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Laboratório Nacional de Computação Cientı́fica – LNCC/MCT
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Abstract. This paper discusses shape optimization problems for elastic shafts under torsion us-
ing genetic algorithms (GA) coupled to the boundary element method (BEM). A GA is proposed
to evolve the shape optimization involving the objective function that minimizes the area of the
cross-section where the constraint imposed is a minimum value of torsional stiffness. The de-
sign variables of the problem are coordinates of the nodes used to define the boundary element
discretization of the cross section. These values are generated by the GA and handled by a mesh
generator which defines a candidate solution to the problem. The value of the torsional stiff-
ness for each individual is evaluated using an implementation of the direct boundary element
method. For a given pair of values of cross-sectional area and torsional stiffness, the value
of the fitness function of an individual is obtained. In this case the constrained optimization
problem is replaced by an unconstrained one by means of a penalty function.

In order to investigate the robustness of the proposed scheme, an optimization problem
were tackled. The binary-coded generational GA uses a Gray code, rank-based selection, and
elitism. Standard one-point, two-point, and uniform crossover as well a mutation operator were
applied.
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1. INTRODUCTION

Among the several possibilities of structural optimization, one that has deserved great at-
tention is shape optimization, Mackerle (2003). In this type of problems, the aim is to determine
the boundary geometry (or part of it) so that a certain quantity (objective function) is minimized
(or maximized). For this purpose, it is necessary to solve the structural problem in question,
determining the answers, in terms of displacement, deformations and stresses, for a specific
requirement (or a set of them). This step is carried out by numerical methods such as the Finite
Element Method (FEM), Hughes (1987), or the Boundary Element Method (BEM), C.A. Breb-
bia (1984).

Since the pioneering work of, Schmit (1960), several methodologies have been proposed
and improved in the field of structural optimization. Techniques of mathematical programming
are frequently used as the functions involved are nonlinear. Among them, the most efficient
of these use gradient functions (that in the particular case of shape optimization are called
sensibilities to changes in shape, or simply sensibilities), which are calculated with the aid of
the numerical method used in the solution of the structural problem (FEM or BEM). A more
recent alternative in dealing with optimization problems, which dispenses with obtaining the
gradients of the functions, is Genetic Algorithms (GA), Goldberg (1989). This methodology
is characterized by not requiring that the objective function be continuous or differential, not
requiring complex formulations or reformulations for the problems, not requiring preliminary
studies to defining start points, feasible or not, in the search space of solutions, being of an
intrinsically parallel nature and of great flexibility in defining the objective function which can
be easily modified without the necessity of extensive code rewriting.

This paper discusses shape optimization problems for elastic shafts, Gracia and Doblare
(1988), under torsion using genetic algorithms (GA) coupled to the boundary element method
(BEM), Annicchiarico and Cerrolaza (2002). The shape optimization problem considers sec-
tions under Saint-Venant torsion which can be solved by the Boundary Element Method.

A GA is proposed to evolve the shape optimization of the cross-section in order to minimize
its area subject to a minimum value of the torsional stiffness.

The design variables of the problem are coordinates of the nodes used to define the bound-
ary element discretization of the cross section. These values are generated by the GA and
handled by a mesh generator which defines a candidate solution to the problem. The value of
the torsional stiffness for each individual is evaluated using an implementation of the direct
boundary element method.

For a given pair of values of cross-sectional area and torsional stiffness, the value of the
fitness function of an individual is obtained. In this case the constrained optimization problem
is replaced by an unconstrained one by means of a penalty function.

In order to investigate the robustness of the proposed scheme, an optimization problem
were tackled. The binary-coded generational GA uses a Gray code, rank-based selection, and
elitism. Standard one-point, two-point, and uniform crossover as well a mutation operator were
applied.

2. Torsion of Prismatic Bars by BEM

The equations describing a linear elastic prismatic bar in torsion as depicted in Figure 1
and 2 can be stated by means of the so called Saint-Venant stress function, �����������
	�� , such that
Timoshenko and Goodier (1970):


 ��������������	

 	���������������� (1)



where the comma represents spatial derivatives and � is the shear modulus of the material.

X
X

X3

2
1

ψ

Figure 1: Prismatic bar under torsion.
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Figure 2: Normal vector to the boundary of
transversal section of the bar.

In this way, the equilibrium equations are identically satisfied and the compatibility equa-
tions become:

��������� � � 	�	�� ������� � ��� (2)

The boundary conditions of the problem imply that
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where 	�� are the components of the unit normal vector � which means that the resultant shearing
stress at the boundary is tangent to the boundary.

