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Abstract. A genetic algorithm for optimal location of bridge pillars is introduced. Instead
of encoding in the chromossome the various geometric parameters needed to completely
define the geometry of the bridge, domain knowledge is introduced and only the position
of the bridge pillars and a parameter that defines the beam height from span values are
used as design variables. Additional domain knowledge is introduced in the development
process that generates a bridge design from each genotype and also in the fitness evaluation
process. As a result, designs with incompatible beam height and span values will neither
be generated nor tested by the algorithm. The search space is greatly reduced and there is
no need to explicitly introduce all the structural behaviour constraints, thus allowing for
an unconstrained search process. Different objective functions can be considered and both
the minimization of the compliance and of the maximum support reaction are presented.
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1 INTRODUCTION

Genetic algorithms1 (GAs) are biologically inspired search procedures which have found
applications in different areas of activity and have been shown to efficiently search com-
plex spaces for good solutions to optimization problems. GAs encode all the variables
corresponding to a candidate solution in a chromossome: usually a string of characters
from a given alphabet. GAs maintain a population of candidate solutions which is evolved
mimicking Nature’s evolutionary process: solutions are selected – by a stochastic process
that favours better solutions – and have their genetic material recombined/mutated by
means of genetic operators. This gives rise to a new population with improved solu-
tions. The process starts from an initial population and is repeated for a given number
of generations or until some stopping criteria are met.

GAs allow for the introduction of domain knowledge in different ways and it has been
observed that this may lead to good solutions been found faster.

In this paper a GA for structural optimization problems with discrete and/or continu-
ous variables is introduced for the design of bridge structures. Instead of encoding in the
chromossome the various geometric parameters needed to completely define the geometry
of the bridge – which would entail a large search space with a great number of unfeasible
designs – domain knowledge is introduced in a way that only the position of the bridge
pillars and a parameter that defines the beam height from span values are used as design
variables.

Additional domain knowledge is introduced in the development (or morphogenesis2)
process that generates the phenotype (a bridge design) from the genotype (a string of
bits) and also in the fitness evaluation process of each candidate design as detailed in
Section 4.

As a result, designs with incompatible beam height and span values that lead to un-
economical or unfeasible designs will neither be generated nor tested by the algorithm.
The search space is greatly reduced and there is no need to explicitly introduce all the
structural behaviour constraints into the GA, thus allowing for an unconstrained search
process.

Different objective functions can be easely considered and, in this paper, both the
minimization of the compliance and of the maximum support reaction are presented.

2 THE GENETIC ALGORITHM

One reason for GA’s popularity is that unlike many traditional optimization methods,
GAs demand less from the underlying problem:

• GAs do not require the objective function to be continuous and/or differentiable

• GAs do not require extensive problem formulation

• GAs are not sensitive to the starting point
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• GAs can avoid convergence to local optima

• GAs processing is naturally parallel

Because of these advantages GAs have been applied to a wide variety of problems in
science, engineering, finance, etc.

When a GA is used as a minimization (or maximization) algorithm, it differs from the
more familiar mathematical programming techniques by

• employing a population of candidate solutions

• operating upon the coding of a solution and not on the solution itself

• using probabilistic transition rules

• not requiring additional information (like derivatives) about the function to be min-
imized (or maximized)

As a result the search can be performed over non-convex (and even disjunct) sets for
non-convex non-differentiable functions of variables that can be of different types (e.g.
continuous, discrete, boolean).

A generic GA could be stated as:

begin

Initialize the population P

Evaluate each string in the population

repeat

repeat

Select 2 or more individuals in P

Apply recombination operators with probability pc

Apply mutation operator with rate pm

Insert new individuals in P’

until (population P’ complete)

Evaluate individuals in population P’

P ← P’

until (termination criterion)

stop

end

In the following, the selection, recombination, mutation and evaluation steps of the
GA used in this paper are summarized.
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2.1 The Selection Scheme.

In this paper, the so-called rank-based selection scheme is adopted. Given the current
population, this selection scheme starts by sorting the population according to the values
of the fitness function constructing a ranking, i.e. better solutions have higher rank.
Individuals in the population are then selected (using a pseudo-random number generator)
in a way that higher ranking individuals have a higher probability of being chosen for
reproduction. This leads to an intermediate population whose elements will then be
operated upon by the recombination and mutation operators.

