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ABSTRACT

One of the many difficulties that arise in the empirical eval-
uation of new computational techniques is the analysis and
reporting of experiments involving a large number of test-
problems and algorithms. The performance profiles are a
methodology specifically developed for this purpose which
provides a simple means of visualizing and interpreting the
results of large-scale benchmarking experiments. However
good, performance profiles do not take into account the un-
certainty present in most experimental settings. This paper
presents an extension of this analytic tool called probabilistic
performance profiles. The basic idea is to endow the origi-
nal performance profiles with a probabilistic interpretation,
which makes it possible to represent the expected perfor-
mance of a stochastic algorithm in a convenient way. The
benefits of the new method are demonstrated with data from
a real benchmark experiment involving several problems and
algorithms.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: Performance evaluation

General Terms

Experimentation, Measurement, Performance

Keywords

Experimental Evaluation, Performance Profiles

1. INTRODUCTION
The development of new methods to solve a given class of

problems requires a clear strategy to evaluate the quality of
alternative candidate algorithms. In some cases such evalua-
tion can be done in a formal way, with probabilistic analyses
of worst- or average-case scenarios [13]. Usually, though, the
analytical difficulties of such analyses make it hard or even
impossible to obtain meaningful results for more realistic
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settings. In these cases, the usual strategy is to resort to
an empirical evaluation of the candidate methods: the algo-
rithms are applied to a set of representative problems and
have their results compared against each other or against
some baseline defined in advance.

Despite its apparent simplicity, the experimental evalua-
tion of algorithms raises some difficulties in practice. First,
one must define a set of problems that is heterogeneous
enough to represent well the target domain and yet small
enough to allow the carrying out of the experiments. Sec-
ond, it is necessary to determine the performance measures
used to evaluate the algorithms, a subject for which there is
no consensus in the literature [10, 9, 2]. Finally, one must
decide how to interpret, analyze, and report the results ob-
tained in the experiments.

This paper focuses on the third issue above. In particular,
we discuss the difficulties involved in the analysis of bench-
mark results when two complicating factors are present:

1. The number of algorithms and/or problems is too large
to allow for the reporting and analysis of all the results
or even of the main descriptive statistics;

2. The methods being evaluated are “stochastic” in na-
ture, i.e., there is some level of unpredictability con-
cerning their behavior.

Recently, Dolan and Moré [8] proposed a tool for analyzing
benchmark experiments which specifically addresses item 1
above. Performance profiles constitute a methodology that
makes it easy to summarize, visualize, and interpret the re-
sults of large experiments. However good, performance pro-
files have themselves a serious limitation: they do not ac-
count for the variability inherent to most experimental se-
tups. This is particularly problematic in the scenario where
the methods under evaluation are stochastic, since in this
case the algorithms themselves are a source of uncertainty.

In contrast with deterministic algorithms, which always
provide the same results under the same conditions, stochas-
tic algorithms may perform differently in distinct executions
even if all of its parameters are kept fixed across the runs.
The level of variability in an algorithm’s behavior that is
considered acceptable varies from application to application.
It should be obvious, though, that a good tool for analyzing
benchmark experiments must provide some information as
to how much uncertainty is associated with the performance
of a given candidate method.

In this paper we propose an extension of Dolan and Moré’s
performance profiles which is able to incorporate and thus
to represent the variance associated with the functioning
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of a stochastic algorithm. The basic idea is to endow per-
formance profiles with a probabilistic interpretation, which
makes it possible to represent the expected performance of
a method in a convenient way. As will be shown, the prob-
abilistic performance profiles unveil trends that are hard to
detect in the raw data and that would be masked by the use
of the standard performance profiles.

To make the discussion more concrete, we will be us-
ing the terminology usually adopted by the evolutionary-
computation community—that is, we will consider that the
problems at hand concern the minimization or maximization
of a given objective function. It should be noted, however,
that the issues discussed here extend straightforwardly to
any scenario where candidate methods can be evaluated em-
pirically, even if the problems considered in such scenarios
are not normally cast as optimization tasks [3].

