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PETRÓPOLIS, RJ - BRASIL
FEBRUARY 2021



To my Family

Maria Thereza

Gabriel and André
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Preface
Machine learning is a mature research area encompassing methods in com-

puter science, mathematics and statistics. On the other hand, a pattern is a dis-
cernible regularity in the world. Both machine learning and patters go together
in the sense that we always want intelligent softwares to automate tasks involv-
ing pattern recognition (images analysis, computer-aided diagnoses in medicine,
for instance). In the context of learning theory, the solution to accomplish this is
to allow computers to learn from training data. Specifically, we have machines
(algorithms) with internal parameters. The learning process corresponds to the
parameters adaptation, obtained in a optimization process that uses the training
samples to formalize the concept of learning from experience.

There are a plenty of books and an ocean of scientific paper in machine learn-
ing, covering theoretical aspects as well as applications. The following lecture
notes cover an introduction to this field for graduate students. The main goal is
to organize elements in computer science, mathematics, probability and learning
theory to set the foundations for machine learning and pattern recognition that can
be covered in a graduate course.

The theory of computation can help the tasks of algorithm analysis. For in-
stance, concepts in computational complexity can be used to quantify resources
required to solve a given problem. On the other hand, mathematical concepts in
linear algebra and probability are fundamental for data representation and ma-
nipulation. Calculus in several variables and optimization theory are the tools to
fine-tune internal parameters of machines, like neural networks, for instance. At
the end of each chapter, there is a list of exercises that applies the concepts to
reinforce machine learning aspects. Moreover, to help readers not familiar with
foundations in mathematics, we let the first chapters to review set theory, linear
algebra, calculus, and probability theory.
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Chapter 1

Introduction

Nowadays, the idea of learning from data is present in almost every aspect of
modern technology. In these applications, and everywhere in this monograph,
learning theory means methodologies that enable computational systems to solve
complex problems by adaptively improving their performance using data samples
of the involved space. Learning processes are in the heart of machine learning
techniques. These methods fulfill the ever increasing requirement for automated
methods for data analysis, which is a demand due to the enormous amounts of
data in digital form.

Machine learning is thus related to statistical learning, the theory that explores
ways of estimating functional dependency from a given collection of data [7].
Pattern recognition belongs to this general statistical problem. Patterns can be
described as consistent and recurring characteristics or traits that help in the iden-
tification of a phenomenon or problem, and may serve as indicators for predicting
its future behavior [8]. From a statistical viewpoint, pattern recognition is one of
the simplest models of statistical - or inductive - inference [9].

Statistical inference has more than 200 years, including names like Gauss and
Laplace. However, the systematic analysis of this field started only in the late
1920s. By that time, an important question to be investigated was how to find
a reliable method of inference, that means, to solve the problem: Given a col-
lection of empirical data originating from some functional dependency, infer this
dependency [7].

The analysis of methods of statistical inference began with the remarkable
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works of Fisher (unified framework of parametric statistics) and the theoretical
results of Glivenko and Cantelli (convergence of the empirical distribution to the
actual one) and Kolmogorov (the asynptotically rate of that convergence). These
events determined two approaches to statistical inference: The particular (para-
metric) inference and the general inference [7].

The parametric inference aims to create statistical methods for solving par-
ticular problems. Regression analysis is a know technique in this class. This
discussion is in the context of parametric statistics which conjectures that data
samples can be drawn from a probability distribution with a fixed set of parame-
ters that models the corresponding population [10]. On the other hand, the general
inference aims to find one induction method that can be applied for any statistical
inference problem. Learning machines, like Perceptron [11] and SVM [7, 12] are
nice examples in this area.

Both statistical learning and machine learning are data dependent. However,
statistical learning models are yielded based on the assumption that data has cer-
tain regularity, such as normality and independence. Consequently, we can pro-
cess data using probabilistic methods [13]. Machine learning models, in general,
do not explicitly consider such assumptions and in most of the cases ignore them
[14]. However, this distinction is not rigid. We can adopt a probabilistic view for
machine learning and use the tools of probability theory to model related prob-
lems involving uncertainty, for instance [15]. In machine learning, uncertainty
comes in the analysis of machine predictions, data characteristics, choice of the
best model given some problem, etc.

The machines learn through a process named training. Specifically, the ma-
chine has internal parameters and training involves providing a learning algorithm
and (training) data to automatically adapts the machine parameters to solve the
focused problem (classification, regression, etc.). Mathematically, the machine
parameters are also degrees of freedom of an objective (loss) function which is
iteratively optimized during the training process. In each iteration, the learning
rule inside the learning algorithm updates the machine parameters towards a crit-
ical point of the objective function (point where the gradient vanishes). In this
way, machine learning methods can be divided into four main types: supervised,
unsupervised, semi-supervised, and reinforcement learning

In the supervised or predictive learning approaches, the data is composed by
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a set of labeled samples and the goal is to learn a map from the samples to the
corresponding labels. In this monograph, the samples are represented by points in
Rn . The set of pairs formed by the samples and corresponding labels is called the
training set. The loss function incorporates an error term to measure how close
is the machine response to the target labels. The labels can be a categorical or
nominal variable that takes values from some finite set. In this case, the problem
is known as classification or pattern recognition. Moreover, if the desired output
is a real-valued scalar variable then we are in face with a regression problem [15].

The second category of machine learning algorithms, the descriptive or un-
supervised learning algorithms, only receive data samples (points in Rn in this
monograph), and the aim is to perform knowledge discovery. This is an ill-defined
problem, since we do not know the target patterns. The construction of the loss
function and its error term are also more trick because, unlike supervised learning,
it is not given the desired prediction to be compared with the machine output.

Semi-supervised learning, the third class in our taxonomy, encompasses ma-
chine learning techniques that use labeled and unlabeled data for training [15].
Reinforcement learning [16], the last type of machine learning is our taxonomy,
has as its essence to learn through interaction. It is easier to think with agents
instead of an algorithms. So, the agent interacts with its environment and learns
the way to alter its own behavior in response to rewards received [16].

However, before bringing our data into a machine learning model, we must
prepare the data to ensure that it is clean, consistent, and accurate [17]. Roughly,
data preparation (or preprocessing) methodologies involves the following steps
[1]: (i) Data collection; (ii) Data exploration by looking for outliers, exceptions,
and missing information; (iii) Cleaning, composed by stages for removing incor-
rect and inconsistent samples; (iv) Formatting data, which encompasses normal-
ization and more general transformations; (v) Feature engineering, which refers
to the process of designing methods for feature computation from the raw data for
compact representation; (vi) Data augmentation; (vii) Splitting data into training,
validation and test sets.

Depending on the methodology and application, we can bypass some of these
steps. For instance, feature engineering may be replaced by feature learning. In
this case, a machine learning algorithm (like a convolutional neural network -
CNN [18]) could be used for feature extraction [19, 20]. Consequently, after
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formatting data, we can go to steps (vi)-(vii) to train the CNN to generate features
from data. Moreover, other data management tasks like as error detection and data
integration could be automated by using a machine learning model [21].

These lecture notes cover fundamental aspects in machine learning and statis-
tical learning for graduate students. From the above explanation, we notice that
the machine/statistical learning foundations branch into computer science, math-
ematics, statistics and probability theory.

The theory of computation can help the tasks of algorithm analysis. For in-
stance, concepts in computational complexity can be used to quantify resources
required to solve a given problem. On the other hand, mathematical concepts in
linear algebra and statistics are fundamental for data representation and manip-
ulation. Calculus in several variables and optimization theory are tools applied
to fine-tune internal parameters of machines. In this way, the remainder of the
material is organized as follows.

• Chapter 2: Set Theory, Induction, and Rates of Growth
In order to allow students to travel safe in this avenue, it is necessary to of-
fer some background in discrete mathematics. Set theory gives the official
language to formalize concepts in data science involving data organization.
This chapter also aims to give the student the fundamental of mathematical
induction, which is used to prove results involving integer numbers. Al-
gorithms in machine learning execute too many floating-point operations
during training process. We need to quantify the amount of such operations
in order to analyze computational complexity in machine/statistical learn-
ing. Big-O, Ω, and Big-Theta notations characterizes rates of growth, to
measure the complexity of algorithms.

• Chapter 3: Boolean Expressions, Normal Forms and Satisfiability
This Chapter presents Boolean expressions to set the background to study
learning machines as computational models. For instance, the universal-
ity of neural networks will be demonstrated inside the context of Boolean
expressions.

• Chapter 4: Linear Algebra and Matrices.
Training data must be represented in some space (Euclidean, non-linear,
etc.) which, in turn, is parameterized through coordinates in some Rn.
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Hence, basic data transformations involve linear operators and matrices,
which are developed in this chapter.

• Chapter 5: Calculus of Several Variables and Optimization.
The heart of the learning algorithm is an optimization technique that, in
general, uses elements of calculus of several variables. Analytic geometry
is also revised in this chapter in order to summarize geometric concepts,
like hyperplanes and hypersurfaces implicitly represented, that are useful to
understand results of learning processes.

• Chapter 6: Probability and Information Theory
Tools in probability theory give ways to design machines that can learn from
data and to perform their analyzes. Also, available databases are obtained
by sampling processes that need probability elements to get some measure
of reliability. Consequently, this chapter aims to offers basic principles on
random signals, their representations by stochastic models and some ele-
ments of classical information theory.

• Chapter 7: Data Preparation and Patterns Representation
This chapter discusses steps for preprocessing data to convert it into an
appropriate format for data mining through machine learning approaches.
Hence, operations like cleaning, dimensionality reduction, feature extrac-
tion, and normalization are discussed in this chapter. The text focuses in
data whose attributes (variables) are measured in numerical values (con-
tinuous or discrete). The Chapter presents a geometric data model whose
main assumptions are that the data points, or samples of the database, lye in
a hypersurfaceM⊂ Rm and appear according to some probability density
function (pdf ).

• Chapter 8: Data and Learning Theory
In this chapter the concept of learning on the basis of examples is formal-
ized. The geometric-based model for data presented in the previous chapter
is used to discuss some aspects of the learning problem. Learning machines
encapsulates functional spaces due to their internal parameters (weights).
Formal aspects related to data synthesis, classification, regression and prob-
ability density estimation are discussed within this viewpoint. Special atten-
tion is given to the training process and the steepest descent approaches to
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optimize the Loss function, with respect to the machine parameters, during
the training stage. Curse of dimensionality, overfitting, and overtraining are
described in this context. The circuit theory is developed in order to demon-
strate the universality of the neural networks model that will be developed in
the next chapter. The chapter ends with some considerations about manifold
learning and machine learning, steered by the geometric-based data model.
Aspects regarding shallow versus deep neural networks are also considered,

• Chapter 11: Computing with Neural Networks
This chapter develops introductory material in the field of neural networks.
it starts with the first artificial neuron model, named perceptron, following
by the multilayer perceptron architecture. The universality of the computa-
tional paradigm of neural networks is also presented in this chapter through
the answer to the question: What kind of functions can be computed by
neural networks? The development is made in the context of discrete math-
ematics using the circuit theory of chapter 8. Aspects regarding shallow
versus deep neural networks are also considered, followed by the presenta-
tion of the back-propagation algorithm machinery.

• Chapter 10: Statistical Learning Theory
In this chapter we discuss some aspects os statistical learning theory re-
lated to the Principal Component Analysis (PCA), Support Vector Machine
(SVM), Discriminant Principal Components Analysis (sec:DPCA), Linear
Discriminate Analysis (LDA) and kernel methods. The goal is to set a
framework to discuss dimensionality reduction, discriminant analysis, clas-
sification and reconstruction. The material to be presented follows the ref-
erences [7, 22, 11].

• Appendix A: Convolutions and Linear Processes
Develops some elements in convolution theory and Fourier analysis for two-
dimensional signal processing.
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Chapter 2

Set Theory

In this Chapter we review some basic ideas in set theory. This theory offers an
efficient background for formalization and demonstration of important results in
the theory of computation. Besides, the notion of cardinality, to be develop in
what follows is a fundamental one for computability and complexity theories.
Thus, we start with the notion of sets and usual set operations (sections 2.2 and
2.1). Then, in section 2.3, we develop the concepts of relations and functions
followed by set sequences in section 2.4. Cardinality is discussed in section 2.5
followed by some concepts about topological spaces in section 2.6. Mathematical
induction, an important tool to prove results in discrete mathematics, is presented
in section 2.7. Some notions in quantification of resources to solve problems
through computers are presented in section 2.8 and discussed using the concept of
limit of a sequence in 2.9. Finally, a list of exercises is proposed.

2.1 Definitions

A set is composed by objects which are its elements. If an object x belongs to a
set A, we formally write [23, 24]:

x ∈ A, (2.1)

otherwise, we say that:
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x /∈ A, (2.2)

which means, the element x does not belongs to the set A.
We can define a setA by explicitly give all its elements or through a rule which

defines its elements. For instance, in these examples:

A = {1, 2, 3, 4, 5} , (2.3)

B = {x; x is vowel} , (2.4)

we give explicitly the elements of the set A but the set B is defined just by a
property of its elements.

There are two very special sets. The empty set, denoted by ∅, which has no
elements, and the university set, which can be defined as:

Universe = {x; x is object} . (2.5)

Observe that in the definition of the Universe set, the term object is used in
the general sense; that is, anything we can image is an element of the Universe
set.

An important relation between sets is the inclusion one:

A ⊂ B ⇔ a ∈ A then a ∈ B. (2.6)

Definition 1 Given two sets A,B we say that: A = B if and only if A ⊂ B and
B ⊂ A.

Theorem 1 The following properties can be easily demonstrated:
1) Reflexive: A ⊂ A, ∀A,
2) Anti-Symmetric: if A ⊂ B and B ⊂ A, then A = B,

3) Transitive: if A ⊂ B and B ⊂ C, then A ⊂ C.

Prof: Exercise.

Given a set X, we denote by P (X) the set of the parts of X, which is given
by:
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P (X) = {A; A ⊂ X} (2.7)

As an example, let us consider the set P (A) where A = {a, b, c} . According
the definition above, P (A) in this case is given by:

P (A) = {∅, {a} , {b} , {c} , {a, b} , {a, c} , {b, c} , A} . (2.8)

Observe that ∅ is a subset of A and, consequently, ∅ ∈ P (A). In fact, it can
be proved that:

Property: ∅ ⊂ A, ∀A. (Exercise)

2.2 Set Operations

Given two sets A,B we can define the following operations:
1) A ∪B = {x; x ∈ A or x ∈ B} .
2) A ∩B = {x; x ∈ A and x ∈ B} .
2) A−B = {x; x ∈ A and x /∈ B} .
3) Cartesian Product: A×B = {(a, b) ; a ∈ A and b ∈ B} .
The set A−B is also called the complement of B with respect to A:

A−B = CAB.

The following properties can be demonstrated (Exercise):
a) A ∪B = B ∪ A.
b) A ∪ (B ∪ C) = (A ∪B) ∪ C.
c) A ∪B = A⇔ B ⊂ A.

d) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) .

e) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) .

f) If B ⊂ E then CE (CEB) = B

g) A ⊂ B ⇔ CEB ⊂ CEA

h) CE (A ∪B) = CEA ∩ CEB
Many other properties can be found in [24, 23]. Also, the references [23, 25]

offer interesting discussions about the ”Paradoxes” of the traditional Set Theory.
Moreover, the reference [26] is another interesting material, with a less formal
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language, that can be used as an introduction to the philosophical aspects of Math-
ematics in general and set theory in particular.

2.3 Relations and Functions

A function f : A→ B has four elements:
a) Domain: the set A.
b) Codomain: set B
c) A rule such that for each x ∈ A we can find the only element c ∈ B such

that f (x) = c.

d) Range or Image Set: Im = {b ∈ B; ∃x ∈ A such that b = f (x)} .The
image set is also denoted by f (A) .

Given two sets A,B we call a relation any subset ∆ ⊂ A × B. A special
relation is the graph of a function f, defined as:

G (f) = {(x, y) ∈ A×B; y = f (x)} . (2.9)

The more elementary properties of a function f : A→ B are:
a)Surjective (onto): if f (A) = B.

b) Injective (one-to-one): f (a) = f (b)⇒ a = b.

c) Bijective: If f is injective and surjective.
Another important concept is the inverse function. If f is bijective than we

can define the function f−1, called inverse function, as follows:

f−1 : B → A; f−1 (y) = x⇔ f (x) = y. (2.10)

Some times it is interesting to extend the concept of inverse function for in-
verse relations. Given a function f : A → B, not necessarily bijective, we can
always define the inverse image, through the relation,

f−1 (B) = {x ∈ A; f (x) ∈ B} . (2.11)

The following properties are given as exercises:
1) f (X ∪ Y ) = f (X) ∪ f (Y ) .

2)f (X ∩ Y ) ⊂ f (X) ∩ f (Y ) .

3)f−1 (X ∪ Y ) = f−1 (X) ∪ f−1 (Y ) .
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4)f−1 (∅) = ∅.
See [24],[23]. for a more complete list of properties.

2.3.1 Composition of functions

Given two functions f : A→ B and g : B → C, such that the domain of g is the
codomain of f , we can define the composite function g ◦ f : A→ C as follows:

g ◦ f (x) = g (f (x)) , ∀x ∈ A. (2.12)

The composition is associative. In fact, given three functions f, g and h we
can show from the above definition that:

g ◦ (f ◦ h) = (g ◦ f) ◦ h. (2.13)

From these definitions, it is possible to show the following property: The set
Φ = {f : A→ A; f is bijective} is a group (see Definition 2) respect to
the composition operation (Exercise).

Definition 2 Group Definition
A group is a pair (G, ·) where G is a non-empy set and:

· : G×G 7−→ G

is a mapping, also called an operation [27], with the following properties:
(1) Associative. If g, h, k ∈ G, then:

g · (h · k) = (g · h) · k.

(2) Unity element. There is an element e ∈ G , named unit element, such that:

e · g = g · e = g,

for all g ∈ G.
(3) Inverse. For any g ∈ G there exists an alement g−1 ∈ G, called inverse,

that satisfies:
g−1 · g = g · g−1 = e.

�
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2.4 Sequences of Sets

Let L be a set which elements we will call indexes. Thus, given a set X , we call a
sequence of elements of X, with indexes in L, a function f : L → X. If we have
a sequence of sets Aλ then we usually write the sequence as (Aλ)

λ∈L
Now, we can extend the operations of union and intersection for sequences:

⋃
λ∈L

A
λ

= {x; ∃λ such that x ∈ A
λ
} , (2.14)

⋂
λ∈L

A
λ

= {x; x ∈ A
λ
, ∀λ} . (2.15)

2.5 Cardinality

For finite sets, the cardinality of a set is its number of elements. For infinite
sets, we can say that the cardinality is a measure that compares the size of sets.
We can show that two finite sets A and B have the same number of elements by
constructing a bijective function f : A→ B. Such approach, to compare the size
of sets through bijections (mappings) can be used for both finite and infinite sets.
Therefore, we can state that:

Definition 3 (i) Two sets A and B have the same cardinality if there is a bijective
function f : A→ B.

(ii) The cardinality of a set X is less than or equal to the cardinality of a set
Y if there is a injective function f : X → Y.

We denote the cardinality of a set A by card (A). So, the relationships (i)
and (ii) are denoted by card (A) = card (B) and card (X) ≤ card (Y ) , respec-
tively. Besides, we say that card (X) < card (Y ) if card (X) ≤ card (Y ) and
card (X) 6= card (Y ) .

A set that has the same cardinality of the set of natural numbers is said to be
countably infinite or enumerable. The term countable refers to sets that are
either finite or enumerable.

The cardinality of a set is also called a cardinal number. When working with
cardinal numbers, some amazing facts happen. For example, we can show that the
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cardinality of the Cartesian product N ×N is the same of the N, as well as that
the cardinality N is the same of the set Z of all integers (Exercise).

In this section we followed more or less the presentation found in [28]. The in-
terested reader will find interesting comments about the history and theory behind
this field of mathematics in [29].

2.6 Topological Spaces

A topology over a set E is a set Θ ⊂ P (E) such that [30]:

e1) Let I an index set. If Oi ∈ Θ, then the union O = ∪

i ∈ I

Oi is such

that O ∈ Θ;

e2) O1, O2 ∈ Θ⇒ O = O1 ∩O2 is such that O ∈ Θ;

e3) E ∈ Θ.

The par (E,Θ) é called a topological space . The elements of E are called
points and the elements of Θ are called open sets. A subset A ⊂ E is called
closed if its complement is open.

We must remember that:

∪

i ∈ ∅

Oi = ∅,

and so, the empty set ∅ belongs to Θ.

Given a point p ∈ E , we call a neighborhood of p any set Vp that contains
an open set O such that p ∈ O. A topological space is (E,Θ) is separated or
Hausdorff if every two distinct points have disjoint neighborhoods; that is, if
given any distinct points p 6= q, there are neighborhoods Vp and Vq such that
Vp ∩ Vq = ∅.

It is possible to define the concept of continuity in topological spaces. Given
two topological spaces E1, E2 and a function f : E1 → E2 we say that f is
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continuous in a point p ∈ E1 if ∀Vf(p) there is a neighborhood Vp such that
f (Vp) ⊂ Vf(p).

2.7 Peano’s Axioms and mathematical Induction

Given the set N of undefined objects called natural numbers, and a function s :

N→ N,where s (n) is called the successor of n. The function s satisfies the
following axioms [24]:

P1) The function s in injective.
P2) N− s (N) has only one element.
P3. Induction Principle: If X ⊂ N is a subset such that 0 ∈ X and, for all

n ∈ X we have s (n) ∈ X , then X = N.
The Induction Principle can be also stated in another way which is more suit-

able in practice. Before to re-write it, let us consider any property P concerning
natural numbers as a function:

P : N→ {0, 1} ,

such that P (n) = 1 if P is true for a given n and P (n) = 0 otherwise. So, we
can re-write the axiom P3) in the following way:

Induction Principle: Let us consider P as a property related to natural num-
bers. If P (0) = 1, and starting from the hypothesis that P (k) = 1, it is possible
to show that P (k + 1) = 1 also, then we can conclude that P (n) = 1, ∀n ∈N.

Demonstration by Mathematical Induction: It is any demonstration in
which the Induction Principle is applied.In this case, the demonstration follows
the next steps:

(a) Show that P (0) = 1,

(b) As the inductive hypothesis, we assume that P (k) = 1. Then, using this
hypothesis we try to prove that P (k + 1) = 1 also.

(c) From (a), (b), and by the Induction Principle we conclude that P (n) = 1,
∀n ∈N.

Example: Prove by mathematical induction that:

(a− 1)
(
1 + a+ a2 + ...+ an

)
= an+1 − 1.
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2.8 Rates of Growth

Now, we turn to the question: What can be efficiently computed? This is a funda-
mental question in complexity theory [31, 32, 33], a field of computer science. To
deal with this issue, we offer in this section a mathematical background to quan-
tify resources to solve problems through computers. It is important to have in
mind that our viewpoint is always independent of specific architectures or phys-
ical devices. Therefore, we must consider abstract elements that allow to get
fundamental relations with practical consequences. The following definitions are
very important to achieve this goal.

We will focus on functions f : N → N although, it may occurs that a finite
number of points in the image set is negative. Therefore, let f, g : N→ N. Then:

Definition 4 We say that f (n) = O (g (n)) if there are numbers c and n0, such
that f (n) ≤ cg (n), for all n ≥ n0

Definition 5 We say that f (n) = Ω (g (n)) if there are numbers c > 0 and n0,

such that f (n) ≥ cg (n), for all n ≥ n0.

Definition 6 Definition: We say that f (n) = Θ (g (n)) if f (n) = O (g (n)) and
f (n) = Ω (g (n)) .

The Figure 2.1 helps to understand the first definition, also named big-O nota-
tion.
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Figure 2.1: Representation of the fact that f (n) = O (g (n)).

Application: Calculate the number of floating-point operations to calculate the
inner product in Rn.

Solution: Let u = (u1, u2, . . . un)T ∈ Rn and v = (v1, v2, . . . vn)T ∈ Rn.
Then:

u · v = u1v1 + u2v2 + . . .+ unvn,

so, we need to calculate ′n′ products and ′n−1′ additions. Consequently, the total
number N of floating-point operations is represented by the funtion f : N −→ N,
computed as:

f (n) = n+ n− 1 = 2n− 1.

What is the computational time (CPU time) to perform this operation? Ob-
viously, it depends from the computer architecture. Let us suppose that the CPU
time to compute a single floating-point operation in your computer is t . Then, the
CPU time to calculate the inner product in Rn is given by the function:

T : N −→ N

T (n) = t (2n− 1) .
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Consequently:

T (n) = O (n) ,

independent of the type of the hardware of your computer. To demonstrate this
fact, it is just a matter of setting c = 2t and n0 = 0 since:

2tn ≥ t (2n− 1) ,∀n ≥ n0.

2.9 Limit and Rates of Growth

For a function f : N −→ N the expression:

lim
n→∞

f (n) = L <∞,

means: For every ε > 0 there exists a positive number K such that

|f (n)− L| < ε whenever n > K.

Consequently:

L− ε < f (n) < ε+ L, whenever n > K.

So, if f (n) = h (n) /g (n) with h : N −→ N and g : N −→ N− {0}, we can
write:

L− ε < h (n)

g (n)
< ε+ L, whenever n > K. (2.16)

So, since h (n) ≥ 0 and g (n) > 0 for all n ∈ N, expression (2.16) allows to
affirm that:

h (n) < (ε+ L) g (n) , whenever n > K, (2.17)

and:

h (n) > (L− ε) g (n) , whenever n > K, (2.18)
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Assuming L > 0, inequality (2.17) is equivalent to say that h (n) = O (g (n))

because there are constants c1 = ε+L and n0 = K such that h (n) ≤ c1g (n), for
all n ≥ n0.

Besides, if L > 0 we can chose ε > 0 such that (L− ε) > 0. Then, expression
(2.18) means that h (n) = Ω (g (n)) since there are constants c2 = L− ε > 0 and
n0 = K such that h (n) ≥ c2g (n), for all n ≥ n0. Consequently, in this case,
h (n) = Θ (g (n))

2.10 Exercises

1. Proof Theorem 1.

2. Proof that ∅ ⊂ A, ∀A.

3. Demonstrate the following properties:

a) A ∪B = B ∪ A.

b) A ∪ (B ∪ C) = (A ∪B) ∪ C.

c) A ∪B = A⇔ B ⊂ A.

d) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) .

e) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) .

f) If B ⊂ E then CE (CEB) = B

g) A ⊂ B ⇔ CEB ⊂ CEA

h) CE (A ∪B) = CEA ∩ CEB

4. Prove the following properties:

a) f (X ∪ Y ) = f (X) ∪ f (Y ) .

b)f (X ∩ Y ) ⊂ f (X) ∩ f (Y ) .

c)f−1 (X ∪ Y ) = f−1 (X) ∪ f−1 (Y ) .

d)f−1 (∅) = ∅.

5. Show that the set Φ = {f : A→ A; f is bijective} is a group respect
to the composition operation (see Definition 2).
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6. Prove that topological space is separated or Hausdorff if, and only if , the
intersection of all closed neighborhoods of any point x is the set {x} .

7. What happens if we state the axiom e2) in the form:

O = ∩

i ∈ I

Oi is such that O ∈ Θ ?

8. What is the usual topology of the Rn?

9. Show that card (N×N) = card (N) and that card (N) = card (Z), where
Z is the set of integers. Find the explicit form for the corresponding bijec-
tion.

10. Show that the cardinality of the real numbers is different from the cardinal-
ity of N, card (R) 6= card (N) .

11. Prove that the union of two countable sets is countable. Generalize this
result for a union of a finite number of countable sets.

12. Show that, for a finite set A, card (P (A)) = 2card(A).

13. Prove that the set of finite subsets of a countable set is countable.

14. Discuss the statement: If S ⊂ N then S is countable. Can you prove it?

15. Is it true that:

∞⋃
j=1

(
∞⋂
i=1

Aij

)
=
∞⋂
i=1

(
∞⋃
j=1

Aij

)
,

for any family (Aij)(i,j)∈N×N of sets?

16. Let us consider the family An ⊂ R of intervals, defined by:

An = [0,
1

n
), n ∈ N

Using the usual topology in R, show that

∞⋂
n=1

An = {0} .
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17. A function f : E1 → E2 is a continuous function in the topological space
E1 if it is continuous in every point p ∈ E1. Show that it is equivalent to say
that f is continuous if given any open set B ⊂ E2 then the set A = f−1 (B)

is an open set of E1.

18. Using demonstration by mathematical induction to prove that the following
properties are true for all n ∈ N.

(a)
1 + 3 + 5 + . . .+ (2n− 1) = n2,

(b)
2 + 7 + 12 + . . .+ (5n− 3) =

n

2
(5n− 1) ,

(c)

1

1 · 2 · 3
+

1

2 · 3 · 4
+

1

3 · 4 · 5
+. . .+

1

n · (n+ 1) · (n+ 2)
=

n (n+ 3)

4 · (n+ 1) · (n+ 2)

19. A widely used structure in computing is the Binary Trees (see [34]).
Demonstrate, using the induction principle, the following property: In a
binary tree with n > 0 nodes, the number of left and right empty sub-trees
is n+ 1.

20. Demonstrate or show that it is false

(a) n3 is O (0.001n3),

(b) 25n4 − 2900n3 + 10100n2 + 3 is O (n4),

(c) 2n+100 is O (2n),

(d) log2 n is O (
√
n),

(e) 2n is O
(
nk
)
, for k big enough.

21. Find the computational complexity of an algorithm to calculate the product
of two matrices.

22. Find the computational complexity to solve a linear system by the method
of determinants.

23. Prove that f (n) = O (g (n)) if and only if g (n) = Ω (f (n)).
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24. Prove that f (n) = Θ (g (n)) if and only if g (n) = Θ (f (n)).

25. Suppose that f (n) is a k degree polynomial. Show that f (n) is O
(
nl
)
, for

any l ≥ k.

26. Show that log n is O
(
nk
)

for any k > 0.

27. Show that nk = O
(
nlogn

)
, for any k, but nlogn never is O

(
nk
)
.

28. Show that cn is Ω
(
nlogn

)
, for any c > 1, but nlogn never is Ω (cn).

29. Suppose that c (n) = O (f (n)) and g (n) = O (h (n)). Show that c (n) ·
g (n) = O (f (n) · h (n)).
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Chapter 3

Boolean Expressions, Normal Forms

and Satisfiability

3.1 Introduction

In this Chapter we consider basic elements of Boolean expressions. These ex-
pressions formalize the basic operations that are combined in modern computers
hardware to process digital data. From a theoretical viewpoint, Boolean expres-
sions define a background to study learning machines as computational models.
We start with the truth tables and algebra of propositions (sections 3.2 and 3.3).
Then, we define normal forms and give a discussion about the Satisfiability prob-
lem (sections 3.4 and 3.5).

3.2 Truth Tables and Boolean Expressions

A variable x such that x ∈ {0, 1} (true 1 and false 0) is called a Boolean vari-
able. Given Boolean variables x, y, ..., they can be put together to form Boolean
expressions through the operators of conjunction (∧), disjunction (∨), negation
(∼), exclusive or (XOR), implication (⇒), and bi–implication (⇔) [35]. These
operators are defined by the standard Truth Tables 3.1.

Besides, the complete syntax includes parentheses to solve ambiguities. More-
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∼

0 1

1 0

(a)

∧ 0 1

0 0 0

1 0 1

(b)

∨ 0 1

0 0 1

1 1 1

(c)

XOR 0 1

0 0 1

1 1 0

(d)

Table 3.1: (a) Truth table for negation. (b) Truth table for conjunction (AND

operator). (c) Truth table for disjunction (OR operator). (d) Truth table for XOR

operator.

⇒ 0 1

0 1 1

1 0 1

(a)

⇔ 0 1

0 1 0

1 0 1

(b)

Table 3.2: (a) Truth table for implication. (b) Bi-implication and its truth table.

over, as a common convention it is assumed that the operators bind according to
their relative priority. The priorities are, with the highest first: ∼,∧,∨,⇔,⇒ .

So, for example,

∼ x1 ∧ x2 ∨ x3 ⇒ x4 = (((∼ x1) ∧ x2) ∨ x3)⇒ x4. (3.1)
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A Boolean expression with variables x1, x2, ..., xn produces for each assign-
ment of truth values (0, 1 values) to the variables itself a truth value according
to the standard Truth Tables given in (3.1)-(3.2). If we denote the set of truth
values by B = {0, 1}, then we can think of a Boolean expression with variables
x1, x2, ..., xn as a function:

F : Bn → B,

whereBn = B×B×B...×B (n-times). As an example, let us rewrite expression
(3.1) as:

F : B4 → B,

F (x1, x2, x3, x4) =∼ x1 ∧ x2 ∨ x3 ⇒ x4. (3.2)

Two Boolean expression F1, F2 : Bn → B are said to be equal if:

F1 (x1, x2, ..., xn) = F2 (x1, x2, ..., xn) , ∀ (x1, x2, ..., xn) ∈ Bn. (3.3)

Tautology: A Boolean expression F : Bn → B is a tautology if
F (x1, x2, ..., xn) = 1 for all (x1, x2, ..., xn) ∈ Bn.

Satisfiable: A Boolean expression F : Bn → B is satisfiable if there is at
least one (x1, x2, ..., xn) ∈ Bn such that F (x1, x2, ..., xn) = 1.

3.3 Algebra of Propositions

There are some algebraic laws that Boolean expressions obey, some of which
are analogous to laws satisfied by the real numbers. These relationships can be
proved by using the Truth Tables (3.1)-(3.2). The corresponding algebra is very
much useful to simplify Boolean expressions. Specifically, we have the following
laws [29, 33]:

1) Idempotent laws

p ∧ p = p
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p ∨ p = p

2) Commutative

p ∧ q = q ∧ p

p ∨ q = q ∨ p

p⇔ q = q ⇔ p

3) Associative

(p ∧ q) ∧ r = p ∧ (q ∧ r)

(p ∨ q) ∨ r = p ∨ (q ∨ r)

4) Absorption laws

p ∧ (p ∨ q) = p

p ∨ (p ∧ q) = p

5) Distributive

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)

6) Involution law

∼ (∼ p) = p

7) De Morgan ’s Laws

∼ (p ∨ q) = (∼ p) ∧ (∼ q)
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∼ (p ∧ q) = (∼ p) ∨ (∼ q)

8) Complement Laws

p∨ ∼ p = 1,

p∧ ∼ p = 0,

3.4 Normal Forms

A Boolean expression is in Disjunctive Normal Form (DNF) if it consists of a
disjunction of conjunctions of variables and negations of variables; that is [35, 33]:

F (x1, x2, ..., xn) =
(
t11 ∧ t12 ∧ ... ∧ t1k1

)
∨ ... ∨

(
tm1 ∧ tm2 ∧ ... ∧ tmkm

)
, (3.4)

where tij is either a variable xl or a negation of a variable ∼ xl.
Expression (3.4) can be rewritten as:

m∨
j=1

 kj∧
i=1

tji

 . (3.5)

As an example, consider the expression:

(x∧ ∼ y) ∨ (∼ x ∧ y) , (3.6)

which is equal to the XOR gate (Exercise).
Similarly, a Conjunctive Normal Form (CNF) is an expression that can be

written as:

m∧
j=1

 kj∨
i=1

tji

 , (3.7)

where, like in the previous definition, tij is either a variable xl or a negation of a
variable ∼ xl.

Theorem 2 Any Boolean expression is equal to an expression in CNF and an
expression in DNF. (Exercise. See also [33])
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3.5 Satisfiability of Boolean expressions

From the viewpoint of applications, an important point is the satisfiability prob-
lem. In general, it is hard to determine whether a Boolean expression is satisfiable;
that is, given a Boolean expression F : Bn → B, find the set:

S = {(x1, x2, ..., xn) ∈ Bn; F (x1, x2, ..., xn) = 1} .

There is a famous theorem, due to Cook, which made the hardness of the
satisfiability problem precisely:

Theorem 3 Satisfiability of Boolean expressions is NP-complete.