2.2 The Recombination Operators.

The recombination of the genetic material of the selected “parent” chromossomes in order
to generate the offspring chromossomes will be accomplished here using three crossover
operators – one-point, two-point and uniform – each one applied with its respective relative
probability (in this work, p1

c = 0.2, p2
c = 0.4 and pu

c = 0.4).
When the one-point crossover operator is selected, the parent chromossomes p1 and p2

are paired and a location is randomly chosen in the set {1, 2, . . . , L − 1}. The genetic
material is then exchanged between them giving rise to two new chromossomes: f1 and
f2 as exemplified below for L = 7 and a cut in the fourth position.

p1 : 1111 111 f1 : 1111 000

p2 : 0000 000 f2 : 0000 111

This operator is the simplest one and is inspired by what happens in Nature. However
in the GA one is free to devise other “genetic” operators, as is the case of the two-point
crossover exemplified below where two points of crossover are randomly chosen.

p1 : 1111 111 11111 f1 : 1111 000 11111

p2 : 0000 000 00000 f2 : 0000 111 00000

Finally the uniform crossover3 was also used here. In this case, a mask is generated
in order to define which bits will be exchanged between the parent chromossomes. The
two-point crossover exemplified above corresponds to the mask m2 = 0000 111 00000:

p1 : 1111 111 11111 f1 : 1111 000 11111
m2 : 0000 111 00000
p2 : 0000 000 00000 f2 : 0000 111 00000

With a randomly defined string of 1s and 0s – the mask – one can achieve a higher level
of mixing as can be seen in the example of a uniform crossover.

p1 : 1111 111 11111 f1 : 1011 010 10110
m2 : 0100 101 01001
p2 : 0000 000 00000 f2 : 0100 101 01001
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The recombination operation is usually performed with a user-defined probability pc and,
consequently, with probability 1 − pc, the operation is not performed and both parents
are just copied and sent to mutation operation step.

2.3 The Mutation Operator.

After the recombination step and again inspired in Nature, a mutation operator is intro-
duced to simulate the errors that may arise during the copy process. With a (low) given
mutation rate pm the mutation operator is applied to each bit in the offspring chromos-
somes. The effect of this operator in the case of a binary alphabet is simple: just change
a 1 into a 0 and vice-versa. A typical value for this rate is pm = 1/L, where L is the
chromossome length.

2.4 The Evaluation Step.

After a new population is created each individual/solution must be evaluated in order
to have a fitness value assigned to it. This step – which is the most time-consuming
step of the GA – is clearly parallelizable: each fitness computation can be performed
independently but in this paper standard personal computers were used. For a parallel
implementation of a GA see Guerreiro et al.4 where the master-slave paradigm in the
PVM5 environment allowed for the coupling of two different FORTRAN codes: one for
the GA (master node) and another for the fitness computation is the slave nodes.

The fitness evaluation process is a problem dependent one and allows for the intro-
duction of domain knowledge. It will be detailed for the present application in the next
section.

3 THE BRIDGE STRUCTURE

The structure analysed here is that of a highway bridge made of pos-tensioned prestressed
concrete 178 meters long and supported by four vertical pillars fixed at their bases and
with an elastomeric bearing pad at their tops.

3.1 The geometry

The main girder has a voided cross section as shown schematically in Figure 1 and HG is
a design variable with a lower bound of 0.2 m. The lower slab has a fixed thickness of 0.2
m and the upper one of 0.3 m. All webs have a thickness of 0.4 m. The angles shown in
Figure 1 are A=30o, B=40o, C=45o, D=20o and points 2 and 3 are at a distance of 62.0 of
the main girder and points 1 and 4 at 17.886 and 22.912, respectively, of the main girder.
A minimum distance of 60 m between pillars P2 and P3 is required due to construction
restrictions as well as a 5 m distance between P1 and P2 and between P3 and P4. The
minimum span of both cantilevers is also 5 m.

The design variables that define the location of the pillars are denoted by xi, i = 1, 4
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Figure 1: The bridge structure.

and are subject to upper and lower bounds as follows

0 ≤ x1 ≤ 5 1 ≤ x2 ≤ 50 1 ≤ x3 ≤ 35 0 ≤ x4 ≤ 8 (1)

The last variable necessary to completely define the geometry of the structural model of
the main girder is the distance HG (see Figure 1).

At this point some domain knowledge is introduced: for this type of bridge design the
ratio between the maximum span Lmax (see Figure 2) and the height of the main girder,
is known to usually fall in the range [24, 28]. Thus, instead of defining HG as the fifth
design variable, x5 is defined as

x5 =
Lmax

0.2 + HG + 0.3
(2)

with bounds

24 ≤ x5 ≤ 28.