The paper is organized as follows. In Section 2 we discuss
the steps involved in the design of a good experimental-
evaluation setup. We then focus on the issue of how to
analyze and to report the experiments’ results. We start
by presenting the performance profiles in Section 3. Then,
in Section 4, a probabilistic version of this analytic tool is
proposed. The advantages of the new method are illustrated
in Section 5 with a few examples. Finally, we present in
Section 6 the main conclusions regarding this investigation.

2. EXPERIMENTALEVALUATIONOF STO-

CHASTIC ALGORITHMS
The empirical evaluation of stochastic algorithms is a chal-

lenging task which constitutes by itself an active area of
research [13]. The design of a good experimental setup
involves a series of interconnected decisions that can be
roughly divided into three steps: selection of problems, def-
inition of performance measures, and analysis of the results.
In what follows we briefly discuss each one of these steps.

2.1 Selection of problems
The first stage in carrying out an experimental investi-

gation is to find a set of problems which is representative
of the domain of interest. This is not an easy task, since
it involves two conflicting objectives: on the one hand, one
wants to keep the problem set as small as possible, since this
alleviates the computational burden associated with the ex-
periments. On the other hand, one seeks a collection of tasks
that spans all problem characteristics relevant to the future
application of the algorithm—which usually requires a large
number of problem instances.

There have been innumerous attempts to build suites of
problems representing specific classes of tasks. From oper-
ations research [7] to machine learning [4] and bioinformat-
ics [14], the list is simply too long to be explicitly enumer-
ated. In the context of evolutionary computation, the first
attempt to put together a test suite was probably that of De
Jong in his Ph.D thesis [6]. De Jong’s test suite was com-
posed by five functions with different characteristics, in an
effort to provide a sample of the various features one might
find in solving real-world optimization problems. Such 5-
function suite was used for quite some time before being
gradually replaced by larger test-function suites.

2.2 Definition of performance metrics
The second step in the design of an experimental evalu-

ation is the definition of which measures should be taken

in order to assess the quality of the algorithms. In some
contexts this comes out as a fairly obvious choice: if all the
algorithms are guaranteed to find the optimal solutions of
the problems, for example, it is clear that the performance
metric should be some measure of time efficiency [13]. In
the case of stochastic algorithms, however, the situation is
usually more complicated than that. Since these algorithms
are normally applied to problems for which optimal solu-
tions are very hard to find, one must weight the efficiency of
the methods against the quality of the solutions obtained.

There are basically two approaches to evaluate the quality
of a stochastic algorithm. One possible strategy is to define
a meaningful goal and to measure the amount of computa-
tional resources, such as computing time or number of itera-
tions, required by the algorithm to achieve this goal. Exam-
ples of goals are: to find a solution within a certain tolerance
of the best known solution or, in the case of constrained opti-
mization problems, to simply find a feasible result. Another
way to assess the quality of a stochastic algorithm is to fix
the amount of computational resources and then check the
quality of the solutions delivered by the algorithms within
this budget.

2.3 Analysis of the results
Once the problem set has been defined and the perfor-

mance indexes have been collected, one must decide how to
analyze and to report the results generated by the experi-
ments. The main difficulties here are related to the amount
of data generated, which may be very large depending on
the extension of the experiments performed. If the number
of algorithms, problems, and performance metrics involved
in the experimental evaluation is such that it is possible to
report all the main descriptive statistics in a tabular form,
and to easily interpret them, this should probably be the
preferred way to present the results. In most realistic sce-
narios, however, the amount of information available makes
it very hard, if not impossible, to analyze the results looking
at a huge data table. In this case, one must decide how to
best summarize the results, which inevitably involves several
tradeoffs.

One source of disagreement refers to what statistics should
be reported in the evaluation of algorithms. For example, in
a recent paper Birattari and Dorigo [2] argue that it makes
no sense to report the best results obtained by a stochas-
tic method in a series of experiments, a practice which is
supported by other researches [9]. In a related work, Flem-
ing and Wallace [10] discuss why the geometric mean, and
not the commonly used arithmetic mean, is the appropri-
ate statistics to report benchmark results which have been
normalized.