The NP-complete complexity class is a special subset of the NP problems
[33, 31, 32]. In a pragmatic viewpoint, we can say that a NP-Complete problem
is the one for which the only known deterministic algorithms to solve it run in
exponential time. No polynomial time deterministic algorithms are known for
any of the NP-Complete problems yet.

It is important to observe that, if an expression is in DNF form, then the sat-
isfiability is decidable in polynomial time but for DNFs the tautology check is
hard. Besides, the conversion between CNFs and DNFs is exponential. To ex-
emplify this fact, let us consider the following CNF example over the variables
x1

0, x
2
0, ..., x

n
0 , x

1
1, x

2
1, ..., x

n
1 :

(
x1

0 ∨ x1
1

)
∧
(
x2

0 ∨ x2
1

)
∧ ... ∧ (xn0 ∨ xn1 ) . (3.8)

Following the rules of section 3.3, it is easy to show that this expression can
be put in the following DNF form (Exercise):

(
x1

0 ∧ x2
0 ∧ ... ∧ xn−1

0 ∧ xn0
)
∨ (3.9)(

x1
0 ∧ x2

0 ∧ ... ∧ xn−1
0 ∧ xn1

)
∨

....(
x1

1 ∧ x2
1 ∧ ... ∧ xn−1

1 ∧ xn0
)
∨(

x1
1 ∧ x2

1 ∧ ... ∧ xn−1
1 ∧ xn1

)
(3.10)

We shall observe that, whereas expression (3.8) has size proportional to n, the
corresponding DNF expression has size proportional to n2n. Due to the practical
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and theoretical relevance of the satisfiability problem, other normal forms were
proposed in order to address its hardness.

3.6 Exercises

1. Show how all operators of Tables (3.1)-(3.2) can be encoded using only
∼,∧.

2. Prove the De Morgan’s and distributive laws.

3. For each of the following formulas tell whether it is (i) satisfiable, (ii) a
tautology, (iii) unsatisfiable.

(a) (p ∨ q)⇒ p

(b) p∧ ∼ q

(c)∼ (p⇒ q)⇒ (p∧ ∼ q)

4. Is it possible to say whether F is satisfiable from the fact that ∼ F is a
tautology?

5. Prove that, given two Boolean expressions F1 and F2, then F1 = F2 if and
only if the expression F1 ⇔ F2 is a tautology.

6. Use the laws of section 3.3 to simplify the expression (3.6).

7. Demonstrate Theorem 2 of section 3.4.

8. By using the propositional laws of section 3.3 show that expressions (3.8)
can be rewritten in the form (3.9).

9. Find CNF and DNF versions for each one of the following Boolean expres-
sion:

(a) (p ∧ (q ∨ r)) ∨ (q ∧ (p ∨ r))

(b) ∼ p ∨ (p∧ ∼ q) ∧ (r ∨ (∼ p ∧ q))

(c) p⇒ (q ⇔ r)

29



Chapter 4

Linear Algebra and Matrices

When representing data points in Rn, the study of data transformations (discrete
Fourier, Cosine transform, etc.), as well as some aspects of discrete linear sys-
tems theory (convolution, for instance), can be presented using concepts in matrix
theory and linear operations.

In this Chapter, we review these mathematical elements. We start with basic
notions in linear algebra (section 4.1). See [36] for details in this area. Next, in
section 4.2, we revise matrix theory. Our presentation is steered by image pro-
cessing requirements. Images constitute an important type of data considering
the large amount of acquisition instruments and applications of image process-
ing techniques (medical imaging, geoscience, remote sensing, etc.). Additional
material in convolution theory and Fourier analysis is presented in Appendix A.
Finally, we propose some exercises.

4.1 Background in Linear Algebra

Let the N -dimensional Euclidean vector space RN (or CN ) composed by n-uplas:
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v =



v (0)

v (1)

.

.

.

v (N − 1)


. (4.1)

and B a basis of RN given by N linearly independent vectors:

B =
{
ui ∈ RN ; , i = 0, 1, ..., N − 1

}
. (4.2)

Therefore, we know that any vector v ∈ RN can be written as a linear combi-
nation of elements in B, that means:

v =
N−1∑
i=0

αiui. (4.3)

We call the array composed by the coefficients αi the representation of v in
the basis B, which we indicate by:

[v]B =



α (0)

α (1)

.

.

.

α (N − 1)


. (4.4)

Moreover, we know that such representation is unique. If B is the canonical
basis given by:
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B =





1

0

.

.

.

0


,



0

1

.

.

.

0


,



0

0

1

.

.

0


, · · ·,



0

0

.

.

.

1




, (4.5)

them we have [v]B ≡ v. In this case, we will drop the subscript ”B” in expression
(4.4).

In this context, we can consider linear a operators T : RN → RN , which are
functions that satisfy the property:

T (α1u1 + α2u2) = α1T (u1) + α2T (u2) , (4.6)

α1, α2 ∈ R and u1,u2 ∈ RN . We can show that T can be represented by a matrix
A, in the sense that, given a vector v ∈Rn we can write:

T (v) = A · v. (4.7)

We can show that the matrixA is the representation of T in the canonical basis,
denoted by [T ] = A.

4.2 Matrix Theory

In this text, we focus on matrix theory results useful for image processing. A
straightforward representation for digital images is a intensity matrix A. So, we
review in this chapter some fundamental results in matrix theory that are important
for processing digital images.

In what follows, we will focus on traditional matrices where each element is a
real number. The corresponding theory is applied for grey-level image processing.
The extension for color images is straightforward and is performed by considering
multidimensional matrices where each element is a vector (R,G,B) ∈ R3.
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As usual in matrix theory, we are going to apply the following nota-
tions/definitions (see section 2.7 of [37] for details):

1. The transpose: AT

2. Inverse: A−1

3. Conjugate: A∗

4. Complex Numbers Set: C

5. Determinant of a square matrix A : det (A)

5. A matrix A is Nonsingular if: det (A) 6= 0,

Basic references for this chapter are [37],[5],[38].

4.2.1 Matrix Definition

A matrix A ∈RM×N is a two-dimensional array
A = {a (m,n) ∈ R; 1 ≤ m ≤M, 1 ≤ n ≤ N} represented by:

A =


a (1, 1) a (1, 2) · · · a (1, N)

· · ·

· · ·

a (M, 1) a (M, 2) · · · a (M,N)

 (4.8)

4.2.2 Row and Columns Representation

Given a matrix A ∈RM×N , we can represent it through a row vector, by perform-
ing the operation:

x = (a (1, 1) , a (1, 2) , · · ·, a (1, N) , a (2, 1) , a (2, 2) , · · ·, a (2, N) · ··, a (M, 1) , · · ·a (M,N)) .

(4.9)
Analogously, the column representation is obtained by the column by column

stacking:

y = (a (1, 1) , a (2, 1) , · · ·, a (M, 1) , a (1, 2) , a (2, 2) , · · ·, a (M, 2) · ··, a (1, N) , · · ·a (M,N))T .

(4.10)
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4.2.3 Transposition and Conjugation Rules

It can be proved the following properties:
1. (A∗)T =

(
AT
)∗

2. (AB)T = BTAT

3. (A−1)
T

=
(
AT
)−1

4. (AB)∗ = B∗A∗

4.2.4 Orthogonal, Unitary and Hermitian Matrices

A matrix A ∈RN×N is orthogonal if:

A−1 = AT . (4.11)

On the other hand, a matrix A ∈ CN×N is unitary if:

A−1 = A∗T . (4.12)

Hermitian matrix A ∈ CN×N is the one that satisfies:

A = A∗T . (4.13)

In the specific case of real matrices A ∈RN×N ,we call Symmetic if it satisfies:

A = AT . (4.14)

4.2.5 Positive Definiteness

Given a A ∈ CN×N Hermitian matrix, we say that [38]:
1. A is positive semidefinite if xTAx ≥ 0, ∀x ∈ RN and x 6= 0,

2. A is positive definite if xTAx > 0, ∀x ∈ RN and x 6= 0,

3. A is negative semidefinite if xTAx ≤ 0, ∀x ∈ RN and x 6= 0,

4. A is negative definite if xTAx < 0, ∀x ∈ RN and x 6= 0,
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4.2.6 Diagonal Representation

Given a Hermitian matrix A ∈ CN×N , there exists an unitary matrix Φ such that:

Φ∗TAΦ = Λ, (4.15)

where Λ is a diagonal matrix composed by the eigenvalues of A, that means:

Aφk = λkφk, k = 1, 2, · · ·, N, (4.16)

where {λk} , {φk} are the eigenvalues and eigenvectors, respectively, of A.

4.2.7 Block Matrices and Kronecker Product

A block matrix A is a two dimensional array of matrices, that means, a matrix
whose elements are matrices themselves:

A =



A1,1 . . . A1,N

. .

. .

. .

AM,1 AM,N


, (4.17)

where each element Am,n ∈ RK×L.

Given two matrices A ∈ RM1×M2 and B ∈ RN1×N2 , then theier Kronecker
product is defined by the following block matrix:

A⊗B = {am,n ·B} =



a1,1 ·B . . . a1,M2 ·B

. .

. .

. .

aM1,1 ·B aM1,M2 ·B


. (4.18)
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There are several interesting properties for Kronecker product, which are
stated on the Table 2.7, page 30, of the reference [5]. The exercises will remember
the most important ones for image processing. For instance, the property

(A⊗B) (C⊗D) = (AC⊗BD) , (4.19)

is useful to demonstrate that the Kronecker product of orthogonal matrices is
an orthogonal matrix. Besides, we can establish the relationship between Kro-
necker product and Tensor product of linear operators in order to simplify the
prof of properties, like the one stated on expression (4.19). See the material of
”aula4.pdf” for details about this topic as well as the exercises therein.

4.3 Exercises

1. Prove the following properties for Kronecker product:

(a) (A+B)⊗ C = A⊗ C +B ⊗ C.

(b) (A⊗B)T = AT ⊗BT .

(c) (A⊗B)−1 = A−1 ⊗B−1.

2. Given a square matrix A ∈ RN×N we define its trace (Tr(A)) as: Tr (A) =∑N
i=1 aii. Show that for square real matrices A and B:

(a) Tr (A+B) = Tr (A) + Tr (B) .

(b) Tr (AB) = Tr (BA) .

3. Let a generalized convolution between the arrays x (m,n) ∈ RM×N and
h (m,n) , defined by:

y (m,n) =
∑
s,w

x (s, w)h (m,n; s, w) . (4.20)

Show that, if we represent x (m,n) and h (m,n) as column vectors x , H ,
respectively, like in expression (4.10), we can write expression (4.20) as the
product:
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y = Hx , (4.21)

where H is an N ×N block matrix of basic dimension M ×M.

4. Find the eigenvalues and eigenvectors (see section 4.2.6) of the symmetric
matrix:  1 2

2 1

 (4.22)

5. Show that a symmetric positive defined matrix has eigenvalues λk > 0.

6. Show that, the following subsets of RN×N are closed under inversion (see
[38]): (a) positive definite matrices; (b) nonsingular symmetric matrices.

7. Show that, for square matrices A,U and B, the operation:

V = AUBT , (4.23)

can be represented as:

v = (A⊗B) u, (4.24)

where v , u are column representations of V and U and ⊗ means the Kro-
necker product defined on section 4.2.7.

8. Given a column vector u ∈ RN show that the matrix u · uT is positive
semidefinite.
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Chapter 5

Analytic Geometry and Differential

Calculus

In this material we focus on real functions of several variables, partial derivatives
and optimization, as well as some concepts in analytical and differential geometry.
The goal is to set some elements behind the learning, its geometric interpretation,
and the known backpropagation algorithm. In the end of this Chapter there is a
list of proposed exercises. Additional material can be found in [39, 40]

5.1 Parametric Representation of Curves and Sur-

faces

Let us consider the Cartesian coordinate system xyz. A parametric representation
of a curve is a mathematical expression like:

P (t) = (x (t) , y (t) , z (t)) , t ∈ [a, b] , (5.1)

where a, b ∈ R.
If we have a parameter space with two variables, say u, v ∈ R, then we can

build a parametric representation of a surface with an expression in the form:

S (u, v) = (x (u, v) , y (u, v) , z (u, v)) . (5.2)
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• Example 1: Given two distinct points p1,p2 ∈ R3 the line passing through
these points can be generated through the parametric expression:

x = p1 + ta, (5.3)

where the vector a is given by a = p2 − p1, as shown in Figure 5.1.

Figure 5.1: Line in R3 passing through points p1,p2.

• Example 2: Given three noncolinear points pi = (xi, yi, zi), i = 1, 2, 3, the
parametric equation of the plane containing these points can be obtained
through the following steps:

1. Build vectors v1 = p2 − p1 and v2 = p3 − p1;

2. Build the parametric representation of the plane as:

p = p1 + αv1 + βv2, (5.4)

where p = (x, y, z)T is a generic point and α, β ∈ R are the parame-
ters of the representation.

• Example 3: The expression:

c (θ) = (a cos (θ) , b sin (θ) , θ) , θ ∈ [0, 2π] , (5.5)

is a representation of a circular helix. If a > 0, b > 0 then the Figure 5.2
shows the shape of this curves.
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Figure 5.2: Circular helix example, computed through expression (5.5).

5.2 Implicit Representation

A surface in R3 can be represented through a setM of points that satisfies some
equation:

M =
{

(x, y, z) ∈ R3; f (x, y, z) = 0
}
. (5.6)

The equation f (x, y, z) = 0 is named the implicit representation of the surface
S that geometrically represents the setM.

For instance, in the case of the plane π ⊂ R3 containing the noncolinear points
pi = (xi, yi, zi), i = 1, 2, 3, we can build its implicit representation by taking into
account that every point p = (x, y, z)T that belongs to π satisfies:

(p− p1) · n = 0, (5.7)

where n is a vector orthogonal to the plane, and ’·’ represents the inner product
which, given two vectors a = (a1, a2, a3)T and b = (b1, b2, b3)T is computed by:

a · b =
3∑
i=1

aibi = ‖a‖ ‖b‖ cos θ, (5.8)

where θ is the smallest angle between the two vectors a and b, as pictured in
Figure 5.3.
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Figure 5.3: Smallest angle between two vectors that appears in equation (5.3).

On the other hand, if we proceed likewise in the section 5.1 and compute the
vectors v1 = p2 − p1 and v2 = p3 − p1 then, the vector n can be calculated by
the cross product v1 × v2 defined by:

v1 × v2 =

∣∣∣∣∣∣∣∣∣
i j k

(x2 − x1) (y2 − y1) (z2 − z1)

(x3 − x1) (y3 − y1) (z3 − z1)

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣ (y2 − y1) (z2 − z1)

(y3 − y1) (z3 − z1)

∣∣∣∣∣∣ i−
∣∣∣∣∣∣ (x2 − x1) (z2 − z1)

(x3 − x1) (z3 − z1)

∣∣∣∣∣∣ j+

∣∣∣∣∣∣ (x2 − x1) (y2 − y1)

(x3 − x1) (y3 − y1)

∣∣∣∣∣∣k,
(5.9)

where the unity vectors i = (1, 0, 0)T , j = (0, 1, 0)T , and k = (0, 0, 1)T form the
canonical basis of R3 (see section 4.1). Consequently, using expressions (5.7) and
(5.8) we get:

(p− p1) · (v1 × v2) = 0. (5.10)

If v1 × v2 = (a, b, c)T we can rewrite equation (5.10) as:
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


x

y

z

−


x1

y1

z1


 ·


a

b

c

 = 0,

which generates:

ax+ by + cz + d = 0, (5.11)

where d = −ax1 − by1 − cz1.
An analogous development can be performed to generate the implicit repre-

sentation of a line in R2. Moreover, the generalization of definition (5.6) for Rn is
straightforward. In this case, we say that the obtained hypersurface has dimension
n− 1 and we writeMn−1 to represent this fact:

Mn−1 = {(x1, x2, x3, . . . , xn) ∈ Rn; f (x1, x2, x3, . . . , xn) = 0} . (5.12)

In general, the dimension of the surface is related to the minimum number of
parameters that we need to represent it.

If we consider:

f (x1, x2, x3, . . . , xn) =
n∑
i=1

x2
i − r2,

then, the equation:

f (x1, x2, x3, . . . , xn) = 0⇐⇒
n∑
i=1

x2
i − r2 = 0, (5.13)

defines a hypersphere in Rn.
Sometimes, we can compute the parametric representation using the implicit

one. For instance, in the case of the hypersphere in equation (5.13), it is direct
that we can parameterize it using n− 1 parameters through the expressions:

S+ (x1, x2, x3, . . . , xn−1) =

x1, x2, x3, . . . , xn−1,+

√√√√r2 −
n−1∑
i=1

x2
i

 , (5.14)
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S− (x1, x2, x3, . . . , xn−1) =

x1, x2, x3, . . . , xn−1,−

√√√√r2 −
n−1∑
i=1

x2
i

 . (5.15)

5.3 Calculus in One Variable

Given the set of real numbers R and a continuous function f : R −→ R, we say
that this function is differentiable in a point a ∈ R if the limite:

lim
∆x→0

f (a+ ∆x)− f (a)

∆x
≡ f́ (a) , (5.16)

exists and is finite. In this case, f́ (a) is called the derivative of f respect to the
variable x in the point x = a. Sometimes, we also use the notation:

df

dx
(a) ≡ f́ (a) . (5.17)

The geometric interpretation of the f́ (a) is the following: If y (x) = rx + s

is the line tangent to the graphic of the function f in the point (a, f (a)), then
r = f́ (a). Figure 5.4 pictures this fact in the case where f (x) = x2 + 1. Firstly,
we shall compute the limite (5.33) for this polynomial function:

lim
∆x→0

f (a+ ∆x)− f (a)

∆x
= lim

∆x→0

[
(a+ ∆x)2 + 1

]
− (a2 + 1)

∆x
= 2a (5.18)

Therefore, the angular coefficient of the line is r = 2a. The linear coeffi-
cient (s) is obtained using the fact that the line and the function f share the point
(a, a2 + 1) ∈ R2. Therefore:

a2 + 1 = 2a · a+ s =⇒ s = 1− a2. (5.19)

The above development can be applied for more general functions. For in-
stance, for a polynomial function f (x) = xn, n ∈ N∗, we can use the definition
(5.33) to demonstrate that:

f́ (x) = nxn−1, (5.20)

and, consequently, we can compute the tangent line everywere in the graph of f .
Others formulas to compute derivatives of functions f : R −→ R are given in
[39, 40].
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Figure 5.4: Tangent line and derivative.

5.4 Several Variables and Partial Derivatives

Now, we consider functions with several independent variables, that means f :

Rn −→ R. For instance, let us take the function:

f : R2 −→ R; f (x, y) = x2 + y2, (5.21)

whose graphical representation is a paraboloid embedded in the R3, as shown
in Figure 5.5. This figure also pictures the trace of the surface in the yz-plane
(z = y2) and the trace in the xz-plane, given by equation z = x2.

In this case, the concept of derivative in a point (a, b) ∈ R2 must take into
account that we may have derivative respect to the variable ’x’ and derivative
respect to the variable ’y’, formally defined by:

∂f

∂x
(a, b) = lim

∆x→0

f (a+ ∆x, b)− f (a, b)

∆x
, (5.22)

∂f

∂y
(a, b) = lim

∆y→0

f (a, b+ ∆y)− f (a, b)

∆y
, (5.23)

respectively. For the function f in expression (5.21) they can be computed as
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Figure 5.5: Paraboloid and its traces in the yz-plane and xz-planes.

follows:

∂f

∂x
(a, b) = lim

∆x→0

(a+ ∆x)2 + b2 − (a2 + b2)

∆x
= lim

∆x→0

2a∆x+ (∆x)2

∆x
= 2a,

(5.24)
with an analogous development for expression (5.23), that allows to obtain:

∂f

∂y
(a, b) = 2b. (5.25)

The function defined by expressions (5.22) and (5.23) are named partial
derivatives of f with respect to x and y, respectively, also denoted by fx and
fy. From expressions (5.22)-(5.23) we shall notice that, when deriving f with
respect to variable x we must consider the other variable as a constant during the
derivation process (analogous for the derivative with respect to variable y). It is
an useful rule that allows to apply the formulas for derivatives of single valued
functions to obtain partial derivatives of functions with several variables.

In the general case of a function f : Rn −→ R, the partial derivative of f with
respect fo variable xi in the point (x1, x2, . . . , xn) ∈ Rn is defined by:

∂f

∂xi
(x1, x2, . . . , xn) =
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= lim
∆xi→0

f (x1, x2, . . . , xi + ∆xi, . . . , xn)− f (x1, x2, . . . , xn)

∆xi
, i = 1, 2, . . . , n.

(5.26)
If the functions ∂f/∂xi in expression (5.26) are well defined, we say that f is

a differentiable function. Moreover, we can go ahead with the concept of partial
derivatives and define expressions:

∂f 2

∂xi∂xj
(x1, x2, . . . , xn) , i, j = 1, 2, . . . , n, (5.27)

∂f 2

∂xi∂xj∂xk
(x1, x2, . . . , xn) , i, j, k = 1, 2, . . . , n, (5.28)

etc.

If functions defined by expression (5.26) are continuous, we say that f ∈
C1 (Rn). If the same happens for equations (5.27) we say that f ∈ C2 (Rn) , and
so on.

5.5 Composite Functions and Chain Rule

We consider a differentiable function f : Rn → R, denoted by:

w = f (x1, x2, . . . , xn) . (5.29)

Given another coordinate system zj = zj (x1, x2, . . . , xn) with inverse xi =

xi (z1, · · ·, zn) , we can rewrite w as:

w = f (x1 (z1, · · ·, zn) , · · ·, xn (z1, · · ·, zn)) ≡ g (z1, · · ·, zn)

Chain Rule: We can prove that [40]:

∂f

∂zi
=

n∑
j=1

∂f

∂xj

∂xj
∂zi

, i = 1, 2, · · ·, n. (5.30)
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5.6 Gradient and Directional Derivative

With the concept of partial derivative, we can go ahead and define the gradient of
a function f : Rn −→ R in the point p = (x1, x2, . . . , xn) ∈ Rn as:

∇f (x1, x2, . . . , xn) =(
∂f

∂x1

(x1, x2, . . . , xn) ,
∂f

∂x2

(x1, x2, . . . , xn) , . . . ,
∂f

∂xn
(x1, x2, . . . , xn)

)
.

(5.31)
To simplify notation, it is usual to omit the function arguments and just write:

∇f =

(
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn

)
. (5.32)

To interpret the gradient, we shall consider a vector v ∈ Rn and a line r :

R −→ Rn; such that r (t) = p0 + tv, where p0 ∈ Rn is a fixed point. Then,
we can compute the composition f (r (t)) = g (t), where g : R −→ Rn is a
differentiable function with just one dependent variable t.

In this context, the directional derivative of the multivariate differentiable
function f along the vector v, at the point p0, is defined as:

lim
t→0

g (t)− g (0)

t
=
dg

dt
(0) . (5.33)

We can use the Chain Rule (5.30) to calculate:

dg

dt
(t) =

n∑
i=1

∂f

∂xi

dxi
dt

(t) = ∇f (x1 (t) , x2 (t) , . . . , xn (t)) · v, (5.34)

with ‘·’ representing the scalar product defined in expression (5.8). So, expression
(5.33) becomes:

dg

dt
(0) = ∇f (p0) · v, (5.35)

where ∇f (p0) denotes the gradient computed in the point p0. In general, we
rather prefer the notation:

∂f

∂v
(p0) = ∇f (p0) · v. (5.36)

So, expression (5.36) shows that the directional derivative ∂f
∂v

(p0) is maxi-
mum, in absolute value, if ∇f is parallel to v in p0. If we take u ∈ Rn such that
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‖u‖ = 1 then:

∂f

∂u
(p0) = ‖∇f (p0)‖ ‖u‖ cos θ = ‖∇f (p0)‖ cos θ, (5.37)

where θ is the smallest angle between the two vectors ∇f (p0) and u, as repre-
sented in Figure 5.3. From expression (5.37) we can notice that, if u is parallel to
∇f (p0) then ∇f (p0) gives the direction of greatest increase of the function f at
the point (p0).

5.7 Regular Surfaces and Differentiable Manifolds

Let D ⊂ R2 and a surfaceM ⊂ R3, represented by the function S in expression
(5.2). In this case S : D ⊂ R2 −→ R3 andM is named a regular surface if S is a
differentiable function; that means, if ∂S/∂u and ∂S/∂v are continuous functions
in D. According to section 5.4, we can write S ∈ C1 (D).

These concepts can be generalized to hypersurfaces immersed in Rn. In this
case, the hypersurfaceMn−1 is represented through a function S : D ⊂ Rn−1 −→
Rn that also satisfies S ∈ C1 (D). However, such definition has a limitation be-
cause it needs a global parametrization S of the hypersurfaceMn−1. For example,
it is a known fact in differential geometry that the two-dimensional sphere does
not admit a global parametrization. To surpass this issue, we must think about
local parametrizations of the surface, as described next.

A differentiable manifold of dimension d is a set, denoted in Figure 5.6 asMd

and a family of one-to-one functions {ϕα}α∈I , with I an index set, ϕα : Uα ⊂
Rd →Md where Uα is an open set of Rd, such that [41]:

1) ∪α∈Iϕα (Uα) =Md.

2) For every α, β ∈ I, with ϕα (Uα) ∩ ϕβ (Uβ) = W 6= ∅, the sets ϕ−1
α (W )

and ϕ−1
β (W ) are open sets in Rd and the chart transition ϕ−1

β ◦ ϕα : ϕ−1
α (W ) →

ϕ−1
β (W ) are differentiable functions.

3) The family {(Uα, ϕα)} is maximal respect to properties (1) and (2).
The properties (1) and (2) define the differential structure ofMd. They allow

to generate a natural topology overMd: a set A ⊂ Md is an open set ofMd if
ϕ−1
α (A ∩ ϕα (Uα)) is an open set of Rd, ∀α.

Let p ∈ ϕα (Uα) and ϕ−1
α (p) = (x1 (p) , ..., xn (p)). So, ϕα (Uα) is called a

coordinate neighborhood and the pair (Uα, ϕα) a local parametrization or system
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Figure 5.6: Coordinates change and differentiable manifold elements.

of coordinates forMd in p. The Figure 5.6 pictures the main elements of items
(1)-(3) representing also the change of coordinate systems in the item (2). If
ϕ−1
β ◦ϕα ∈ Ck, with k ≥ 1, then we say thatMd is a Ck-differentiable manifold,

or simply Ck-manifold. If k =∞,Md is called a smooth manifold. Besides, we
say that N is a submanifold of Md if N ⊂ Md and N is also a differentiable
manifold.

Let Md be a Ck-manifold of dimension d with local coordinates ϕ : U ⊂
Rd →Md, at a point p = ϕ (x). A tangent vector v toMd at p can be expressed
in the local coordinates x = (x1, ..., xn) as:

v =
d∑
i=1

(
vi
∂ϕ

∂xi

)
. (5.38)

where the vectors

B =

{
∂ϕ

∂x1

, ...,
∂ϕ

∂xm

}
, (5.39)

are defined by the local coordinates.
The set of all tangent vectors toMd at p is called the tangent space toMd at

p, and is denoted by Tp
(
Md

)
. The vectors in the set (5.39) determine an natural

basis for Tp
(
Md

)
. The collection of all tangent spaces to Md is the tangent
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bundle of the differentiable manifoldMd :

TM =
⋃

p∈Md

Tp
(
Md

)
. (5.40)

A Riemannian manifold is a manifoldMd equipped with an inner product in
each point p (bilinear, symmetric and positive definite form in the tangent space
Tp
(
Md

)
) that varies smoothly from point to point.

A geodesic in a Riemannian manifold Md is a differentiable curve α : I ⊂
R →Md that is the shortest path between any two points p1 = α (t1) and p2 =

α (t2) [42]. With this concept, we can define the geodesic distance between the
points p1 and p2 as:

dMd (p1,p2) =

ˆ t2

t1

√〈
dα

dt
,
dα

dt

〉
dt. (5.41)

We denote by α(s,q,
v

‖v‖
) the geodesic, parameterized by the arc length s,

that pass to q at s = 0 with unitary tangent vector α′ (0) =
v

‖v‖
. Existence and

uniqueness for geodesics can be demonstrated in a Riemannian manifold which
allows to define the exponential map as follows.

5.8 Optimization of Scalar Fields

Given a scalar field (function) f : Rn → R we say that a point q ∈ Rn is a critical
point of f if∇f (q) = 0; that means:

∂f

∂x1

(q) =
∂f

∂x2

(q) = . . . =
∂f

∂xn
(q) = 0. (5.42)

Also, we can compute the Hessian Hxf (q) as:

[Hxf (q)]ij =
∂2f

∂xi∂xj
(q) , 1 ≤ i, j ≤ n, (5.43)

and the dimension d of the null space of the matrix [Hxf (q)] is called the corank
ofHxf at q ∈ Rn. The rank ofHxf at q ∈ Rn is given by: rank (Hxfq) = n−d.

We say that f has a nondegenerate critical point at q ∈ Rn if ∇f (q) = 0

and if Hxf (q), defined by expression (8.20), has rank equal to n (non-singular
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matrix). On the other hand, if Hxf (q) is degenerate we say the point q ∈ Rn that
satisfies∇f (q) = 0 is a degenerate critical point (corank d > 0).

From the Taylor Series around a critical point q ∈ Rn:

f (x) = f (q) +
1

2!
(x− q)T Hxf (q) (x− q) +O

(
||x− q||2

)
. (5.44)

we have tree possibilities:

1. Local minimum: ∇f (q) = 0 and Hxf (q) positive definite

2. Local maximum: ∇f (q) = 0 and Hxf (q) negative definite

3. Seddle point: ∇f (q) = 0 and Hxf (q) non-singular but with positive and
negative eigenvalues

4. Degenerate point: ∇f (q) = 0 and Hxf (q) singular

Optimization theory for differentiable functions deals with the problem of ef-
ficiently finding the critical points and to classify them according to the cases
(1)-(4) above. The situation is simplified if we have a differentiable scalar field
f : D ⊂ Rn → R that is also a convex function; that means Hxf (x) is positive
definite in the domain D.

The most usual algorithm in this area is the steepest descent one [43], which
is based in the fact that the gradient defines the direction of greatest increase of
the function f , as discussed in section 5.6. Consequently, the vector ’−∇f (x)’
points in the direction of greatest decrease of the function f in the point x ∈ D.
Hence, starting from a point p ∈ D we can iteratively approximate the critical
point through the procedure in the Algorithm 1.

5.9 Optimization with Constraints

In machine learning application sometimes we need to optimize a function w =

f (x1, x2, . . . , xn), that means, to find the minimum and maximum values of the
function, subject to some constraints in the form gi (x1, x2, . . . , xn) = ki, i =

1, 2, . . . N . Hence, we consider the general problem:

min w = f (x1, x2, . . . , xn) (5.45)
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Algorithmus 1 Steepest Descent Algorithm
Input: δ, ε > 0,

Initialization: x0 ∈ D, k = 0;

p← x0;,

while (‖∇f (p)‖ < ε) do

xk+1 = xk − δ∇f (p),

p← xk+1,

k ← k + 1,

end while

x?opt ← p,

Output: Solution x?opt

subject to:

gj (x1, x2, . . . , xn) = kj, j = 1, 2, . . .m. (5.46)

The solution of problem (5.45)-(5.46) is obtained through the next steps:

1. Build the Lagrangian function [39, 40]:

L (x1, x2, . . . , xn, λ1, λ2, . . . , λm) =

= f (x1, x2, . . . , xn)− λj (gj (x1, x2, . . . , xn)− kj) , (5.47)

where the parameters λj are called the Lagrange multipliers.

2. Solve∇L = (0, 0, . . . , 0); that means, solve expressions:

∂L

∂xi
(x1, x2, . . . , xn, λ1, λ2, . . . , λm) = 0, i = 1, 2, . . . , n, (5.48)

∂L

∂λj
(x1, x2, . . . , xn, λ1, λ2, . . . , λm) = 0, j = 1, 2 . . . ,m. (5.49)

3. Take the solutions
(
x,λ

)
of system (5.48)-(5.49) and set λ = λ into ex-

pression (5.47) to obtain the function F (x) ≡ L
(
x;λ.

)
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4. Calculte the Hessian HxF (x) given by:

[HxF (x)]ij =
∂2F

∂xi∂xj
(x) , 1 ≤ i, j ≤ N, (5.50)

5. Compute the eigenvalues of the Hessian HxF (x) and use them to classify
x according to the cases (1)-(4) of section 5.8.

5.10 Exercises

1. Consider the paraboloid z = x2 + y2 in R3. Show that it is a differentiable
manifold of dimension 2.

2. Show that a sphere in Rn is a differentiable manifold of dimension n− 1.

3. Compute an equation for the plane in R3 that contains the points p1 =

(1, 0, 0), p2 = (0, 1, 1), p3 = (−2, 0, 3).

4. Find equations for the tangent plane and the normal line to the graph of the
given equations at the indicated point.

(a) 4x2 − y3 + 3z2 = 10, point p = (2,−3, 1)

(b) z = 2 exp (−x) cos (y) ,point p = (0, π/3, 1)

5. Demonstrate that the tangent plane to the given quadric surface at the point
p0 = (x0, y0, z0) may be written in the indicated form:

x2

a2
+
y2

b2
+
z2

c2
= 1,

xx0

a2
+
yy0

b2
+
zz0

c2
= 1.

6. Find the points on the hyperboloid x2−2y2−4z2 = 16 at which the tangent
plane is parallel to the plane 4x− 2y − 4z = 5 .

7. Prove that every normal line to a sphere passes through the center of the
sphere. Given the sphere S2, implicitly defined by x2 + y2 + z2 = 1,
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compute its parametric representation in Cartesian coordinates. Using this
representation, find the unity normal vector field to S2.

8. Two surfaces are said to be orthogonal at a point of intersection p =

(x, y, z) if their normal lines at p are orthogonal. Show that the graphs of
F (x, y, z) = 0 and G (x, y, z) = 0 (where F and G have partial derivatives)
are orthogonal at p if and only if:

FxGx + FyGy + FzGz = 0

9. Consider the functions bellow and compute their critical points. Classify the
critical points according to: local minimum, local maximum, seddle point,
degenerate point.

(a) f (x, y) = x2 + 2xy + 3y2

(b) f (x, y) = x2 − y2

(c) f (x, y) = cos (x) + cos (y)

(d) f (x, y) = exp (x) sin (y)

10. Use Lagrange multipliers to find the local extrema of the given function f
subject to the stated constraints:

(a) f (x, y) = y2 − 4xy + 4x2; x2 + y2 = 1,

(b) f (x, y) = 2x2 + xy − y2 + y; 2x+ 3y = 1.

11. Use the Chain Rule to find ∂w/∂x and ∂w/∂y:

(a) w = u sin (v), u = x2 + y2, v = xy.

(b) w = uv + v2,u = x sin (y), v = y sin (x).
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12. Use the Chain Rule to find ∂r/∂u , ∂r/∂v, and ∂r/∂t:

(a) r = x ln (y) , x = 3u+ vt, y = uvt.

(b) r = vw2 cos (z) , w = u2vt, z = ut2.

13. Consider the linear system Ax = b, where A ∈ Rn×m, b ∈ Rm and n > m.
Use the optimization theory of section 5.8 to solve the problem:

arg min
x∈Rm

‖Ax− b‖2
2 . (5.51)

14. Given a set of points in R2, build and solve a least squares problem to cal-
culate the line that best fits the data. Can you generalize your approach to
Rm?

15. Consider linear combinations of fixed nonlinear functions φj : Rm −→ R
of the input vector x ∈ Rm, of the form:

y (x) = w0 +
M∑
j=1

wjφj (x) , (5.52)

where φj are known as basis functions and wi ∈ R are parameters of the
model. In this exercise, the basis functions are defined by:

φj (x) = σ

(∥∥x− µj∥∥2

2

sj

)
, (5.53)

where σ(a) is the logistic sigmoid function:

σ(a) =
1

1 + exp (−a)
. (5.54)

Given a set composed by the points (yi,xi) ∈ R1+m, i = 1, 2, ..., N general-
ize the least square criterion to perform nonlinear regression with expression
(5.52) through the error function:

E (w) =
1

N

N∑
n=1

yn −w
T


φ0 (xn)

φ1 (xn)
...