Using the relations:

	�� ������� ��	���� ��� � � ����
	 	 ������� ��	����
	�� ���

� � ���� (4)

the following equation are then obtained:

����������� � � ����
� ��������	�� � �
	����� ���
� ���� ��� (5)

In other words, the stresses function ����� ��� �
	�� must be constant along the whole section
boundary, � . In simply connected domains this constant is immaterial and has been set to zero
here, i.e.:

� �
� in � . (6)

The resultant of the forces distributed over the ends of the bar is zero, and these forces
represent a torque couple of magnitude: �
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Observing the above equation, the torque needed to promote a unit rotation per unit length, � ,
the torsion stiffness, $ is:

$ ��� �
! "

� ����� � ��� � � 	 �
	�� � � � � �
	 (8)



Once the problem is stated as the Poisson equation in � , subjected to the boundary condi-
tion (6), it can be easily solved by several numerical methods.

In the present work a standard direct formulation of the BEM, Brebbia et al. (1984), was
used due to its good results and simplicity in treating the necessary remeshing. The method is
based on the discretization of following integral equation for a generic body force term � � � � :

� ��� � ����� ��� ! �� � � �� � ��� � � � ����� � � � ! � � � ��� � � � � � �� � � � � � � � !#"
� � ��� ��� ��� ��� � � � (9)

where �	� � , and the integral 
 �� should be understood in the sense of principal value. The func-
tions � � ��� ��� � and �����
 �

��� ��� � correspond to the exact solution of the problem in an unbounded
domain, forced by a unit point source at � :

� � ��� ��� � � ������ ln ��� � (10)� �� �
�
��� ��� � � ������ ��� � 	���� (11)

As in the present problem � ��� � � � � , the domain integral in the above expression can be
rewritten as a boundary integral:!#"

� � ��� ��� ��� � � ��� ! ��� �� � 	�� ��� ��� � � � (12)

where

� �� ��� � � � � � ��
� �� � �! � ��� ��� ��"#���

In order to avoid domain discretization, the torsion stiffness and cross sectional area were
also written as boundary integrals by means of the divergence theorem, Barra (1990), as:$ �

! � ����	�� � � (13)

$ ��� � �
! �&% 	(' �)� ��� ����+* 	�� � � (14)

2.1 GENETIC ALGORITHMS

One reason for GA’s popularity is that, unlike many traditional optimization methods, when
used as a minimization (or maximization) algorithm it differs from the more familiar mathemati-
cal programming techniques by (i) employing a population of candidate solutions, (ii) operating
upon the coding of a solution and not on the solution itself, (iii) using probabilistic transition
rules, and (iv) not requiring additional information (like derivatives) about the function to be
optimized. As a result, the search can be performed over non-convex (and even disjunct) sets
for non-convex, non-differentiable functions of variables that can be continuous and/or discrete.
The first step is to encode all the variables corresponding to a candidate solution in a chromo-
some. In this paper we adopted the standard binary coding: each variable is encoded into a
string of binary digits of a convenient length and these strings are then concatenated to form
a single string which is an individual in the population of candidate solutions. A linear rank-
based selection scheme is adopted. Given the current population, this selection scheme starts



by sorting the population according to the values of the fitness function constructing a rank-
ing, i.e. better solutions have higher rank. Individuals in the population are then selected in
such a way that higher ranking individuals have a higher probability of being chosen for repro-
duction. This leads to an intermediate population whose elements will then be operated upon
by the recombination and mutation operators. The recombination of the genetic material of
the selected “parent” chromosomes in order to generate the offspring chromosomes will be ac-
complished here using three crossover operators – one-point, two-point and uniform, Syswerda
(1995). The recombination operation is usually performed with a user-defined probability ���
and, consequently, with probability � ����� , the operation is not performed and both parents are
just copied and sent to the mutation operation step. After the recombination step and again in-
spired in Nature, a mutation operator is introduced to simulate the errors that may arise during
the copy process. With a (low) given mutation rate ��� the mutation operator is applied to each
bit in the offspring chromosomes. The effect of this operator in the case of a binary alphabet is
simple: just change a 1 into a 0 and vice-versa. After a new population is created each individ-
ual/solution must be evaluated in order to have a fitness value assigned to it. The BEM is then
used to generate the mesh and compute the values of the area and the torsional stiffness of each
candidate solution.