Another critical point which is a breeding ground for dis-
agreements is the criterion used to compare the algorithms.
One way to do so is to look at the algorithms’ average or
cumulative total for each performance metric over all the
problems considered [5]. An obvious drawback of this strat-
egy is that a small number of the most difficult problems
tend to dominate the results [8]. In order to circumvent this
issue, some researches have suggested that the algorithms
should be ranked according to each performance metric and
then a final rank should be computed as the average of the
partial ones [12, 15]. This strategy has its disadvantages,
too. First, the ranks effectively hide the magnitude of the
difference on the algorithms’ results. Thus, an algorithm
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that performs slightly better than the average on most of the
problems and very badly on a small subset of the test suite
may be preferred over an algorithm which has a more consis-
tent behavior over the entire problem set. This clearly biases
the evaluation against the less specialized and more robust
methods. Another drawback of ranking the algorithms is
that the rank is overly sensitive to small differences on the
algorithms’ performances. Again, this is particularly prob-
lematic in the context of stochastic algorithms, in which the
dispersion of the results is an integral part of the game.

Performance profiles were proposed to overcome the short-
comings associated with the approaches mentioned above.
As will be shown, this analytic tool provides information
on the relative magnitude of the performance metrics and
at the same time avoids that a small portion of the results
distort the overall conclusion.

3. PERFORMANCE PROFILES
In order to introduce the performance profiles we consider

the following scenario: there is a set P of test problems pj ,
with j = 1, 2, . . . , np, and a set A of algorithms ai, i =
1, 2, . . . , na. If a specific algorithm is being compared against
itself with different parameter settings, each configuration
should be considered as a distinct algorithm ai.

Benchmark results are generated by running algorithm ai

on problem pj and recording the performance metrics of in-
terest. For each algorithm ai and each problem pj we define
cij > 0 as a “cost” associated with the execution of ai on pj

(that is, the smaller cij , the better the performance of ai).
The variable cij may be the performance indexes themselves
or some value derived from them. Thus, if the experiments
consist in the algorithms trying to achieve a specific goal,
the variable cij would be some measure of time efficiency,
such as the processing time or the number of iterations per-
formed before reaching the objective (if algorithm ai does
not solve problem pj , we abuse notation slightly and write
cij = ∞). When one is interested in the quality of the
solutions found within a limited amount of computational
resources, the variable cij must be defined in such a way
that it is always a positive number.

Given the definition of the cost cij , we define the perfor-
mance ratio of algorithm ai on problem pj as

rij ≡ cij

bj

,

where bj is the “baseline” against which the performance of
the algorithms are compared. A sensible way to determine
such baseline is to simply set bj = mink ckj . Then, rij indi-
cates how many times the cost of algorithm ai on problem
pj is bigger than the cost of the best performing algorithm
on the same problem. The purpose of the variable rij is to
represent the performance metrics in a common scale with-
out losing information regarding the relative magnitude of
the original indexes.

In order to present the performance profiles we need one
last definition. Let δ be a function given by

δ(rij , x) =



1, if rij ≤ x,
0, otherwise.

The interpretation of δ(rij , x) will depend on the type of
experimental evaluation performed. If we specify a goal and
measure the resources taken by the algorithms to achieve
this goal, δ(rij , x) = 1 indicates that ai was able to reach

the objective on problem pj with a cost at most x times
bigger than the smallest cost on this problem. If we fix a
limited amount of computational resources and measure the
performance of ai, δ(rij , x) = 1 indicates that ai returned a
solution whose quality is up to x times worse than that of the
best-performing algorithm on problem pj . To make things
easier, we will interpret δ(rij , x) = 1 as simply “algorithm
ai solved problem pj at a tolerance level of x”.

We are finally ready to present the performance profiles.
Given a set of problems P and a set of algorithms A, the
performance profile of a given algorithm ai on P is a function
ρi : R

∗

+ 7→ [0, 1] given by

ρi(x) ≡ 1

np

np
X

j=1

δ(rij , x).

The function ρi(x) gives the fraction of the problems in P
solved by ai at a tolerance level of x. Thus, at any point
x = τ we have a partial rank of the algorithms, in which
algorithms with larger values for ρi(τ) are ranked higher.