φM (xn)





2

,
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where φ0 (x) = 1.

16. Take a discretization of the function y = x2 in the interval [2, 3] to obtain a
set D = {(xi, yi) ∈ R2; yi = x2

i , i = 1, 2, . . . , n}. Compute the principal
components p1,p2 for the set D. Show that p1 is almost tangent and p2 is
almost orthonormal to the corresponding curve in R2.

17. Regularized least squares. Consider the error function:

E (w) =
1

N

N∑
n=1

yn −w
T


φ1 (xn)

φ2 (xn)
...

φM (xn)





2

+ λwTw. (5.55)

Use the optimization theory of section 5.8 to solve the problem:

arg min
w∈RM

E (w) .

18. Multiple outputs: If we have a set composed by the points (yi,xi) ∈ Rn+m,
i = 1, 2, ..., N we can generalize the model (5.52) through the expression:

y (x) = W


φ0 (x)

φ1 (x)
...

φM (x)

 , (5.56)

where φ0 (x) = 1 and W ∈ Rn×m. Define an error function and minimize
it with respect to W .

19. Take a clound of N = 20 points around the origem in R2. Mark half of
them with label ’1’ and half with label ’−1’ to generate a set:

D =
{

(x1i, x2i, li) ∈ R2 × {−1, 1} , i = 1, 2, . . . , N = 20
}
. (5.57)

Consider the expression:

z (xj) = Tanh

(
w0 +

2∑
i=1

wixij

)
, (5.58)
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where Tanh is the hyperbolic tangent function
(https://en.wikipedia.org/wiki/Hyperbolic functions) defined as:

Tanh (x) =
exp (x)− exp (−x)

exp (x) + exp (−x)
, (5.59)

Study the sequential gradient descent described in page 144 of reference
[44] and design an algorithm to compute a separating line forD; that means,
to seek for a line cy = ax+ b such that:

cyi − (axi + b) > 0, if li = 1

cyi − (axi + b) < 0, if li = −1.

Solution. Take the error function:

E (a, b, c) =
1

N

N∑
n=1

En (a, b, c) , (5.60)

where z = (a, b, c) ∈ R3 is the parameter vector and:

En (z) = [Tanh (cyi − (axi + b))− li]2 . (5.61)

Optimize function (5.60) by implementing the sequential gradient descent
scheme of Algorithm 2.

20. Take a discretization with N = 20 points of the sphere S2 ={
x ∈ R3; ‖x‖2

2 = 1
}

nearby the point p =
(
1/
√

3, 1/
√

3, 1/
√

3
)

to get
a set D = {xi, i = 1, 2, . . . N = 20} ∈ S2. Apply the theory of exer-
cise 5 to approximate the surface S2 nearby the point p through a function
y : R2 −→ R of the form (5.52). Compute the tangent space Tp (S2).
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Algorithmus 2 Sequential Gradient Descent Algorithm
Input: δ, ε > 0,

Initialization: z0 ∈ R3, k = 0;

p← z0;,

while (‖∇E (p)‖ ≥ ε) do

for n = 1, ..., N do

zk+1 = p− δ∇En (p),

p← zk+1,

k ← k + 1,

end for

k ← 0,

end while

z?opt ← p,

Output: Solution z?opt
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Chapter 6

Stochastic Representation of Digital

Signals

Stochastic models describe a signal as a member of an ensemble, which can be
characterized by its mean and covariance functions. This allows development
of algorithms that are useful for an entire class or an ensemble of signals rather
than for a single one. Fall in this category the covariance models, the 1 − D

models (signal is considered a vector) and 2−D models (signals are represented
by matrices) and Gaussian models [5, 37].

In this text, we focus on basic principles on random signals, their representa-
tions by stochastic models and some elements of classical information theory.

Before continuing, let us start with some fundamental definitions.
Sample Space E is an exhaustive list of all the possible outcomes of an ex-

periment. Any subset of E is called an event.
A random variable x is a function x : E → R. For discrete random variable,

we have some probability distribution p(x = i) = pi. If x is a continuous random
variable, then there is a probability density function, also named pdf, f : R →
R, such that, the probability of the event given by a ≤ x ≤ b is:

p (a ≤ x ≤ b) =

ˆ b

a

f (x) dx. (6.1)

As a consequence, a pdf must satisfies:
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p (xmin ≤ x ≤ xmax) =

ˆ xmax

xmin

f (x) dx = 1. (6.2)

For instance, in image processing, it is a common practice to interpret the
relative frequency of occurrence of the gray levels as probabilities. The histogram
of an image is the graph obtained by plotting the gray level intensities in the x
axis and the relative frequencies in the y axis.

(a) (b)

Figure 6.1: (a) Gray level image. (b) Histogram of the image.

6.1 Random Signals

Let a vector of N random variables:

u =



u (0)

u (1)

.

.

.

u (N − 1)


∈ RN , (6.3)

where u (i) is a real discrete random variable, i = 0, 1, 2, ..., N − 1.
In this case, we can define its mean vector as [5]:
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E (u) = µ =



µ (0)

µ (1)

.

.

.

µ (N − 1)


∈ RN . (6.4)

If u (i) are random variable taking values in the set {π0, π1, ..., πM−1} , then each
mean µ (i) can be computed by an expression like:

µ (i) =
M−1∑
j=0

πjp
i
j, (6.5)

with pij satisfying:

0 ≤ pij ≤ 1, (6.6)

M−1∑
j=0

pij = 1, i = 0, 1, ..., N − 1. (6.7)

The weights pij are the probabilities of value πj in the position i of the array.
For instance, for digital image applications, each pij will be the probability of
intensity πj in the pixel i. We say that pij is the probability distribution associated
to the problem.

Besides, we can define the covariance matrix by [5]:

Cov [u] = E
(

(u− µ) (u− µ)T
)

(6.8)

We can extend these definitions for a two-dimensional {u (m,n)} array of
random variables, also called discrete random field. In this case, we have:
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u =


u (1, 1) u (1, 2) · · · u (1, N)

· · ·

· · ·

u (M, 1) u (M, 2) · · · u (M,N)

 ,

where each u (m,n) is a random variable. Likewise in expression (6.4), we can
define the mean functions for the discrete random field u as:

E (u) =


µ (1, 1) µ (1, 2) · · · µ (1, N)

· · ·

· · ·

µ (N, 1) µ (N, 2) · · · µ (N,N)

 , (6.9)

where µ (m,n) = E (u (m,n)) .

Besides, analogously to expression (6.8), we can define the covariance func-
tion as:

Cov [u] = {Cov (m,n; s, t) , 1 ≤ m,n, s, t ≤ N} , (6.10)

such that:

Cov (m,n; s, t) = E ((u (m,n)− µ (m,n)) · (u∗ (s, t)− µ∗ (s, t))) (6.11)

A considerable simplification occurs for stationary process, that means, the
ones for which µ (m,n) = cons tan t.

6.2 Elements of Probability Theory

Given two eventsA,B ⊂ E,we can define the (conditional) probability that event
A will occur given that event B has occurred by:

p (A|B) =
p (A ∩B)

p (B)
. (6.12)
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where p (A|B) is the usual notation for conditional probability and “∩” means
intersection. Expression (6.12) is called the Baye’s Rule and is the starting point
for Bayesian approaches. The essence of this theory is to provide a mathematical
rule explaining how you should change your existing beliefs in the light of new
evidence. An interesting sub-class of random processes in this area is the Markov
ones defined as follows.

Simply, a Markov process is the one whose future probabilities are determined
by its most recent values. More precisely, A sequence u (n) is called Markov-s
or sth-order Markov if the conditional probability of u (n) given the entire past is
equal to the conditional probability of u (n) given only the the last s observations:

p (u (n) |u (n− 1) , u (n− 2) , ...u (1)) = p (u (n) |u (n− 1) , u (n− 2) , ...u (n− s)) .
(6.13)

6.2.1 Orthogonality and Independence

Two random variables x and y are called independent if and only if their joint
probability density function is a product of their marginal densities:

p (x = α, y = β) = p (x = α) p (y = β) . (6.14)

On the other hand, x and y are said to be orthogonal if:

E (xy∗) = 0, (6.15)

and are called uncorrelated if:

E (xy∗) = E (x) · E (y∗) . (6.16)

Expression (6.16) implies that (Exercise):

E ((x− µx) (y − µy)∗) = 0. (6.17)
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6.2.2 Mean Square Estimate

Let {y (n) , n = 1, 2, · · ·, N} be a real random sequence that represents N ob-
servations of an unknown real random variable x. It is desired to find the optimum
mean square estimate x̂ of x, from the observations y (n) , such that the mean
square error:

σ2 = E
[
(x− x̂)2] (6.18)

is minimized. It can be shown that the solution is the conditional mean of x given
y (n) , n = 1, 2, · · ·, N :

x̂ = E (x|y) = E [x|y (1) , · · ·, y (N)] =

ˆ +∞

−∞
ξ · px|y (ξ) dξ, (6.19)

where px|y (ξ) is the conditional probability density of x given the observation
array {y (n) , n = 1, 2, · · ·, N} .

6.3 Concepts in Information Theory

Information theory deals with measurement and transmission of information
through a channel. A fundamental work in this area is the Shannon’s Informa-
tion Theory (see [45], Chapter 11), which provides many useful tools that are
based on measuring information in terms of the complexity of structures needed
to encode a given piece of information.

Shannon’s theory solves two central problems for classical information:
(1) How much can a message be compressed; i.e., how redundant is the infor-

mation? (The noiseless coding theorem).
(2) At what rate can we communicate reliably over a noisy channel; i.e., how

much redundancy must be incorporated into a message to protect against errors?
(The noisy channel coding theorem).

In this theory, the information and the transmission channel are formulated
in a probabilistic point of view. In what follows, we review the development of
Shannon’s Theory presented in [45], pp. 537. In this reference, a central definition
is an ε− typical sequence.
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6.3.1 Classical Information Theory

Firstly, we must discuss Shannon entropy and its relevance to classical informa-
tion.

A message is a string of n letters chosen from an alphabet of W letters:

A = {a1, a2, ..., aW}

Let us suppose a prior probability distribution p :

p (ai) = pi, (6.20)
W∑
i=1

p (ai) = 1

For example, the simplest case is for a binary alphabet where p (1) = p and
p (0) = 1− p; 1 ≤ p ≤ 1.

For n very large, the law of large numbers tells us that typical strings will
contain (in the binary case) about n(1 − p) 0’s and about np 1’s. The number of

distinct strings of this form is given by the binomial coefficient

 n

np

. From

Stirling approximation [46] we know that log (n!) = n log n − n + O (log n).
Thus, we approximate the binomial coefficient by (see [46], for more details):

log

 n

np

 ' nH (p) , (6.21)

where:

H (p) = −p log p− (1− p) log (1− p) (6.22)

is the entropy function (observe that log’s have base 2).
Thus, from equation (6.21) we can see that the number of typical strings is of

order 2nH(p).

Furthermore, the entropy H has the following properties:
(a) 0 ≤ H (p) ≤ 1, if 1 ≤ p ≤ 1 ;
(b) H (p) = 1 only if p = 1

2
.
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Thus, from property (a) we find that:

2nH(p) < 2n if p 6= 1

2
(6.23)

that is, we do not need a codeword for every n-letter sequence, but only for the
typical ones. In another way, we can compress the information in a shorter string.

This can be generalized:

n!∏
x

(np (x))!
' 2nH(X) (6.24)

H (X) =
∑
x

p (x) (− log p (x)) (6.25)

where X : A→ R is a random variable with probability distribution p (x).
Such result points out to a compression scheme. To accomplishes this, we need

also to formulate these results more precisely. This is done in the next section.

6.3.2 Compression Problem

Firstly, we must formulate what is a compression scheme. Let us suppose that
X1, X2, X3, ..., Xn is a independent and identically distributed classical informa-
tion source over some finite alphabet; that is, the expectations and variances are
such that E (X1) = E (X2) = ... = E (Xn) ≡ E (X) and D (X1) = D (X2) =

... = D (Xn) ≡ D (X) , where X represents any of the random variables, and
expression (6.26) holds.

A Compression Scheme of Rate R, denoted by Cn (x), maps possible se-
quences x = (x1, x2, ..., xn) to a bit string of length nR. The matching decompres-
sion schemeDn takes the nR compressed bits and maps them back to a string of n
letters. This operation is denoted by Dn (Cn (x)) . A compression-decompression
scheme is said to be reliable if the probability that Dn (Cn (x)) = x approaches
to one as n→∞.

A fundamental result in this theory is the Shannon’s Noiseless Channel Coding
Theorem:

Suppose that {Xi} are independent and identically distributed random vari-
ables that define an information source with entropy H (X) . Suppose R >
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H (X). Then there exists a reliable compression scheme of rate R for the source.
Conversely, if R < H (X) then any compression scheme will not be reliable.

In [45], pp. 537, this theorem is demonstrated following the development
given bellow.

Let a particular n−message: x1, x2, ..., xn.

So, by the assumption of statistically independent random variables:

P (x1, x2, ..., xn) = p (x1) · p (x2) · ... · p (xn) (6.26)

Thus, typically, we expect:

P (x1, x2, ..., xn) ≈ pnp (1− p)(1−p)n . (6.27)

So:

−1

n
logP (x1, x2, ..., xn) ≈ 〈− log (p (x))〉 ≡ H (X) , (6.28)

in the sense that, for any ε > 0 and for n large enough we have

H (X)− ε ≤ −1

n
logP (x1, x2, ..., xn) ≤ H (X) + ε (6.29)

Thus:

2−n(H(X)−ε) ≥ P (x1, x2, ..., xn) ≥ 2−n(H(X)+ε) (6.30)

A useful equivalent reformulation of this expression is:∣∣∣∣−1

n
logP (x1, x2, ..., xn)−H (X)

∣∣∣∣ ≤ ε. (6.31)

A sequence that satisfies this property is called ε− typical.
In [45], pp. 537, the Shannon’s Noiseless Channel Coding Theorem is demon-

strated using the following properties about ε− typical sequences.
Property 1: Fix ε > 0. Then, for any δ > 0, for sufficiently large n, the

probability that a sequence is ε− typical is at least 1− δ.
Property 2: For any fixed ε > 0 and δ > 0, for sufficiently large n, the number

|T (n, ε)| of ε− typical sequences satisfies:

(1− δ) 2n(H(X)−ε) ≤ |T (n, ε)| ≤ 2n(H(X)+ε).
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Property 3: Let S (n) be a collection with at most 2nR sequences from the
source, where R < H (X) is fixed. Then, for any δ > 0 and for sufficiently large
n,

∑
x∈S(n)

p (x) ≤ δ.

6.4 Exercises

1. Let x be a continuous random variable with distribution:

f (x) =


x
6

+ k, if 0 ≤ x ≤ 3,

0 otherwise.

(6.32)

(i) Calculate k; (ii) Find p (1 ≤ x ≤ 2); (ii) Calculate the rth-moment de-
fined by:

ˆ
R
xrf (x) dx.

2. Given two discrete random variables x and y, show that E (x+ y) =

E (x) + E (y).

3. Let x be a random variable with mean µ and standard deviation σ > 0.
Define the random variable:

x∗ =
x− µ
σ

,

named standardized random variable corresponding to x. Show that
E (x∗) = 0 and V ar (x∗) = 1.

4. In the exercises bellow, x and y are discrete random variables with distribu-
tions f and g, respectively, and joint distribution h.
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(a) Show that f (xi) =
∑

j h (xi, yj)and g (yj) =
∑

i h (xi, yj)

(b) Let x and y be random variables on the same sample space S with
y = Φ (x). Show that E (y) =

∑
i Φ (xi) f (xi).

(c) Let x be a random variable and k a real constant. Show that: (i)
E (kx) = kE (x); (ii) E (x+ k) = E (x) + k; (iii) V ar (x+ k) =

V ar (x); (iv) V ar (kx) = k2V ar (x) .

(d) If we define:

Cov (x, y) =
∑
ij

(xi − E (x)) (yj − E (y))h (xi, yj) ,

then show that:

Cov (x, y) =
∑
ij

xiyjh (xi, yj)− E (x)E (y) .

(e) If x and y are independent random variables demonstrate that: (a)
V ar (x+ y) = V ar (x) + V ar (y); (b) Cov (x, y) = 0.

5. Given a image database, how to find the probabilities pij in expression (6.5)?

6. Choose an image database and find the probability distribution pij and the
mean vector defined by expression (6.4). Then compute the covariance ma-
trix, defined from expression (6.8).

7. Prove expressions (6.21) and (6.24).

8. Show that, the maximum of the Shannon entropy, subjected to the constraint∑W
i=1 pi = 1 is the uniform distribution.
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9. Suppose that each pixel value of a digital image is uniformly quantized to
B bits. It is desired to extract the first most significant bits in order to get
a more compact image representation. Based on the Shannon’s Noiseless
Channel Coding Theorem in section 6.3.2, show that B.H , where H is the
associated Shannon entropy, is the number of visually significant bits.

10. Demonstrate expression (6.17).

11. Show that, the optimum mean square estimate x̂ for x, from the observation
y(n) is given by expression (6.19).

12. From the results and definitions of section 6.2.1, interpret the covariance
matrix given by expression (6.8).

70



Chapter 7

Data Preparation and Patterns

Representation

Many areas such as pattern recognition, computer vision, signal processing and
medical image analysis, require the managing of huge data sets with a large num-
ber of features or dimensions. Behind such big data we have medical imaging,
scientific data produced by numerical simulations and acquisition systems (earth-
orbiting satellites, genomics experiments) as well as complex systems from Na-
ture, Internet, economy/finance, among other areas in society [47]. However, af-
ter acquiring vast amounts of data we must extract useful information. This task
has proven extremely challenging requiring methodologies that blend traditional
statistics and machine learning methods into sophisticated algorithms for informa-
tion discovery in large volumes of data. So, we are in the context of data mining,
that can be defined as ‘the process of automatically discovering useful information
in large data repositories’ [1].

The overall process of converting raw data into useful information is named
knowledge discovery. Its main steps are represented in Figure 7.1. From this fig-
ure we see that, before applying some data mining procedure, input data must be
preprocessed to convert it into an appropriate format for subsequent analysis. For
example, in the case of data mining through traditional neural network techniques,
the preprocessing step roughly involves to embed the raw data into a suitable nu-
merical space, named feature space. We call feature, any numerical value that can
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Figure 7.1: Main stages for knowledge discovery (Source [1])

be derived from the input data. Consequently, a feature space is represented using
coordinates in Rm, where each coordinate axis holds a specific feature.

In this context, the whole preprocessing, or data preparation pipeline includes
the following steps: (i) Data collection; (ii) Data Exploration by looking for out-
liers, finding exceptions, and missing infomation; (iii) Cleaning by remotion of
incorrect and inconsistent samples; (iv) Formatting data, which may include nor-
malization, discretization and quantization; (v) Feature extraction and dimension-
ality reduction for compact representation; (vi) Data augmentation; (vii) Splitting
data into training and evaluation sets.

In this avenue, some specific issues for development of data mining algorithm
are: (a) Scalability; that means, efficient solutions in terms of allocation of com-
putational resources (main memory and CPU)); (b) High dimensionality of the
input data; (c) Heterogeneous and complex data.

Data mining tasks are generally divided into two major categories [1]:

• Predictive tasks. The objective of these tasks is to predict the value of a par-
ticular attribute (variable) based on the values of other attributes Examples:
Classification and regression.

• Descriptive tasks. To derive patterns (correlations, trends, clusters, trajecto-
ries, anomalies, etc.) that summarize the underlying relationships in data.

In this text, we focus in data whose attributes (variables) are measured in nu-
merical values (continuous or discrete). For instance, the high of individuals in a
population is a continuous variable while their ages is a discrete attribute. In this
sense, we might have an array of variable associated with each individual. There-
fore, the raw data set can be viewed as a collection of objects (or samples) that
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can be represented by points/vectors in Rm, matrices, or graphs. For example the
image histogram can be seen as a point in Rm, the image itself is mathematically
a matriz. Moreover, given a RGB image with a hand gesture, we can perform the
hand segmentation for key points extraction to represent the hand region with a
graph whose nodes are the key points and edges connect adjacent nodes.

In this text, the terms database and dataset are used as synonyms to reffer to
a set of samples taken from some population or acquired through measurements.
We will use two kinds of representations for a database D:

Point/Vector Representation: In this case, each sample of the dataset D is a
point/vector with m attributes. Therefore, if the database has M samples, then it
is a set:

D = {x1,x2, ·, ·, ·,xM} ⊂ Rm. (7.1)

The elements of D can be assembled in aM×m data matrix that is composed
of M lines xT1 ,x

T
2 , ·, ·, ·,xTM and m columns. In machine learning applications

this matrix is also named training set matrix. Moreover, each element xi ∈ D is a
point in Rm and, consequently, we can represent S as a graph, where the nodes are
the samples xi and the edges are connections indicating neighboring relationships.
For instance, each node xi is connected with its K nearest neighbors.

Matrix Representation: In this case, we have a dataset D where the data
samples variables are arranged in a N ×M array A. If most of the A(i, j) are
null, we say that we have a sparse matrix. Some data mining algorithms work
well only for sparse data. Moreover, in the case of image processing each entry
(i, j) of A is named a pixel and we say that the spatial resolution of A is its
dimension (N ×M ). The dimensionality of A is its number of attributes, in this
case, this number is given by N ·M . In general N ·M is very large which brings
specific challenges for development of efficient algorithms to deal with such high-
dimensional data.

Moreover, data attributes may have relationships that involve order in time or
space, which demands the following classification.

Time Ordered Data: In this data type, the elements xi in the set D are sorted
following relationships that involve order in time. Hence, we think the dataset D
as a sequence xi, i = 1, 2, · · ·,M , where the index i is related to the time that
the corresponding sample was recorded. A video record is very usual example of
such data type. A subclass of this category is the Time Series Data characterized
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by high temporal autocorrelation; i.e., we expect that xi and xi+1 are close with
respect to some similarity measure in Rm.

Spatial Ordered Data: The objects are represented through variable associ-
ated to points regularly or irregularly distributed in space. For example, numeri-
cal simulations in science and engineering generate data sets that are the result of
discretizations of physical fields, like pressure and temperature, using a two- or
three-dimensional grid or mesh. If fields are stationary (time independent) and we
have a regular grid, the obtained data can be arranged using a matrix.

In all the considered data types the acquisition process is not perfect and there
may be problems due to human error, limitations of measuring devices, noise
and missing data. Moreover, the focused phenomenon may have outliers that are
characterized by attribute values that are unusual with respect to the typical val-
ues observed. Even, redundancy is another problem not related to acquisition or
distribution of the attribute values. Roughly, whenever the same kind of informa-
tion is repeated in a subset of samples of the database, we can say we have data
redundancy [48].

Therefore, we must address the issue of which preprocessing steps should be
applied to make the data useful for the data mining step represented in Figure 7.1.
The next sections deal with this problem, considering cleanning (section ), ag-
gregation (7.3), sampling (7.4), dimensionality reduction (7.5), feature extraction
and selection (7.6), discretization and quantization (7.7), measures of similarity
and dissimilarity (7.8), and normalization or standardization (section 7.9).

7.1 Data Model and Learning

In this monography we use a data model which main elements are pictured on
Figure 7.2.

The main assumption in this data model is that the data points, or samples,
lye in a differentiable manifoldM (see section 5.7). In Figure 7.2.(a) the corre-
sponding geometry is represented by a curve (a smooth curve is a differentiable
manifold of dimension n = 1). Given a point p ∈ M, the tangent space TpM
is the Euclidean space that spans all the vectors that are tangent toM in p (see
section 5.7). Data points appear according to some probability density function
(pdf ), which is depicted bellow the tangent space in the Figure 7.2.
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(a) (b)

Figure 7.2: (a) Data model elements: Original coordinate system (x1, x2), man-

ifold (M), tangent space at a point p ∈ M, probability density function (pdf ) .

(b) Samples and pdf of the data.

However, the input for learning algorithms are just the data points, which are
depicted alone in Figure 7.2.(b). The pdf, also represented in Figure 7.2.(b), in
general, is not known in advance. In general the dimension of the original data
point space is very large which requires some dimensionality reduction technique
to get a more compact representation and to discard redundancies. So, from a
geometric viewpoint, it is equivalent to assumed that the input can be essentially
described on a low-dimensional manifold, embedded in some high-dimensional
space. In the case of Figure 7.2 the curve represents an one-dimensional manifold
embedded in a two-dimensional space.

From the data model of Figure 7.2 some issues arises:

1. Where is the place of dirty data corrupted by acquisition errors in this
model?

2. What is the geometric meaning of the pdf in Figure 7.2?

3. How to recover the underlying low-dimensional manifold from the sam-
ples?
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4. How to compute the pdf from the samples?

The section 7.2 deals with data cleaning and answers the question (1). If we
have a dataset that is representative of some population and we could visualize it
over the manifold data, like in Figure 7.2, we could observe some regions with
low density of samples while others are densely populated. This phenomenon is
explained through the pdf behind the data. For example, let us suppose a dataset
that is drawn through a multivariate d-dimensional Gaussian distribution given by:

Gd (x,Σ) =
[
(2π)d/2 |Σ|1/2

]−1

exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
, (7.2)

where Σ is the covariance matrix and µ is the mean vector. Figure 7.3 pictures
a representation of such setup for d = 2. We shall notice that sample points are
more concentrated nearby the center of the points cloud, which is the position of
the mean vector µ. Far from this point, the samples are spacely distributed due
to the shape of the Gaussian pdf. In this case, the data manifold is the Cartesian
plane. In a more general situation, the data manifold is an hypersurfaceMd and
the population samples are points over it, drawn from the general pdf given by
expression (7.2).

Figure 7.3: Samples drawn from a Gaussian distribution in R2

The issue (3) can be addressed by manifold learning techniques as well as with
machine learning methods. We recognize manifold learning as a background to
data analysis that is based on the assumed geometric structure of high-dimensional
databases [49, 50]. Manifold learning is the starting point for the so called geo-
metric data analysis, which is a combination of differentiable manifold elements
and data representation techniques, for extracting meaningful information from
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data [51, 52, 53, 54]. It can be implemented through machine and/or statistical
learning methods as we will discuss in Chapters 8 and 10, respectively. Problem
(4) will be formalized in the context of machine learning in Chapter 8.

7.2 Data Cleanning

The processes involved in data acquisition and collection often introduce errors in
data like:

• Noise: It is a random process inherent to the acquisition stage. Geometri-
cally, noise generates perturbations in the sample points around the mani-
fold represented in Figure 7.2;

• Outliers: observations that belong to M but are far from the region that
represents the most expected patterns;

• Incorrect or inconsistent samples: points that lie an abnormal distance from
the data manifoldM

• Missing values: regions of the data manifold without samples in the
database;

• Typos: errors in the collection process;

• Replicated entries: happens also in the collection process or due to limita-
tions in the precision of the acquisition instruments;

Designers of machine learning algorithms must be aware about these issues
to be succesfull. They are responsible for dirty data which is the most common
barrier faced by researchers in machine learning and data science. Obviously, a
visualization of the dataset like the ones in Figures 7.2 and 7.3 could be enough
to identify corrupted points. However, such visualization of the dataset is not
possible in practice due to the high dimension of raw data. Therefore, we must
seek for more general tools and also to have in mind the necessity of techniques
for error repairing.

In this way, Figure 7.4 shows a typical workflow for data cleaning. A dirty
dataset offers the input for error detecntion and error repair algorithms. However,
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it is often necessary to pass raw data to a discovery process, may be assisted by
domain experts to model patterns, probability distributions, and other metadata in
order to augment the error detection.

Figure 7.4: Typical workflow with the main data cleaning steps. Source [2].

Given a dirty dataset, the error detection step finds part of the data that does
not conform to the expected patterns, and declares this subset to contain errors. Fi-
nally, given the errors detected, the error repair step is applied to the dirty dataset.
There are many uncertainties in the data cleaning process because, in general, we
do not know the pdf of patterns of corrupted and clean subsets of a database.

In the case of outlier detection techniques, the geometric view of Figure 7.2
offers a way to think about this problem in terms of statistics-based, distance-
based and model-based methods. The former focuses in the stochastic elements
of the data model represented in Figure 7.2. Thus, statistics-based techniques
assume that the clean data points would appear in high probability regions of the
pdf, while outliers would occur in low probability regions [55].

Statistics-based outlier detection methods can be assembled into two cate-
gories. The first one uses hypothesis testing methods, such as the Grubbs Test [56]
and the Tietjen-Moore Test [57]. In the case of Grubbs Test, the method uses the
observed data to calculate a test statistic, which is used to determine whether the
null hypothesis H0 (there is no outlier in the dataset) should be rejected against
the alternative hypothesis Ha (there is one outlier in the dataset). Hence, if we
have a dataset D like in expression (7.1), and we want to test the samples with
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respect to the attribute j then the first step is to compute the mean:

µj =
1

N

N∑
i=1

xi,j, (7.3)

and the standard deviation:

σj =

√∑N
i=1

(
xi,j − µj

)2

N
. (7.4)

Next, we shall compute the score:

Gj = max
i∈{1,2,...,M}

∣∣xi,j − µj∣∣
σj

, (7.5)

where x is the global mean and σ is the standard deviation of the samples com-
puted above.

Following, the null hypothesis of no outliers is rejected if:

Gj >
N − 1√
N

√√√√ t2α
2N

,N−2,j

N − 2 + t2α
2N

,N−2,j

, (7.6)

where t2α
2N

,N−2,jis the upper critical value of the t-distribution with N − 2 degrees
of freedom and a significance level of α/2N for the variable j (see [56] for de-
tails).

The second category of statistics-based outlier detection techniques is com-
posed by parametric approaches that start by fitting a distribution or inferring a
pdf based on the observed data. For instance, if we assume that the attribute j
of the samples in the dataset D follows the univariate normal distribution, given
by expression (7.2) with d = 1, then fitting the data samples under the Gaus-
sian distribution essentially means computing the mean and the standard deviation
through expressions (7.3) and (7.4). Then, a simple way to identify outliers is to
compute a z-score, with respect to the attribute j, for every point in D, which is
defined as:

Zscorei,j =
|xi,j − xj|

σj
. (7.7)

and seek for data points xi that have a z-score greater than a threshold T , for
example T = 3σj . The samples that satisfies Zscorej > T are considered to be
outliers.
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In the multivariate test, we must compute the global mean:

µ =
1

M

M∑
i=1

xi, (7.8)

and the covariance matrix associated to the data:

R =
M∑
i=1

(xi − µ) (xi − µ)T . (7.9)

Now, we need to measure the distance between a particular data point xi to
the mean using the Mahalanobis distance, defined by expression [58]:

d (xi,µ) =

√
(xi − µ)T R−1 (xi − µ)T , (7.10)

For multivariate Gaussian data, the distribution of the squared Mahalanobis
distance is known to be chi-squared with the dimension of the data. Hence, the
adopted rule for identifying the outliers is selecting the threshold such that 95% of
the dataset is smaller than that threshold distance [2, 59]. However, the problem
with such approach is that the classical estimates of the mean µ and covariance
matrix are influenced by the presence of outliers. So, we must apply estimates of
centrality and covariance matrix that are resistant against the influence of outlying
observations, giving rise to a robust Mahalanobis distances, as performed in [59].

Parametric approaches for fitting outliers detection have the drawback of as-
suming the data to follow an underlying distribution. In contrast, nonparametric
techniques infer the distribution from the data itself. Mainly we find two types of
techniques in this category [2]: histogram-based techniques and kernel density-
based techniques.

Histogram-based methods depend on the construction of the data histogram.
To explain this, let us suppose that we have a dataset with the high (y) of M
individuals of a population, represented as:

D = {y1, y2, ·, ·, ·, yM} ⊂ R. (7.11)

If we are going to build the histogram of D to get information about the shape
of the probability distribution of the real attribute y, we need to define the number
of bins as well as the intervals for each bin. Formally, if the high in D falls in
the interval ymin ≤ y ≤ ymax, we should divide the range Y = [ymin, ymax] into
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intervals bi = [ξi, ξi+1), i = 0, 1, . . . , Z − 1, with ξ0 = ymin and ξZ = ymax. Each
interval bi is named a bin of the histogram. The set {ξ0, ξ1, ·, ·, ·, ξZ} ⊂ [ymin, ymax]

is a discretization of the interval Y . Next, we shall count the absolute frequence
of each bin bi with respect to the set D in expression (7.11); that means:

C (i) =
Z−1∑
j=1

χ (yj, bi) , i = 0, 1, . . . , Z − 1. (7.12)

where:

χ (yj, bi) =

1, if yj ∈ bi,

0, otherwise.

(7.13)

This process dependes on some steps, that are application dependent. Specifi-
cally, given the data set D in equation (7.11):

1. Search D do find out the range Y = [ymin, ymax];

2. Choose the discretization {ξ0, ξ1, ·, ·, ·, ξZ} ⊂ [ymin, ymax]. This step defines
the intervals bi = [ξi, ξi+1);

3. Compute the absolute frequences through the expressions (7.12)-(7.13);

4. Assemble the frequences in an array H = (C (0) , C (1) , . . . , C (Z − 1)).

Anyway, once the histogram is computed, we can analyse the relative fre-
quency distribution (C (i) /M , i = 0, 1, . . . , Z − 1) and consider as outliers the
samples that count for bins with with very low frequency. Moreover, we can com-
put a kind of z-score and perform like before.

There are usually two ways to generalize histogram-based approaches to deal
with multivariate data: (1) For each attribute compute an one-dimensional his-
togram and an outlier score, and then combine the scores into an overall outlier
score for every data point; (2) Subdivide every dimension and count the number
of data points belonging to each multidimensional cell, and consider outliers the
data points that belong to cells with very low frequency. Other approaches in for
outlier detection are

Distance-Based outlier detection methods often define a distance between data
points that is used to stablish a criterion to characterize regular behavior. Thinking
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through the data model in Figure 7.2 we are considering the maninfod M as a
Riemannian one and using the metric to compute arch lengths through expression
(5.41). In this way, a normal data point should be close to many other sample of
the dataset, and data points that considerably deviate from such normal behavior
are declared outliers. Distance-based outlier detection methods can be further
divided into global or local methods depending on the reference population used
when determining whether a point is an outlier. A global distance-based outlier
detection method determines whether a point is an outlier based on the distance
between that data point and all other data points in the dataset. On the other hand,
a local method considers the distance between a point and its neighborhood points
when determining outliers [2].

Model-based outlier detection techniques first learn a classifier model from a
set of labeled data points, and then apply the trained classifier to a test data point
to determine whether it is an outlier [2].

7.3 Aggregation

The data matrix commented in the introduction of this chapter is an example of
aggregation (combining two or more objects into a single structure). Formally,
given the dataset D in expression 7.15, we generate the matrix:

X =



xT1

xT2
...

xTM−1

xTM


, (7.14)

Certainly, the graph composed by nodes xi ∈ S connected by edges indicating
neighboring relationships is another example of aggregation.

In this line, let us consider a dataset composed by K video records (like
Youtube). Firstly, we shall taking in mind that mathematically, each video is a time
ordered data composed by a number of images, also named frames, with some
spatial resolution, say, N ×M . To simplify the explanation, we suppose that each
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video has F frames. Hence, each video is a generalized matrix V ∈ RM×N×F .
Consequently, the dataset D in this case can be represented as:

D = {V1, V2, ·, ·, ·, VK} ⊂ RM×N×F . (7.15)

Hence, an specific element of Vi is acessed by Vi (i1, i2, i3) where 1 ≤ i1 ≤
M , 1 ≤ i2 ≤ N , 1 ≤ i3 ≤ F . Going ahead, the dataset D in expression
(7.15) can be aggregated into a higher dimensional matrix Ψ ∈ RM×N×F×K where
Ψ (i1, i2, i3, i4) is the intensity value of the pixel (i1, i2), in the frame i3 of video
i4.

7.4 Sampling

It is common that the set D in expression (7.1) has a cardinality M very high.
Therefore, it is too expensive or time consuming to process all the data. So, we
must select a subset of D to be analyzed. This process is named sampling.

Also, we need to perform sampling to train machine learning algorithms. For
example, to train and validate a neural network, we should divide the dataset D
into two subsets, say D1 and D2, such that D1 ∩D2 = ∅. The former is used for
training and the set D2 to validate the model.

