as a design variable within the GA. Although the
experience of the designer may help in this case, that possibility is an attractive feature because
it allows the designer to automate the search of the global configuration of the industrial building
simultaneously with the search of topology, shape and sizing design variables for the steel truss
roofs.

As a result, a much larger space of possible solutions is searched, potentially leading to
counter-intuitive or non-traditional solutions. The results found in the optimization process help
the designer providing, if not definitive, valuable preliminary conclusions guiding to good final
solutions while avoiding the repetitive evaluation of alternative designs in a time consuming
process.
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