With this decision all unfeasible designs where HG is not compatible with

Lmax = max{L1, L2, . . . , L5} = f(x1, x2, x3, x4) (3)

will neither be generated nor tested by the algorithm. A price is paid for that: the degree
of epistasis is increased in the sense that the effect of the gene/variable x5 depends not
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only on its own value but also on the values assumed by the other variables. However,
due to the enormous reduction in the search space it is felt that this decision is really
advantageous.

For simplicity only the dead loads and the horizontal forces due to vehicle braking will
be considered here. Also the geometry of cross section of the main girder was kept simple
and a more complex parametrization could be easely accommodated in the GA.

3.2 The objective function

In this problem one is interested in finding an optimal location for the pillars as well as the
height of the main girder in order to minimize a relevant quantity, the objective function.
In this paper two possible objective functions will be illustrated:

1. compliance minimization

2. maximum support reaction minimization

When using a GA in general or specially the one proposed here, the designer is free
to conceive quite general objective functions without having to worry about convexity,
differentiability or even continuity. Multiobjective optimization – though not the subject
of this paper – can also be performed by suitable modifications of the GA; the reader is
referred to Srinivas and Deb6 and Fonseca and Fleming.7

4 THE GENOTYPE DEVELOPMENT AND FITNESS EVALUATION

The genotype development, sometimes called morphogenesis (a term also borrowed from
Biology), is the process that associates with each chromossome its corresponding pheno-
type. In the problem considered here the chromossome – a string of 50 bits – develops
into a bridge design as schematically depicted in Figure 1.

The fitness function used here could be simply equated to the objective function itself
with no need to add penalty terms as no explicit constraints are present due to the choices
made for

• design variables

• genotype development process and

• fitness evaluation process.

For the first case, compliance minimization, one has

f(x) =

∫
L

qu dL (4)

where q denotes the loads applied to the structure along its length L and u the corre-
sponding displacements. For the second case, maximum reaction minimization, one has

f(x) = max{r1, r2, r3, r4} (5)
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where the reactions ri are positive (compression in the pillars) since during the evolution-
ary process designs which lead to negative reactions are discarded.

The development and fitness evaluation of a given chromossome is performed according
to the following steps:

1. decode chromossome into the design variables {x1, x2, x3, x4, x5}
2. define geometry and compute dead loads

3. considering the bridge with rigid supports, compute support reactions

4. define cross section of each pillar for support reactions of step 2

5. compute elastomeric bearing pad dimensions

6. compute elastic constants for each set of pillar + bearing pad

7. solve structure using elastic constants found in step 5

8. compute fitness

Those steps are described in more detail in the following.

4.1 Step 1

The design variables {x1, x2, x3, x4, x5} are decoded from the chromossome – a string of
binary digits – by a standard procedure.1

4.2 Step 2

With the use of equations (3) and (2) HG is computed and the geometry is defined.
Adopting γc = 2.5 tf/m3 for concrete’s specific weight the dead load is computed.

4.3 Step 3

The support reactions are computed for the model shown in Figure 2 in order to define
the cross sections of each pillar. (Five standard beam finite elements were used in the
discrete model.)

1 6

L1 L2 L3 L4 L5

2 3 4 5

Figure 2: Rigid supports model
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4.4 Step 4

Circular cross sections were chosen for illustrative purposes only. For the sizing proce-
dure, two criteria are usually considered, one concerning the minimum area of concrete
(Acmin) necessary for the compressive load and another which takes into consideration
the slenderness ratio (λ). For the first criterion one has

Acmin ≥ Nd

0.85fcd + ρfsd

where Nd is the normal load applied to the pillar increased by a load factor (Nd = N×γf),
fcd is the maximum compressive strength of the concrete divided by a strength reduction
factor (fcd = fck/γf). An fck = 30 MPa was adopted and γf = 1.48 was used. The ratio
of steel area to concrete area in the cross section, ρ = As/Ac, is not known a priori and
was then set to 0.8% in this example. Finally, the maximum compressive strength of the
steel was set to fsd = 420 MPa. For a circular cross section one has

Dmin ≥
√

4Acmin

π
.