In general, the choice of elements to build the subsets D1 and D2 is randomly
implemented, using a uniform distribution. The determination of the proper size
of D1 and D2 depends on a statistical and methodical approaches. For example,
in natural science applications, we shall notice that the acquisition process that
generates the dataset D performs a sampling of a continuous process. So, the
cardinality ofD must be enough to catch the distribution of samples in the focused
phenomenon. However, a larger number M of samples is necessary to obtain an
acceptable performance when increasing dimensionality. Specifically, the number
M grows exponentially with the value of m [60]. Such property can be verified
through the way decision tree works. In this technique each feature is represented
by an one-dimensional interval that needs to be partitioned into regularB intervals
during tree construction. The intersections of these intervals generate cells that
should receive a class label that depends on the samples inside it. Therefore, we
will need Bm samples to avoid unlabeled cells. This phenomenon is referred as
the curse of dimensionality (see also [44]).
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7.5 Dimensionality Reduction

In general, applications of data mining techniques for pattern recognition and sig-
nal processing require the managing of huge data sets with a large number of
features or dimensions. Therefore, dimensionality reduction may be necessary in
order to discard redundancy and simplify further operations. The most know tech-
nique in this subject is the Principal Components Analysis (PCA) [61]. Given the
datasetD in expression (7.1), the output of PCA technique is linear transformation
that projects the original data into a reduced space Rm′, where m′ < m.

The PCA approach needs that the dataset is represented as arrays in Rm. If
data samples are matrices, then, we must convert them into vectors before apply
PCA. This process is not unique. Such ambiguity do not respect the spatial order
of the data. Consequenlty, multilinear representations using traditional and gener-
alized matrices (like the ones in expression (7.15)), also called tensors, have been
proposed to address this issue.

Tensor methods offer an unified framework because vectors and matrices are
first and second order tensors, respectively. Besides, colored images can be rep-
resented as third order tensors and so on. The applications of multilinear data
representation include face image analysis [62], face recognition under multi-
ple viewpoints and varying lighting conditions, digital number recognition, video
content representation and retrieval, face transfer that maps video recorded perfor-
mances of one individual to facial animations of another one, gait recognition [63],
geoscience and remote sensing data mining, visualization and computer graphics
techniques based on tensor decomposition (see [64] and references therein).

Moreover, considering the data model in section 7.1, we agree that geom-
etry and topology are natural tools to handle large, high-dimensional databases
because we can encode in a geometric concept (like a differentiable manifold)
notions related to similarity, vectors and tensors while the topology allows to syn-
thesize knowledge about connectivity to understand how data is organized on dif-
ferent levels [65, 49]. In this scenario, manifold learning methods and tensor fields
in manifolds offer new ways of mining data spaces for information retrieval [66].
Manifold learning methods look for a compact data representation by recovering
the data geometry and topology [67]. The manifold structure offers resources to
build vector and tensor fields which can be applied to encode data features.
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7.6 Feature Extraction and Selection

As already explanined, in machine learning area, we call feature any numerical
value that can be derived from the input data. In the case of image processing,
each histogram (expression 7.12) entrie is also a feature and the histogram can
be seen as a feature vector. Besides, the acquisition of information to build the
feature space also can be obtained through texture descriptors, wavelets analysis
and image transforms as well as convolutional neural networks (CNNs) [68, 69,
19].

However, once computed the features from the data set, there is need of se-
lecting the most important discriminant features for pattern recognition tasks, for
instance, classification ones [22]. Discriminant analysis techniques, that in the
literature are known as discriminant functions, address this type of problem [70].
Traditionally, discriminant functions have been implemented using Fisher’s linear
discriminant analysis (LDA) and its variants [22, 71]). The LDA finds a projection
transformation that maximizes the Fisher criterion for finding (at most) number of
groups - 1 meaningful discriminant directions, that, in general, are different from
the original features directions [22]. Besides, inspired in the LDA criterion, it
is proposed in [72, 73] the Fisher discriminability criterion (FDC) that ranks the
features according to the ratio of the between-class scatter over the within-class
scatter.

On the other hand, another category encompasses techniques that receive as
input a set of features and select, among the input features, the most discriminant
ones to solve some recognition problem. From the viewpoint of this work, an
important class of methods in this category is the embedded one which is com-
posed by approaches that take into account the biases of classifiers by integrat-
ing discriminant analysis with the classifier construction [74]. Among embedded
techniques, we have random forests [75], support vector machine (SVM) based
approaches [76, 77], Zhu and Martinez method [72] and Fisher discriminant cri-
terion [73].

Others important categories of feature selection methods are filter and wrap-
per approaches [78]. The former include methods that select/weight the features
without the use of learning algorithms. Among filters methods, we have mutual
information (MI) [79], t-statistics [80], Pearson’s correlation [81], Minimum re-
dundancy maximum relevance (MRMR) [82], correlation-based feature selection
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(CFS) [83], Fisher criterion [84], Relief and Relieff [85]. These methods are eas-
ily adapted for data sets with high dimensional space. They are faster if compared
with models in the wrapper and embedded classes because they do not use the
feedback of classifiers. However, this is also their weakness in the sense that it
is hard to quantify feature importance without the help of a separating surface
defined by a learner.

Wrapper techniques are more efficient than filters models because they use the
predictive accuracy of a classifier to select features [76]. However, such advantage
has the price of being computationally involved mainly in high dimensional fea-
ture spaces [76, 86] due to the way wrapper methods work: (i) Searching a subset
of features. (ii) Next, check the selected subset of feature using the performance
of the classifier. These two stages are repeated until reach highest accuracy which
is responsible for the high computational cost of the algorithms.

7.7 Discretization and Quantization

Some data visualization algorithms require that the data be in the binary form.
For example, if we have discretized (through numerical simulation or a sampling
process) the temperature field in a plate using a regular N1 × N2 grid, then the
discrete temprature field can be represented by a matrix T ∈ RN1×N2 . Each entry
of T is a real value. If we want to visualize this matriz as a color map, we have two
possibilities: (a) Search T do find out the range T = [Tmin, Tmax], choose a dis-
cretization {ξ0, ξ1, ·, ·, ·, ξZ} ⊂ [ymin, ymax] to define the intervals bi = [ξi, ξi+1),
and represent each interval bi = [ξi, ξi+1) with a pre-defined color; (b) Perform
quantization of the temperatura field.

For case (b), we first represent the intensities in matrix T through an array:
{f (n) , 0 ≤ n ≤ N1 ·N2} , where each value f (n) is a real variable. Te heart
of the process to get the quantization is a quantizer.

The input of a quantizer is the sampled function f (n) ∈ <, and the output is
the sequence f ∗ (n) ∈ {r1, r2, · · ·, rL}. The values ri, i = 1, 2, ..., L, are called
the reconstruction levels.

So, let us consider a continuous variable u, defined in the interval a ≤ u ≤ b.

The process of mapping a continuous variable u in a variable u∗ which takes
values from the finite set {r1, r2, · · ·, rL} ⊂ < is called quantization.
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In the quantization process, we must define a set of transition levels
{tk, k = 1, 2, ..., L+ 1} , with t1 = a and tL+1 = b, such that rk ∈ [tk, tk+1) .

Then, the discrete variable u∗ can be defined as follows:

u∗ (u) = rk, if u ∈ [tk, tk+1). (7.16)

Such mapping can be represented by the staircase function of Figure 7.5,
which also pictures the quantization error.

Figure 7.5: Quantization and the corresponding error.

For instance, if 0 ≤ u ≤ 10 and the samples are uniformly quantized to 256

levels, then, the transition tk and reconstruction rk levels are, respectively, given
by:

tk =
10 (k − 1)

256
, k = 1, 2, · · ·, 257 (7.17)

rk = tk +
5

256
, k = 1, 2, · · ·, 256. (7.18)

In this case, the interval q = tk − tk−1 = rk − rk−1 is constant for different
values of k and it is called the quantization interval.

Obviously, in this process there is lost of information. So, a good quantizer is
one which represents the original signal with minimum loss or distortion. There-
fore, some optimization criterium must be considered in order to design a suitable
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quantizer, which may be more efficient than the simple choice given by expres-
sions like (7.17)-(7.18). This subject has a plenty of techniques, involving opti-
mization as well as machine leaning algorithms [87, 88].

7.8 Measures of Similarity and Dissimilarity

Based on the deta model we may have similarity measures based on gemetric or
statistics/probabilistic elements. Geometric-based similarity measures take more
or less the concepts related to the manifold metric to define criteria do compare
samples (see [89] and references therein). For instance, in the case of Rm the
usual Euclidean distance is a simple possibility to compare two samples x ∈ Rm

and y ∈ Rm through the expression:

de (x,y) =

√
(x− y)T (x− y). (7.19)

We can also use other distance definitions in Rm , like the p-norm and max-
norm distances, defined respectively by:

dp (x,y) =

(
m∑
i=1

|xi − yi|p
)1/p

, (7.20)

dmax (x,y) = max {|xi − yi| , i = 1, 2, . . . ,m} . (7.21)

One step further allows to incorporate statitical elements in the Euclidean dis-
tance to generate the Mahalanobis distance. So, given the data setD in expression
(7.1), its mean vector µ and covariance matrix R defined as:

µ =
1

N

M∑
i=1

xi, (7.22)

R =
M∑
j=1

(xj − µ) (xj − µ)T , (7.23)

the Mahalanobis distance from a generic sample x do the mean vector µ is given
by:

dMah (x, µ) =

√
(x− µ)T R−1 (x− µ), (7.24)
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Given two samples x,y ∈ D we can also compute a similarity measure be-
tween them by using the formalism behind Mahalanobis distance:

dMah (x, y) =

√
(x− y)T R−1 (x− y), (7.25)

Expression (7.19) can be generalized to the matrix space Rn×m , where
m,n ∈ N, generating the Frobenius distance [38]. Going ahead, we can consider
generalized matrix spaces Rn1×n2×...×nk , k, n1, n2, . . . , nk ∈ N and also compute
Frobenius distance between two elements X, Y ∈ Rn1×n2×...×nk , also named ten-
sors [90].

All these definitions allow to compare samples in order do identify repetions
of the same point in the dataset. We can demonstrate that the above definitions
follows the metric axioms. Moreover, behind expressions (7.19)-(7.21) we have a
norm function as follows:

• Euclidean norm:
Norme (x) =

√
(x)T (x), (7.26)

• P-norm

Normp (x) =

(
m∑
i=1

|xi|p
)1/p

, (7.27)

• Max-norm:
dmax (x) = max {|xi| , i = 1, 2, . . . ,m} . (7.28)

It is important to highlight that we can use similarities measures that do not
define metric spaces. For instance, to comapare two image x and y we can use the
measure of structural similarity (SSIM) given by [91]:

SSIM(x, y) =
(2µxµy + c1) (2σxy + c2)(

µ2
x + µ2

y + c1

) (
σ2
x + σ2

y + c2

) , (7.29)

where µx and µy are the average intensities of images x and y, respectively; σ2
x

and σ2
y are the corresponding intensity variances; σxy is the covariance of the

intensities of images x and y; c1 and c2 are control variables that prevent division
by 0.

It can be shown that SSIM(x, y) ∈ [0, 1]. Other possibilities for image simi-
larity measures can be found in [92].
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Having a similarity function d : Rm × Rm −→ R we can generate a dis-
similarity measure diss (x,y) that, in general, is thinking in normalized form
diss (x,y) ∈ [0, 1]. For instance, diven the dataset D and the Eucliean metric
(7.19), we can define the dissimilarity measure in D as:

diss : D ×D −→ [0, 1] ,

diss (x, y) = 1− de (x,y)

dmax
, (7.30)

where dmax = max {de (x, y) , x, y ∈ D} .
Mahalanobis distance is a simple example of the combination of geometric

and statistics elements. For a further step, we can consider a stochastic model of a
population given by a random vector x and a probability density function f . So,
we can compute the mean vector and the covariance matrix following expressions
(6.4) and (6.8), in order to compute the distance between two samples x,y of the
pupulation.

7.9 Normalization and Standardization

Let us return to the dataset D in equation (7.1). We can find a boundin box
B ⊂ Rm such that D ⊂ B. If we normalize D such that its normalized version
D̂ ⊂ [0, 1]m, where [0, 1]m is a unitary cube in Rm, we could design algorithms
all machine learning algorithms to work in [0, 1]m and, apply the inverse of the
normalization process to get the output in the original B set. This is one reason to
use normalization in pattern recognition applications.

The other one is related to the specific properties of data itself. As an exam-
ple in fluid dynamics, consider the analysis of two-dimensional flows simulated
simulated by a technique based on particles with positions qi ∈ R2 and velocities
q̇i ∈ E2, with E2 being the two-dimensional Euclidean space. Therefore, the
configuration space, denoted by C, is defined by the set:

C = {(q1,q2, · · · ,qM) ∈ D ×D × · · · ×D; i 6= j ⇐⇒ qi 6= qj} , (7.31)

where qi = (qi1, qi2) ∈ R2, i = 1, 2, · · · ,M , are the position of the particles.
On the other hand, the phase space is define by the positions qi and the (linear)
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momentum pi of particles computed by pi = miq̇i ∈ E2. Consequently, the
phase space is given by the set:

F = {((q1,p1) , (q2,p2) , · · · , (qM ,pM)) ∈ (D × E2)× (D × E2)× · · · × (D × E2) ; i 6= j ⇐⇒ qi 6= qj}.

(7.32)
Additionally, we can define the momentum space, denoted by P:

P =
{

(p1,p2, · · · ,pM) ∈ E2 × E2 × · · · × E2
}
, (7.33)

The phase space F contains the state of the system, given by the position and
momentum of particles. Hence, it is more complete than the other two spaces
because C, as well as P , keeps only part of the state information. However, F
might suffer from redundancy more than C and P . So, it is not clear in advance
the more efficient space to compute summaries. Therefore, we shall develop a
methodology that works with anyone of the spaces cited above.

In order to go ahead, we need the definition of metrics in the spaces defined
by expressions (7.31)-(7.33). However, the geometric structure of the F space
is not known in advance due to the viscous and boundary effects that enters the
simulation. Therefore, we just suppose P , C immersed in a high dimensional
Euclidean space E, and, consequently, F immersed in E×E. Hence, the distance
functions in P , C andF are inherited from the corresponding environment spaces.
So, we consider the following metrics:

dE : E× E→ R+, dE (q, r) =

[
M∑
i=1

(
(qi1 − ri1)2 + (qi2 − ri2)2)]1/2

(7.34)

dCmax : C × C → R+, dCmax (q, r) = max
{(

(qi1 − ri1)2 + (qi2 − ri2)2)1/2
, i = 1, 2, · · · ,M

}
,

(7.35)

dPmax : P × P → R+, dPmax (p,w) = max
{(

(pi1 − wi1)2 + (pi2 − wi2)2)1/2
, i = 1, 2, · · · ,M

}
,

(7.36)

dFmax : F × F → R+, dFmax ((q,p) , (z,w)) = max {dE (q, z) , dE (p,w)} .

(7.37)
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dEF : F × F → R+, dEF ((q,p) , (z,w) , α, β) =

[
α

M∑
i=1

(
(qi1 − zi1)2 + (qi2 − zi2)2)

+β
M∑
i=1

(
(pi1 − wi1)2 + (pi2 − wi2)2) ]1/2

,

(7.38)

where α, β ∈ {0, 1}.
The definitions (7.34) and (7.35) are motivated by the fact that the configura-

tion of the fluid volume in the domain D, at a time t, is defined by the position
of the particles in that instant. For instance, the Figure 7.6 pictures two particle
systems with equal configurations q = (q1,q2,q3,q4) and r = (r1, r2, r3, r4),
but different momentum fields at simulation time t. In this case, we have qi = ri,
i = 1, 2, 3, 4; so the distance from q to r, given by expressions (7.34) and (7.35)
are: dE (q, r) = dCmax (q, r) = 0. However, if we take dPmax in equation (7.36)
the distance of the momentum fields will not be null (the same for dFmax and dEF
above). Obviously, the configuration changes, according to the system dynamics,
which involves the velocity and, consequently, the linear momentum. So, in the
next simulation step, say t+ δt, the position of the particles follow different paths
in the domain D and the distances (7.34) and (7.35) get it.

(a) (b)

Figure 7.6: (a) Particles configuration and momentum field at time t. (b) The same

configuration of particles but different momenta.

So, from the dynamical point of view, the metric defined by expressions (7.37)
and (7.38) are more complete. However, these metrics involve two spaces (posi-
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tion and momentum) and, in terms of data analysis, their inputs are composed by
two data sets defined by the position q and momentum vector p of the system.
Hence, the metrics dFmax and dEF for (α, β) = (1, 1) are sensitive to the position
and momentum distribution in the phase space. Specifically, the set that is spread
out over a larger range may dominate in equation (7.37) which implies that we
can not decide whether a given distance value is significant or not. A solution to
remedy this problem is to center each data set respect to the corresponding mean
and, next, to perform spatial normalization by using the standard deviations for
avoiding that variables with larger variances dominate the corresponding devia-
tions from the mean. Formally, we replace the Euclidean distance (7.34) by a
simplified version of the Mahalanobis distance [22], computed by the following
procedure.

In the phase space, the result of N steps of simulation is a sequence of numer-
ical frames (q (tj) ,p (tj)), j = 0, 1, 2, · · · , N , where:

q (tj) =
(
qj1,q

j
2, · · · ,q

j
M

)
≡ qj, j = 0, 1, 2, · · · , N, (7.39)

p (tj) =
(
pj1,p

j
2, · · · ,p

j
M

)
≡ pj, j = 0, 1, 2, · · · , N, (7.40)

with qji =
(
qji,1, q

j
i,2

)
∈ R2 being the position of the particle qi at simulation time

t = tj and pji =
(
pji,1, p

j
i,2

)
is the particle momentum at the same time.

1) Compute the position and momentum means:

q =
1

N

N∑
j=0

qj, (7.41)

p =
1

N

N∑
j=0

pj, (7.42)

2) Centering data:

q̃j = qj − q =
(
q̃j11, q̃

j
12; q̃j21, q̃

j
22; q̃j31, q̃

j
32; · · · ; q̃jM1, q̃

j
M2

)
, (7.43)

p̃j = pj − p =
(
p̃j11, p̃

j
12; p̃j21, p̃

j
22; p̃j31, p̃

j
32; · · · ; p̃jM1, p̃

j
M2

)
, (7.44)

for j = 0, 1, 2, · · · , N .
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3) Compute Scatter vectors:

Ψ̃ik =

(
1

N

N∑
j=1

|q̃jik|
2

)1/2

, k = 1, 2; i = 1, 2, · · · ,M, (7.45)

Υ̃ik =

(
1

N

N∑
j=1

|p̃jik|
2

)1/2

, k = 1, 2; i = 1, 2, · · · ,M. (7.46)

4) Normalization:

q̂j =

(
q̃j11

Ψ̃11

,
q̃j12

Ψ̃12

;
q̃j21

Ψ̃21

,
q̃j22

Ψ̃22

; · · · ;
q̃jM1

Ψ̃M1

,
q̃jM2

Ψ̃M2

)
, (7.47)

p̂j =

(
p̃j11

Υ̃11

,
p̃j12

Υ̃12

;
p̃j21

Υ̃21

,
p̃j22

Υ̃22

; · · · ;
p̃jM1

Υ̃M1

,
p̃jM2

Υ̃M2

)
, (7.48)

5) Finally, the computation of the distance from (q,p) ∈ F to (z,w) ∈ F is
performed by:

dFmax ((q,p) , (z,w)) = dFmax ((q̂, p̂) , (ẑ, ŵ)) = max {dE (q̂, ẑ) , dE (p̂, ŵ)} .
(7.49)

or:

dEF ((q,p) , (z,w) , 1, 1) = dEF ((q̂, p̂) , (ẑ, ŵ) , 1, 1) , (7.50)

where dFmax is defined by expression (7.37) and dEF through equation
(7.38).

From the above considerations, we shall consider four possibilities: (i) The
phase space; (ii) Normalized phase space; (iii) The momentum space; (iv) Only
the configuration space.
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Chapter 8

Data and Learning Theory

We can embed the learning problem (the problem of seeking for the desired de-
pendence on the basis of empirical data [7]) into the data model of section 7.1.
In this line, the empirical data is just composed by samples of the underlying ge-
ometry. Also, data samples may be associated to labels indicating categories (or
classes). Moreover, to each sample we can associate a real value corresponding
to some continuous attribute of the target phenomenon. In this context, we can
consider the following viewpoints to the learning problem.

1. Given a data set D = {x1,x2, . . . ,xM} ⊂ Rm, estimate a function
f : Rn −→ Rm, a parametric representation of the data manifoldM that
satisfies D ⊂M;

2. In the case of labeled data; for instance, D =

{(x1, l1) , (x2, l2) , . . . , (xM , lM)} ⊂ Rm × {0, 1} , estimate a function
f : Rm −→ {0, 1} such that f (xi) = li, i = 1, 2, . . . ,M .

3. If D = {(x1, y1) , (x2, y2) , . . . , (xM , yM)} ⊂ Rm × R, solve the regression
problem: compute a function f : Rm −→ R such that f (xi) = yi, i =

1, 2, . . . ,M .

4. Estimate the probability density function (pdf ) to get stochastic dependen-
cies in the data D = {x1,x2, . . . ,xM} ⊂ Rm. In this case, we seek for a
random vector ω ∈ Rs, and a probability density function f : Rs −→ [0, 1]
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such that, the probability of an event E ⊂M is:

p (E) =

ˆ
R

f (ω) dω, (8.1)

where R ⊂ Rs parameterizes the event E ⊂M.

In the items (1)-(3), we are estimating functional dependencies while in the item
(4) we are computing a stochastic dependency through the dataset D.

8.1 Learning From Examples: Mathematical Per-

spective

Items (1)-(4) of the introduction of this Chapter formalize the general model of
learning from examples in the context of machine learning. The basic elements of
this model are:

• The dataset D ⊂ Rm, named input set,

• The learning machine M,

• The training stage.

From a mathematical viewpoint, the learning machine encapsulates a func-
tional space through its inner parameters. Therefore, besides the data space, rep-
resented by Rm, we have a parameter space, say Rk. So, the machine M is in
fact:

• A family of functions M = M (y; z) , where (y, z) ∈ Rn × Rk in case (1),

• A family of functions M = M (x; z) , where (x, z) ∈ Rm × Rk in cases
(2)-(3).

The elements zi of the parameter vector z = (z1, z2, . . . , zk) are sometimes
named weights of the machine (in the case of neural networks, for example).
The training stage is the process of seeking for the best zopt ∈ Rk such that
M (x; zopt) ' f (x), where f is the functional dependency in items (1)-(3).
Something analogous can be defined by case (4).
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A learning process is implemented by choosing the learning machine and by
defining an appropriate training strategy. Considering the viewpoint above, the
learning process can be viewed as the process of seeking for an appropriate func-
tion, from a given set of functions encapsulated by the machine model. Let us
formalize this idea.

Our discussion focus firstly on the cases (2)-(3) for simplicity. Once we have
chosen the machine model M = M (x; z), we can implement the learning process
by minimizing an error function:

Err (z;D) =
1

|D|

|D|∑
i=1

L (M (xi; z)− di) , (8.2)

with respect to z, where di is a generic vector representing the desired outputs for
cases (2)-(3), and L is a suitable metric or similarity measure in the output space.
In practice, the problem may be ill-posed and we need some regularization terms,
represented by functions Rτ = Rτ (z;D), τ = 1, 2, . . . , K as well as constraints
in the form gj (z;D) = kj , j = 1, 2, . . . N . So, we build the Loss function:

Loss (z;D) = Err (z;D) +
K∑
τ=1

ςτRτ (z;D) , (8.3)

and the training process output is the solution of the problem:

min
z∈Rk

Loss (z;D) = min
z∈Rk

[
Err (z;D) +

K∑
τ=1

ςτRτ (z;D)

]
, (8.4)

subject to:

gj (z;D) = kj, j = 1, 2, . . . N. (8.5)

To deal with the case (4) of the introduction of this Chapter, we develop the
presentation in discrete probability spaces following [93], page 146, and proper-
ties stated in [94]. So, returning to the data model of section 7.1, the samples in the
set D = {x1,x2, . . . ,xM} ⊂ Rm are assumed to be drawn independently from
a true but unknown data distribution pdata (x). In this case, the machine model
M = M (x; z) represents a parametric family of probability functions over the
dataset D. To simplify further expressions, we write M (x; z) = pmodel (x; z).
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So, the goal is to obtain a machine M such that M (xi; z) = pmodel (xi; z) '
pdata (xi), i = 1, 2, . . . ,M . Now, the error function is replaced by the cross
entropy of pdata and pmodel:

H (z) = −
M∑
i=1

pdata (xi; z) log pmodel (xi; z) ≡ E∼pdata (log pmodel (x; z)) ,

(8.6)
and the optimization problem is substituted by the maximum likelihood estimation
problem, given by:

zopt = arg max
z∈Rk

E∼pdata (log pmodel (x; z)) . (8.7)

One reason to consider the maximum likelihood estimation comes from the
fact that, the Kullback-Leibler divergence from pdata to pmodel, given by:

DKL (pdata||pmodel) =
M∑
i=1

pdata (xi) log

(
pdata (xi)

pmodel (xi; z)

)
, (8.8)

measures how pmodel is different from the reference probability pdata [93, 94]. We
can re-write expression (8.8) as:

DKL (pdata||pmodel) =
M∑
i=1

pdata (xi) log pdata (xi)−
M∑
i=1

pdata (xi) log pmodel (xi; z) .

(8.9)
If we consider the problem:

z?opt = arg max
z∈Rk

DKL (pdata||pmodel) , (8.10)

we shall notice that the first term in expression (8.9) does not depend on the model
parameter z. Consequently, optimization problem (8.10) with respect to z can be
simplified to:

z?opt = arg max
z∈Rk

(
−

M∑
i=1

pdata (xi) log pmodel (xi; z)

)
. (8.11)

By comparing problems (8.7) and (8.11) it is clear that they are equivalent
and, consequently, zopt = z?opt. Likewise in the expressions (8.4)-(8.5), we can
add regularization terms and constraints to the problem (8.7).
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8.2 What Do Machines Learn?

The problems of minimizing the Loss functional (8.4), subject to the constraints
(8.5), and maximum likelihood estimation (equation (8.7)), on the basis of empir-
ical data D, formalizes four basic machine learning problems, that can be written
by rephrasing items (1)-(4) above as follows:

1. Data Synthesis (generative model): find a function f : Rn −→ Rm, that
reproduce the data;

2. Pattern Recognition: After training, the machine is able to carries out the
correct classification of data samples out of the training set D.

3. Regression Estimation: Estimating the functional dependence based on the
empirical data; that means, estimate f : Rm −→ R such that f (xi) = yi,
i = 1, 2, . . . ,M .

4. Density Estimation: The problem of estimating pmodel (xi; zopt) through
pdata by solving problem (8.7) or, equivalently, by minimizing Kull-
back–Leibler divergence respect to the parameter vector z, given by the
problem (8.10).

In case (1) we say that the machine have learned a pattern, in the sense that,
after training, the machine is able to reproduce samples of the manifold M. In
the case (2) we say that the machine learned to recognize a pattern, because it is
able to classify each sample x ∈ M according to the corresponding category. In
items (3) the machine learns a functional dependence while in the case (4) it have
learned a stochastic dependence.

Also, the scenarios (1) and (2) above helps to describe three types of machine
learning:

• Supervised learning (Case 2): The input set encompasses examples and
target responses;

• Unsupervised learning (Case 1): The machine learns patterns from un-
tagged data;

• Semi-Supervised Learning: Only a subset of the input set D contains sam-
ples that are accompanied with the desired response.
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Moreover, we shall consider two more types of machine learning strategies:

• Reinforcement learning: The algorithm gets told when the answer is wrong,
but does not get told how to correct it. There is a monitor that scores the
answer, but does not suggest improvements [3].

• Evolutionary learning: Learning algorithms based on biological evolution.

8.3 Types of Learning Machines

What kind of machine are we considering in this monograph? The Chapter 11 will
describe the neural networks, that compose the first machine learning model used
in this monograph. Formally, these models can be cast into the computational
model formalized by the circuit theory. The statistical learning techniques are
described in Chapter 10. They allows to desing statistical classiifiers, for instance.

8.3.1 Circuit Theory

Regarding the circuit theory, we start with a didactic development found in [45],
page 129. So, we may say that a circuit is made up wires and gates. The wires
carry information around and the gates (functions) perform simple computational
tasks. The simplest gates are the logic operators presented on Chapter 3 and the
corresponding functions are defined by their truth Tables (section 3.2). The Figure
8.1 shows the elementary gates and their graphical representation. Also, we can
add to the set of elementary gates the identity gate (just a wire) and the FANOUT
one, which replaces a bit with two copies of itself.

In Figure 8.2 it is pictured an example of a circuit that outputs the result of the
Boolean expression x⊕ y = XOR (x, y) (see Table 3.1.(d)) together with a carry
bit set to 1 if x and y are both 1, or 0 otherwise (check it!).

Formally, let G be a set of gates that map several bits to one bit. For each
n,m ≥ 0, a circuit CG

(n,m), or simply Cn,m, if there is no ambiguity over the set G,
is a directed, acyclic graph with a list of n input nodes (with no incoming edges),
a list ofm output nodes (with no outgoing edges), and a gate inG computing each
non-input/non-output node.
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Figure 8.1: Basic Gates.

Figure 8.2: Circuit example.

Given a binary input string (x1, x2, ..., xn) ∈ {0, 1}n ,we label each input node
xi or∼ xi (NOT (xi)). For every other node v with n predecessors (y1, y2, ..., yn),
we recursively assign a value g (y1, y2, ..., yn), where g is the gate that calcu-
lates node v. Given an input x ∈ {0, 1}n, the circuit CG

(n,m) outputs the value
CG

(n,m) (x) ∈ {0, 1}m given by the list of output nodes.
The size of a circuit Cn,m is its number of nodes and the depth of Cn is the

length of the longest path from any input node to an output node.
We say that a circuit CG

(n,m) computes a Boolean function F : {0, 1}n −→
{0, 1}m ifCG

(n,m) (x) = F (x), for all x ∈ {0, 1}n. A circuit family is a list of cir-
cuits C = (C1,m, C2,m, ..., Cn,m, ...) where Ci,m has i binary inputs and m binary
outputs. The family C computes a family of Boolean functions (f1, f2, ..., fn, ...),
where fi is the Boolean function computed by circuit Ci,m.

We say that the family C has size complexity s (n) and depth complexity d (n)
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if for all n ≥ 0 circuit Cn has size at most s (n) and depth at most d (n). Size and
depth are important complexity descriptions of circuits that respectively charac-
terize the computational resources and the number of steps needed to compute a
family of Boolean functions. Important classes of circuits are the following ones.

Let G be the set of elementary gates represented in Figure 8.1 and CG (n,m)

the class of functions that can be computed by these circuits. We also consider the
set of Boolean functions F (n,m) = {F : {0, 1}n −→ {0, 1}m}.

Theorem 1.8: Given a Boolean expression F : {0, 1}n −→ {0, 1}m, there
is a circuit CG

(n,m) such that CG
(n,m) (x1, x2, ..., xn) = F (x1, x2, ..., xn) for all

(x1, x2, ..., xn) ∈ Bn. As a consequence, it is straightforward that CG (n,m) =

F (n,m).
Proof: We are going to show the demonstration form = 1 and the geral case is

let as exercise. The demonstration is performed using induction in n. Therefore,
following the main steps of mathematical induction we shoud:

• Show that:

(a) The property is true for n = 1;

• Next, assume that:

(b.1) Hypothesis: Property is true for n = k;

• Then, we should demonstrate:

(b.2) Thesis: Property is true for n = k + 1.

Using the basic gates of Figure 8.1 it is more or less straightforward to show
that CG (1, 1) = F (1, 1), which solves the item (a).

To proof the thesis in item (b.2) the trick is to notice that any function F :

{0, 1}k+1 −→ {0, 1} can be written as:

F (x0, x1, ..., xk) = (F0∧ ∼ x0)XOR (F1 ∧ x0) (8.12)

where:

F0 (x1, x2, . . . , xk) = F (0, x1, x2, . . . , xk) , (8.13)

F1 (x1, x2, . . . , xk) = F (1, x1, x2, . . . , xk) , (8.14)

102



Now, using the induction hypothesis, we can affirm that there are circuits C̃G
(k,1)

and CG
(k,1) that computes F0 and F1, respectively. Using this fact, to complete

the demonstration of the thesis (item (b.2)), it is just a matter of noticing that
expression (8.12) can be converted into a circuit CG

(k+1,1), as shown in Figure 8.3.

Figure 8.3: CircuitCG
(n+1,1) representing expression (8.12) to compute an arbitrary

function F : {0, 1}k+1 −→ {0, 1}.

Therefore, from the fact that the property is true for n = 1 and items (b.1)
and (b.2), we can affirm that, given a Boolean function F : {0, 1}n −→ {0, 1},
there is a circuit CG

(n,1) such that CG
(n,1) (x1, x2, ..., xn) = F (x1, x2, ..., xn) for

all (x1, x2, ..., xn) ∈ Bn. Therefore F (n, 1) ⊂ CG (n, 1). Conversely, by the
definition of circuits in the set CG (n, 1) it is obvious that CG (n, 1) ⊂ F (n, 1).
So, CG (n, 1) = F (n, 1) which completes the proof for m = 1.

8.3.2 Threshold Circuits

A weighted threshold gate (or simply, a threshold gate) with threshold ∆ ∈ Q and
a vector of weights w = (w1, w2, ..., wn) ⊂ Qn is a Boolean function denoted by
Thn,∆w and defined as follows [95]:
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Thn,∆w : {0, 1}n → {0, 1} ,

Thn,∆w (x1, x2, ..., xn) = 1, if

n∑
i=1

wixi ≥ ∆, (8.15)

Thn,∆w (x1, x2, ..., xn) = 0, otherwise. (8.16)

A threshold circuit, denoted by TCn,∆
(w,m), is a circuit over the set of threshold

gates, with input x ∈ Bn and output y ∈ Bm. Hence, from the definition of
threshold gates (expression (8.15)-(8.16)) a threshold circuit is also a function
TCn,∆

(w,m) : {0, 1}n −→ {0, 1}m. The class of functions that can be computed by
threshold circuits TCn,∆

(w,m) will be denoted as T Fn,∆(w,m). An important theorem
about threshold circuits is the following one:

Theorem 4 Given a Boolean expression F : Bn −→ Bm, where B = {0, 1} ,
there is a weighted threshold circuit TCn,∆

(w,m) such that TCn,∆
(w,m) (x) = F (x) for

all x ∈ Bn.

Proof: To demonstration this theorem it is just a matter of showing that the
basic gates of Figure 8.1 can be computed by threshold circuits. Hence, the proof
is a straightforward consequence of Theorem 1.8.

8.4 Optimizing the Loss Function

The process of seeking for the solution of the problem (8.4)-(8.5) happens during
the training process. So, we consider a training set Dtr, that might be a subset of
the whole database (see section 8.5). Hence, for training, the expressions (8.4)-
(8.5) are re-written by substituting D to Dtr. The new expressions are used to
compose the Lagrangian to be optimized. According to section 5.9, this problem
can be solved through the following steps:

1. Build the Lagrangian function:

L (z1, z2, . . . , zk, λ1, λ2, . . . , λN) = Loss (z;Dtr)−
N∑
j=1

λj (gj (z;Dtr)− kj) ,

(8.17)
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where the parameters λj are called the Lagrange multipliers, that are assem-
bled in the array λ = (λ1, λ2, . . . , λN).

