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1 Introduction

When a transition probability matrix is represented as the product of two stochastic matrices, one can
swap the factors of the multiplication to obtain another transition matrix. Interestingly, the derived
matrix retains some fundamental characteristics of its precursor, which makes it possible to substi-
tute the former for the latter in some applications [[1]. Since the new matrix can be much smaller than
the original, such a replacement can lead to significant savings in terms of computational effort. This
new strategy, dubbed the “stochastic-factorization trick,” has been used with different objectives in
mind: to compute the stationary distribution of a Markov chain [1]], to determine the fundamental
matrix of an absorbing chain [[1]], and to compute a decision policy in dynamic programming [2] and
reinforcement learning [3} 4]]. At a more conceptual level, the stochastic-factorization trick can also
serve as a formalism for thinking about state aggregation [J5, [2].

In this short paper we start to investigate the relationship between stochastic factorization and hidden
Markov models (HMMs) [6]. Besides being interesting on its own, this relationship may also have
practical applications. Here we exploit such a connection to show how well-established techniques
to compute an HMM from data can also be used to compute a stochastic factorization.

2 Background

This section briefly reviews some concepts and introduces the notation adopted in the paper.

2.1 Stochastic Factorization

We start with a few basic definitions:

Definition 1. A matrix P € R"™** is called stochastic if and only if p;; > 0 for all i,j and
Z§:1 pi; = 1 for all i. A square stochastic matrix is called a transition matrix.

Definition 2. Given a stochastic matrix P € R"*Z?, the relation P = DX is called a stochastic
factorization of P if D € R"*™ and K € R™*# are also stochastic matrices. The integer m > 0 is
the order of the factorization.

Definition 3. The stochastic rank of a stochastic matrix P € R™*#, denoted by stk(P), is the
smallest possible order of the stochastic factorization P = DK.



The stochastic factorization has appeared before in the literature, either as defined above [7, [§] or
in slightly modified versions [9, [10]. This paper will focus on a useful property of this type of
factorization that has only recently been noted, which we now proceed to describe [1].

Given a stochastic factorization of a transition matrix, P = DK, swapping the factors of the fac-
torization yields another transition matrix P = KD, potentially much smaller than the original,
which retains the basic topology of P—that is, the number of recurrent classes and their respective
reducibilities and periodicities (see [1]] for details and formal definitions). Since P can be much
smaller than P, the idea of replacing the latter with the former comes almost inevitably: this is the
“stochastic-factorization trick.”

A question that naturally arises in the context of the stochastic-factorization trick is how to compute
the factorization in reasonable time. Since this question depends on the particular application, it
has been addressed in different ways [2, [3,4]. In the current paper we make a connection between
stochastic factorization and HMMs that may be useful in this context, for two reasons. First, it
delineates a class of transition matrices P € R™*™ that are “factorizable”—that is, whose stochastic
rank is m < n. Second, it shows how techniques to compute an HMM can also be used to compute
D and K based on transitions sampled from P.

2.2 Hidden Markov Models

We redirect the reader to one of the many introductions to HMMs available in the literature, such
as [Rabiner/s tutorial, for a detailed description of these models [6]. Here we restrict ourselves to
presenting the notation adopted.

We denote the sequence of hidden states by H; € {1,2,...,m} and the sequence of observations by
S; € {1,2,...,n}. Then:

o T € R™*™ is the transition matrix, where ¢;; = Pr(H; 41 = j|H; = 1);

o K € R™*™ is the observation matrix, where k;; = Pr(S; = j|H; = 1);

e 1 € RY™™ ig the initial distribution, where u; = Pr(H; = i).

Therefore, an HMM is defined as H = (T, K, ). We assume that m < n throughout the paper.

3 Computing a Stochastic Factorization from an HMM

We start by presenting the following result:
(t) = Pr(St—‘rl =

Proposition 1. Let H = (f’, K, 1) and let P() be the transition matrix in which Dy

§|S; = ). Then, stk(P®)) < m, where m is the number of hidden states in H.