To fix ideas, suppose we set τ = 5. This is equivalent to
saying that we are willing to accept a performance on each
problem pi up to five times worse than the best performance
on that same problem. Thus, if ρi(5) = 0.7, for example,
this means algorithm ai is able to solve 70% of the problems
within this tolerance. Two particular values of τ allow for
interesting interpretations:

• If τ = 1, ρi(τ) equals the proportion of times ai “wins”
over the rest of the algorithms, that is, the fraction
of the problems in P in which ai presents the best
performance.

• If τ = ∞, ρi(τ) is the fraction of problems algorithm
ai is able to eventually solve.

Another interesting measure concerns the “reliability” of
the algorithms, which can be easily derived from the perfor-
mance profiles as

ζ(ai) = sup{τ : ρi(τ) < 1}.
Simply put, ζ(ai) is the worst performance of algorithm ai

over the entire test suite (if ai does not solve all the prob-
lems, ζ(ai) = ∞). Therefore, the most reliable algorithm is
the one with the smallest value for ζ(ai).

The measures above in isolation may be of interest in
particular circumstances, but it is in the overall analysis of
the benchmark results that performance profiles show them-
selves to be really useful. In particular, by looking at the
curves ρi(x) over the entire interval of interest, we get an
easy-to-interpret summary of the measures discussed that
allows for a throughout comparison of the methods under
different criteria. In addition, the generation of such sum-
mary keeps the intervention of the analyst at a minimum.

To illustrate the points above, consider the following ex-
ample. Suppose we are comparing 3 algorithms on a test
suite composed by 5 problems and the costs associated with
each algorithm-problem pair are those shown in Table 1.
The first thing that stands out when we look at the referred
table is the fact that the variable c21 is not well defined. This
simply means that algorithm a2 was not able to solve prob-
lem p1 in the experiments performed. Notice though that
setting c21 = ∞ is just an artifice to allow for an easy inter-
pretation of the data; since any empirical evaluation must
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use up a finite amount of resources, there is no way to guar-
antee that algorithm a2 will not eventually solve p1—unless,
of course, this algorithm halts or stagnates at some point.
Therefore, the results of an experiment may leave the func-
tions ρi(x) undefined over an interval (τmax,∞). When this
is the case, the analysis of the performance profiles should
be restricted to the interval (0, τmax].

p1 p2 p3 p4 p5

a1 1.0 1.0 1.0 5.0 3.0
a2 ∞ 5.5 5.5 1.0 1.0
a3 2.0 4.0 4.0 6.5 8.0

Table 1: Algorithms’ costs cij

Suppose τmax = 10 in the experiment that originated Ta-
ble 1. By plotting ρi for all algorithms ai over the interval
(0, 10] we obtain the graphic shown in Figure 1. It is clear
that the performance profile ρi(x) is a nondecreasing, piece-
wise constant function, continuous from the right at each
discontinuity point. The discontinuity points are the entries
in Table 1.

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ρ1(x)
ρ2(x)
ρ3(x)

Figure 1: Examples of performance profiles for na = 3 and
np = 5. The values of the variables cij used to generate the
plots are shown in Table 1.

Several interesting observations can be made regarding
the generation and analysis of Figure 1. First, note that the
fact that c21 = ∞ does not preclude the generation of the
plot, nor does it require arbitrary interventions of the analyst
such as excluding problem p1 from the test set or defining a
penalty for algorithm a2 for not solving this problem. As for
the interpretation of the graphic, one can state the following:

• By looking at the curves ρi(τ) at τ = 1, it is clear that
algorithm a1 presented the best performance on 60%
of the problems, whereas algorithm a2 was the winner
at the remaining 40%. Hence, algorithm a3 was never
the best-performing method.

• When we check the performance profiles at τ = 10
we see that both a1 and a3 were able to solve all the
problems, while algorithm a2 solved only 80% of the
test suite (in this example, 4 out of 5 problems).

• Algorithm a1 is the most reliable one (ζ(a1) = 5), fol-
lowed by algorithm a3 (ζ(a3) = 8). Algorithm a2 is
the least reliable, with ζ(a2) = ∞.

• As ρ1(x) ≥ ρi(x) for i = 2, 3 over the interval con-
sidered, and since ζ(a1) < τmax, algorithm a1 clearly
outperforms a2 and a3 on the test set P . This is an
example of a situation in which performance profiles
give a clearcut answer as to which algorithm is the
best choice.