2. Solve∇L = (0, 0, . . . , 0); that means:

∂L
∂zi

(z1, z2, . . . , zk, λ1, λ2, . . . , λN) = 0, i = 1, 2, . . . , k, (8.18)

∂L
∂λj

(z1, z2, . . . , zk, λ1, λ2, . . . , λN) = 0, j = 1, 2 . . . , N. (8.19)

3. Take the solutions
(
z,λ

)
of system (8.18)-(8.19) and set λ = λ into ex-

pression (8.17) to obtain the function F (z) ≡ L
(
z;λ

)
4. Calculate the Hessian HzF (z):

[HzF (z)]ij =
∂2F

∂zi∂zj
(z) , 1 ≤ i, j ≤ N, (8.20)

5. Compute the eigenvalues of HzF (z) and use them to classify z according
to the cases (1)-(4) of section 5.8.

However, in machine learning applications, in general, expressions (8.18)-
(8.19) do not have exact solutions. Therefore, we shoud adapt the steepest descent
procedure (Algorithm 1) in order to build an iterative algorithm to approximate the
solution. Other approaches depends on application of penalty methods [96] that
are out of the scope of this monograph.

For simplicity, in this presentation we assume that the feasible regionR ⊂ Rk,
given by the solution of equations (8.5) is known. Consequently, we can restrict
the Loss function to R, obtaining LR (·,Dtr) : R −→ R. The Algorithm 3
summarizes the numerical optimization process.

The Loss function in the Lagrangian (8.17) encompasses the error function
(8.2) that uses the whole data set in each update of the parameter vector z. Such
strategy, named batch mode, has disadvantage in terms of computational cost if
M is too high since the complexity to update the parameter vector z in expres-
sion (8.21) is O (M). To avoid this problem we shall notice that the gradient of
the error function (8.2) is an expectation that could be estimated using a small
set of samples, called minibatch. That is the key idea of stochastic gradient.
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Algorithmus 3 Training Through Optimization of Lagrangian (8.17)
1: Input: Training set Dtr, η1, η2, ε > 0,

2: Initialization: z0 ∈ R, λ0 ∈ RN , t = 0;.

3: while (‖∇zLR (zt,λt,Dtr)‖ ≥ ε) do

4: Learning rule. Update parameter vector:

zt+1 = zt − η1∇zLR (zt,λt,Dtr) , (8.21)

5: Verify if zt+1 ∈ R. If no, reduce η1 and return to previous step;

6: Update Lagrange multipliers vector:

λt+1 = λt − η2∇λLR (zt+1,λt,Dtr) , (8.22)

7: t← t+ 1,

end while

8:
(
z?opt, λ

?
opt

)
← (zt,λt),

9: Output: Solution
(
z?opt, λ

?
opt

)
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Formally, in each step of the main loop in Algorithm 3 we sample a minibatch
B = {x̂1, x̂2, . . . , x̂ς} ⊂ Dtr, usually using an uniform distribution, and restrict
the Loss function to the data points in B.

For simplicity, we do not consider restrictions in this case. So, the Lagrangian
is the function (8.3) with D substituted by the batch B; that means:

L (z;B) ≡ 1

|B|

|B|∑
i=1

L (M (xi; z)− di) +
K∑
τ=1

ςτRτ (z;B) , (8.23)

where Rτ and di follow the previous definitions.
The optimization of the Lagrangian is performed through the stochastic gra-

dient descent (SGD) procedure, given by the Algorithm 4. The first term in ex-
pression (8.25), is an approximation of the gradient of the error function Err,
restricted to the minibatch B:

∇z [Err (z;B)] = ∇z

 1

|B|

|B|∑
i=1

L (M (xi; z)− di)

 . (8.24)

We shall notice that the stop criterion in line 4 of Algorithm 4 uses the La-
grangian L computed using the minibatch set B (expression (8.3) with D replaced
to B). Libraries like TensorFlow and Keras (see [97] for a list of machine learning
libraries ) have implemented solutions based on SGD techniques, like the Algo-
rithm 4. Also, each turn that the whole set Dtr passes the Algorithm 3 (or Algo-
rithm 4) is called epoch. The strategy to initialize the parameter vector (definition
of z0) in Algorithms 3 and 4 depends on the kind of learning machine (see Chap-
ter 11). The initialization of the Lagrangian multipliers in Algorithm 3 depends
also to mathematical considerations about the constraints involved.

The gradient (or stochastic gradient) descent is the driving force behind the
learning rule in expressions (8.21) and (8.26) in the training that is an optimiza-
tion process: the parameter values are adapting in order to minimize the Loss (or
Lagrangian in Algorithm 8.17) function. However, with such procedure there are
no guarantees that we end up at a global minimum. In fact, we my stop in a point
z in the parameter space that is a local minimum; that means, just lower than
those close to it (see section 5.8). To mitigate this problem we can try out several
different initializations to obtain different networks. Then, we choose the one that
offer the minimum error. Other schemes, like momentum in the case of neural
network machines, will be discussed in Chapter 11.
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Algorithmus 4 Minibatch Stochastic Gradient Descent Training
1: Input: Training set Dtr, minibatch size ς , η, ε > 0,

2: Initialization: z0 ∈ Rk, t = 0,

3: p← z0;,

4: while (‖∇zL (p;B)‖ ≥ ε) do

5: Sample minibatch B = {x̂1, x̂2, . . . , x̂ς} ⊂ Dtr,

6: Build the Loss function by substituting D to B in expression (8.3). Set the

Lagrangian as the obtained Loss function, given by equation (8.23).

7: Compute gradient:

∇zL (p;B) = ∇z

 1

|B|

|B|∑
i=1

L (M (xi;p)− di)

+∇z

[
K∑
τ=1

ςτRτ (p;B)

]
(8.25)

8: Learning rule. Update parameter vector:

zt+1 = zt − η∇zL (p;B) , (8.26)

9: p← zt+1;

10: t← t+ 1,

end while

11: z?opt ← p.,

12: Output: Solution z?opt
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8.5 Train, Validation, and Test Stages

Let us consider the case of classification problem where we have a labeled data
set:

D = {(x1, l1) , (x2, l2) , . . . , (xM , lM)} ⊂ Rm × {0, 1} , (8.27)

Before proceeding, we must divide the dataset D in expression (8.27) into
three disjoint subsets: training Dtr, validation Dval, and test Dte sets. This process
is represented in Figure 8.4. To implement this process we randomly choose data
points in D, with an uniform distribution, using a proportion like 50 : 25 : 25 or
60 : 20 : 20, for Dtr, Dval, and Dte, respectively [3].

Figure 8.4: The labeled dataset is subdivided into three disjoint subsets for training

testing, and validation of the learning machine (Source [3]).

Now, the training process can be performed using Algorithm 3 or 4 depending
if we are going to use batch or minibatch training mode, respectively. Once we
have completed one epoch in the training stage, we can use the validation set to
analyze the behavior of the Loss function over it. The idea is to check if problems,
like the phenomenon of overfitting, are happening, as we will see in section 8.7.

If everything is going well; that means, if the Loss is decreasing along the
epochs for both the sets Dtr and Dval, then it is expected that the stopping cri-
terion in the while loop of Algorithms 3 or 4 will be eventually achieved and,
consequently, we will stop the training (and validation) steps. Hence, we can go
to the test stage using the data points in the set Dte.

In the test stage, we keep the parameter vector z?opt unchanged! We just pass
the data samples in the set Dte to the machine and compute some efficiency mea-
sure to check the automatic classification (see section 8.6).
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The above process is a naive one because: (a) It is subject to local minima;
(b) The partition of the dataset into training Dtr, validation Dval, and test Dte sets
is performed through a random process. Consequently, we must use more than
one machine instantiation to smooth performance variations through some kind
of average.

Obviously, we can use several different initializations for different partitions
to train different networks. Then, we can choose the one that offer the minimum
error. Other possibility, statistically more reliable, is to perform leave-one-out,
multi-fold cross-validation. In this strategy, the dataset D − Dte is randomly par-
titioned into K subsets. Then, we chose one subset to be used as a validation set
and the learning machine is trained on all of the remaining ones, as shown in Fig-
ure 8.5. In the next step, the same K subsets are taken but a different subset is left
out for validation and the other ones are used to train another machine. We repeat
this process until all the K subsets are used for validation. After this process we
obtain K machines Mi, i = 1, 2, ..., K where each one was trained and validated
using different sets with different initializations. Finally, the machine that yields
the lowest validation error is used in the test stage, with the corresponding test set,
as represented in Figure 8.5.

Figure 8.5: K-fold cross-validation algorithm representation (Source [3]).

8.6 Performance Measures

Before applying a classifier to solve day life tasks, we must consider evaluation
measures to analyze its efficiency. For this goal, we use the confusion matrix
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(C) to N − class classification problems, where the entry Ci,j is the number
of observations known to be in group i and predicted to be in group j, i, j =

1, 2, . . . , N [98]. So, we shall define the following new quantities [99]:

• TPi ≡ Ci,i is equal to the number of observations known to be in group i
and predicted to be in the correct class;

• FNi ≡
∑N

j=1,j 6=iCi,j , is equal to the number of observations known to be
in group i but misclassified in some class j 6= i; that means, false negative
of class i;

• FPi ≡
∑N

k=1,k 6=iCk,i , is equal to the number of observations known to be
in group k 6= i but misclassified in class i; that means, false positive of class
i.

With these definitions, we can compute the following evaluation measures
[100]:

Macro Precision of class i: Denoted by P (i), and computed by:

P (i) =
TPi

TPi + FPi
. (8.28)

Macro Recall of class i: Denoted by R (i), computed by:

R (i) =
TPi

TPi + FNi

. (8.29)

Macro Precision of the Classifier:

Pmacro =

∑N
i=1 P (i)

N
. (8.30)

Macro Recall of the Classifier:

Rmacro =

∑N
i=1R (i)

N
. (8.31)

Macro F1-Score:

F1Score = 2
Pmacro ·Rmacro

Pmacro +Rmacro

, (8.32)

Multi-Class Accuracy or Recognition Rate:
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Accuracy =
1

M

N∑
i=1

TPi, (8.33)

where M is the number of samples used.
Averaged Error Rate:

AER =

∑N
i,j=1,i 6=j Ci,j

M
. (8.34)

From expression (8.28), we can say that the precision of class i is the fraction
of classifications delivered by the learner (TPi + FPi) that really belong to class
i. Recall in expression (8.29) is the fraction between the events of class i detected
and the number of elements of this class (TPi + FNi). The multi-class accuracy
(expression (8.33)) and average error rate (equation (8.34)) are complementary, in
the sense that:

Accuracy + AER = 1. (8.35)

In words, accuracy focus only on the successful predictions while AER cap-
tures information about how well the model handles negative results (misclassifi-
cations).

8.7 Curse of Dimensionality, Overffiting, and Over-

training

In the development of previous sections, important points are the number M of
samples in the database D, the original data space dimensionm and the dimension
n of the data manifoldM. In section 7.4, we discuss the curse of dimensionality
problem considering the number M versus the dimension n and, from that discus-
sion, we have concluded that M grows exponentially with the value of n (curse of
dimensionality) to catch the distribution of samples in the focused phenomenon.
Hence, we must consider dimensionality reduction techniques to reduce further
pattern recognition steps.

To clarify the way that the curse of dimensionality affects the training
stage, we shall consider a parametric representation f : Rn −→ M of the
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data manifold yielded by a generative machine learning model (section 8.2).
Hence, the samples D could be represented through the image set f−1 (D) =

{f−1 (x1) , f−1 (x2) , . . . , f−1 (xM)} ⊂ Rn. Such representation is accept-
able from the mathematical viewpoint but, for pattern recognition purposes, it
present problems. For example, the distortions in the pair-wise distance map
d (f−1 (xi) , f

−1 (xj)) may cause problems for a classifier to distinguish samples
from different classes.

A simpler version of such problem is obtained by considering a representation
based on the tangent space of the hypersurface corresponding to the map x =

f (ξ1, ξ2, . . . , ξn), in an appropriate point p ∈M, like in Figure 8.6.

Figure 8.6: Tangent space at a point p of the data manifoldM.

Such representation could be written as:

xi ' p +
n∑
j=1

wi,j
∂f

∂ξj
(p) . (8.36)

where the coefficient vectors wi = (wi1, wi2, . . . , win) ∈ Rn should be properly
computed. The PCA technique is a way to compute such representation as we will
see in Chapter 10.

Anyway, as usual in pattern recognition applications, let us assume that the
patterns of interest can be properly represented using the coefficient vectors wi,
i = 1, 2, ...,M , in expression (8.36), also called feature vectors. Each direction:

qj ≡
∂f

∂ξj
, j = 1, 2, .., n, (8.37)

is named a component of the representation. Expression (8.36) can be considered
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a projection of sample xi into the affine space:

Affp (M) =

{
x ∈ Rm; x = p +

n∑
j=1

wj
∂f

∂ξj
(p)

}
, (8.38)

which is the tangent hyperplane toM that contains p.
However, for orthogonal projections, two distinct points xi,xj ∈ D with fea-

ture vectors wi and wj satisfies d (wi,wj) ≤ d (xi,xj), which is a side effect of
this projection that may impairs pattern recognition tasks, like classification, if xi
and xj belong to different classes.

Moreover, from the viewpoint of a classifier, there is a trade-off between pat-
tern recognition and the number of components qj to project samples. Specif-
ically, data suffers from noise and redundancy but the representation given by
expression (8.36) does not take into account procedures to reduce these defects,
and, consequently, using all the n components in wi may be not efficient. Let us
understand this problem step by step.

If we use few components of the feature space, say ∂f
∂ξ1
, ∂f
∂ξ2
, . . . , ∂f

∂ξn′
, with

n′ � n, we are projecting the data into a very low dimensional space. Conse-
quently, we could lose too many details to allow the classifier to properly distin-
guish sample groups. So, we must increase the number of components aiming
to improve the classifier performance. Hence, we must take ∂f

∂ξ1
, ∂f
∂ξ2
, · · ·, ∂f

∂ξn′+b′

components, with b′ > 1, in order to get a new subspace spanned by the n′ + b′

components. However, this process also increases the complexity of the deci-
sion boundary and more samples may be necessary for improving the training
process of the classifier (curse of dimensionality again). Moreover, we can add
noise and redundancy in the data representation when increasing the subspace di-
mension. Now, we may be facing overfitting; that means, subspace dimension
becomes larger enough so as to be able to learn the underlying differences among
the within-class data and/or unimportant details (like noise) for samples classifi-
cation.

Returning to the machine learning context, a fundamental point is to identify
curse of dimensionality and overfitting along the optimization of the Loss func-
tion. In this case, besides the dimension of the space used to represent the data,
we have another degree of freedom: the dimension k of the parameter space. Fol-
lowing [101], the concept of overfitting in this case is related to the dimension
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k. Specifically, if the dimension of the parameter space is too large, the machine
tends to learn particular details, like noise and artifacts, of the population.

To identify curse of dimensionality along the training, we shall remember that
in section 8.5 we build a partition of the data set D containing the disjoint sub-
sets Dtr and Dval. The former was used to optimize the objective function in
Algorithms 3 and 4, in the training stage. The set Dval is going to be used in
the validation step. Consider Algorithm 3 for simplicity, and compute z?opt for
n′ = 1. Perform analogously for n′ = 2, and so on. We shall notice that, along
this process, we obtain a sequence z?opt (n′), n′ = 1, 2, ....

We can plot the points
(
n′, Err

(
z?opt (n′) ,Dtr

))
and(

n′, Err
(
z?opt (n′) ,Dval

))
to obtain two curves in the Cartesian plane, where

Err is defined in expression (8.2). In practice, if curse of dimensionality happens
then training and validation error curves go up when increasing number n′ of
features (subspace dimension), as observed in Figure 8.7. In this case, we should
set n′ with a value d before the point where all the errors start going up.

On the other hand, to verify overfitting we must proceed in another way, still
considering Algorithm 3, with n′ = d. After each iteration t of Algorithm 3,
we plot the point (t, Err (zt,Dtr)) as well as the point (t, Err (zt,Dval)), where
the error function Err is defined in expression (8.2). Therefore, we can show
the training and validation errors in the same plot, as a function of iteration time
t, like in Figure 8.8. Overfitting can be characterized by the behavior observed
in Figures 8.8.(a)-(b). We notice that both Err (zt,Dtr) and Err (zt,Dval) de-
crease, achieving low values, until some iteration t = T . After that, the error
Err (zt,Dtr) remains a decreasing function with respect to T but the validation
error Err (zt,Dval) increases generating a large gap between the training and test
errors [101], as represented in Figure 8.8.(a). This phenomenon indicates that the
machine loses generalization capabilities; that means, ability to correctly classify
samples that were not used in the training stage. Figure 8.8.(b) shows the training
and validation errors, but in the z×Error space. We expect an analogous behav-
ior for the two plots. In fact, we shall notice that the Algorithm 3 is steered by the
−∇zErr (zt,Dtr) which points toward the direction of training error decreasing.
However, in this case, walking along this direction implies in increasing of the
validation error.

Moreover, Figure 8.8.(a) can be analyzed using another viewpoint related to
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(a)

Figure 8.7: Error curves indicating curse of dimensionality.

the cardinalityM of the dataset D as well as the number of iteration of the training
algorithms. If M is too high then the parameters computed along the training pro-
cess may adapt unimportant details affecting the generalization of the machine.
The same phenomenon may happen if we impose an excessive number of itera-
tions. In both cases,M � 0 and too high number of epochs, generating the behav-
ior shown in Figure 8.8.(a), characterizes the phenomenon known as overtraining.
Keeping the training for t > T becomes over and the machine loses generalization
capabilities. For both overfitting and overtraining, if the error Err (zt,Dtr) when
t = T is low enough, we can use the value T as a criterion to stop the learning
algorithm. Otherwise, we must stop training, re-design the learning algorithm and
try again.

8.8 Machine versus Manifold Learning

From a theoretical viewpoint, manifold learning is based on the assumption that
the database samples (or their features) lie on a low-dimensional manifold M
embedded in a high-dimensional space [102]. So, behind manifold learning
techniques there is the data model which main elements are pictured on Figure
7.2. Moreover, in the case of Riemannian manifold learning (RML) techniques
[103, 104], there is also the assumption that the low-dimensional manifold is a
Riemannian one; that is, it is equipped with an inner product that varies smoothly
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(a) (b)

Figure 8.8: (a) Typical occurrence of overfitting during training. (b) Overfitting in

the parameter space.

from point to point [105, 106].
Therefore, we need to learn the underlying intrinsic manifold geometry in

order to address the problem of dimensionality reduction. Thus, instead of
seeking for an optimum linear subspace, like performed for linear techniques
[107], the manifold learning methods try to discover an embedding procedure
that describes the intrinsic similarities of the data [108]. In order to imple-
ment this solution, manifold learning approaches take the samples of a database
D = {x1, . . . ,xM} ⊂ RD and perform the following steps [50, 104, 109]: (a)
Recover the data topology; (b) Determination of the manifold dimension d; (c)
Construction of a neighborhood system; (d) Computing the embedding or local
parameterizations associated to the neighborhood system. The former is a global
map ψ : Md → Rs, d ≤ s ≤ D, while the latter is a family of local coordinate
systems {(Uα, ϕα)}α∈I , where I is an index set, Uα ⊂ Rd and ϕα : Uα →M.

The foundations of embedding approaches lie in the Whitney Theorem [110]
which assures that sinceMd ⊂ RD then D ≥ 2d + 1. Therefore, if we compute
an one-to-one smooth map ψ :Md → Rs that preserves the differential structure
ofMd, called here embedding, such that (2d + 1) ≤ s < D then we perform di-
mensionality reduction in the sense that the embedding ψ allows to represent each
data point using less coordinates than the original data representation. This pro-
cess is pictured in Figure 8.9.(a). On the other had, Figure 8.9.(b) represents the
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approach based on local parameterizations, that has the mathematical foundation
in the theory of differentiable manifolds presented in section 5.7.

(a) (b)

Figure 8.9: (a) ManifoldMd ⊂ RD and the embedding in the Rs with synthetic

data x in the manifoldMd ⊂ RD computed from arbitrary y ∈ Rs. (b) Learning

the manifold structure by building local parameterizations.

Returning to the embedding approach, once we have the map ψ :Md → Rs,
we can think about its inverse to perform the synthesis process; that means, to
compute new samples in the manifoldMd ⊂ RD, as represented in Figure 8.9.(a).
In the case of the differentiable manifold viewpoint, the local parameterizations
allow to perform synthesis of new samples directly.

The Locally Linear Embedding (LLE) follow the first approach and will be
summarized as a didactic example in the manifold learning subject [4]. The LLE
method works through the scheme of Figure 8.10.

In this method, given the dataset D = {x1, . . . ,xM} ⊂ RD, for each data
point xi ∈ D it is computed theK nearest neighbors (KNN ) [3] represented with
red color in the Figure 8.10. Then, a weighting vector wi,j is computed for each
xi by solving the optimization problem:
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Figure 8.10: Basic steps of Locally Linear Embedding (LLE) algorithm

(Reprinted from [4]).

min
(wi1,wi2,···,wiK)

∥∥∥∥∥∥xi −
K(i)∑
j=1

wijxj

∥∥∥∥∥∥
2

, (8.39)

subject to :

K(i)∑
j=1

wij = 1.

where K (i) = KNN (xi).
Expression (8.39) implies that we are looking for a point, closer to the point

xi, in the convex hull of the polygon with vertices in the KNN(xi) set. Finally, if
we assume that the underlying data geometry can be embedded in Rs, with s < D,
then we can assign a feature vector yi ∈ Rs to each xi by solving the expression:

min
yi

∥∥∥∥∥∥yi −
K(i)∑
j=1

wijyj

∥∥∥∥∥∥
2

, (8.40)

Observe that in this case we are not computing a compact local representation
of the manifold through the tangent space, like in equation 8.38. Instead, the
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low dimensional output yi represents the s coordinates on the manifold since the
map ϕ follows the relation ϕ (yi) = xi, as shown in Figure 8.9. The objective
functions in the optimization problems (8.40) can be arranged in the following
unified way:

F (y1,y2, ...,yM) =
M∑
i=1

yi −
K(i)∑
j=1

wijyj

T yi −
K(i)∑
m=1

wimym

 =

=
M∑
i=1

yTi yi −
K(i)∑
m=1

wimyTi ym −
K(i)∑
j=1

wijy
T
j yi +

K(i)∑
j,m=1

wijwimyTj ym



=
M∑
i,j=1

(
ηij −Wij −Wji +

N∑
k=1

wkiwkj

)
yTi yj

=
M∑
i,j=1

Jijy
T
i yj,

where J is symmetric, and positive semidefinite. Additional restrictions over the
objective function in the optimization problem (8.40):

• Invariant to translation of the outputs yi. This is achieved by requiring that:

N∑
i=1

yi = 0, (8.41)

• Invariant to rotation of the outputs yi by imposing that the outputs have
covariance matrix satisfying:

1

N

N∑
i=1

yiy
T
i = I. (8.42)

The solution of problem (8.40) subject to constraints (8.41)-(8.42) completes
the LLE embedding construction. We shall observe that it is not obvious how to
implement the synthesis in the LLE approach. Also, and more important for this
monograph, we must discuss whether we can compute an embedding ψ :Md →
Rs using a machine learning model; that means, by training a learning machine
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M that computes the target map. If the machine encapsulates a smooth functional
space then the data manifold will be smooth also.

To solve this issue using the tools already presented, let us consider that we
have two machines M1 : RD × Rk1 −→ Rs and M2 : Rs × Rk2 −→ RD. Also,
since each machine represents a family of functions, we can combine them and
impose that:

M2 (M1 (x,ω) , z) ' x. (8.43)

Therefore, from the machine learning viewpoint we have a new machine given
by the composition of M1 and M2 such that the output of M1 is the input for M2

that, in its time, performs reconstruction of the input samples. However, how to
assure that the constraint (8.43) can be satisfied? It can be performed through the
training process if we minimize the reconstruction error, quantified by the mean
square error (MSE), given by:

MSE =
M∑
i=1

‖xi −M2 (M1 (xi,ω) , z)‖2
2 . (8.44)

After training, if everything is fine, we obtain optimum parameter vectors
ω?opt ∈ Rk1 and z?opt ∈ Rk2 such that the machine M1

(
x,ω?opt

)
computes an

embeeding ψ : Md → Rs while the machine M2

(
y, z?opt

)
corresponds to the

inverse map ψ−1 : Rs → Md and could be used to perform the synthesis. Ac-
cording to section 8.2, this is an example of unsupervised learning since the we do
not have the pairs (xi,yi) ∈ RD × Rs to train a machine to compute the function
ψ that calculates ψ (xi) = yi. The autoencoder technique [111] is an instance of
the model in expression (8.43).

Another model in the unsupervised learning context is the generative adver-
sarial network (GUN), that follows another approach [112]. In this case there
are also two machines, named the generator G : Rd × Rk1 −→ RD and the
discriminator D : RD × Rk2 −→ [0, 1]. The generator receives as input a vec-
tor ξ ∈ Rd drawn from a probability distribution function pξ (ξ) and produces a
sample xz1 = G (ξ, z1). The discriminator D (x, z2) outputs a single scalar that
represents the probability that x comes from the probability distribution function
of the data (pdata (x)) rather than from the probability distribution function asso-
ciated to the generator pg (x). The training stage involves the objective function:
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V (D,G) = Ex∼pdata(x) [log (D (x))] + Ez∼pz(z) [log (1− D (G (z)))] , (8.45)

that is optimized by solving the problem:

min
G

max
D

V (D,G) , (8.46)

to seek for the optimum (z?1, z
?
2) ∈ Rk1 ×Rk2 . We shall notice that, after training

the generator works as a global parametrization of the data manifold.

8.9 Exercises

1. Demonstrate that: Given a Boolean expression F : {0, 1}n −→ {0, 1}m,
there is a circuit CG

(n,m) such that CG
(n,m) (x1, x2, ..., xn) = F (x1, x2, ..., xn)

for all (x1, x2, ..., xn) ∈ Bn. As a consequence, it is straightforward that
CG (n,m) = F (n,m).

2. Complete the formalization of the proof for Theorem 4.

3. Generalize exercises 1 and 2 by considering functions F : Qn −→ Q where
Q is the set of rational numbers.

4. Another limitation of the LLE method described in section 8.8 is the fact
that, given a new sample x̂ /∈ D, where D = {x1,x2, . . . ,xM} ⊂ RD is
the input set, it is not obvious how to compute its projection in Rs. Discuss
the following approach: (a) Compute the LLE projections y1,y2, ...,yM ;
(b) Build another input set S = {(xi,yi) , i = 1, 2, . . . ,M}, (c) Train a
machine M to compute the map M (xi) = yi; (c) Apply the machine M to
calculate the projection of x̂. Explicit the Loss function for your solution.

5. Develop a circuit that computes the operation x−y (subtraction), for x, y ∈
{0, 1}. The circuit must have x, y as inputs and two outputs, one of them
used to send the signal of the operation, say, 0 for ”+” and 1 for ”−”.
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6. Develop threshold circuits to implement the following operations:

(a) x⊕ y, for x, y ∈ {0, 1}.

(b) Product: x.y , where x, y ∈ {0, 1} .

7. Develop circuits to implement the following operations:

(a) x.y ⊕ z.w, x, y, z, w ∈ {0, 1} .

(b) Sum of two natural numbers m and n that can be represented by K
bits.

(c) Given a pair (x, y) ∈ {0, 1}2 , gives as output the pair (y, x) .

8. Simplify the following expression and give the corresponding circuit: ∼
((a∧ ∼ b) ∨ c) ∧ ((a ∨ c)∧ ∼ c) .
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Chapter 9

Computing with Neural Networks

The field of neural networks (NN) is a mature research area being a branch of the
machine learning area. Since the first artificial neuron model, named perceptron
[11], the paradigm of neural computing has been applied almost everywhere in
science and technology, attracting researches from a wide variety of backgrounds.

In this area, we want intelligent softwares to automate tasks involving pat-
tern recognition (images analysis, computer-aided diagnoses in medicine, for in-
stance), learn data patterns of the input set in order to generate new samples with
some variations (data synthesis), regression and probability density function es-
timation. In neural networks, like in all machine learning algorithm, the solu-
tion to accomplish these tasks is to allow computers to learn from training data.
From the viewpoint of chapter 8, neural networks constitute a class of learning
machines. Each neural network model encapsulates a functional space through
its inner parameters. So, neural networks are machines with internal parameters.
The training process performs parameter adaptation, in a optimization process that
uses the training samples to formalize the concept of learning from experience, as
presented in chapter 8. The learning process can be supervised, unsupervised or
semi-supervised, or based on reinforcement strategies, as summarized in section
8.2.

From the viewpoint of computational models, neural networks use a different
approach to problem solving than the conventional computers. In conventional
computers there is a program, a set of instructions to be followed in order to solve
a problem. On the other hand, neural networks process information in a similar
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way the human brain does. The network is composed of a large number of highly
interconnected processing elements (neurons) working in parallel. There is no a
main program. Instead, the neurons are arranged in layers and computation is
performed layer-by-layer until the final output.

The neural computation process can be organized in a graph, or circuit (section
8.3), whose nodes (neurons) are arranged in layers. With theoretical and hardware
developments, nowadays we can deal with deep graphs, representing neural nets
with many layers, generating the deep learning field. There are a plenty of books
and an ocean of scientific paper in neural networks, covering aspects in computer
science, mathematics, as well as applications.

9.1 Perceptron Model

The first logical neuron was developed by W. S. McCulloch and W.A. Pitts in
1943 [11]. It describes the fundamental functions and structures of a neural cell
reporting that a neuron will fire an impulse only if a threshold value is exceeded.

Figure 9.1: McCulloch-Pitts neuron model.

Figure 9.1 shows the basic elements of McCulloch-Pitts model: xi ∈ R,
i = 1, 2, ...,m are the inputs, that can be arranged in the input vector x =

(x1, x2, . . . , xm) ∈ Rm. The coefficients wi ∈ R and the bias b are machine
parameters, usually named weights in the neural network literature. The combi-
nation

∑m
i=1wixi + b is named the induced local field. The real value y is the

output, and σ is the activation function that computes the value y in the output. A
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simple choice for σ is the signal function σ(.) = sgn(.) defined by:

σ

(
m∑
i=1

w (i)x (i) + b

)
=

1, if
∑m

i=1w (i)x (i) + b > 0

−1, otherwise.

. (9.1)

But the McCulloch-Pitts neuron did not have a mechanisms for learning.
Based on biological evidences, D.O. Hebb suggested a rule to adapt the weights,
which is interpreted as learning rule for the system [11]. This biological inspired
procedure can be expressed in the following manner:

wnewi = woldi + ∆wi; ∆wi = η(ydesired − y)xi, (9.2)

where wnew and wold are adapted and previous weights respectively, η is a real
parameter to control the rate of learning and ydesired is the desired (know) output.
This learning rule plus the elements of Figure 9.1 is called the perceptron model
for a neuron.

Then, the learning occurs through training, or exposure to a know set of in-
put/output data. A usual trick in machine learning literature is to augment the
input vector and the weights vector as follows:

x ≡ (1, x1, x2, . . . , xm) ∈ R1+m, (9.3)

w ≡ (b, w1, w2, . . . , wm) ∈ R1+m, (9.4)

respectively, in order to re-write the argument of the activation function σ in Fig-
ure 9.1 as:

b+
m∑
i=1

xiwi = x ·w. (9.5)

In this way, the input set can be written as:

D = {(x1, l1) , (x2, l2) , ·, ·, ·, (xM , lM)} ⊂ R1+m × {0, 1} , (9.6)

where, according to expression (9.3), xi = (1, xi,1, xi,2, . . . , xi,m) . The training
algorithm iteratively adjusts the connection weights and bias assembled in the ex-
tended weight vector (9.4) analogous to synapses in biological nervous. These
connection weights and bias store the knowledge necessary to solve specific prob-
lems. Figure 9.2 shows the main steps of the perceptron algorithm, where in this
figure we must convert x (n) to xn and w (n) to wn to be consistent with the
notation of this monograph.
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Figure 9.2: Perceptron procedure: model and learning rule.

9.2 Convergence of Perceptron Learning Rule

In this section we are going to use a simplified version of the perceptron learning
rule (expression (9.2)) given by:

wnew = wold + (d− y)x,

where d ∈ {1,−1} represent the desired label for the sample x and y ∈ {1,−1}
denotes the perceptron result. The development bellow follows section 3.5 of
reference [11].
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Consider the set:

F = {x0,x1, . . . ,xM} ⊂ Rm+1,

where xi = (1, xi1, xi2, . . . , xim) , i = 0, 1, . . . ,M .
We are supposing that F = F+ ∪ F−and that there is a unit vector w? =

(b?, w?1, w
?
2, . . . , w

?
m) , which partitions up the set F , and a small positive fixed

number δ such that:

w? · x =
m∑
j=0

wjxj = b? +
m∑
j=1

w?jxj > δ, if x ∈ F+, (9.7)

w? · x =
m∑
j=0

wjxj = b? +
m∑
j=1

w?jxj < −δ, if x ∈ F−. (9.8)

We can simplify the development if we define F = F+ ∪ (−F−), where x ∈
−F− =⇒ −x ∈ F−. Therefore:

w? · x > δ, if x ∈ F.

We shall define:

G (w) =
w? ·w
‖w‖

, (9.9)

which satisfies −1 ≤ G (w) ≤ 1 because w? · w = ‖w‖ cos θ. We randomly
initialize w = w0. Then if take x0 ∈ F and w0 · x0 < 0 we must perform

w1 = w0 + (d0 − y0)x0.

Now, we take x1 ∈ F. If w1 · x1 < 0 then we perform again:

w2 = w1 + (d1 − y1)x1,

and, in this case:

w? ·w2 = w? · (w1 + (d1 − y1)x1) = w? · (w0 + (d0 − y0)x0 + (d1 − y1)x1)

= w? ·w0 +w? · (d0 − y0)x0 +w? · (d1 − y1)x1 =
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= w? ·w0 + (d0 − y0) (w? · x0) + (d1 − y1) (w? · x1) >

= w? ·w0 + (d0 − y0) δ + η (d1 − y1) δ.

So, if

w? ·w0 > 0 and 1 ≤ di − yi ≤ 2 (9.10)

then:

w? ·w2 > (d0 − y0) δ + (d1 − y1) δ ≥ 2δ.

By induction, we can show that:

w? ·wn > nδ,

if conditions like (9.10) holds.
Considering the denominator of (9.9), we have:

w1 ·w1 = (w0 + (d0 − y0)x0) · (w0 + (d0 − y0)x0) =

w0 ·w0 + 2 (d0 − y0)x0 ·w0 + (d0 − y0)2 x0 ·x0 < w0 ·w0 + 4x0 ·x0 (9.11)

If w1 · x1 < 0 then:

w2 ·w2 = (w1 + (d1 − y1)x1) · (w1 + (d1 − y1)x1)

= w1 ·w1 + 2 (d1 − y1)w1 · x1 + (d1 − y1)2 x1 · x1

< w1 ·w1 + 4x1 · x1. (9.12)

By substituting the result (9.11) into expression (9.12) we get:

w2 ·w2 < w0 ·w0 +4x0 ·x0 +4x1 ·x1 < w0 ·w0 +4 ·2 ·max {x0 · x0,x1 · x1} .
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By induction:

‖wn‖2 < w0·w0+4nmax {x (i) · x (i) , i = 0, 1, 2, . . . ,M} =⇒ ‖w (n)‖ < (w0 ·w0 + 4nΠ)1/2 ,

where Π = max {x (i) · x (i) , i = 0, 1, 2, . . . ,M}.
Consequently:

G (w (n)) =
w? ·w (n)

‖w (n)‖
>

nδ

(w0 ·w0 + 4nΠ)1/2
≈ nδ

(4nΠ)1/2
,

for n� 0. Hence:

1 ≥ nδ

(4nΠ)1/2
=

nδ

2 (n)1/2 (Π)1/2
=

(n)1/2 δ

2 (Π)1/2
,

and:

n ≤ 4Π

(δ)2 . (9.13)

Consequently, expression (9.13) assures that the simplified perceptron model
always converge after a finite number of updates of the vector of weights w.