3. NUMERICAL EXPERIMENTS

In order to investigate the robustness of the proposed optimization procedure, a numerical
experiment is discussed. A GA is proposed to evolve the shape optimization involving the
objective function that minimizes the area of the cross-section where the constraint imposed is
a minimum value of the torsional stiffness.

The GA proposed can be stated as:

begin
Initialize the population P
Generate the boundary element for each string
Evaluate each string in the population
repeat

repeat
Select 2 or more individuals in P
Apply recombination operators with probability � �
Apply mutation operator with rate � �
Insert new individuals in P’

until (population P’ complete)
Evaluate individuals in population P’
P � P’

until (termination criterion)
stop

end

The optimization tool implemented uses a GA and a Boundary Element Method (BEM)
codes and both work independently.

The design variables of the problem are the coordinates of the nodes used to define the
boundary element discretization of the shaft as shown in the Figure 3. The exact solution of
the problem analyzed in this experiment is given by a circular section with radius R = 10 (area
equal to 314.159), and torsional stiffness $ = 15707.96327.

Two cases are analyzed in this problem: the first one corresponds to a parametrization
of the cross-section without any type of symmetry considered, and the second case considers



the double symmetry presented in this problem. The first case is discretized with 24 design
variables ( � � , i = 1,24), whereas the second one is discretized with 7 design variables ( ��� , �
	 , �
� ,
��� , � ��� , � ��� and � ��� ) as can be observed in the Figure 3.

For both cases, 12 contours were defined and each one of them containing three points: the
initial point, the final point and the middle point. The first contour is defined by the points 1, 2
and 3 and the twelfth by the points 12, 1 and 24. It is important to note that the angle between
each direction assigned to a design variable is equal to � � � � . To obtain the complete mesh for
the BEM 8 elements were generated between the initial and final points of each contour and,
consequently, the mesh is made up of 96 boundary elements. From this point � is considered a
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Figure 3: Design variables.

design variable in the following expressions. The objective function (to be minimized), can be
written as:����	�

���������
	����������

(15)

The fitness function can be stated as:� ��	�

������	�
�� �"!$#&%('�) ��	�
*) +-,/.10 (16)

where ) ��	�
 is the torsional stiffness of the current candidate solution
	

,
*) is the constraint

(given torsional stiffness), and
�

is a constant penalty coefficient which was set to 10 2 in all
experiments.

3.1 The first case - without symmetry.

For the first case, the parameters of the GA are:3 Number of runs: 10;3 Number of design variables: 10;3 Population size: 60;3 Chromosome length: 240 bits (10 bits per design variable;



� Maximum number of generations: 100;� Crossover probability: ��� ��� � � ;� Mutation probability: ��� �
� � ��� ;� Lower bound of the design variables: 9;� Upper bound of the design variables: 11.

The Table 1 shows the best feasible solutions found in 10 independent runs where � ��� �
is the value of fitness function (equal to the objective function � area of the shaft). All of
these values are very close to the exact solution with respect to both the area (314.159) and the
torsional stiffness $ ��� � = 15707.96327. It is important to note that the values of $ are greater
than 15707.96327. Among them the best solution was found in the second run with values � ��� �
= 314.64 and $ ��� � = 15709.5. Differently of the Table 1, the Table 2 shows the best infeasible
solutions found in the same 10 independent runs. Although infeasible, all of these values are
very close to the exact solution with respect to both the area (314.159) and the torsional stiffness$ ��� � = 15707.96327. Among them the best solution was found in the ninth run with values
� � � � = 313.93 and $ � � � = 15609.8. This is the greatest value of $ among these solutions and,
naturally, the smaller violation of the imposed constraint.

Table 1: Design variables for the best feasible solutions and the corresponding values of the objective
function �	��
�� and the torsional stiffness 
���
�� in 10 independent runs.