• When we compare algorithms a2 and a3, it is not so
clear which one should be preferred. In fact, this choice
will depend on what exactly is expected from the al-
gorithms. If we are interested in a more specialized
method which performs very well on a subset of the
problems in P , then a2 is clearly a better choice than
a3. On the other hand, if we are looking for a reliable
algorithm, a3 should be the selected one. Finally, if we
are concerned with the performance of the algorithms
at a specific level of tolerance τ , the choice will depend
on the value of τ .

The example given shows how performance profiles pro-
vide a simple means of analyzing the results of an experimen-
tal evaluation under different criteria. Nevertheless, they
are not able to unveil all the information contained in the
data. In particular, performance profiles fail to represent
the variance inherent to most experimental setups. To il-
lustrate this point, suppose we are comparing algorithms a2

and a3 at τ = 6. By checking the plot shown in Figure 1, it
is clear that a2 should be the preferred choice in this case.
However, when we observe that the curves ρ2(x) and ρ3(x)
cross each other at x = 5.5 and x = 6.5, this seems like
a questionable choice. Looking back at Table 1, one can
see that fluctuations of less than 10% in the performance of
the algorithms could change this scenario completely. Small
variations like this may happen even if the algorithms being
analyzed are deterministic, but it is when the algorithms are
stochastic that these fluctuations become a serious issue. In
order to circumvent this potential source of uncertainty, it
is necessary to somehow incorporate the variance present in
the experiments into the performance measures. This is the
purpose of the probabilistic performance profiles, discussed
in the next section.

4. PROBABILISTIC PERFORMANCEPRO-

FILES
The proposal of this paper is to extend performance pro-

files to a probabilistic framework. Thus, instead of talking
about numbers cij representing the costs of the algorithms,
we will be talking about random variables Cij distributed
according to a given distribution Dij , that is, Cij ∼ Dij .
Since the definition of the performance ratios rij depends
on the costs cij , by turning the latter into random variables
we automatically do the same with the former. In particular,
we define the probabilistic performance-ratio as

Rij ≡ Cij

bj

,

where bj is again a baseline against which the performance
of the algorithms is compared. Here we set

bj = min
k

E[Ckj ],
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where E[·] indicates expectation according to the underlying
probability distribution (we are assuming that the costs were
defined in such a way that mink E[Ckj ] > 0).

The variables Cij and Rij induce the definition of the
probabilistic performance profiles, given by

ρ̄i(x) ≡ 1

np

np
X

j=1

E[δ(Rij , x)]. (1)

Notice that δ(Rij , x) can be seen as Bernoulli random vari-
able indicating whether algorithm ai solved problem pj at a
tolerance level of x. Since

np
X

j=1

E[δ(Rij , x)] = E

"

np
X

j=1

δ(Rij , x)

#

,

it is easy to see that the function ρ̄i(τ) gives the expected
fraction of the problems algorithm ai solves at a tolerance
level of x. To conclude, observe that the expected value
of δ(Rij , x) is simply the probability that Rij ≤ x. Thus,
definition (1) can be rewritten as

ρ̄i(x) ≡ 1

np

np
X

j=1

P (Rij ≤ x). (2)

If there is no uncertainty regarding the value of Rij—
that is, if Rij is a constant rather than a random variable—
the probabilistic performance profile reduces to its standard
form. Therefore, ρ̄i(x) is a generalization of performance
profiles that makes it possible to represent the performance
of an algorithm even if its behavior is not completely pre-
dictable. Notice that all the analyses that can be made with
ρi(x) can also be made with ρ̄i(x); the only difference is that
now we are talking about expected performance instead of
discussing a single execution of the algorithms.

The discussion above makes it clear that probabilistic per-
formance profiles should be preferred over their standard
counterparts when there is a certain level of uncertainty
regarding the experimental setup considered. However, in
order to use this tool one must be able to determine the
value of ρ̄i(x), which amounts to computing expression (2)
at any given point x. The computation of P (Rij ≤ x) ap-
pearing in (2) requires the knowledge of the distribution of
Rij , which in turn depends on the distribution Dij . Usu-
ally, though, we do not know how the variables Cij are
distributed, and the standard approach to deal with this
situation is to assume a certain parametric form for Dij and
try to estimate its parameters based on a sample of the cor-
responding random variable. In the next section we discuss
how this can be done when we assume that the variables Cij

are normally distributed.