9.3 Multilayer Perceptron

In terms of dataflow, we can think a neural network as a directed, acyclic graph,
whose nodes are neurons (perceptrons), arranged in layers, with weights associ-
ated with the edges [113]. As an example, let us consider the learning machine
M = M (x;w) represented in Figure 9.3, where:

• The input vector x = (x1, x2, . . . , xm)T ∈ Rm is a generic data sample,

• The first layer is the input one, with index j = 0, containing n0 = m

neurons, with the goal to distribute information to the computing layers,

• The layer j = 1 is the hidden layer, positioned between the input and output
layers and formed by n1 neurons,

• Synaptic weights w(i)
jk , associated to the connection of the neuron j of layer

i− 1 to the neuron k of layer i,
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• Bias b(i)
j associated to the perceptron j of the layer i,

• Output layer, with index i = 2, containing n2 neurons,

Let us introduce the notation:
{
w

(i)
jk

}1≤j≤ni−1

1≤k≤ni
, b(i) =

(
b

(i)
1 , b

(i)
2 , . . . , b

(i)
ni

)
,

where i = 1, 2 in the case of the neural network of Figure 9.3. Con-
sequently, the machine weights can be assembled in the array w =({

w
(1)
jk

}1≤j≤n0

1≤k≤n1

;
{
w

(2)
jk

}1≤j≤n1

1≤k≤n2

; b(1); b(2)

)T
.

Hence, the parameter space of the machine model has dimension k = n0 ·
n1 + n1 · n2 + n1 + n2 and the learning machine encapsulates a space composed
by functions f : Rm × Rk −→ Rn2 .

Figure 9.3: Traditional multilayer perceptron (MLP) neural network.

A neural network with only one hidden layer is also named a shallow neural
network, like the one in Figure 9.3. On the other hand, deep neural networks, like
the one in Figure 9.4, have more then one hidden layer. In the more general case,
a deep neural network has:

• The input layer (j = 0), with n0 = m neurons,
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• Hidden layers (j = 1, 2, . . . , L − 1) where the layer j has nj neurons, j =

1, 2, . . . , L− 1,

• Output layer (j = L) with nL neurons.

Consequently, the machine model M = M (x;w) can be represented by a func-
tion family f : Rm × Rk −→ RnL ,where:

k =
L−1∑
i=0

nini+1 +
L∑
i=1

ni, (9.14)

where n0 = m.

Figure 9.4: Deep multilayer perceptron neural network.

The MLP is also named fully connected neural network in the sense that all
the nodes from the layer ’i − 1’ are connected to the nodes of layer i. We must
be careful about this definition because, if a weight w(i)

jk is null, the effect is the
same as if there was no connection between neuron j of layer i− 1 and neuron k
of layer i.

9.4 Activation Functions

The nonlinear capabilities of neural networks are the consequence of application
of nonlinear activation functions. If we desire the output to be in the range [0, 1],

132



one possibility for activation functions is the Logistic (or sigmoid) function.

f (z;α) =
1

1 + exp (−αz)
. (9.15)

Derivative respect to ’z’:

df

dz
= − (1 + exp (−αz))−2 (−α exp (−αz)) =

α exp (−αz)

(1 + exp (−αz))2 .

If we compare these expressions we see that:

df

dz
= (α exp (−αz)) (f (z))2 . (9.16)

However, from expression (9.15) we get:

(1 + exp (−αz)) f (z) = 1,

consequently:

exp (−αz) =
1

f (z)
− 1.

By substituting this result into equation (9.16) we obtain:

df

dz
= α

(
1

f (z)
− 1

)
(f (z))2 = α (1− f (z)) f (z) ,

which can be inserted into back-propagation results (see section 9.7).
However, sigmoid function suffers some drawbacks due to the fact its image

set is bounded in the interval (0, 1). Hence, given a regression problem whose
target function if f : Rm −→ [0, ymax] ⊂ R we shall normalize the image set to
[0, 1] and, consequently, the combination of normalization and sigmoid will bind
a large range of input to a small range of output [114]. Such procedure could
generate small gradient values during the training process, resulting is premature
convergence to a poor solution or inability of deep models to learn patterns on
a given dataset due to the fact that the machine propagates only small gradient
values from the output layer to the input one (see section 9.7), a phenomenon
known as vanishing gradient problem [115, 113]
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To overcome limitation of sigmoid to output only a small range of positive
values, but keeping the benefits of sigmoidal functions, the hyperbolic tangent
(tanh) function is introduced:

tanh (x) =
1− exp (−x)

1 + exp (−x)
, (9.17)

that can produce zero-centered results. However, tanh also undergoes the vanish-
ing gradient problem.

The rectified linear unit (ReLU) function, proposed in [116] is defined as:

f (x) = max {0, x} . (9.18)

Since its proposal, the ReLU has been one of the most widely used activation
function in deep architectures [114]. We shall notice that ReLU function is con-
tinuous, but its derivative is not defined for x = 0. Moreover, it is not-bounded
and not zero-centered. The computational cost of the evaluation of ReLU is cheap
due to its definition. Also, it can introduces sparsity because all negative input
values are pushed to zero.

In deep architectures, the ReLU function is generally used within the hidden
layers with another activation functions in the output unities. In this way, the
literature has reported better performance and generalization than the sigmoid or
tanh alone [114]. A variation of ReLU is the parametric ReLU function:

f(x; a) =

ax if x ≤ 0

x otherwise

, (9.19)

where a > 0. The special case of a = 0.01 is named Leaky ReLU function. Other
activation functions can be found in [117]

In multiclass problems, given an imput sample x, the neural network must
outputs a vector y = (y1, y2, . . . , yK) where K is the number of classes. So, let
us assembly the induced local fields of the output layer in the form z = Wh +

b. If we consider a probabilistic interpretation of feedforward outputs of neural
networks then the set of outputs should have the form of a probability distribution
over class labels, conditioned on the input; that means, Ôuti = p (c = i|x) [118].
In this case, it is also required that Ôuti ≥ 0 and

∑K
i=1 Outi = 1. To enforce such
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stochastic constraints, it is suggested in [118] the normalized exponential output:

Outi =
exp (zi)∑K
j=1 exp (zj)

, i = 1, 2, ..., K (9.20)

which can be arranged in the softmax activation function [118, 93]:

softmax (z) =

(
exp (z1)∑K
j=1 exp (zj)

,
exp (z2)∑K
j=1 exp (zj)

, . . . ,
exp (zK)∑K
j=1 exp (zj)

)
.

(9.21)
We shall remark that the success of an activation function may be conditioned

to the loss function used. For instance, the function L in expression (8.2) is named
cost function. In classification problems, quadratic cost function defined by:

L (x,d;w) = ‖M (x;w)− d‖2
2 , (9.22)

is commonly used, where x denotes the input, d the desired output andw the ma-
chine parameters (weights vector). The corresponding loss functions (expression
(8.3)) is given by:

Loss (w;D) =
1

|D|

|D|∑
i=1

‖M (xi;w)− d‖2
2 +

K∑
τ=1

ςτRτ (z;D) . (9.23)

The negative log-likelihood cost function is another possibility in this case,
defined by:

L (x, d) = − ln p (d|x) , (9.24)

where in this expression d is the class label of sample x.
See [119] for a survey in cost function for machine learning applications. It

is observed in [120] that the negative log-likelihood cost function coupled with
softmax outputs worked much better for classification problems than the quadratic
cost for feedforward neural networks.

9.5 Neural Networks and Universality

The main question in this section is: What kind of functions can be computed by
neural networks?
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To present the solution step-by-step, we start by considering only Boolean
functions F : Bn −→ Bm, where B = {0, 1}. So, we return to Theorem 4, which
assures that for every Boolean function F : Bn −→ Bm, there is a weighted
threshold circuit TCn,∆

(w,m) such that TCn,∆
(w,m) (x) = F (x) for all x ∈ Bn. More-

over, we should notice that a simple change in the neuron model:

y = χ(
n∑
i=1

wixi − b), (9.25)

where:

χ(
n∑
i=1

wixi − b) = 1, if
n∑
i=1

wixi > b, (9.26)

χ(
n∑
i=1

wixi − b) = 0, otherwise, (9.27)

allows to identify neurons with threshold gates, defined by expressions (8.16), if
we restrict (x1, x2, . . . , xn) ∈ Bn and (w1, w2, . . . , wn) ∈ Qn. In this way, neu-
rons are threshold gates T n,∆w : Bn −→ {0, 1}. Consequently, a neural network
becomes a weighted threshold circuit TCn,∆

(w,m). So, a straightforward consequence
of Theorem 4 is that

TCn
(m) ⊃ F (n,m) , (9.28)

where TCn
(m) is the class of functions that can be computable by threshold circuits

and F (n,m) is the class of Boolean functions F : Bn −→ Bm.
Therefore, we can affirm that given a Boolean functions F : Bn −→ Bm

there is a neural network machine M = M (x;w∗), wherew∗ is a fixed parameter
vector in Rk, such that M (x;w∗) = F (x), for all x ∈ Bm.

To generalize this result for function f : Qn −→ Qm , such that:

f (q1, q2, . . . , qn) = (f1 (q1, q2, . . . , qn) , f2 (q1, q2, . . . , qn) , . . . , fm (q1, q2, . . . , qn)) ,

(9.29)
we shall use the following elements:

• A bijective function % : Z−→{0, 1}k+1 , with k ∈ N large enough, such
that If z ∈ Z then % (z) = (c0, c1, . . . , ck) is the only binary sequence in
{0, 1}k+1 that satisfies:

z = s (ck)

(
k∑
j=1

cj−12j−1

)
, (9.30)
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where s(1) = +1 and s(0) = −1.

• Given q ∈ Q, ∃ (a, b) ∈ Z× Z∗ such that:

q =
a

b
.

Therefore, a function f : Qn −→ Qm, with f = f (q1, q2, . . . , qn), can be written
as g : Z2n −→

(
Bk+1

)2m, such that

f (q1, q2, . . . , qn) = g ((a1, b1) , (a2, b2) , . . . , (am, bm)) , (9.31)

where (ai, bi) ∈ Z × Z∗ and qi = ai/bi, i = 1, 2, . . . , n. Moreover, we compose
functions g and % as element-wise:

g ((a1, b1) , (a2, b2) , . . . , (am, bm)) =

= g
((
%−1 (α1) , %−1 (β1)

)
,
(
%−1 (α2) , %−1 (β2)

)
, . . . ,

(
%−1 (αn) , %−1 (βn)

))
(9.32)

where αi ∈ {0, 1}k+1 and βi ∈ {0, 1}
k+1 are the binary representations of ai

and bi in {0, 1}k+1, respectively. If we put together expressions (9.29),(9.31), and

(9.32) we can build a function g ◦ %−1 :
(
{0, 1}k+1 × {0, 1}k+1

)n
−→ Qm that

satisfies:

f (q1, q2, . . . , qn) =

= g
((
%−1 (α1) , %−1 (β1)

)
,
(
%−1 (α2) , %−1 (β2)

)
, . . . ,

(
%−1 (αn) , %−1 (βn)

))
≡

≡ g ◦ %−1 (α1,β1;α2,β2; . . . ,αn,βn) . (9.33)

The next step, let as exercise, is to deal with the codomain Qm because the
network output should be in the set

(
{0, 1}k+1 × {0, 1}k+1

)m
. To perform this

task we shall define the function:

% ◦ g ◦ %−1 (α1,β1;α2,β2; . . . ,αn,βn) = % ◦ f (q1, q2, . . . , qn) , (9.34)

and work with it.
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9.6 Shallow versus Deep Neural Networks

Owing the DNF and CNF normal forms defined in expressions (3.4) and 3.7,
respectively, we can discuss equivalence of shallow and deep neural networks
from the viewpoint of computational models.

We will demonstrate for the particular case m = 1 and let the generalization
for m > 1 as exercise. Specifically, let a neural network computed by the thresh-
old circuit TCn,∆

(w,1). Hence, from DNF normal form (expression (3.4)) the Boolean
function TCn,∆

(w,1) : Bn −→ {0, 1}can be written as:

TCn,∆
(w,1) (x1, x2, ..., xn) =

(
t11 ∧ t12 ∧ ... ∧ t1k1

)
∨ ... ∨

(
tm1 ∧ tm2 ∧ ... ∧ tmkm

)
,

(9.35)
where tij is either a variable xl or a negation of a variable∼ xl. We shall introduce
the notation x = (x1, x2, . . . , xn) and ∼ x = (∼ x1,∼ x2, . . . ,∼ xn).

Now, we shall notice that expressions
(
ti1 ∧ ti2 ∧ ... ∧ tiki

)
that appear in the

DNF form can be computed by the threshold gate:

Th2n,∆
w : {0, 1}2n → {0, 1} ,

Th2n,ki
w (x,∼ x) = 1, if

n∑
l=1

wlxl +
n∑
l=1

wl+kl (∼ xl) ≥ ki, (9.36)

Th2n,ki
w (x,∼ x) = 0, otherwise, (9.37)

where wl = 1 if there exists j ∈ {1, 2, . . . , ki} such that tij = xl and wl = 0

otherwise, for l = 1, 2, . . . , n. Also, wl+n = 1 if there exists j ∈ {1, 2, . . . , ki}
that satisfies tij =∼ xl and wl+ki = 0 otherwise, for l = 1, 2, . . . , n.

Moreover, expression in the right-hand side of equation (9.35) can be repre-
sented as:

Thm,∆w : {0, 1}m → {0, 1} ,

Thm,∆w (y1, y2, ..., ym) = 1, if
m∑
j=1

wjyj ≥ ∆,

Thm,∆w (y1, y2, ..., ym) = 0, otherwise,

138



where ∆ = 1, w = (1, 1, 1, . . . , 1) and yi =
(
ti1 ∧ ti2 ∧ ... ∧ tiki

)
, i = 1, 2, . . . ,m.

Therefore, it is straightforward to write the Boolean expression as the neural net-
work of Figure 9.5.We see a shallow architecture however, the number m of gates
in the hidden layer may be proportional to n2n as discussed in section 3.5.

Figure 9.5: Shallow neural network computing expression (9.35).

An analogous result can be obtained using the CNF form of the Boolean func-
tion TCn,∆

(w,1) : Bn −→ {0, 1} (exercise). The threshold circuit in Figure 9.5
represents a shallow neural network with only one hidden layer. Given a Boolean
function F : Bn −→ B1 we can design a deeper neural network, with more than
one hidden layer. The above development shows that we always can convert the
deep architecture into a shallow one. However, the conversion is not efficient in
the sense that the number gates in the hidden layer may growths exponentially
with respect to n. Obviously, an analogous result can be obtained for the general
case with m > 1.

9.7 Back-Propagation in Deep MLP Architectures

In this section we present the Back-Propagation algorithm whose goal is to ef-
ficiently compute the gradient with respect to the network weights, in order to

139



implement the gradient descent procedures in Algorithms 3 and 4. In this devel-
opment, we suppose the labeled input set:

D = {(x1, d1) , . . . , (xN , dN)} ⊂ Rm+1, (9.38)

where xi = (x1i, x2i, . . . , xmi) ∈ Rm, i = 1, . . . , N and di ∈ R is the desired
response. Moreover, the objective function is given by the expression (8.23) with
z replaced by w and M (xi;w) ≡ o (xi;w):

L (w;B) ≡ 1

|B|

|B|∑
i=1

L (o (xi;w)− di) +
K∑
τ=1

ςτRτ (w;B) , (9.39)

where Rτ and di follows the definitions of section 8.1. Since the iteration t is
implicit in expression (8.25), we discard this variable in the development.

Let us consider a MLP with L ≥ 1 hidden layers [113] defined by the follow-
ing elements.

1. Input Layer:

I =
{

1, 2, . . . , p(0)
}
⊂ N.

2. First Hidden Layer:

H(1) =
{
p(0) + 1, p(0) + 2, . . . , p(1)

}
⊂ N.

3. Remaining Hidden Layers:

H(n) =
{
p(n−1) + 1, p(n−1) + 2, . . . , p(n)

}
⊂ N, 2 ≤ n ≤ L.

4. Output Layer:

Out =
{
p(L) + 1, p(L) + 2, . . . , p(Out)

}
.

5. Synaptic weight connecting the output of neuron i to the input of neuron j :
wij

6. Bias associated to the neuron j : bj
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7. Network weights vector: w = ({wij} , {bj})

8. Activation function (see section 9.4)

In this development, we are going to consider p(Out) = p(L) + 1; that means, only
one output node, corresponding to regression or classification network, as shown
in Figure 9.6.

Figure 9.6: Deep MLP scheme for classification or regression with the sample xk

as input.

Hence, we shall define important network quantities as follows.

1. Induced local field at neuron j ∈ H(1) at input sample k:

netj (k) =
∑
i∈I

wijxik + bj

2. Induced local field at neuron j ∈ H(n) due to input sample k:

netj (k) =
∑

i∈H(n−1)

wijoi (k) + bj,

where oi (k) = f (neti (k)).
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3. Induced local field due to input sample k at neuron j ∈ Out:

netj (k) =
∑
i∈H(L)

wijoi (k) + bj. (9.40)

4. Output of neuron j ∈ Out due to input sample k:

oj (k) = f (netj (k)) , (9.41)

where f is the chosen activation function.

5. Loss function:

L (w;B) ≡ 1

|B|

|B|∑
k=1

∑
j∈Out

(oj (k)− dj (k))2 +
K∑
τ=1

ςτRτ (w;B) , (9.42)

Now, we can explicit the learning rule of Algorithm 4 using the above elements.

1. Update network weights. Following expression (8.25), we must use a gra-
dient based method:

wij ← wij + η

(
−∂L (w;B)

∂wij

)
,

bj ← bj + η

(
−∂L (w;B)

∂bj

)
,

which can be re-written as follows to simplify the notation:

wij ← wij + η

(
− ∂L
∂wij

)
w=w(t)

,

bj ← bj + η

(
−∂L
∂bj

)
w=w(t)

.

where:
∂L
∂wij

=

|B|∑
k=1

p(L)+1∑
ξ=p(0)+1

∂L
∂netξ (k)

∂netξ (k)

∂wij
,

∂L
∂bj

=

|B|∑
k=1

p(L)+1∑
ξ=p(0)+1

∂L
∂netξ (k)

∂netξ
∂bj

.
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2. Cases to consider:

(a) If j ∈ H(1)we have:

∂netj (k)

∂wij
=

∂

∂wij

(∑
ξ∈I

wξjxξk + bj

)
= xik,

∂netj (k)

∂bj
= 1.

(b) If j ∈ H(n), 2 ≤ n ≤ L, we have:

∂netj (k)

∂wij
=

∂

∂wij

 ∑
ξ∈H(n−1)

wξjoξ (k) + bj

 = oi (k) , i ∈ H(n−1).

∂netj (k)

∂bj
= 1.

(c) If j ∈ Out:

∂netj (k)

∂wij
=

∂

∂wij

 ∑
ξ∈H(L)

wξjoξ (k) + bj

 = oi (k) , i ∈ H(L).

∂netj (k)

∂bj
= 1.

3. Let δj be:

δj = − ∂L
∂netj

.

4. Then:

(a) j ∈ Out:

δj (k) = − ∂L
∂netj (k)
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= − ∂L
∂oj (k)

∂oj (k)

∂netj (k)

=
2

|B|
f́ (netj (k)) [(dj (k)− f (netj (k)))] . (9.43)

(b) j ∈ H(L):

δj (k) = − ∂L
∂netj (k)

= −f́ (netj (k))
∂L

∂oj (k)

= −f́ (netj (k))

[∑
ξ∈Out

∂L
∂netξ (k)

∂netξ (k)

∂oj (k)

]

= −f́ (netj (k))

[∑
ξ∈Out

∂L
∂netξ (k)

wjξ

]
. (9.44)

(c) j ∈ H(n), 1 ≤ n ≤ L− 1:

δj (k) = − ∂L
∂netj (k)

= −f́ (netj (k))
∂L

∂oj (k)

= −f́ (netj (k))

 ∑
ξ∈H(ν≥n+1)

∂L
∂netξ (k)

∂netξ (k)

∂oj (k)


5. Putting all together through back-propagation:

(a) j ∈ Out:

wij ←− wij + η

(
− ∂L
∂wij

)
= wij + η

|B|∑
k=1

(
− ∂L
∂netj (k)

∂netj (k)

∂wij

)
,

(9.45)

= wij+η

|B|∑
k=1

(
2

|B|
f́ (netj (k)) [(dj (k)− f (netj (k)))]

)
oi (k) , i ∈ H(L).

(9.46)
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(b) j ∈ H(L):

wij ←− wij + η

(
− ∂L
∂wij

)
= wij + η

|B|∑
k=1

(
− ∂L
∂netj (k)

∂netj (k)

∂wij

)
,

(9.47)

= wij + η

|B|∑
k=1

(
−f́ (netj (k))

[∑
ξ∈Out

∂L
∂netξ (k)

wjξ

])
oi (k) (9.48)

= wij + η

|B|∑
k=1

δj (k) oi (k) . i ∈ H(L−1)

(c) j ∈ H(n), 1 ≤ n ≤ L− 1:

wij ←− wij + η

(
− ∂L
∂wij

)
= wij + η

|B|∑
k=1

(
− ∂L
∂netj (k)

∂netj (k)

∂wij

)

= wij+η

|B|∑
k=1

−f́ (netj (k))

 ∑
ξ∈H(ν≥n+1)

∂L
∂netξ (k)

∂netξ (k)

∂oj (k)

 oi (k)

= wij + η

|B|∑
k=1

δj (k) oi (k) , i ∈ H(n−1),

where H(ν≥n+1) = ∪Outv=n+1H
(ν) and H(0) = I (with analogous expres-

sions for bj (exercise)).

If we consider the Logistic function 9.15 as activation function then, since:

oj (k) = f (netj (k)) ,

then:

f́ (netj (k)) = α (1− f (netj (k))) f (netj (k)) = α (1− oj (k)) oj (k) ,

consequently, we can compute the derivative f́ (netj (k)) by taking only the output
of the neural network.
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9.8 Steps of Back-propagation Algorithm

At each iteration t perform:

1. Forward-Backward Computation:

(a) Forward Computation: For each xk ∈ B, pass it to the network and
keep the induced local fields and outputs netj (k) and oj (k), j ∈ I ∪(
∪Lv=1H

(ν)
)
∪Out;

(b) Backward Computation:

(c) j ∈ Out:

∆k
ij =

(
2

|B|
f́ (netj (k)) [(dj (k)− f (netj (k)))]

)
oi (k) , i ∈ H(L),

(9.49)

(d) j ∈ H(n), n = L,L− 1, . . . , 1:

∆k
ij =

−f́ (netj (k))

 ∑
ξ∈H(ν≥n+1)

∂L
∂netξ (k)

∂netξ (k)

∂oj (k)

 oi (k) , i ∈ H(n−1)

(9.50)

We must notice that, for n = L we need the derivatives

∂L
∂netξ (k)

, ξ ∈ Out,

that were computed according to expression (9.43). Also, for n =

L− 1 we need the derivatives:

∂L
∂netξ (k)

, ξ ∈ H(L),

that were compute in the previous step according to equation (9.44).

2. Compute the derivatives respect to the weights:

− ∂L
∂wij

=

|B|∑
k=1

∆k
ij,
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3. Update weights:

wij ←− wij + η

(
− ∂L
∂wij

)

9.9 Momentum Term and Rate of Learning

At iteration t of the training stage, consider the rule:

wij (t+ 1)− wij (t) = β (wij (t)− wij (t− 1)) + η

(
− ∂L (t)

∂wij (t)

)
, (9.51)

where β is called the momentum constant.
If we denote: ∆wij (t) ≡ wij (t+ 1) − wij (t) and introduce this notation in

expression (9.51) we obtain:

∆wij (t) = β∆wij (t− 1) + η

(
− ∂L (t)

∂wij (t)

)
.

Therefore, if t = 3, we get:

∆wij (3) = β∆wij (2) + η

(
− ∂L (3)

∂wij (3)

)

= β

[
β∆wij (1) + η

(
− ∂L (2)

∂wij (2)

)]
+ η

(
− ∂L (3)

∂wij (3)

)

= β

[
β

(
β∆wij (0) + η

(
− ∂L (1)

∂wij (1)

))
+ η

(
− ∂L (2)

∂wij (2)

)]
+ η

(
− ∂L (3)

∂wij (3)

)

= β3∆wij (0) + β2η

(
− ∂L (1)

∂wij (1)

)
+ βη

(
− ∂L (2)

∂wij (2)

)
+ η

(
− ∂L (3)

∂wij (3)

)

= β3∆wij (0)− η
3∑
ξ=1

β3−ξ ∂L (ξ)

∂wij (ξ)
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By induction we can show that:

∆wij (t) = βt∆wij (0)− η
t∑

ξ=1

βt−ξ
∂L (ξ)

∂wij (ξ)
, (9.52)

or, using the definition of ∆wij (t), we obtain:

wij (t+ 1) = wij (t) + βt∆wij (0)− η
t∑

ξ=1

βt−ξ
∂L (ξ)

∂wij (ξ)
. (9.53)

This time series deserves some considerations. Firstly, in order to avoid con-
vergence problems, we should restrict the momentum constant β in the interval
0 ≤ β < 1. If we set β = 0 then the back-propagation algorithm works without
momentum. Also, if the partial derivatives in expression (9.52) presents the same
algebraic sign on consecutive iterations then the exponentially weighted sum in-
creases and, consequently, the weight wij in expression (9.53) is adjusted by a
large amount. Hence, in this case, we can say that the inclusion of momentum
induces an acceleration of the convergence to a critical point of the loss function
[113].

On the other hand, if the derivative in relation (9.53) interchanges positive
and negative algebraic signs then the exponentially weighted sum shrinks in mag-
nitude and the weight wij undergoes a little change [113]. So, in this scenario,
the momentum has a stabilizing effect in regions where the sign of the derivative
oscillates.

9.10 Weights and Bias Computation and Back-

propagation

When implementing the learning machine in Algorithms 4 and 3 through neural
networks we apply the back-propagation technique to efficiently compute the gra-
dient respect to the machine parameters. So, we have an iterative algorithm that,
update weights (and bias) at each iteration t. The input data, given in expression
(9.38), must be analysed and processed following the theory described in Chapter
7. Specifically, after Data collection; Data Exploration by looking for outliers,
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finding exceptions, and missing infomation; Cleaning by remotion of incorrect
and inconsistent samples; we can perform Data Normalization and start training
our neural network as follows

1. Data Normalization: If we apply the Logistic function (equation (9.15)) as
activation function then we must normalize the input data to fit the interval
[0, 1]. This can be achieved therough the operations:

xmin = (min {x1i, i = 1, 2, . . . , N} , , . . . ,min {xmi, i = 1, 2, . . . , N}) ∈ Rm,

xmax = (max {x1i, i = 1, 2, . . . , N} , , . . . ,max {xmi, i = 1, 2, . . . , N}) ∈ Rm,

x̃uv =
xuv − xu,min

xu,max − xu,min

, u = 1, 2, . . . ,m, v = 1, 2, . . . , N. (9.54)

In the case of the hyperbolic tangent activation function (expresson (9.17)),
the normalization procedure should have image in the range[−1, 1]. To per-
form this, we shall compute:

x̃uv = −1 + 2

(
xuv − xu,min

xu,max − xu,min

)
, u = 1, 2, . . . ,m, v = 1, 2, . . . , N.

(9.55)

For others possibilities for data normalization see the section 7.9 and the
batch normalization technique [121].

2. Initialization: Weights and bias of the perceptrons in the neural network
must be initialized in order to instantiate the iterative process. We have the
following possibilities in this step:

(a) For each layer l Initialize the biases to be zero
(
b

(0)
j = 0

)
and the

weights w(0)
ij as:

w
(0)
ij ∼ U

[
− 1
√
nl−1

,
1

√
nl−1

]
, (9.56)
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where U [−a, a] is the uniform distribution in the range (−a, a) and
nl−1 is the number of neurons of the layer l − 1 , which, following
Figure 9.4, is given by [120]:

nl−1 = p (l − 1)− (p (l − 2) + 1) . (9.57)

(b) For each layer l Initialize the biases to be zero
(
b

(0)
j = 0

)
and the

weights w(0)
ij as [120]:

w
(0)
ij ∼ U

[
−

√
6√

nl−1 + nl
,

√
6√

nl−1 + nl

]
, (9.58)

where U is an uniform distributions likewise in the previous item,
nl−1is computed by expression (9.57), and nl = p (l)− (p (l − 1) + 1)

according to Figure 9.4 also.

3. At each iteration t of Algorithm 4 perform:

4. Forward-Backward Computation:

(a) Forward Computation: For each xk ∈ B, pass it to the network
and keep the induced local fields and outputs netj (k) and oj (k),
j ∈ ∪Outv=0H

(ν);

(b) Backward Computation:

i. 1.2.1) j ∈ Out:

∆k
ij =

(
2

|B|
f́ (netj (k)) [(dj (k)− f (netj (k)))]

)
oi (k) , i ∈ H(L),

(9.59)

ii. j ∈ H(n), n = L,L− 1, . . . , 1:

∆k
ij =

−f́ (netj (k))

 ∑
ξ∈H(ν≥n+1)

∂L
∂netξ (k)

∂netξ (k)

∂oj (k)

 oi (k) , i ∈ H(n−1)

(9.60)
We must notice that, for n = L we need the derivatives
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∂L
∂netξ (k)

, ξ ∈ Out,

that were computed according to expression (9.43). Also, for n =

L− 1 we need the derivatives:

∂L
∂netξ (k)

, ξ ∈ L,

that were compute in the previous step according to equation
(9.44).

5. Compute the derivatives respect to the weights:

− ∂L
∂wij

=

|B|∑
k=1

∆k
ij,

6. Update weights:

wij ←− wij + η

(
− ∂L
∂wij

)

9.11 Exercises

1. Pereceptron [113, 11]:

(a) Generate a database S ⊂ R2×{+1,−1}, with |S| = N composed by
two classes C1 and C2.

(b) Partitioning S into disjoint sets: training Dtr, validation Dval, and test
Dte sets.

(c) Implement the perceptron model (Figure 9.2) for classification in
R2 × {+1,−1} and perform training, validation and test steps. In the
latter, compute the accuracy given by expression (8.33). Show some
graphical configurations of the line that partitions the pattern space
together with the final solution.

2. Take the FEI database [122, 123].
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(a) Define the classes C1 and C2 with |C1| = N1 and |C2| = N2 and
N = N1 +N2.

(b) Convert each image to gray scale

(c) Feature extraction: Compute the relative frequency histogram, de-
noted by x, for each image. Generate the feature space S =

{(xi, di), i = 1, 2, ..., N} ⊂ R256 × {+1,−1}.

(d) Partitioning S into disjoint sets: training Dtr, validation Dval, and test
Dte sets.

(e) Train a perceptron model and compute the accuracy after training

3. Show that perceptron can not compute the XOR gate.

4. Generalize the proof in section 9.2 for the learning rule in expression (9.2)
with 0 < η < 1.

5. Study the influence of the different types of activation functions of section
9.4 in the perceptron model.

6. According to [124], Overtraining refers to training a network past the point
where it generalizes best. Hence, consider the function used in [125]:

f (x) = − cos (x) + ν, 0 ≤ x < π,

f (x) = cos (3 (x− π)) + ν,

where ν is a uniformly distributed random variable in the interval
[−0.25, 0.25]. Take a discretization of that function to generate the dataset
D = {(xi, f (xi)) , i = 1, 2, . . . N} and subdivide the set D into Dtr, Dval,
ans Dte. Design a Loss function and train a MLP for data interpolation
aiming to identify overtraining. Use 1-fold cross-validation for simplicity.

7. Take a discretization of the sphere S2 =
{
x ∈ R3; ‖x‖2

2 = 1
}

nearby the point p =
(
1/
√

3, 1/
√

3, 1/
√

3
)

to get a set D =

{(xi, yi, zi) , i = 1, 2, . . . N} ⊂ S2. Subdivide the set D into Dtr, Dval, and
Dte. Build a Loss function and train a MLP architecture to compute the
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implicit function z =
√

1− x2 − y2 nearby the point p. For simplicity, use
the 1-fold cross validation (Figure 8.5) for training the network. Take care
about the activation function and try more than one type.

8. Return to exercise 7 and include new points perturbed with Gaussian noise
to the training set Dtr to generate a new set D̂tr. Keep the validation set Dval

and test set Dte unchanged and re-train the model from the begining. Keep
the same kind of Loss function. Plot the training and validation curves to
identify overffiting or overtraining.

9. The concept of overfitting can also be understood by thinking about poly-
nomial interpolation tasks (see Fig. 1 of reference [126]). In this case, the
polynomial coefficients are the degree of fredom, while in a neural network
the weights control the model flexibility. Return to problem 6 and train a
network with the goal of producing overfitting.

10. Consider the sets D̂tr and Dval of exercise 6. Train a larger MLP architec-
ture (increase the number of neurons and/or layers). Plot the training and
validation curves to identify overffiting.

11. Take the FEI image database and compute the PCA for dimensionality re-
duction. Use the procedure explained to compute Figure 8.7 to identify
curse of dimensionality using the principal components sorted following
the decreasing order of the eigenvalues, say p1,p2, ...,pn. Hence, buind a
network whose input layer has n nodes and the output layer just one node.
Train this network in the PCA subspace spanned by p1 and plot the point(
1, Err

(
z?opt (1) ,Dtr

))
. Then, repeate this procedure for components p1,

p2, and so on.

12. Generate a set of points in R2 with two classes and with the same spatial
distribution observed in Figure 1 of reference [126]. Train a perceptron and
a MLP whose corresponding decision boudary is the dashed curve. Study
the overfitting problem in this case and compare the performance of both
classifiers using the recognition rate given by expression (8.33).

13. Consider the dimension d identified in exercise 11. Train the classifier us-
ing 3-fold cross-validation but, in this case, start the training process using
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the weights already obtained in exercise 11. Then, compute the confusion
matrix (section 8.6) , the precision-recall and Receiver operating character-
istics (ROC) curves (see reference [127]).

14. Transfer learning reffers to the process of using what has been learned in
one setting (or domain) to improve generalizations in another setting [93]
. So, chose another regular surface and repeat the steps of exercise 7 but
using the weights already computed there to initialize the neural network.

15. Data Augmentation is a suite of methods to add new samples to the input
set or enhance the quality of training datasets in order to improve the model
generalization [128]. Consider the PCA subspace with dimension d iden-
tified in exercise 11. Take the principal component pj and perform data
augmentation in the PCA space through the expression:

I (i, j) = x̂ + δi,j · pj, (9.61)

where x̂ is the global mean:

x̂ =
1

N

N∑
i=1

xi, (9.62)

and δi,j ∈ {±i · λ0.5
j , i = 0, 1, 2, 3}, and λj is the eigenvalue associated to

pj
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Chapter 10

Statistical Learning Theory

The main goal of this chapter is to present fundamental aspects in supervised and
unsupervised statistical learning for image analysis. The basic pipeline that steers
our presentation is: (a) Dimensionality reduction; (b) Discriminant analysis; (c)
Choose a learning method to compute a separating hypersurface, that is, to solve
the classification problem; (d) Reconstruction problem, that means, to consider
how good a low dimensional representation will look like.

As already pointed out in the introduction (Chapter 1), both statistical learning
and machine learning are data dependent. However, statistical learning models are
yielded based on the assumption that data has certain regularity, such as linearity,
normality and independence. Consequently, we can process data using methods
steered by those beliefs [13]. Machine learning models, in general, do not explic-
itly consider such assumptions and in most of the cases ignore them [14].

Like machine learning, statistical learning also explores ways of estimating
functional dependency from a given collection of data [22]. It covers important
topics in classical statistics such as discriminant analysis, regression methods, and
the density estimation problem [129, 130, 131]. Moreover, pattern recognition and
classification can be seen from the viewpoint of the general statistical problem
of function estimation from empirical data. Therefore, they fit very well in the
statistical learning framework [132, 61].

The analysis of methods of statistical inference began with the remarkable
works of Fisher (parametric statistics) and the theoretical results of Glivenko and
Cantelli (convergence of the empirical distribution to the actual one) and Kol-
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mogorov (the asynptotically rate of that convergence). These events determined
two approaches to statistical inference: The particular (parametric) inference and
the general inference [7].

The parametric inference aims to create statistical methods for solving partic-
ular problems. Regression analysis is a know technique in this class. On the other
hand, the general inference aims to find one induction method that can be applied
for any statistical inference problem. Learning machines, like perceptron (section
9.1), and statistical learning methods like support vector machine (SVM) [7, 12],
and the linear discriminant analysis (LDA) are nice examples in this area.