Var Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 9.97 9.72 9.32 9.94 10.17 10.52 10.10 9.52 10.26 9.78
2 9.98 9.45 9.71 9.83 10.07 10.28 10.47 9.85 10.00 10.09
3 9.86 9.44 10.01 9.97 9.98 10.02 10.34 10.31 9.80 10.21
4 9.95 9.71 10.29 9.94 9.98 10.01 10.01 10.19 9.69 10.43
5 9.51 9.67 10.26 9.78 9.83 9.88 10.29 9.99 9.50 10.54
6 9.63 9.91 10.46 10.18 9.90 9.66 10.18 10.39 9.65 10.28
7 9.79 9.82 10.47 10.40 9.93 9.33 10.01 9.93 9.85 10.22
8 9.42 9.80 10.30 10.63 9.99 9.39 10.05 10.02 9.87 10.13
9 9.76 9.82 10.18 10.35 9.48 9.33 10.21 10.19 10.07 9.83

10 10.08 10.17 10.10 10.34 9.84 9.51 10.00 10.54 10.09 9.41
11 10.30 10.00 10.02 10.33 9.81 9.69 10.42 10.35 9.48 9.37
12 10.24 10.46 10.28 10.52 9.98 9.79 10.15 10.35 9.62 9.50
13 10.46 10.24 10.06 10.08 10.06 10.18 10.06 10.41 9.90 9.83
14 10.02 10.44 10.13 9.89 10.21 10.23 9.92 10.14 9.69 9.88
15 10.10 10.39 10.19 9.50 10.02 10.10 9.76 9.93 9.99 9.39
16 9.96 10.38 10.22 9.43 9.90 10.15 9.74 9.97 9.89 9.70
17 9.88 10.10 10.26 9.50 9.71 10.08 9.68 9.85 10.13 9.81
18 9.93 10.20 10.18 9.65 10.06 10.26 9.37 9.82 10.21 10.20
19 10.03 9.77 9.90 10.07 10.20 10.35 9.72 9.67 10.39 10.44
20 10.07 10.08 9.93 9.94 10.22 10.43 9.86 9.93 10.65 10.46
21 10.57 10.12 9.52 9.93 10.12 10.38 10.47 9.61 10.18 10.29
22 10.50 10.09 9.45 9.90 10.16 10.03 9.91 9.71 10.34 10.02
23 10.27 10.15 9.11 9.93 10.19 10.38 9.96 9.72 10.39 10.13
24 10.21 9.84 9.47 10.06 10.14 10.26 10.06 9.52 10.53 10.26�	�����

314.98 314.64 314.77 314.88 314.71 314.71 314.99 314.78 314.94 315.14�
15720.2 15709.5 15713.8 15716.0 15727.6 15718.5 15718.7 15710.5 15718.1 15716.0

The Figure 4 shows the final shape of the shaft for the best feasible solution found in the
first run. The Figure 5 shows the final shape of the best infeasible solution found in the sixth run.
The red color in both cases corresponds to the exact solution whereas the blue color indicates
the solutions found by the GA. One can conclude that these solutions are very reasonable.

The Figures from 6 to 8 present, for each individual in the population, the value of the
objective function and the respective value of the fitness function in the initial population and
generations 30 and 60. The minimum value of the torsional stiffness is also plotted in these



Table 2: Design variables for the best infeasible solutions and the corresponding values of the objective
function �	��
�� and the torsional stiffness 
���
�� in 10 independent runs.

Var Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 10.03 9.72 9.31 9.94 10.06 10.39 10.09 9.70 10.26 9.97
2 9.94 9.42 9.71 9.91 10.05 10.29 10.44 9.85 10.00 10.09
3 9.89 9.44 10.01 9.97 9.98 10.01 10.31 9.69 9.98 10.22
4 9.80 9.71 10.23 9.93 9.98 10.01 10.11 10.22 9.68 10.43
5 9.51 9.67 10.26 9.78 9.92 9.62 10.22 9.94 9.51 10.53
6 9.34 9.84 10.46 10.15 9.83 9.35 9.82 10.32 9.65 10.28
7 9.71 9.82 10.47 10.40 9.92 9.42 9.99 9.82 9.79 10.21
8 9.42 9.80 10.33 10.63 10.01 9.39 10.06 10.02 9.85 10.13
9 9.76 9.82 10.08 10.33 9.49 9.33 10.18 10.19 9.93 9.79