Proof. In order to show that srk(P(t)) < m, it suffices to show that there exists an order m stochastic
factorization of P®), Given an HMM H, it is always true that

PI'(St+1 = ]lSt = Z) = ZPI‘(St+1 = j|St = i, Ht+1 = ’UJ)PI'(Ht+1 = ’lU|St = ’L)
Since in an HMM the probabilities of an observation are completely defined by the hidden state,
PI‘(St+1 = ]|St = ’L', Ht+1 = ’LU) = Pr<5t+1 = j‘HtJr] = w), and thus:

PI‘(St+1 = .]|St = 7,) = ZPI‘(St+1 = j|Ht+1 = w)Pr(Ht+1 = ’U}|St = Z) (1)

w

Therefore, if we define matrix D® € R"*™ as d\) = Pr(H,,; = w|S, = i), we have P() =

D®K. h O
Proposition [T]allows us to enunciate the following result:

Proposition 2. Let H = (f’, K, p). If p = p, where p is the stationary distribution of P, then
Pr(S;4+1|St) is the same for all t.



Proof. From Propositionwe know that P(Y) = DWK. Thus, if we show that D®) = D for all ¢,
the result follows.

Note that d\) = Pr(Hyyy = w|S, = i) = 3, Pr(Hyp1 = w|H, = 1,8, = i)Pr(H, = 1|5, = i).
Since
PI‘(St = ZlHt = l)PI'(Ht = Z)

Pr(Hy = 1|5y = i) =
r(Hy = 1|5y = i) >, Pr(Sy =i|H, = z)Pr(H; = 2)’

we can write

d(t) _ Zl Pr(Ht+1 = ’lU|Ht = l)PI‘(St = ’L‘Ht = Z)PI'(Ht = l) (2)
w >, Pr(Sy =i|Hy = 2)Pr(H, = 2) '
Now, since p = p, Pr(H; = z) = . for all ¢, which implies that D(*) does not depend on ¢. O

Propositions|I|and 2] are interesting for two reasons. First, they show how the structural assumptions
necessary for the application of the stochastic-factorization trick naturally emerges from HMMs.
Second, they suggest a simple algorithm to compute a stochastic factorization from data sampled
from P:

1. Use transitions sampled from P to compute T and K—estimates of T and K-—using one
of the many algorithms available to compute an HMM based on observations [11} 12} [13];

2. Compute 7, the stationary distribution of ’i‘;
3. Compute D asin ;
4. Compute P = KD.

Note that in an actual application the approximation P = DK is never explicitly computed. Besides
the obvious benefit of allowing one to replace P with P, the algorithm above may also be advanta-
geous in terms of sample complexity, since we are estimating O(m? + mn) parameters instead of
O(nQ)F_-] We have run preliminary experiments that corroborate this hypothesis. See Figure|l|for an
illustrative example.

4 Future Research

This is still an incipient research, and as such it leaves many open questions. Here we briefly discuss
a few questions that we find particularly important.

At a conceptual level, it is interesting to ask whether there is a useful connection between T and P,
since in general T # P. Also, there should be a class of HMMs for which T = P; one may ask
whether it is possible to exploit the fact that T = KD in this specific case.

From a theoretical perspective, an important question is whether the converse of Proposition [2]is
also true, that is, if the fact that stk(P) < m implies that there exist an HMM H = (T, K, ) that
gives rise to P, with T € R™*™_ If this is not the case, then we should ask why the proposed
algorithm works when P is factorizable, as Figure seems to indicate (note that in the referred
experiment matrix P was generated from D and K, without any explicit connection to an HMM).

At a more practical level, an obvious question is whether the proposed algorithm provides benefits
from a computational point of view. Since the proposed method involves more operations than
estimating P through directly maximizing the likelihood of P(S;+1|S:) (which comes down to
counting transitions), this extra cost must be compensated by the fact that P will be manipulated in
place of P.
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