When performing a database analysis a common practice is to consider each
data point as a point in a n-dimensional space, where n is the number of involved
variables. In general, n is very large, a known problem in image analysis, for
example. Therefore, dimensionality reduction may be necessary in order to dis-
card redundancy and simplify further operations. The most know technique in
this subject is the Principal Components Analysis (PCA) [61]. The PCA tech-
nique is a way to implement the item (a) of our pipeline. Following this line, once
performed dimensionality reduction through PCA, we must determine the most
important discriminant PCA features for a pattern recognition goals, like classi-
fication (item (b)). Discriminant analysis techniques, like LDA, can be used to
solve this task. Next, the fundamental point is which learning method to use to
solve the classification problem in the item (c). Besides neural networks discussed
in Chapter 11, and many other possibilities [44, 22, 3], we can choose the SVM
model in this step. Then, the step (d) deals with the visualization of data that was
projected in the reduced PCA space.

In what follows we first review PCA technique in section 10.1. Next, in section
10.3, we describe the SVM classifier. Then, we consider two discriminant analysis
techniques: the discriminant principal component analysis (DPCA) and the LDA,
summarized in sections 10.4 and 10.5, respectively. The kernel version of the
PCA method is developed in section 10.6. Then, we consider classification and
reconstruction from the viewpoint of SVM and LDA methods (section 10.7).
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10.1 Principal Components Analysis

In this section we review results in principal components analysis (PCA). When
applying PCA for dimensionality reduction before classification, it has been com-
mon practice to use components with the largest eigenvalues. Such idea can be
justified if we clarify the main principles of the PCA analysis. For completeness,
we will review some points of this theory in this section first.

Principal Component Analysis (PCA), also called Karhunen-Loeve or KL
method, can be seen as a method for data compression or dimensionality reduc-
tion [133] (see [5], section 5.11 also). Thus, let us suppose that the data to be
compressed consists of N measurements or data samples, from the n-dimensional
space Rn. Then, PCA searches for m orthonormal vectors in Rn the that can best
represent the data, where m ≤ n. Thus, let S = {x1,x2, ...,xN} be the data set
and its centroid given by the global mean:

x̂ =
1

N

N∑
j=1

xj. (10.1)

To address the issue of compression, we need a projection basis that satisfies
a proper optimization criterion. Following [5], consider the operations in Figure
10.1 where:

uj = xj − x̂. (10.2)

The (centered) vector uj is first transformed to a vector vj by the transfor-
mation matrix A. Thus, we truncate vj by choosing the first m elements of vj .
The obtained vector wj is just the transformation of vj by Im, that is a matrix
with 1’s along the first m diagonal elements and zeros elsewhere. Finally, wj is
transformed to zj by the matrix B. Let the square error be defined as follows:

Jm =
1

N

N∑
j=1

‖uj − zj‖2 =
1

N
Tr

[
N∑
j=1

(uj − zj) (uj − zj)
T

]
, (10.3)

where Tr means the trace of the matrix between the square brackets and the nota-
tion (T ) means the transpose of a matrix. Following Figure 10.1, we observe that
zj = BImAuj . Thus we can rewrite (10.3) as:

Jm =
1

N
Tr

[
N∑
j=1

(uj −BImAuj) (uj −BImAuj)
T

]
, (10.4)
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Figure 10.1: KL Transform formulation. Reprinted from [5].

which yields

Jm =
1

N
Tr
[
(I −BImA)R (I −BImA)T

]
, (10.5)

where

R =
N∑
j=1

(xj − x̂)(xj − x̂)T . (10.6)

Following the literature, we call R the covariance matrix. We can now state
the optimization problem by saying that we want to find the matrices A,B that
minimizes Jm. The next theorem gives the solution for this problem.

Theorem 1: The error Jm in expression (10.5) is minimum when:

A = ΦT , B = Φ, AB = BA = I, (10.7)

where Φ is the matrix obtained by the orthonormalized eigenvectors ofR arranged
according to the decreasing order of its eigenvalues. Proof. See [5].

Therefore, from this result, if our aim is data compression than we must choose
the components with the largest eigenvalues. Hence, we must choose the set of
m ≤ n eigenvectors of R, which corresponds to the m largest eigenvalues. Such
a set of eigenvectors that defines a new uncorrelated coordinate system for the
centered training matrix Θ = [uT1 uT2 ···uTN ] is known as the principal components.
In the context of face recognition, those Ppca = [p1,p2, ...,pm] components are
frequently called eigenfaces [134]. The PCA methodology is summarized in the
Algorithm 5.

After computing matrix Ppca we can project each centered sample ui in the
reduced PCA space through the expression:

ui = (Ppca)
Tui. (10.10)
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Algorithmus 5 Procedure to compute PCA matrix.
1: Input: m ≤ n, dataset S = {x1,x2, ...,xN} ⊂ Rn

2: Compute the global mean x̂ of the input data through expression (10.2);

3: Centering input samples: ui = xi − x̂;

4: Compute the covariance matrix:

R =
N∑
i=1

(ui)(ui)
T . (10.8)

5: Compute orthonormalized eigenvectors of R arranged according to the de-

creasing order of its eigenvalues: p1,p2, ...,pn

6: Output: Matrix formed by the m ≤ n principal eigenvectors

Ppca = [p1,p2, ...,pm]. (10.9)

10.2 Changing Criterion

However, we can change the information measure in order to get another criterion.
This is performed in [135] by using the following idea. Let u be a n-dimensional
random vector with a mixture of two normal distributions with means µ1 and µ2,
mixing proportions of p and (1−p), respectively, and a common covariance matrix
Σ. Let ∆ denote the Mahalanobis distance between the two sub-populations, and
R be the covariance matrix of u. Then, it can be shown that [135]:

R = p(1− p)ddT + Σ, (10.11)

where d = µ1 − µ2.

In [135], instead of the optimization criterion of choosing the components that
minimizes Jm, it is assumed that the effectiveness of using a set of variables can be
measured by the Mahalanobis distance computed on the basis of these variables.
This distance will be called the information contained in the variables.

So, let ai, i = 1, ..., n be the eigenvectors ofRwith eigenvalues λ1, λ1, , ..., λn,
not necessarily sorted in decreasing order. For a given Bm = (a1, a2, ..., am),
m ≤ n we denote ∆m the distance between the sub-populations using Bmu. For
instance, for m = 1, we can write:
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aT1Ra1 = p(1− p)aT1 ddTa1 + aT1 Σa1. (10.12)

Therefore, using the fact that Ra1 = λ1a1, the expression (10.12) becomes:

λ1 = p(1− p)
(
aT1 d

)2
+ aT1 Σa1. (10.13)

So, we find that:

aT1 Σa1 = λ1 − p(1− p)
(
aT1 d

)2
. (10.14)

But, the Mahalanobis distance computed in the variable defined by the com-
ponent a1 is:

∆2
1 = dTa1

(
aT1 Σa1

)
aT1 d =

(
aT1 d

)2

aT1 Σa1

,

which can be rewritten as:

∆2
1 =

(
aT1 d

)2

λ1 − p(1− p) (aT1 d)
2 , (10.15)

by using the equation (10.14). Finally, if we divide the numerator and denominator
of equation (10.15) by λ1 we obtain:

∆2
1 =

(aT1 d)
2

λ1

1− p (1− p) (aT1 d)
2

λ1

., (10.16)

This result can be generalized for m > 1 by the following result [135]:

∆m =

∑n−1
i=0

(aTi d)
2

λi

1− p (1− p)
∑n−1

i=0

(aTi d)
2

λi

. (10.17)

By now, the following consequence may be draw: The component with the
largest amount of information is not necessarily the one with largest eigenvalue.
This is because ∆i is a monotonic function of

(
aTi d

)2
/λi instead of λi (see ∆1 in

equation (10.16)). The best subset of m principal components is the one with the
largest ∆m.

The relationship between this criterion and the last one that selects principal
components in decreasing order of eigenvalues is obtained by demonstrating that,
the information is distributed in m (or less than m) principal components if Σ has
m distinct eigenvalues. In another words, the use of traditional PCA is justified
when the information is concentrated in a few principal components with a large
sample size.
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10.3 Support Vector Machines

In section 9.1 we have discussed the perceptron model, which in turn is a lin-
ear classifier. In this section we will present another type of linear classifier, the
support vector machine (SVM), based on a separating hyperplane with optimality
properties. So, given a dataset:

S = {(xi, yi) , xi ∈ Rn, yi ∈ {−1, 1} , i = 1, 2, . . . ,m} , (10.18)

we say that the subset I for which y = 1 and the subset II for which y = −1 are
separable by the hyperplane:

x ∗ φ = c, (10.19)

if there exists both a unit vector φ (|φ| = 1) and a constant c such that the inequal-
ities:

xi ∗ φ > c, xi ∈ I, (10.20)

xj ∗ φ < c, xj ∈ II, (10.21)

hold true (”∗” denotes the usual inner product in Rn). Besides, let us define for
any unit vector φ the two values:

c1 (φ) = min
xi∈I

(xi ∗ φ) , (10.22)

c2 (φ) = max
xj∈II

(xj ∗ φ) . (10.23)

The Figure 10.2 represents the dataset and the hyperplanes defined by φ and
the values c1, c2 defined in expressions (10.22)-(10.23):

In this figure the points P1 and P2 give the solutions of problems (10.22)-
(10.23), respectively, and the planes π1 and π2 are defined by:

x ∗ φ = c1, (10.24)

x ∗ φ = c2. (10.25)

Now, let us consider the plane π, parallel to π1,π2, with the property:
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Figure 10.2: Separating hyperplane π and its offsets π1, π2.

dπ (P1) = dπ (P2) , (10.26)

where dπ (P ) means the Euclidean distance from a point P to a plane π. This plane
is the hyperplane that separates the subsets with maximal margin. Expression
(10.26) can be written as: ∣∣∣∣P1 ∗ φ− c

|φ|

∣∣∣∣ =

∣∣∣∣P2 ∗ φ− c
|φ|

∣∣∣∣ . (10.27)

If we suppose P1∗φ−c ≥ 0 then we have P2∗φ−c ≤ 0. So, by remembering
that |φ| = 1, the expression (10.27) becomes:

(P1 ∗ φ− c) + (P2 ∗ φ− c) = 0,

then, by using expressions (10.24)-(10.25) we finally obtain:

c =
c1 (φ) + c2 (φ)

2
. (10.28)

Besides, let us call the dπ1 (π2) the distance between the planes π1 and π2,
which can be computed through the distance between the point P1 and the plane
π2, given by:
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dπ1 (π2) ≡ dπ2 (P1) =
(P1 ∗ φ− c2)

|φ|
, (10.29)

By using expression (10.24) and the fact that |φ| = 1, this equation be-
comes:ppp

dπ1 (π2) = c1 − c2. (10.30)

We call the maximum margin hyperplane or the optimal hyperplane the one,
defined by the unit vector φ that maximizes the function:

ρ (φ) =
c1 (φ)− c2 (φ)

2
, (10.31)

|φ| = 1. (10.32)

The corresponding separating plane π has a constant c given by equation
(10.28).

Now, let us consider another version of the optimization problem above. Let us
consider a vector ψ such that ψ/ |ψ| = φ. So, equations (10.24)-(10.25) become:

xi ∗ ψ > |ψ| c1, xi ∈ I, (10.33)

xj ∗ ψ < |ψ| c2, xj ∈ II. (10.34)

Let us suppose that there is a constant b0 such that |ψ| c1 ≥ 1− b0 and |ψ| c2 ≤
−1− b0. Then, we can rewrite expressions (10.33)-(10.34) as:

xi ∗ ψ + b0 ≥ 1, yi = 1, (10.35)

xj ∗ ψ + b0 ≤ −1, yj = −1. (10.36)

To understand the meaning of b0 it is just a matter of using the fact that the
equality in (10.35) holds true for P1 and the equality in (10.36) is true for P2.
Therefore, it is straightforward to show that:

b0 = − |ψ|
(
c1 (φ) + c2 (φ)

2

)
= − |ψ| c. (10.37)
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So, by substituting this equation in expressions (10.35)-(10.36) one obtains:

xi ∗ φ ≥ c+
1

|ψ|
, yi = 1, (10.38)

xj ∗ φ ≤ c− 1

|ψ|
, yj = −1. (10.39)

These expressions mean that we suppose that we can relax the constant c
through the value (1/ |ψ|) without loosing the separating property. But, the vector
ψ is not an unit one. Therefore the distance (10.29) can be obtained by:

dπ1 (π2) =
(1− b0)− (−b0 − 1)

|ψ|
=

2

|ψ|
. (10.40)

In order to maximize this distance (and also maximize the function ρ (φ) in
equation (10.31)) we must minimize the denominator in expression (10.40). So,
we get an equivalent statement to define the optimal hyperplane: Find a vector ψ0

and a constant (threshold) b0 such that they satisfy the constraints:

xi ∗ ψ0 + b0 ≥ 1, yi = 1, (10.41)

xj ∗ ψ0 + b0 ≤ −1, yj = −1. (10.42)

and the vector ψ has the smallest norm:

|ψ| = ψ ∗ ψ. (10.43)

We shall simplify the notation by rewriting the constraints (10.41)-(10.42) in
the equivalent form:

yi (xi ∗ ψ0 + b0) ≥ 1, i = 1, 2, ...,m. (10.44)

In order to solve the quadratic optimization problem stated above, it is used
in [7] the Kuhn-Tucker theorem (Appendix B), which generalizes the Lagrange
multipliers for convex optimization. The corresponding Lagrange function is:

L (ψ, b, α) =
1

2
ψ ∗ ψ −

m∑
i=1

αi (yi ((xi ∗ ψ0) + b0)− 1) , (10.45)
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where αi are the Lagrange multipliers. Following the usual optimization theory
(see sections 5.8 and 5.9), the minimum points of this functional must satisfy the
conditions:

∂L

∂ψ
= ψ −

m∑
i=1

yiαixi = 0, (10.46)

∂L

∂b
=

m∑
i=1

yiαi = 0. (10.47)

If we substitute (10.46) into the functional (10.45) and take into account the
result (10.47) we finally render the following objective function:

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj (xi ∗ xj) . (10.48)

We must maximize this expression in the non-negative quadrant αi ≥ 0, i =

1, 2, ...,m, under the constraint (10.47) . In [7] it is demonstrate that the desired
solution is given by:

ψ0 =
m∑
i=1

yiαixi, (10.49)

b0 = max
|φ|=1

ρ (φ) , (10.50)

subject to:

m∑
i=1

yiαi = 0, (10.51)

αi (yi ((xi ∗ ψ0) + b0)− 1) = 0, i = 1, 2, ...,m, (10.52)

αi ≥ 0. (10.53)

The expression (10.52) states the Kuhn-Tucker conditions. By observing these
conditions one concludes that the nonzero values of αi, i = 1, 2, ...,m, correspond
only to the vectors xi that satisfy the equality:

yi ((xi ∗ ψ0) + b0) = 1. (10.54)
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These vectors are the closest to the optimal hyperplane. They are called sup-
port vectors. The separating hyperplane can be written as:

m∑
i=1

yiα
0
i (xi ∗ x) + b0 = 0, (10.55)

where α0
i , i = 1, 2, ...,m, satisfy the constraints (10.51)-(10.53). So, we can

construct a decision function in the input space:

f (x, α0) = sign

(
m∑
i=1

yiα
0
i (xi ∗ x) + b

)
, (10.56)

It is time to make a comparison between the perceptron model of section 9.1
and SVM. Firstly, both can be used to seek for a separating hyperplane to solve
a binary classification problem. However, SVM does this task steered by an opti-
mality condition that is satisfied by the maximum margin hyperplane (see also [6]
for a comparison between perceptron and SVM). Now we describe two general-
izations for the above approach.

10.3.1 Kernel Support Vector Machines

The foundations of kernel support vector machines (KSVM) belongs to the re-
producing kernel Hilbert spaces and Mercer theory [136]. A remarkable re-
sult in this scenario is the Mercer theorem, which we summarized bellow in
order to set the mathematical machinery that we are going to use in what fol-
lows [7]. So, let the space Rn and µ a finite measure in Rn. We define
also the function spaces L2 (Rn) = {f : Rn −→ R; |f |2 is µ− integrable} and
L∞ (Rn) = {f : Rn −→ R; ∃K > 0, |f (x) | ≤ K}. Before stating the funda-
mental theorem, we also need the following definition [137]:

Definition 6 (Positive definite functions). A symmetric function h : Rn ×
Rn −→ R is positive definite if ∀m ≥ 1, ∀ (a1, . . . , am) ∈ Rm, ∀ (x1, . . . ,xm) ∈
Rn × Rn × · · · × Rn:

m∑
i=1

m∑
j=1

aiajh (xi,xj) ≥ 0. (10.57)

Theorem 1 (Mercer): Suppose k : Rn × Rn −→ R is a continuous symmetric
positive definite function (kernel) such that k ∈ L∞ (Rn × Rn). Under certain
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conditions, the integral operator Tk : L2 (Rn) −→ L2 (Rn):

(Tkf) (x) =

ˆ
R
k (x,y) f (y) dµ (y) , (10.58)

has a set of normalized eigenfunctions ψj : Rn −→ R, with associated eigenval-
ues λj > 0, sorted in non-increasing order, such that:

k (x,y) =

nF∑
j=1

λjψj (x)ψj (y) , (10.59)

where either nF ∈ N or nF =∞.
If nF < +∞, expression (10.59) means that k (x,y) corresponds to a dot

product in RNF , i.e., k (x,y) =< Φ (x) , Φ (y) >, with:

Φ : Rn −→ RNF ,

Φ (x) =
(√

λ1ψ1 (x) ,
√
λ2ψ2 (x) , . . . ,

√
λNFψNF (x)

)
, (10.60)

where ψj : Rn −→ R.
The Hilbert space RNF is called the feature space. If nF = ∞ the complete

theorem assures uniform convergence of the series that represents k (x,y). This
implies that given ε > 0, there exists an t ∈ N, such that, even if the range of Φ is
infinite-dimensional, the kernel k can be approximated within accuracy ε as a dot
product in Rt:

Φt (x) =
(√

λ1ψ1 (x) ,
√
λ2ψ2 (x) , . . . ,

√
λtψt (x)

)
.

With these results, the KSVM generalizes the linear support vector machines
through the kernel function k. Specifically, we apply the kernel trick and replace
the inner product in expression (10.55) to its kernel version to write the hypersur-
face that separates positive from negative samples in the input space as [7]:

F (x) ≡
m∑
i=1

yiαik (xi,x) + b̃ = 0, (10.61)

where αi ≥ 0, i = 1, 2, ·, ·, ·,m, are Lagrange multipliers in the quadratic op-
timization problem behind KSVM technique [7]. This problem is generated by
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replacing the inner product in expression (10.48) to its kernel version. Hence, we
maximize the expression:

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαjk (xi,x) , (10.62)

in the non-negative quadrant αi ≥ 0, i = 1, 2, ...,m, under the constraint (10.47).
Likewise in the linear case, the samples xi with αi 6= 0 are named support

vectors. Let Φ (x) = (z1 (x) , z2 (x) , z3 (x) , . . . , znF (x)) be the map in expres-
sion (10.60). Hence, since k (xi,x) =< Φ (xi) , Φ (x) >, the separating surface
in equation (10.61) can be written in the feature space RnF as:

nF∑
r=1

ωrzr (x) + b̃ = 0 (10.63)

where ωr =
∑m

i=1 yiαizr (xi).
Therefore, we can generalize expression (10.56) by using the inner product

defined by the kernel k :

f (x, α0) = sign

(
M∑
i=1

yiα
0
i k (xi ∗ x) + b̃

)
, (10.64)

or, equivalently, we can use the linear decision function in the feature space Z :

f (x, α0) = sign

[
M∑
i=1

yiα
0
i

(
nF∑
r=1

λrzr
(
xi
)
zr (x)

)
+ b̃

]
, (10.65)

These expressions define the kernel SVM (KSVM) method [7, 12]. In sum-
mary, the method computes a separating hypersurface (Figure 10.3.(a)) in the in-
put space through expression (10.61) which corresponds to seek for the hyper-
plane defined by equation (10.63), in the feature space, which separates positive
and negative observations with the maximum margin, as represented in Figure
10.3.(b).

Some possibilities for the kernel k can be found in [136]. An usual choice for
the kernel function k is the radial basis function (RBF), given by:

k (x,y) = exp

(
||x− y||2

2σ2

)
, (10.66)

where σ ∈ R.
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Figure 10.3: (a) Decision boundary in the input space. (b) Separating hypersurface

in the feature space. Reprinted from [6].

10.3.2 General Non-separable Case

Sometimes the subsets may be non-separable, that means, we can not find a small
constant δ such that conditions (9.7)-(9.8) hold true. An important property of
the SVM is its extendibility to non-separable case through slack variables ξi that
simulate pushing outlier samples toward the correct group [7]; that means:

〈xi + ξiφ, φ〉+ b ≥ 1⇐⇒ 〈xi, φ〉+ b ≥ 1− ξi 〈φ, φ〉 , (10.67)

〈xi − ξiφ, φ〉+ b ≤ −1⇐⇒ 〈xi, φ〉+ b ≤ −1 + ξi 〈φ, φ〉 . (10.68)

The norm 〈φ, φ〉 can be incorporated in the slack variables values. Besides,
we can use the fact that yi ∈ {−1, 1} to summarize expressions (10.67)-(10.68)
as:

yi (〈xi, φ〉+ b) ≥ 1− ξi. (10.69)

Moreover, one must incorporate the slack variables in the objective function:

τ(φ, ξ, C) =
1

2
||φ||2 + C

M∑
i=1

ξi, (10.70)
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where C is a relaxation constant. The minimization of function (10.70) subject
to constraints (10.69) gives the non-separable linear SVM, also called C-SVM in
[7, 138]. To perform this task we must follow the same steps of section 10.3,
which we let as exercise.

We shall notice that it is not possible to guarantee that these C-SVM machines
possess all the nice properties of the SVM machine defined constructed in section
10.3.

10.4 Discriminant Principal Components Analysis

We shall remember that feature is any numerical value that can be derived from
the input data. Given a feature space, a key question is ”how can we determine
(or compute) the most important discriminant features for a pattern recognition
task, like classification?” Discriminant analysis techniques address this question,
which is very known in the context of PCA.

The Figure 10.6 is a simple example that pictures the limitation of PCA for
discriminant features extraction. Both Figures 10.6.(a) and 10.6.(b) represent the
same data set. Figure 10.6.(a) just shows the PCA directions (x̃ and ỹ) and the
distribution of the samples over the space. However, in Figure 10.6.(b) we dis-
tinguish two patterns: plus (+) and triangle (H). We observe that the principal
PCA direction x̃ can not discriminate samples of the considered groups because
the projection of the data points over direction x̃ will mix the patterns in the cor-
responding one-dimensional subspace.

In general, Fisher’s linear discriminant analysis (LDA) is used to identify the
most important linear directions for separating sample groups rather than PCA
[22]. This method, as well as the weighted pairwise variant of the well-known
multi-class Fisher criterion introduced in [139] has the limitation of finding num-
ber of groups - 1 meaningful discriminant directions (see section 10.5).

In [140] it is proposed the DPCA technique, based on the idea of using the
discriminant weights obtained by separating hyperplanes to select among the prin-
cipal components the most discriminant ones.

The original DPCA is implemented taking as input a labeled training set:

X = {(x1, y1), (x2, y2) . . . (xM , yM)}. (10.71)
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(a) (b)

Figure 10.4: (a) Scatter plot and PCA directions. (b) The same population but

distinguishing patterns plus (+) and triangle (H).

Firstly, for discarding redundancies, the PCA transformation matrix Ppca =

[p1,p2, ...,pm] is computed and each zero mean data vector ui is projected gen-
erating a vector ui = (Ppca)

T x̃i. Afterwards, the obtained M × m′ data matrix
and their corresponding labels are used as input to calculate the separating hyper-
plane. In the following we focus on the SVM technique, although any other linear
classifier could be used.

Since DPCA assumes only two classes to separate, there are only one dis-
criminant vector φsvm = (w1, w2, · · ·, wm) given by the SVM hyperplane. If we
multiply the M ×m most expressive features matrix by the m × 1 discriminant
SVM vector:

c1 = x11w1 + x12w2 + ...+ x1mwm, (10.72)

c2 = x21w1 + x22w2 + ...+ x2mwm,

...

cM = xN1w1 + xN2w2 + ...+ xNmwm.

we get the most discriminant feature ci ∈ R of each one of the m-dimensional
vectors xi. Therefore, we can determine the discriminant contribution of each
feature by investigating the weights [w1, w2, ..., wm]. In fact, weights that are esti-
mated to be 0 or approximately 0 have negligible contribution on the discriminant
scores ci described in equation (10.72), indicating that the corresponding features
are not significant to separate the sample groups. In contrast, largest weights (in
absolute values) indicate that the corresponding features contribute more to the
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discriminant score and consequently are important to characterize the differences
between the groups.

Therefore, instead of sorting these features by selecting the corresponding
principal components in decreasing order of eigenvalues, as PCA does, DPCA
selects as the most important features for classification the ones with the highest
discriminant weights, that is, |w1| ≥ |w2| ≥ ... ≥ |wm| .

10.5 Linear Discriminant Analysis (LDA)

The primary purpose of LDA is to compute discriminant directions to separate
samples of distinct groups by maximizing their between-class separability while
minimizing their within-class variability. Its main objective is to find a projection
matrix Wlda that maximizes the Fisher’s criterion:

Wlda = arg max
W

∣∣W TSbW
∣∣

|W TSwW |
(10.73)

where Sb and Sw are the between-class and within-class matrices, respectively,
which are defined as:

Sb =

g∑
i=1

Ni(xi − x)(xi − x)T and Sw =

g∑
i=1

Ni∑
j=1

(xi,j − xi)(xi,j − xi)
T

(10.74)
with Ni representing the number of training pattern from class ’i’, xi,j is the m-
dimensional pattern j from class ’i’, g is the total number of classes. Each sample
group ’i’ has a class mean, which is denote as xi, where:

xi =
1

Ni

Ni∑
j=1

xi,j (10.75)

and the grand mean vector x, equivalent to expression (10.2), is given by:

x =
1

N

g∑
i=1

Nixi =
1

N

g∑
i=1

Ni∑
j=1

xi,j (10.76)

where N is total number of samples, that is, N = N1 +N2 + ...+Ng.
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It can be demonstrated that the Fisher criterion is maximized when the projec-
tion matrix Wlda is the solution of the eigensystem problem, [71, 132]:

SbW − SwWΛ = 0. (10.77)

So, by multiplying both sides of equation 10.77 by S−1
w , we obtain:

S−1
w SbW − S−1

w SwWΛ = 0,

S−1
w SbW −WΛ = 0,

(S−1
w Sb)W = WΛ.

(10.78)

and, consequently,Wlda is composed the g−1 eigenvectors of S−1
w Sb with nonzero

eigenvalues, [132]. In the case of a two-class problem, the LDA projection matrix
is in fact the leading eigenvector wlda of S−1

w Sb, as represented in Figure 10.5.

Figure 10.5: Representation of separating hyperplane generated by LDA

The matrix Sw may be singular when there are a limited number of total train-
ing observations N compared to the dimension of the feature space m [71]. So,
the performance of the standard LDA can be seriously degraded due to the fact that
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it is necessary to invert the Sw matrix to find the LDA subspace. In order to deal
with such situations we can use a regularized version of the LDA approach called
Maximum Uncertainty LDA (MLDA), [71] which replaces Sw by the matrix:

S∗w = S∗p(N − g) (10.79)

with S∗p = ΦΛ∗ΦT , where Φ is composed by the eigenvectors of matrix:

Sp =
Sw

(N − g)
, (10.80)

the diagonal matrix Λ∗ is formed by:

Λ∗ =


max{λ1, λ} 0 . . . 0

0 max{λ2, λ} . . . 0

· · · ·

0 0 . . . max{λm, λ}

 (10.81)

where, each λi, is an eigenvalue of Sp and λ is computed by:

λ =
1

m

m∑
i=1

λi. (10.82)

The output of the MLDA is the projection matrix Wmlda computed by replac-
ing Sw with S∗w in the Fisher criterion and by solving the corresponding optimiza-
tion problem:

Wmlda = arg max
W

∣∣W TSbW
∣∣

|W TS∗wW |
. (10.83)

The Algorithm 6, proposed in [71], summarizes the MLDA procedure.

10.6 Kernel PCA

Consider the kernel k : Rn × Rn −→ R and the corresponding map Φ : Rn −→
RNF of Mercer theorem (section 10.3.1). Also, we consider the dataset S =

{x1,x2, . . . ,xm}⊂ Rn. So, we can project S in the feature space to compose the
set Φ (S) = {Φ (x1) , Φ (x2) , . . . , Φ (xm)}⊂ RNF .
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Algorithmus 6 Procedure for MLDA.
1: Find the Φ eigenvectors and Λ eigenvalues of Sp, where Sp = Sw

(N−g)

2: Calculate the average eigenvalue λ using expression (10.82);

3: Form a new matrix of eigenvalues through:

Λ∗ = diag[max{λ1, λ}, ...,max{λn, λ}];

4: Compute the modified within-class scatter matrix

S∗w = S∗p(N − g) = (ΦΛ∗ΦT )(N − g). (10.84)

5: Compute Wmlda by solving the problem (10.83).

The kernel version of the PCA, named KPCA technique, is developed based
on the following assumptions

1) Samples in the feature space have zero mean:

1

m

m∑
i=1

Φ (xi) = 0, (10.85)

2) The covariance matrix R in the feature space:

R =
1

m

m∑
i=1

Φ (xi)Φ (xi)
T , (10.86)

has eigenvectors vk , k = 1, 2, . . . , NF that can be expressed as a linear com-
binations of projected samples:

vk =
m∑
j=1

akjΦ (xj) , (10.87)

3) The matrix K = {k (xi,xj)}1≤i,j≤m , named Gram matrix, is non-singular.
With these assumptions in mind, we follow the main ideas of linear PCA (sec-

tion 10.1) but considering the projected dataset Φ (S). Hence, the eigenvalue-
eigenvector equation Rvk = λkvk is central in the development. Due to expres-
sion (10.86) and the assumption 2 , this equation can be rewritten as:

1

m

m∑
i=1

Φ (xi)Φ (xi)
T

(
m∑
j=1

akjΦ (xj)

)
= λk

(
m∑
j=1

akjΦ (xj)

)
. (10.88)

175



The remaining text is constructed based on the reference [44]. So, we apply
the key step that consists in rewrite equation (10.88) using the kernel function k
computed in the pairs (xi,xj). Since k (xi,xj) = Φ (xi)

T Φ (xi), this is done by
multiplying both sides of expression (10.88) by Φ (xl)

T :

1

m

m∑
i=1

Φ (xl)
T Φ (xi)Φ (xi)

T

(
m∑
j=1

akjΦ (xj)

)
= λk

(
m∑
j=1

akjΦ (xl)
T Φ (xj)

)
,

(10.89)
that is equivalent to:

1

m

m∑
i=1

k (xl,xi)

(
m∑
j=1

akjk (xi,xj)

)
= λk

(
m∑
j=1

akjk (xl,xj)

)
, (10.90)

which can be re-written in matrix form as:

K2ak = mλkKak, (10.91)

where K = {k (xi,xj)}1≤i,j≤m and ak =
(
ak1 ak2 . . . akm

)T
.

From the assumption 3 above we finally obtain:

Kak = mλkak. (10.92)

Now, we shall return to 10.87 and impose the normalization constraint to the
eigenvectors vi:

1 = vTi vi =
m∑
j=1

m∑
l=1

aijΦ
T (xj) ailΦ (xl) =

m∑
j=1

m∑
l=1

aijailk (xj,xl)

= aTi Kai = mλia
T
i ai (10.93)

So, a projected point Φ (x) is represented in the KPCA basis of the normalized
eigenvectors as:

Φ (x) =

NF∑
i=1

bivi, (10.94)

where, each component bi can be computed by:

bi = ΦT (x)vi =
m∑
j=1

aijΦ
T (x)Φ (xj) =

m∑
j=1

aijk (x,xj) (10.95)
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Before continuing, we shall notice the number of non-null eigenvalues does
not exceed the number of samples. However, the number of nonlinear principal
components can exceed the dimension n of the input samples.

The development of KPCA in the general case, where the assumption (1) is not
verified, can be found in [44]. Basically, likewise in the linear PCA, we centralize
the projected samples:

Φ̃ (xi) = Φ (xi)−
1

m

m∑
i=1

Φ (xi) , (10.96)

and compute the Gram matrix elements k̃ (xs,xt) as:

k̃ (xs,xt) = Φ̃T (xs) Φ̃ (xt)

=

(
Φ (xs)−

1

m

m∑
i=1

Φ (xi)

)T (
Φ (xt)−

1

m

m∑
i=1

Φ (xi)

)T

. (10.97)

After some algebra, we can show that the Gram matrix K̃ can be computed
by:

K̃ = K − 1mK −K1m + 1mK1m, (10.98)

where 1m ∈ Rm×m is the matrix in which every element is equal to 1/m. We
let the details to obtain expression (10.98) as exercise (see also [44]). Expression
(10.98) shows that we can evaluate K̃ using only the kernel function. Once K̃ we
determine the eigenvalues and eigenvectors by solving expression 10.92 with K
replaced by K̃. So, we must perform the following steps:

1. Solve the eigenvalue-eigenvector equation:

K̃ãk = mλ̃kãk. (10.99)

2. Nomalization:
1 = ṽTi ṽi = ãTi K̃ãi = mλ̃iã

T
i ã. (10.100)

3. Representation in the normalized KPCA basis:

Φ̃ (x) =

NF∑
i=1

b̃iṽi, (10.101)
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where:

b̃i = Φ̃T (x) ṽi =
m∑
j=1

ãijΦ̃
T (x) Φ̃ (xj) =

m∑
j=1

ãij k̃ (x,xj) . (10.102)

Once expression (10.101) is computed we shall remember equation (10.96)
are write:

Φ (x) =
1

m

m∑
i=1

Φ (xi) +

NF∑
i=1

b̃iṽi (10.103)

10.7 Classification versus Reconstruction

In the context of image processing it is worthwhile to analyze how good a low
dimensional representation will look like by visualizing the projected data in the
original space. So, returning to the equation (10.10) given a projected centered
data u, this is formally performed by the operation:

x = Ppcau + x̂. (10.104)

The operation (10.104) is named reconstruction. The vector x obtained be-
longs to the original space and, consequently, its patterns can be recognized
through visualization. From the viewpoint of feature extraction, reconstruction
and classification are two different problems. In the former, one seeks for a sub-
space able to represent features well perceivable on the original data space. On
the other hand, classification depends on finding out a projection that emphasizes
discriminative patterns, sometimes related to details in the samples and, conse-
quently, less useful for data visualization.

More specifically, since PCA explains the covariance structure of all the data
its most expressive components, [141], that is, the first principal components with
the largest eigenvalues, do not necessarily represent important discriminant direc-
tions to separate sample groups, [142]. The Figure 10.6 is a simple example that
pictures this fact. Both Figures 10.6.(a) and 10.6.(b) represent the same data set.
Figure 10.6.(a) just shows the PCA directions (x̃ and ỹ) and the distribution of
the samples over the space. However, in Figure 10.6.(b) we distinguish two pat-
terns: plus (+) and minus (H). We observe that the principal PCA direction x̃
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can not discriminate samples of the considered groups because the projection of
the dataset over x̃ will mix the different patterns observed in the figure. On the
other hand, the PCA direction ỹ is efficient for classification allowing to separate
samples groups. So, we say that ỹ is the most discriminant direction to recognize
patterns plus (+) and triangle (H).

(a) (b)

Figure 10.6: (a) Scatter plot and PCA directions. (b) The same population but

distinguishing patterns plus (+) and triangle (H).