4.1 Probabilistic performance profiles for nor-
mal distributions

Usually the distribution of the variables Cij is not known.
When this is the case, the most common approach is to as-
sume these variables are normally distributed [11]. One jus-
tification for this choice is the central limit theorem, which
states that the sum of a large number of independent ran-
dom variables (normal or not) has approximately a normal
distribution [11]. Thus, by considering that Cij are normally
distributed we are implicitly assuming that the performance
of an algorithm on a problem is the sum of several random

effects acting independently—which sounds reasonable, at
least in principle.

In our model each variable Cij comes from a distinct nor-
mal distribution N (µij , σ

2
ij), where µij is the mean of the

distribution and σij is its standard deviation. Since the pa-
rameters µij and σij are unknown, we must estimate their
values from a sample of the variable Cij . It is well known
that the maximum likelihood estimates of the mean and the
standard deviation of a normal distribution are given by [11]

µ̂ij =
1

nij

nij
X

k=1

ck
ij and σ̂2

ij =
1

nij − 1

nij
X

k=1

“

ck
ij − µ̂ij

”2

,

where nij is the number of times algorithm ai was executed
on problem pj and ck

ij is the cost associated with the k-th
such execution. As nij → ∞, µ̂ij → µij and σ̂ij → σij .

Using the properties of the normal distribution, it is easy
to show that Cij ∼ N (µij , σ

2
ij) implies that

Rij ∼ N
„

µij

bj

,
σ2

ij

b2
j

«

.

Thus, we can use µ̂ij and σ̂ij to approximate the distribu-
tion of Rij . The computation of (2) then becomes easy: in
order to determine P (Rij ≤ x), it suffices to use the cu-
mulative distribution function of a normal distribution with
mean µ̂ij/bj and standard deviation σ̂ij/bj . In particular,

P (Rij ≤ x) = F

„

x;
µij

bj

,
σ2

ij

b2
j

«

,

where F (·; µ, σ2) is the cumulative distribution function of
N (µ, σ2), given by:

F (x; µ, σ2) =

∫
x

−∞

1√
2πσ2

exp

„−(z − µ)2

2σ2

«

dz.

Notice that the means µ̂ij and the standard deviations σ̂ij

are the only two statistics necessary to generate the proba-
bilistic performance profiles. Since these values are usually
reported in the literature, it is easy to analyze the results of
previous benchmark experiments even when the raw data is
not available. To conclude, it should be pointed out that the
normal distribution may not always be the most appropri-
ate way to describe the behavior of a stochastic algorithm.
When this is the case, one must work out the steps above
using the distribution selected to represent Cij . Obviously,
as long as it is possible to compute (2), probabilistic perfor-
mance profiles are still applicable.

5. ILLUSTRATIVE EXAMPLES
In this section we present a few examples showing how

probabilistic performance profiles are able to reveal trends
in benchmark results that would be masked by the stan-
dard version of this tool. For all the examples discussed we
assume that the variables Cij are normally distributed.

We start out by showing the consequences of incorporat-
ing several levels of variance to the curves shown in Figure 1.
This is done in Figure 2. Observe how the effect of increasing
the standard deviation is to progressively smooth out and
“disentangle” the performance profile curves. In particular,
notice how ρ̄2(x) and ρ̄3(x) get closer to each other until
they almost coincide in the interval [4, 7] when σij = 1.
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(a) σij = 0.1
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(b) σij = 0.5
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(c) σij = 1

Figure 2: Probabilistic performance profiles in which the algorithms’ costs Cij have the same standard deviation. The values
µ̂ij used to generate the plots are the same used for the variables cij to create Figure 1 (see Table 1).
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(a) σ1j = 5
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(b) σ2j = 5
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(c) σ3j = 5

Figure 3: Probabilistic performance profiles in which the algorithms’ costs Cij may have different standard deviations. Unless
otherwise noted in the plots’ captions, σij = 0.1.