The slenderness ratio of a pillar is defined as λ = le/i where le is the buckling length
and i denotes the radius of gyration of the cross section. In our case le is twice the length
of the pillar, le = 2LP , and the radius of gyration

i =

√
Jp

A

reduces to i = D/4 where D is the diameter of the cross section. The Brazilian Code8

establishes three classes of pillar according to the slenderness ratio:

0 ≤ λ ≤ 40 , 40 ≤ λ ≤ 80 and 80 ≤ λ ≤ 200

In order to define the diameter D of the cross section, three values are initially computed

Ds = le/10 , Di = le/20 and Dl = le/25

corresponding to short, intermediate and long pillars, respectively. The final value for D
is obtained applying the following rules:

if (Dl < 1.5m) and (Di < 1.5m) and (Ds ≤ 1.5m) then D = Ds

if (Dl < 1.5m) and (Di ≤ 1.5m) and (Ds ≥ 1.5m) then D = Di

if (Dl ≤ 1.5m) and (Di ≥ 1.5m) and (Ds > 1.5m) then D = Di

if (Dl ≥ 1.5m) and (Ds ≤ 3.0m) then D = Di

if (Dl < 3.0m) and (Di ≤ 3.0m) and (Ds ≥ 3.0m) then D = Di

if (Dl ≤ 3.0m) and (Di ≥ 3.0m) and (Ds > 3.0m) then D = Di

if (Dl ≥ 3.0m) and (Di > 3.0m) and (Ds > 3.0m) then D = Dl

if (D < Dmin) then D = Dmin
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4.5 Step 5

Using the support reactions from Step 2 the dimensions of the bearing pads can be
computed. For simplicity a single design was considered for all pillars employing the
largest support reaction. The bearing pad material has a longitudinal and transversal
elasticity modulus of Ebp = 4 MPa and Gbp = 1.3 MPa, respectively. The sizing procedure
takes into account normal and transversal forces as well as the rotation and buckling of
the bearing pad as follows:

• for the normal load one must have

Abp ≥ N

σc

where Abp = a× b is the bearing pad area and σc is the compressive strength limit
(15 MPa). For simplicity it was assumed that a = b.

• and for the transversal load

hbp ≥ Gbp × a× b

(a + b)× σc

where hbp is the height of the bearing pad.

• for the rotation one must have

hbp ≥ a

√
tan α

3

where α is the support rotation taken here to be the largest one computed in Step
3.

• and the buckling condition is

hbp ≥ a

σf

where σf was taken as 5 MPa.

4.6 Step 6

Taking into account the structural properties of each pillar and its bearing pad an im-
proved model for the main girder can be built introducing elastic supports.

The resulting model is depicted in Figure 3 and the elastic constants are computed
from the model in Figure 4 as follows
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• transversal stiffness of pillar + bearing pad

KL =

(
hbp

Gbp × Abp

+
LP 3

3×Ep × Jp

)−1

where Ep is Young’s modulus for the concrete.

• axial stiffness of pillar + bearing pad

KA =

(
hbp

Ebp ×Abp

+
LP

Ep × Ap

)−1

where Ap is the area of the cross section of the pillar.

• rotational stiffness of pillar + bearing pad

KR =

(
hbp

Ebp × Jbp

+
LP

Ep × Jp

)−1

where Jbp is inertia of the bearing pad cross section.

1 3 4 5 62

L1 L2 L3 L4 L5

Figure 3: Elastic supports model

4.7 Step 7

In this Step, the dead load as well as the horizontal load due to vehicle braking are applied
to the model shown in Figure 3. Acording to the Brazilian Code,9 for a 12 m wide highway
bridge of class 45 the load due to vehicle braking is computed from the diagrams shown
in Figures 5 and 6. In the first case one would have a distributed load of

5%(0.5tf/m2 × 3.0m + 0.3tf/m2 × 9.0m)× 178m = 37.38tf

while in the second case the load is

0.3× 45.0tf = 13.5tf

the largest one been adopted. It is interesting to note that the dead load changes from one
design/candidate solution to another, as it depends on the geometry of the main girder
which in turn depends on the design variables. However, as the traffic lane width is fixed
the load due to braking is the same for all designs.
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LP

F2 = 1

F3 = 1

F1 = 1

Figure 4: Model for computation of elastic constants for pillar + bearing pad

178 m

9 m

3 m0.5 tf/m2

0.3 tf/m2

Figure 5: Distributed loads for traffic lane

4.8 Step 8

Finally with the structural model solved, one can compute the fitness of a particular
individual/design according to expressions 4 or 5.

In the next section some numerical experiments are summarized.