Give a feature space, not necessarily PCA, the LDA (section 10.5) technique
can be used to compute meaningful discriminant directions. Before continuing, it
is important to highlight that the solution of the LDA optimization problem (equa-
tion 10.73) is, in general, gives directions different from the coordinate directions
of the original feature space. If we pay attention in the mathematical formulation
of LDA and PCA we notice that the former works by maximizing the between-
class separability while minimizing their within-class variability, that means, the
method tries to collapse the classes in single points as separated as possible in or-
der to get a subspace efficient for classification. In a different way, the optimiza-
tion criterion behind PCA can be written as: seek for the matrix P that minimizes
the root mean squared error (RMSE) for the reconstruction process, computed by:
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RMSE(k) =

√∑M
j=1 ||P.Ik.P Txj − xj||2

M
, (10.105)

where Ik is a truncated identity matrix that keeps the selected subspace with di-
mension k, P = Ppca, and ‖·‖ is the usual 2-norm. Hence, the projection matrix
Ppca has the property of minimizing truncation error inserted when projecting the
database samples in a reduced PCA subspace. We can show that this process is
equivalent to seek for directions that maximize the variance of the project data.
In fact, the distribution of eigenvalues of the covariance matrix R in expression
(10.6) gives a measure of those variances.

In the case of image datasets we can visualize these facts by considering an-
other version of the reconstruction problem yielded with the help of a separating
hyperplane. Hence, given the direction q in the feature space, we can use the
expression:

I = Ô + δ · q, (10.106)

where δ ∈ R is a parameter, and Ô is a point in the feature space. If q is a
PCA direction, a common choice is δ ∈ {±j · λ0.5, j = 0, 1, 2, 3}, and λ is the
eigenvalue associated to q.

For instance, as described in section 10.3, the SVM method seeks to find a
decision boundary that separates data into different classes as well as possible.
The Figure 10.7 pictures a dataset composed by two classes. This figure represents
the dataset, the PCA components (PCAx and PCAy) and the separating plane
obtained by the SVM method with its orientation and position given by expression
(10.49)-(10.50). In the representation of Figure 10.7, we assume that the b0 = 0.
If we set q = ψ0 and take a sequence δ1, δ2, · · ·, we generate an array of new data
points I1, I2, · · · in the line defined by Ô and the vector ψ0 in the PCA space. So,
expression (10.104) allows to visualize these samples in the original image space
through the computation of the sequence:

xi = PpcaIi + x̂, i = 1, 2, .... (10.107)

An analogous operation can be performed using any other hyperplane in the
PCA space. In this line, in [143] authors use an hyperplane with the orientation
given by the LDA technique and passing through origin of the PCA coordinate
system (centroid position of the dataset), as represented in Figure 10.8. The LDA
solution is a spectral matrix analysis of the data and is based on the assumption
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Figure 10.7: SVM separating hyperplane.

that each class can be represented by its distribution of data, that is, the corre-
sponding mean vector (or class prototype) and covariance matrix (or spread of the
sample group). In this sense, the hyperplane shown in Figure 10.8 can be used for
classification, although it is expected to misclassify data points, specially nearby
the frontier of the classes.

The description of the SVM solution, on the other hand, does not make any as-
sumption on the distribution of the data, focusing on the observations that lie close
to the opposite class, that is, on the observations that most count for classification.
In other words SVM discriminative direction focuses on the data at the boundary
of the classes, extracting group-differences that are less perceivable on the origi-
nal image space. This is emphasized in Figure 10.7 which indicates that SVM is
more robust to outliers, given a zoom into the subtleties of group differences.

However, according to the above discussion, if we apply expression (10.106)
over the LDA and SVM discriminate directions (normal vector of the separating
planes) and project the result back into the image domain we expect to observe a
better reconstruction result for the LDA case. To clarify this fact, we shall notice
that LDA problem (10.73), for binary databases, tries to collapse the two classes in
single points as separated as possible. Therefore, the LDA discriminate direction
takes into account all the data allowing to perform a more reliable reconstruction
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Figure 10.8: LDA separating hyperplane.

process through expression (10.106).

10.8 Exercises

1. Generate a dataset with two patterns in R2, with labels in the set {−1, 1},
separable by a line. Compute the linear SVM and find out the support vec-
tors.

2. Consider a set of points R2 with two patterns like in Figure 10.9.

Compute KSVM and try to find a three dimensional feature space where the
projected patterns are linearly separable

3. Generate the Figure 1 of reference [143] for the FEI database.

4. Consider the database of exercise 3. Project the data in the PCA space.
Apply SVM for binary classification. Evaluate the result using F1-Score
(equation 8.32) and Accuracy (equation 8.33).
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Figure 10.9: Two patterns in R2 with non-linear separating curve.

5. Reproduce exercise 4 for KSVM.

6. Compute a linear classifier for gender in the FEI database using the LDA
technique.

7. Consider the FEI database and apply the KPCA. Compute a SVM classifier
in the KPCA space .
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Chapter 11

Deep Neural Networks

11.1 Tensor Algebra

In the traditional image processing literature, a tensor of order n is just a gener-
alized matrix X ∈ <m1×m2×...×mn [144]. So, it becomes clear that there is an
isomorphism between <m1×m2×...×mn and <m1·m2···mn . Therefore, the notions of
internal product and norm in <m1×m2×...×mn are induced, in a natural manner,
from the <m1·m2···mn space as follows.

Definition 7 The internal product between two tensors X ∈ <m1×m2×...×mn and
Y ∈ <m1×m2×...×mn is defined by:

〈X,Y〉 =

m1,...,mn∑
i1=1,...,in=1

Xi1,..,inYi1,..,in (11.1)

Definition 8 The Frobenius norm of a tensor is given by the expression:

‖ X ‖=
√
〈X,X〉, (11.2)

,,
and the distance between tensors X and Y is computed by:

D(X,Y) =‖ X−Y ‖ . (11.3)
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11.2 Convolution Operation

Since a digital image can be represented as a matrix of intensities, we can apply
discrete operations in order to transform the input signal. The discrete convolution
between the input signal u (m,n) and the filter h (m,n) is defined by:

v (m,n) = h (m,n)~ u (m,n) =
+∞∑

k=−∞

+∞∑
l=−∞

h (k, l)u (m− k, n− l) (11.4)

The mathematical properties behind these operations are discussed in the Ap-
pendix A. In practice, we implement these transformations through a discrete filter
h : W → R, where:

W = {−ξ,−ξ + 1, . . .− 2,−1, 0, 1, 2, . . . , ξ − 1, ξ}2 . (11.5)

The value f = 2ξ+1 is the filter size and matrix {h (m,n)}−ξ≤m,n≤ξ is named
the filter mask. The discrete convolutions is computed by:

v (m,n) =
∑

(k,l)∈W

h (k, l)u (m− k, n− l) , (11.6)

where u (m,n) is the input image, v (m,n) is the output image and h (k, l) is the
filter, also named the convolution kernel. Depending on the frequency response
of the kernel h (k, l) the filter may be a Low-Pass, High-Pass and Band-Pass.

11.2.1 Padding in Convolutions

The operation implemented through expression (11.6) has some issues for pixels
nearby the boundary of the image. So, let us consider a image u ∈ RH×W and
take the boundary pixels B = {u (m,n) ; m = H or n = W}. The convolution
(11.6) is defined only in positions (m,n) that satisfies:

|m− s| ≥ ξ and |n− t| ≥ ξ, ∀ (s, t) ∈ B.

Consequently, the convolution in expression (11.6) will generate a new array
v ∈ R(H−2ξ)×(W−2ξ) with resolution less than the input image. In terms of the
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filter size, the resolution of the convolution output v is:

(H − 2ξ)× (W − 2ξ) =

(
H − 2

(f − 1)

2

)
×
(
W − 2

(f − 1)

2

)
= (H − f + 1)× (W − f + 1) . (11.7)

In order to address this issue, we can use padding that consists of increasing
the image resolution by adding zeros all around the image boundary. Specifically,
if we apply a padding p we get a new image ũ ∈ R(H+2p)×(W+2p), such that:

ũ (m,n) = u (m,n) , if (p+ 1) ≤ m ≤ (H + p) , (p+ 1) ≤ m ≤ (W + p) ,

ũ (m,n) = 0, otherwise.

However, the idea is to use padding in order to get a output image v with
the same dimensions of the input u. So, since the resolution of ũ is (H + 2p) ×
(W + 2p) we must apply expression (11.7) to calculate the dimension of the con-
volution h~ ũ in expression (11.6) that is given by:

((H + 2p)− 2ξ)×((W + 2p)− 2ξ) = (H + 2p− f + 1)×(W + 2p− f + 1) .

(11.8)
Consequently, in order to get an output ṽ = h~ũ ∈ RH×W , we need a padding

p that satisfies:
H = H + 2p− f + 1,

W = W + 2p− f + 1,

So, consequently:

p =
f − 1

2
. (11.9)
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11.2.2 Strided Convolution

In this case, we chose a integer value s and compute the convolution only in the
positions (m,n) that satisfies:

ξ + 1 ≤ m ≤ αs, 0 ≤ α ≤
⌊
H

s

⌋
and H − αs ≥ ξ, (11.10)

ξ + 1 ≤ m ≤ βs, 0 ≤ β ≤
⌊
W

s

⌋
and W − βs ≥ ξ. (11.11)

As a consequently, if we apply padding p and stride s we get an output ṽ ∈
RH̃×W̃ such that:

H̃ =

⌊
H + 2p− f

s
+ 1

⌋
, (11.12)

W̃ =

⌊
W + 2p− f

s
+ 1

⌋
. (11.13)

11.2.3 Convolution over Volumes in the CNN

Firstly, we shall remember a relationship between convolution (11.6) and the inner
product in expression (11.1) given by:

〈u, h〉 (m,n) =
∑

(k,l)∈W

h (k, l)u (m+ k, n+ l) = u (m,n)~ h (−m,−n)

(11.14)
where u ∈ RH×W is represents the input image and h ∈ Rf×f represents the filter.
The expression (11.14) allows to write the convolutions using inner products.

For instance, given a volume (tensor) u ∈ RW×H×D with D even, the convo-
lutions in a CNN layer follows:

1) Filter dimension must be such that the number of channels in the input and
filter depth are the same; that means {h (m,n, s)} ∈ Rf×f×D.

2) We must define the discrete filter h : W → R, where:

W = {−ξ, . . . ,−1, 0, 1, . . . , ξ}2 ×
{⌊
−D

2

⌋
, . . . ,−1, 0, 1, . . . ,

⌊
D

2

⌋}
(11.15)
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with value f = 2ξ + 1 like before and matrix {h (m,n, s)}(m,n,s)∈W is named the
filter mask. The discrete convolutions is computed by:

v (m,n) =
∑

(k,l,t)∈W

h (k, l, t)u (m+ k, n+ l, s̄+ t) = u (m,n, s̄)~h (−m,−n,−t) ,

(11.16)
where s̄ = median {1, 2, . . . , D} (see Figure 11.1).

Figure 11.1: Representation of the convolution over a volume in the CNN.

Expression (11.14) opens the door for generalization of the convolution oper-
ation following the kernel trick (section 10.3.1). Specifically, given a kernel k, we
can replace the inner product in expression (11.1) to its kernel generalization:

〈u, h〉 (m,n) ≡ k (u (m,n) , h (−m,−n)) , (11.17)

For example, if the kernel k is the RBF one (expression (10.66)), the equation
is computed by:

k (u (m,n) , h (−m,−n)) = exp

(
||u (m,n)− h (−m,−n) ||2

2σ2

)
, (11.18)
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where u (m,n) and h (−m,−n) are the arrays:

u (m,n) = {u (m+ k, n+ l)}(k,l)∈W , (11.19)

h (−m,−n) = {h (−k,−l)}(k,l)∈W , (11.20)

with the norm ||.||2 given by expression (11.2). In equations (11.19)-(11.20) we
are supposing that the order in the setW is coerent with the convolution operation.
Generalization of CNN architectures are obtained using the the kernel trick [145]
aiming to learn how to approximate kernel feature map on training data.

11.2.4 Pooling Operation

In order to reduce data dimension, a pooling operation can be appied. It performs
subsampling of an input image u ∈ RH×W . It uses stride s, following expressions
(11.10)-(11.11) as well as padding p. So, the final image resolution is given by
expressions (11.12)-(11.13). Its computation is based on the above expression:

ũ (i, j) = pool {u (m,n) , (m,n) ∈ Rij} , (11.21)

withRij being a neighborhood of pixel (i, j), with size np×np and pool returns the
a value (ũ (i, j)) generated through the sub-image in Rij . Usually, ũ (i, j) is the
maximum (max-pooling) or the mean value (average pooling) of the pixels inside
Rij . Figure 11.2.(a) shows the application of max-pooling in the image 4 × 4,
with stride s = 2 and padding p = 0. Figure 11.2.(b) performs this operation over
a volume (tensor) by just applying max-pooling over each data plane separately.
See [146] for a review about pooling operations.

11.3 Convolutional Neural Networks - CNN

A CNN can be seen as a special case of feedforward neural networks that has
convolutions as one of their basic building blocks [93]. Pioneered by the work
of LeCun et al. [147], CNNs are regarded as state-of-the-art in deep learning
application to images [93].
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(a)

(b)

Figure 11.2: (a) max-pooling with size 2×2 , stride s = 2, padding p = 0. (b) Ap-

plication of max-pooling in a tensor: each data plane is processed independently.

A specific CNN architecture is represented in Figure 11.3. The first layer (l =

0), the input one, receives the image, here denoted by a tensor z0 ∈ Rm0×η0×β0 ,
where m0 = η0 = 100 and β0 = 3 in the Figure 11.3. The input image is
processed by the CNN that is composed by two convolutional layers (l = 1, 3),
formed by n1 = 50 and n3 = 10 filters, represented by real matrices W l

kl
∈

R3×3×dl , kl = 1, 2, . . . , nl, l = 1, 3, where nl = 50, n3 = 10, dl is the deph of
each filter mask. In the case of Figure 11.3 d1 = 3 and d3 = 50.

In this example, we are setting the padding p = 1 and the stride s = 1 in
expressions (11.12)-(11.13) for all convolution operations. Hence, the convolu-
tional layer l = 1 outputs 50 filtered images, each one with size 100 × 100 (that
is why the notation 100 × 100 × 50 appears in the figure). Also, we have bias
blkl = blkl · 1 ∈ Rml×ml , where 1 is the matrix with all entries igual to one, blkl is a
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scalar value, l = 1, 3, with m1 = 100 and m3 = 50, as we will see next, and .
The results of the convolutions are processed by activation functions ϕ : R→

[a, b] (see section 9.4), in a process that can be formally written as:

zlkl = ϕ
(
W l
kl
~ zl−1 + blkl

)
, kl = 1, 2, . . . , nl, l = 1, 3, (11.22)

where ϕ operates element-wise and ’~’ denotes the convolution operation [93].
Each zlkl generated in expression (11.22) is named a feature map.

Besides, the network includes a pooling layer (l = 2 in Figure 11.3) that
performs subsampling, as follows:

zl+1
i,j,kl+1

= pool
{
zlm,n,kl , (m,n) ∈ Rij

}
, l = 1, 3, kl+1, kl = 1, 2, . . . , nl,

(11.23)
withRij being a neighborhood of pixel (i, j), with size 2× 2 in our implementa-
tion, and pool returns the maximum or the mean value insideRij . In any case, the
frames that enter pooling layer l = 2 are reduced to resolution 50×50, generating
a block with size 50 × 50 × 50 that is the input data to layer l = 3 that is a an-
other convolution layer. The corresponding filters are tensor W 3

k3
∈ R3×3×d3and

d3 = 50. Moreover, the bias b3
k3
∈ R50×50 where k3 = 1, 2, . . . , 10. Then, it

is applied the activation function, following expression (11.22) with l = 3. The
feature maps generated enter the pooling layer that reduces their resolution and
generate a tensor z4 ∈ R25×25×10.

Next, z4 is vectorized by a reshape operation that yield an array v4 ∈ R25·25·10

that is the input of a MLP attached to the last pooling layer. This MLP, also
named fully connected neural network (FCNN) that performs the classification of
the input data z0.

A general CNN architecture has as learnable parameters the filters W l
kl
∈

Rsl×sl×dl , bias blkl ∈ R, with l = 1, 2, . . . ,M and kl = 1, 2, . . . , nl as well

as the MLP weights and bias arrays represented by
{
w

(i)
jk

}1≤j≤ςi−1

1≤k≤ςi
, b(i) =(

b
(i)
1 , b

(i)
2 , . . . , b

(i)
ni

)
, i = 1, 2, . . . L+1, respectively (see section 9.3). These arrays

encompass the parameters of the network, that can be assembled in only one array
Θ, that should be obtained in the training step by solving the problem:

Θ∗ = arg min
Θ

Loss (Θ,Dtr) , (11.24)

where Loss is the loss in expression (8.3) and Dtr is the training set.
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Figure 11.3: CNN architecture with two convolutional layers.

Given an input image, the computational cost of the network is dominated by
the convolutional layers. Moreover, CNN parameters:

W =
{(
W l
kl
, blkl
)1≤l≤M

1≤kl≤nl

}
∪
{{

w
(i)
jk

}1≤j≤ςi−1

1≤k≤ςi
, b(i)

}
, (11.25)

are obtained in the training process by using a gradient descent method, like Algo-
rithms 3 and 4. The back-propagation algorithm is applied to efficiently calculate
the gradient of expression (11.38), with respect to its parameters (see section 9.7).
The computational cost of this process is defined by the backpropagation algo-
rithm.

When a single input image z0 ∈ Rm0×η0×β0 passes to the network the compu-
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tational complexity of all M convolutional layers is [148]:

O

(
M∑
l=1

nl−1 · s2
l · nl ·ml · ηl

)
, (11.26)

where nl−1 and nl represent the number of filters of the convolutional layers l− 1

and l, respectively; sl denotes the the spatial size (length) of the filters in the l-th
layer, and (ml, ηl) gives the spatial resolution of the output feature map of the
layer l.

Moreover, by considering Figure 9.6, the computational complexity of the
FCNN (or MLP) component of the CNN is:

O

(
L+1∑
l=1

p2
l−1 · pl

)
, (11.27)

where we must remember that p0 = ml · ηl .
So, if the training process lasts Nepoch, the forward computation steps encom-

passes a computational complexity of:

Nepoch ·N ·O

(
M∑
l=1

nl−1 · s2
l · nl ·ml · ηl +

L+1∑
l=1

p2
l−1 · pl

)
. (11.28)

The complexity of the backpropagation algorithm (section 9.7) is linear in
the cardinality of W ; that means, it is O (W ) (see section 4.16 of [113]). The
initialization of the network parameters (filters and FCNN weights and bias) can
be performed through the procedures of section 9.10.

11.4 Generative Adversarial Network - GAN

Before enter in the GAN subject, we shall revise some elements in distribution
theory. So, we let a probability distribution, or probability density function p over
a data space χ:

p : χ −→ [0, 1] ,

ˆ
χ

p (x) dµ (x) = 1.
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In this context, we can compute the following quantities:
Entropy:

E (p) = −
ˆ
p (x) log (p (x)) dµ (x) .

Kullback-Leibler (KL) divergence [149]:

KL (pr||pα) =

ˆ
log

(
pr (x)

pα (x)

)
pr (x) dµ (x)

=

ˆ
log (pr (x)) pr (x) dµ (x)−

ˆ
log (pα (x)) pr (x) dµ (x)

Jensen-Shannon (JS) divergence [150]:

JS (pr||pg) = KL

(
pr (x) ||

(
pr (x) + pg (x)

2

))
+KL

(
pg (x) ||

(
pr (x) + pg (x)

2

))
Therefore:

JS (pr||pg) =

ˆ
log

(
2pr (x)

pr (x) + pg (x)

)
pr (x) dµ (x) +

ˆ
log

(
2pg (x)

pr (x) + pg (x)

)
pg (x) dµ (x)

= log 4+

ˆ
log

(
pr (x)

pr (x) + pg (x)

)
pr (x) dµ (x)+

ˆ
log

(
pg (x)

pr (x) + pg (x)

)
pg (x) dµ (x)

= log 4 +Ex∼pr(x)

[
log

(
pr (x)

pr (x) + pg (x)

)]
+Ex∼pg(x)

[
log

(
pg (x)

pr (x) + pg (x)

)]
(11.29)

11.4.1 GAN Overview

In [112] it is proposed an approach for training generative models through an
adversarial process. In this framework two models (networks) are simultaneously
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trained: a generative model G that learns the distribution of the original data,
and a discriminative network D that evaluates the probability that a sample came
from the training data rather than from G. The key idea of the training process is
that G eventually maximizes the probability of D making a mistake. Figure 11.4
shows an overview of the training process in the GAN framework. The generator
G receives random sample drawn from a distribution pz (z), where z ∈ Z ⊂
Rk is named noise in Figure 11.4. So, we can write the generator as a function
G (θg; z) where θg are the internal parameter of the corresponding network and
G (θg; z) ∈ χ, with χ being the data space. The discriminator is another network
that computes a scalar function D (θd;x) where x ∈ χ represents an object in the
original data space. Also we suppose that we have a data generating distribution
pdata (x).

During the training process, the discriminator receives samples drawn from the
distribution pdata (x) as well as samples generated by the generator G, as shown
in Figure 11.4. The parameter update is obtained through a minimax optimization
process, described next.

Figure 11.4: Representation of training process for GANs.
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11.4.2 Original GAN Model

GAN formulation is based on the problem:

min
θg

max
θd

[
Ex∼pdata(x) (log (D (θd;x))) + Ez∼pz(z) (log (1−D (G (θg; z))))

]
.

(11.30)
To simplify notation, we follow [112] and re-write expression (11.30) as:

min
G

max
D

[
Ex∼pdata(x) (log (D (x))) + Ez∼pz(z) (log (1−D (G (z))))

]
. (11.31)

Firstly, we define:

V (G,D) = Ex∼pdata(x) [log (D (x))] + Ez∼pz(z) [log (1−D (G (z)))] , (11.32)

or:

V (G,D) =

ˆ
χ

pdata (x) log (D (x)) dx+

ˆ
Z

pz (z) log (1−D (G (z))) dz,

(11.33)
Therefore, if G is known, we can write expression (11.33) as:

V (D) =

ˆ
χ

pdata (x) log (D (x)) dx+

ˆ
χ

pg (x) log (1−D (x)) dx

=

ˆ
χ

[pdata (x) log (D (x)) + pg (x) log (1−D (x))] dx.

Let us define the function:

F (D (x)) = pdata (x) log (D (x)) + pg (x) log (1−D (x)) . (11.34)

Hence, the optimum discriminator D is defined by the associated Euler-
Lagrange equation:

∂F

∂D
= pdata (x)

1

D (x)
− pg (x)

1

(1−D (x))
= 0,
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which renders:

D∗ (x) =
pdata (x)

pdata (x) + pg (x)
(11.35)

By inserting this result in expression (11.32) we can obtain:

C (pg) = Ex∼pdata(x)

[
log

(
pdata (x)

pdata (x) + pg (x)

)]
+Ex∼pg(x)

[
pg (x)

pdata (x) + pg (x)

]
,

(11.36)
which must be minimized in pg. Comparing with expression (11.29) we notice
that:

C (pg) = − log 4 + JS (pdata||pg) . (11.37)

Theorem 1: The global minimum of C (pg)is achieved if and only if pdata =

pg and, at this point, C (pg) = − log 4.
In fact, if pdata = pg in equation (11.36) we obtain C (pg) = − log 4 due to

expression (11.37).
Besides, once JS (pdata||pg) ≥ 0 and JS (pdata||pg) = 0 if and only if pdata =

pg we conclude that:

C (pg) = − log 4 + JS (pdata||pg) ≥ − log 4, ∀pdata, pg,

and C (pg) = − log 4 if and only if pdata = pg.
The minibatch stochastic gradient descent training for GANs is shown in Fig-

ure 11.5

11.5 Convolutional Autoencoder - CAE

An autoencoder can be seen as a special case of feedforward neural network that
is trained to reproduce its input at the output layer [93]. An autoencoder consists
of two parts: encoder and decoder. The encoder is responsible for data codifi-
cation, while the decoder must reconstruct the input data from the representation
generated at the encoder output.
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Figure 11.5: Training procedure for GANs.

A convolutional autoencoder (CAE) is a deep unsupervised network that is
built through CNNs, which, in turn, have convolutions as one of their basic build-
ing blocks, as described in section 11.3.

Figure 11.6 shows an example of CAE . The first layer (l = 0), the input
one, receives the image, here denoted by z0 ∈ Rm0×m0×1, where m0 = 100 in
the Fig. 11.6. The input image is processed by the encoder that is composed by
two convolutional layers (l = 1, 3), formed by n1 = 50 and n3 = 100 filters,
represented by real matrices W l

kl
∈ R3×3×dl , kl = 1, 2, . . . , nl, l = 1, 3, and

d1 = 1, d3 = 50. In the CAE example of Figure 11.6, we are supposing padding
p = 1 and stride s = 1 for all convolutions (see expressions (11.12)-(11.13)).
Hence, the convolutional layer l = 1 outputs 50 filtered images, each one with
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size 100 × 100 (that is why the notation 100 × 100 × 50 appears in the figure).
Also, we bias blkl ∈ R, l = 1, 3. The results of the convolutions are processed
by activation functions ϕ : R → [a, b], likewise in expression (11.22). Besides,
the encoder network includes a pooling layer (l = 2) that performs subsampling,
following equation (11.23).

Hence, the feature maps that enter pooling layer l = 2 are reduced to resolu-
tion 50 × 50, generating a block with size 50 × 50 × 50 that is the input data to
layer l = 3. The feature maps yielded in the encoder output (layer l = 3) compose
the so called latent space.

The decoder network is composed by layers l = 4, 5, 6, where l = 4, 6 are con-
volutional ones, followed by activation functions like in the encoder, in a process-
ing chain formalized also through equation (11.22). The layer l = 5 encompasses
upsampling operations ylkl = upsampling

(
zl−1
kl−1

)
, where ylkl ∈ R2mkl−1

×2mkl−1

because zl−1
kl−1
∈ Rmkl−1

×mkl−1 (see [151] for details).

Figure 11.6: Components of CAE architecture: Input layer (l = 0), that receives

the input image; convolutional layers (l ∈ {1, 3, 4, 6}), made of convolution ker-

nels with size 3 × 3; pooling that reduces the dimensionality of the feature maps

through expression (11.23); upsampling that increases image resolution.

A general CAE architecture includes filters W l
kl
∈ Rsl×sl×dl , and bias blkl ∈

R, with l = 1, 2, . . . , 2M and kl = 1, 2, . . . , nl. These matrices compose the
parameters of the network, assembled in an array Θ, that should be obtained in
the training step by solving the problem:

Θ∗ = arg min
Θ

N∑
i=1

L (zi, ẑi) , with, L (z, ẑ) = ‖z − ẑ‖2
F , (11.38)

199



where zi represents an input image, ẑi is the reconstruction of zi obtained in the
decoder output.
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Appendix A

Convolutions and Linear Processes

In this text, we focus on mathematical concepts used in the study of two-
dimensional linear processes. Digital images are generally the output of two-
dimensional systems and, consequently, we need the mathematical concepts used
in the study of such systems.

A digital image can be represented as a two dimensional matrix. Its elements
are called pixels and to each pixel it is associated color channels or a gray-level
value. In the case of color images, an usual color system is the RGB one. For full
color displays we have 8 bits for each color channel. Therefore, we have 24 bits
for color representation.

Grey-level images are, in general, represented by 8 bits. So, we can assign
intensities I ∈ {0, 1, ..., 255} to each pixel. Figure A.1.a is a example of a gray-
level image and Figure A.1.b pictures the corresponding matrix of intensities.

In what follows, we will focus on gray-level images. The extension for color
images is straightforward. Basic references for this chapter are [37] and Chapter
5 of reference [5]. We start with the continuous theory because a digital image
can be seen as a discrete version of a continuous function (signal), that means, a
function f : D ⊂ R2 −→ R.
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(a) (b)

Figure A.1: (a) Digital image visualization. (b) Intensities of the pixels in a digital

image .

A.1 Two-Dimensional Signals and Digital Images

From the mathematical viewpoint, a continuous two-dimensional signal can be
represented as a function:

f : D ⊂ <2 → <; (A.1)

(x, y) f−→ z = f (x, y)

where x, y are variable of interest (time , space, etc.). In the case of a continuous
image, D would be the image domain and x, y cartesian coordinates to locate pix-
els (image points). In this case, usual operations to process the two-dimensional
signal are the convolution and Fourier transform. The latter, and its inverse are
given by:

f̂ (ω1, ω2) = (zf) (ω1, ω2) =

ˆ ∞
−∞

ˆ ∞
−∞

f (x, y) exp (−2πj (xω1 + yω2)) dxdy,

(A.2)

f (x, y) =

ˆ ∞
−∞

ˆ ∞
−∞

f̂ (ω1, ω2) exp (2πj (xω1 + yω2)) dω1dω2. (A.3)
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The convolution operation is defined as:

g (x, y) = h (x, y)~ f (x, y) =

ˆ ∞
−∞

ˆ ∞
−∞

h (x− s, y − w) f (s, w) dsdw, (A.4)

where h is the convolution kernel, also called impulse response. The elements
of functional analysis behind this definition (functional space, inner product, etc.)
can be found in [152].

In practice, we get a sampled image from the acquisition systems (digital cam-
era, CT scanner, etc.). In this case, we have a two-dimensional array, which can
be represented as a matrix, like in Figure A.1:

u (m,n) =


u (0, 0) u (0, 1) · · · u (0, N − 1)

· · ·

· · ·

u (M − 1, 0) u (M − 1, 1) · · · u (M − 1, N − 1)

 (A.5)

Once a digital image can be represented as a matrix of intensities, we can apply
discrete operations in order to transform the input signal. The discrete version of
the convolution, applied to the input signal u (m,n) , is defined by:

v (m,n) = h (m,n)~ u (m,n) =
+∞∑
s=−∞

+∞∑
w=−∞

h (m− s, n− w) f (s, w) (A.6)

Likewise the one-dimensional case, we prove the convolution theorem, which
is a very useful tool for linear filtering methods:

Theorem 1: The Fourier transform of the convolution of two functions is the
product of their Fourier transforms, that means:

g (x, y) = h (x, y)~ f (x, y)⇔ ĝ (ω1, ω2) = ĥ (ω1, ω2) · f̂ (ω1, ω2) . (A.7)

Besides another fundamental property is the following one:
Theorem 2: The inner product of two functions is equal to the inner product

of their Fourier transforms, that is:
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ˆ ∞
−∞

ˆ ∞
−∞

h (x, y) f ∗ (x, y) dxdy =

ˆ ∞
−∞

ˆ ∞
−∞

ĥ (ω1, ω2) f̂ ∗ (ω1, ω2) dω1dω2.

(A.8)

A trivial corolary of this result is the Parseval energy conservation formula,
obtained when h = f :

ˆ ∞
−∞

ˆ ∞
−∞
|f (x, y)|2 dxdy =

ˆ ∞
−∞

ˆ ∞
−∞

∣∣∣f̂ (ω1, ω2)
∣∣∣2 dω1dω2. (A.9)

Discrete counterparts of theorems 1 and 2 are obtained through the Fourier
transform of sequences (arrays), defined as:

X (ω1, ω2) =
+∞∑

m=−∞

+∞∑
n=−∞

x (m,n) exp (−j (mω1 + nω2)) , −π ≤ ω1, ω2 ≤ π

(A.10)

x (m,n) =
1

4π2

ˆ ∞
−∞

ˆ ∞
−∞

X (ω1, ω2) exp (j (mω1 + nω2)) dω1dω2. (A.11)

So, the following properties can be proved:
Theorem 3: The Fourier transform of the convolution of the two-dimensional

sequences h (m,n) and x (m,n) is the product of their Fourier transforms, that
means:

y (m,n) = h (m,n)~x (m,n)⇔ Y (ω1, ω2) = H (ω1, ω2) ·X (ω1, ω2) . (A.12)

Theorem 4: The inner product of the two-dimensional sequences h (m,n) and
x (m,n) is equal to the inner product of their Fourier transforms, that is:

I =
+∞∑

m=−∞

+∞∑
n=−∞

x (m,n) y∗ (m,n)⇔ I =
1

4π2

ˆ π

−π

ˆ π

−π
X (ω1, ω2)Y ∗ (ω1, ω2) dω1dω2.

(A.13)
Other important properties can be found in the Chapter 2 of reference [5] (see

also the exercises bellow).
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A.2 Exercises

1) Define the space LP (<2) and its inner product. In the expression (A.13)
we observe the factor (1/4π2). Why is it necessary?

2) Prove theorems 2, 3 and 4.
3) Prove the properties stated in the exercise 2.2, page 44, of the reference [5]?
4) Prove that, for two continuous signals h and f we have (multiplication

property):

g (x, y) = h (x, y) f (x, y)⇔ ĝ (ω1, ω2) = ĥ (ω1, ω2)~ f̂ (ω1, ω2)

5) Take the standard bidimensional normal distribution (see page 32, reference
[5]). Implement a low-pass filter; that means, its impulse response, based on the
continuous (normalized) distribution.

6) Take a digital image and apply the filter obtained in the exercise 4. What
happens?

7) Exercise 2.5, page 45, reference [5].
8) Would be possible to define low-pass, high-pass and high-pass filters for

two-dimensional sequences, based on Fourier transform of sequences and the The-
orem 3?

9) What happens with expressions (A.11), theorems 3 and 4, if we define the
Fourier transform of sequences as:

X (ω1, ω2) =
+∞∑

m=−∞

+∞∑
n=−∞

x (m,n) exp (j (mω1 + nω2)) , −π ≤ ω1, ω2 ≤ π

(A.14)
10) Prove the conjugation, separability, scaling and shifting properties for

Fourier transform, stated on Table 2.3, page 17, of reference [5].
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Appendix B

Kuhn-Tucker Theorem

Kuhn and Tucker generalized the Lagrange multipliers method by considering the
so-called convex optimization problem, where one minimizes a convex objective
function under convex constraints formed through inequalities [7]. A nonempty
set U ⊂ Rn is called convex if, given any two points x,y ∈ U , we have:

{z; z = αx+ (1− α)y, 0 ≤ α ≤ 1} ⊂ U. (B.1)

Moreover, a function f : U −→ R is convex if for any two points x,y ∈ U
the inequality:

f (αx+ (1− α)y) ≤ αf (x) + (1− α) f (y) , 0 ≤ α ≤ 1,

holds true.
Now, let us consider the following problem:

min
x∈U

f0(x)

subject to fk(x) ≤ 0, k = 1, 2, . . . ,m, (B.2)

where fk : U −→ R, k = 0, 1, 2, . . . ,m, are convex functions and U ⊂ Rn is a
nonempty convex set.

The solution of this problem is obtained by firstly considering the Lagrangian
[7]:
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L(x, λ0,λ) =
m∑
k=0

λkfk(x), (B.3)

where λ = (λ1, λ2, . . . , λm).
Theorem (Kuhn-Tucker). If x∗ ∈ Rn solves the optimization problem (B.2)

then there exist Lagrange multipliers λ∗0 and λ∗ = (λ∗1, λ
∗
2, . . . , λ

∗
m) such that:

1. λ∗k ≥ 0, k = 0, 1, · · ·,m and max {λ∗k ≥ 0, k = 0, 1, · · ·,m} > 0,

2. ∇xL(x∗, λ∗0,λ
∗) = 0,

3. The Kuhn-Tucker conditions:

λ∗kfk(x
∗) = 0, k = 0, 1, · · ·,m

If λ∗0 6= 0 and conditions (1)-(3) hold true, then x∗ is solution of the convex
optimization problem given by expression (B.2). Moreover, sufficient conditions
to guarantee that λ∗0 6= 0 is that there exists z ∈ Rn such that:

fk(z) < 0, k = 1, · · ·,m,

named Slater conditions. In this case, we can choose λ∗0 = 1 and the Lagrangian
in expression (B.3) takes the form:

L(x, 1,λ) = f0(x) +
m∑
k=1

λkfk(x), . (B.4)
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[108] Ke Sun and Stéphane Marchand-Maillet. An information geometry of sta-
tistical manifold learning. In Proceedings of the 31th International Confer-
ence on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014,
pages 1–9, 2014.

[109] G. F. Miranda Jr., G. A. Giraldi, C. E. Thomaz, and R. D. Millan. Apren-
dizagem e sı́ntese de variedades via coordenadas normais de riemann locais
e baricentricas. In Proc. of the ENIAC, Fortaleza, Ceará, Brazil, 20th-24th
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