10 9.92 10.17 9.98 10.32 9.83 9.51 10.01 10.53 9.82 9.42
11 10.20 10.00 10.02 10.33 9.83 9.63 10.17 10.35 9.48 9.37
12 10.24 10.46 10.28 10.51 9.88 9.83 10.16 10.28 9.60 9.53
13 10.45 10.24 10.07 10.05 10.06 10.09 10.05 10.34 9.65 9.66
14 10.23 10.44 10.13 9.89 10.20 10.17 9.92 10.11 9.69 9.88
15 10.10 10.39 10.19 9.75 10.04 10.09 9.76 9.93 9.88 9.64
16 9.96 10.43 10.22 9.46 9.90 10.15 9.72 9.97 9.89 9.71
17 9.87 10.12 10.26 9.52 9.79 10.08 9.82 9.84 10.13 9.82
18 9.93 10.20 10.18 9.63 10.05 10.26 9.37 9.80 10.27 10.20
19 10.03 9.77 9.90 10.07 10.14 10.34 9.72 9.83 10.38 10.32
20 10.07 10.08 9.92 9.94 10.16 10.43 9.76 9.87 10.68 10.31
21 10.59 10.11 9.52 9.58 10.13 10.38 10.46 9.61 10.32 10.32
22 10.50 9.92 9.30 9.60 10.15 10.11 10.07 9.71 10.42 10.14
23 10.23 9.90 9.11 9.93 10.29 10.38 9.97 9.75 10.35 10.13
24 10.24 9.82 9.47 10.05 9.91 10.26 10.06 9.65 10.40 9.74�������

314.17 313.95 314.16 314.25 313.92 313.91 314.21 314.03 313.93 314.22�
15578.0 15591.0 15593.0 15584.6 15577.2 15566.1 15600.6 15590.5 15609.8 15590.0

Figure 4: Best feasible solution found in the
first run – Area = 314.64 and Torsional stiffness
= 15709.5.

Figure 5: Best infeasible solution found in the
sixth run – Area = 313.91 and Torsional stiff-
ness = 15566.1.

graphs. Observing them one can note that along the evolution there is a trend in the popula-
tion, to approach this constraint. Besides, in the end of the process there are feasible as well as
infeasible solutions. The other set of Figures from 9 to 10 show the comparison between the
objective and fitness functions. The feasible elements of the population have the same values
for both functions and in those graphs they appear above the constraint. The elements bellow
this line are infeasible. Since the penalty function increases the value of the objective function
and grows with the value of the violation, it is interesting to observe that the “most infeasi-
ble” solution (smaller objective function) has the greatest value of the fitness function. Along
the evolution there is a trend in the population to approach the limit between the feasible and
infeasible design spaces.
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Figure 6: Objective function – Initial population.
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Figure 7: Objective function – Generation 30.
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Figure 8: Objective function – Generation 60.
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Figure 9: Objective and Fitness function – Initial population.
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Figure 10: Objective and Fitness function – Generation 30.
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Figure 11: Objective and Fitness function – Generation 60.



3.2 The second case - with symmetry.

In order to experiment the characteristics of the symmetry present in this particular example
the number of design variables was reduced from 24 to 7 and only one quarter of the geometry
was considered. In this case, the parameters of the GA are:

� Number of runs: 10;� Number of design variables: 7;
� Population size: 60;� Chromosome length: 70 bits (10 bits per design variable;
� Maximum number of generations: 100;� Crossover probability: ��� ��� � � ;
� Mutation probability: ��� �
� � ��� ;� Lower bound of the design variables: 9;
� Upper bound of the design variables: 11.

As in the previous case, the Table 3 shows the best feasible solutions found in 10 indepen-
dent runs where � � � � is the value of fitness function (equal to the objective function � area of
the shaft). All of these values are very close to the exact solution with respect to both the area
(314.159) and the torsional stiffness $ = 15707.96327. It is important to note that the values
of $ are greater than 15707.96327. Among them the best solution was found in the seventh
run with � � � � = 314.24 and $ ��� � = 15708.1 and this one is better than the feasible solution, as
expected, found in the previous case. In the same way the Table 4 shows the best infeasible so-
lutions found in the same 10 runs. Although infeasible, all of these values are very close to the
exact solution and among them the best solution was found in the ninth run with � ��� � = 313.79
and $ ��� � = 15592.4. This is the greatest value of $ among these solutions and, naturally, the
smaller violation of the imposed constraint.

Table 3: Design variables for the best feasible solutions and the corresponding values of the objective
function �	��
�� and the torsional stiffness 
���
�� in 10 independent runs.