5 NUMERICAL EXPERIMENTS

A binary coded generational GA was used and 10 bits were employed for encoding all
design variables except x1 (8 bits) and x2 (12 bits) leading to a chromossome 50 bits long.
Ten runs were executed starting with different randomly generated initial populations of
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178 m
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STANDARD  TRUCK  LOADING 

Figure 6: Standard truck load

100 individuals each which were allowed to evolve for 60 generations.
The crossover probability was set to pc = 0.8 and the mutation rate was set to pm =

0.04. Three crossover operators – one-point, two-point and uniform – were used, each
one applied with its respective relative probability (in this work, p1

c = 0.2, p2
c = 0.4 and

pu
c = 0.4).

An elitist procedure was adopted: the best individual (plus a mutated copy) in each
generation is copied into the next generation ensuring that the fitness function of the best
element in the population is a monotonically decreasing function.

5.1 Compliance minimization

For the compliance minimization case the best solution found corresponded to the values
(in meters)

x1 = 5.0 , x2 = 3.748 , x3 = 0.0 , x4 = 5.521 and x5 = 24.0

which lead to

L1 = 10.0 , L2 = 51.251 , L3 = 63.748 , L4 = 42.479 and L5 = 10.521

Finally one has Lmax = 63.748 and HG=2.156 m.
Table 1 summarizes the data for the pillars and Figure 7 displays the fitness of the

best individual in the population along the generations for the best and worst runs (in a
serie of 10 independent runs) together with the average (over the 10 runs) of the fitness
of the best individual in each generation. The best (resp. worst) run was that furnishing
the lowest (resp. higher) compliance value.

All elastomeric bearing pads were squares with size 0.957 m and height equal to 0.127 m.

13



Afonso C.C. Lemonge and Helio J.C. Barbosa

pillar diam(m) height(m) reaction (tf) KL KA KR

1 1.788 17.887 643.840 691.651 486861.202 71.193
2 4.708 58.854 1374.720 860.126 1024229.151 71.241
3 3.6 45. 1235.330 707.540 783340.582 71.237
4 2.201 22.010 567.513 806.306 598863.211 71.217

Table 1: Pillar data for minimum compliance.
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MINIMIZATION OF COMPLIANCE

best run
worst run
average

Figure 7: Fitness of the best individual in the best and worst runs together with the averaged value in
10 runs.

5.2 Maximum reaction minimization

For the case where maximum reaction is to be minimized the design variables of the best
solution found were (in meters)

x1 = 5.0 , x2 = 0.0 , x3 = 0.0 , x4 = 0.0 and x5 = 28.0
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which lead to

L1 = 10.0 , L2 = 55.0 , L3 = 60.0 , L4 = 48.0 and L5 = 5.0

Finally one has Lmax = 60 and HG=1.643 m.
Table 2 summarizes the data for the pillars and Figure 8 displays the fitness of the

best individual in the population along the generations for the best and worst runs (in a
serie of 10 independent runs) together with the average (over the 10 runs) of the fitness
of the best individual in each generation. The best (resp. worst) run was that furnishing
the lowest (resp. higher) maximum reaction value.

The largest support reaction is now 1262.923 tf as compared to 1374.72 tf found in the
compliance minimization case.

pillar diam(m) height(m) reaction (tf) KL KA KR

1 1.786 17.864 645.870 684.514 486822.481 62.699
2 4.96 62.0 1262.923 879.985 1078877.978 62.737
3 3.6 45.0 1171.907 700.073 783301.861 62.733
4 2.0 20.0 465.585 743.538 544232.943 62.710

Table 2: Pillar data for minimization of maximum support reaction.

All elastomeric bearing pads were squares with size 0.917 m and height equal to 0.122 m.

6 CONCLUSIONS

In this paper a genetic algorithm for optimal location of bridge pillars is introduced.
Instead of encoding in the chromossome the various geometric parameters needed to
completely define the geometry of the bridge – which would entail a large search space with
a great number of unfeasible or uneconomical designs – domain knowledge is introduced
in a way that only the position of the bridge pillars and a parameter that defines the
beam height from span values are used as design variables.

Additional domain knowledge is introduced in the development process that generates
a bridge design from each genotype (a string of bits) and also in the fitness evaluation
process of each candidate design.

As a result, designs with incompatible beam height and span values will neither be
generated nor tested by the algorithm. The search space is greatly reduced and there is
no need to explicitly introduce all the structural behaviour constraints into the genetic
algorithm, thus allowing for an unconstrained search process.

Different objective functions can be easely considered and, in this paper, both the
minimization of the compliance and of the maximum support reaction are presented.
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Figure 8: Fitness of the best individual in the best and worst runs together with the averaged value in
10 runs.
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