Var Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 10.03 9.83 9.89 10.05 9.96 10.06 10.07 10.12 9.85 10.01
2 9.91 9.89 9.99 9.97 9.99 10.03 9.96 10.04 9.78 9.99
3 9.98 9.85 10.02 10.05 9.84 9.94 9.90 10.14 10.17 10.07
4 10.04 10.07 10.01 9.98 10.05 10.00 9.99 10.01 9.98 9.97
5 10.01 10.13 9.99 9.97 10.02 10.09 10.01 9.94 10.11 10.03
6 10.05 10.11 10.07 10.06 10.04 9.98 10.07 9.93 10.24 9.99
7 10.08 10.03 9.93 9.93 10.09 9.94 10.10 9.89 10.86 10.02�������

314.24 314.33 314.24 314.28 314.3 314.25 314.24 314.27 318.8 314.25�
15709.3 15708.9 15708.4 15711.4 15710.0 15708.8 15708.1 15710.5 16079.6 15712.2

The Figure 12 shows the final shape of the shaft for the best feasible solution found in
the first run. The Figure 13 shows the final shape of the best infeasible solution found in the
sixth run. The red color in both cases corresponds to the exact solution whereas the blue color
indicates the solutions found by the GA. One can conclude that these solutions are very good.
These shapes are very close to the exact shape of this problem and, as expected, the symmetry
adopted leads to better solutions.

The Figures from 14 to 16 present, for each individual in the population, the value of the
objective function and the corresponding value of the fitness function in the initial population
and generations 30 and 60. The minimum value of the torsional stiffness is also plotted in these



Table 4: Design variables for the best infeasible solutions and the corresponding values of the objective
function �	��
�� and the torsional stiffness 
���
�� in 10 independent runs.

Var Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 9.98 9.83 9.98 10.00 9.98 10.06 9.93 10.00 9.72 9.98
2 9.91 9.90 9.99 9.96 9.94 10.00 9.92 10.04 9.78 10.00
3 9.98 9.87 10.02 9.98 9.94 9.95 9.91 10.00 9.83 9.95
4 9.96 10.06 10.01 9.92 9.97 10.00 9.99 10.00 9.99 9.97
5 10.01 10.12 9.98 10.00 10.00 9.96 10.03 9.97 10.08 10.03
6 10.05 10.02 9.95 10.06 10.04 9.98 10.06 9.93 10.24 9.99
7 10.07 10.03 9.95 9.99 10.06 9.94 10.03 9.89 10.23 9.98�������

313.59 313.68 313.57 313.61 313.58 313.58 313.59 313.58 313.79 313.58�
15584.1 15581.5 15585.1 15579.5 15584.0 15582.9 15585.4 15588.1 15592.4 15594.4

Figure 12: Best feasible solution found in the
third run – Area = 314.24 and Torsional stiff-
ness = 15708.4.

Figure 13: Best infeasible solution found in
the third run – Area = 313.57 and Torsional
stiffness = 15585.1.

graphs. Observing them one can note that along the evolution, as in the previous experiment
without symmetry, there is a trend in the population to approach this constraint value. Again, in
the end of the process there are feasible as well as infeasible solutions in the population. Finally,
the other set of Figures from 17 to 19 show the comparison between the objective and fitness
functions.
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Figure 14: Objective function – Initial population.



 13000

 13500

 14000

 14500

 15000

 15500

 16000

 16500

 17000

 17500

 18000

 290  295  300  305  310  315  320  325  330  335  340
S

tif
ne

ss

Fobj

GA - Fobj
exact constraint

exact result

Figure 15: Objective function – Generation 30.
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Figure 16: Objective function – Generation 60.
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Figure 17: Objective and fitness function – Initial population.
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Figure 18: Objective and fitness function – Generation 30.
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Figure 19: Objective and fitness function – Generation 60.

3.3 CONCLUSIONS

The results presented in this work correspond to the first experiments performed with the
GA+BEM optimization tool implemented. They might be considered very simple but the struc-
ture of the codes worked very well and it provides a means to experiment with other types of
problems where the BEM can be applied with success.

The example discussed in this text will be tested varying the set of parameters of the GA
–number of runs, population size, probabilities, operators, etc– as well as the characteristics that
defines the boundary element mesh as the number of contours, the type of element, number of
integration points, etc.

Besides, spline curves, Blanc and Schlick (1995), have been implemented to better repre-
sent the contour of the domains and enabling the analysis of optimization problems presenting
complex geometries.

Acknowledgments

The authors acknowledge the support received from PIBIC/UFJF-CNPq (Programa de Bol-
sas de Iniciação Cientı́fica, Universidade Federal de Juiz de Fora).



REFERENCES

Annicchiarico, W. & Cerrolaza, M., 2002. An evolutionary approach for the shape optimiza-
tion of general boundary elements models. Electronic Journal of Boundary Elements, vol.
BETEQ2001, n. 2, pp. 251–266.

Barra, L., 1990. Cálculo de Sensibilidades – Uma Aplicação dos Elementos de Contorno à
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