This is in accordance with our intuition that small differ-
ences on the performance of stochastic algorithms should
not be taken too seriously. Also, notice how the reliability
of a3 decreases as σij grows. This means that by using the
standard performance profiles to compute ζ(a3) one would
be overestimating the real capability of this algorithm.

Things start to get more interesting when the level of
variance added to the curves varies across the algorithms.
This represents the situation in which some of the meth-
ods present a larger dispersion in the results than the oth-
ers. Figure 3 illustrates what happens with the curves of
Figure 2a when we increase the standard deviations of the
algorithms one at a time. Observe in Figure 3a how the
performance of algorithm a1 degenerates when we change
σ1j from 0.1 to 5. Now the curve ρ̄1(x) crosses both ρ̄2(x)
and ρ̄3(x), leaving room for doubt where there was none. In
fact, after this change any of the three algorithms could be
selected as the best one, depending on the region of the x
axis we decided to focus our analysis. Similar phenomena
occur when we increase the standard deviations of a2 and
a3, as shown in Figures 3b and 3c, respectively. As an ex-
ample, observe in Figure 3c how algorithm a3, considered as

a reliable method so far, solves only about 80% of the prob-
lems when σ3j = 5. Other examples could be constructed
by changing the variances of a subset of the algorithms or,
alternatively, by setting the standard deviations σij inde-
pendently of each other. In order to have a more realistic
analysis of probabilistic performance profiles, however, lets
turn to a real example.

During the 2009 Genetic and Evolutionary Computation
Conference, a Black Box Optimization Benchmarking Work-
shop was organized in order to quantify and to compare in
a rigorous way the performance of real-parameter optimiza-
tion algorithms [1]. Among other things, the organizers of
the workshop provided a well-motivated 24-function testbed
that should be used by the participants to evaluate their
chosen algorithms. The functions were presented in different
versions, varying in both dimensionality and in the presence
or not of noise. In order to illustrate the use of probabilistic
performance profiles in a real scenario, we adopted the noise-
free subset of 40-dimensional functions. Fifteen algorithms
were compared under this setting. Figure 4 shows the per-
formance profiles of these algorithms with and without the
information regarding their variances. In both cases, the
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performance metric is the number of function evaluations
necessary to achieve an absolute difference to the optimal
objective-function value that is smaller than 10−3.

As shown in Figure 4, the same trend observed in the
artificial data takes place here: the overall effect of incor-
porating the variance into the performance profile curves is
to smooth them out and thus separate them. This makes
it easier to see trends that would be hard to identify other-
wise. As an example, observe how some of the curves shown
in Figure 4a coincide over subintervals of the x axis. When
these curves are replaced by their probabilistic versions, such
overlaps almost never happen.

In order to have a better picture of the results presented
in Figure 4, we show in Figure 5 the performance profiles
of only a subset of the algorithms, which we will refer to as
a1, a2, . . ., a6. Several interesting observations can be made
regarding this picture. First, note how the ranks induced
by both versions of the performance profiles at x = 10 are
slightly different. In particular, observe in Figure 5b how
the probabilistic version of this tool manages to brake a tie
between algorithms a1 and a2, which present identical re-
sults in Figure 5a. Perhaps more surprisingly, the order of
algorithms a3 and a4 in the rank is inverted, which suggests
that by not considering the variability of the methods one is
overestimating the performance of the former. Another in-
teresting observation concerns the behavior of algorithm a5.
Notice how the curve ρ5(x) touches ρ3(x), ρ6(x), and ρ4(x)
at different points of the x axis, overlapping with the first
two over short intervals. When we look at ρ̄5(x) instead of
ρ5(x), it is much clear that algorithm a5 presents an inter-
mediary performance between that of a6, which is slightly
worse, and that of a3 and a4. Finally, if we check the curves
at x = 1—which gives the (expected) number of wins of a
given algorithm—the probabilistic performance profiles help
again to clarify small differences on the algorithms’ results.
Since it is hard to see these values at the scale of Figure 5,
we show ρi(1) and ρ̄i(1) in Table 2. Observe how the latter
is much more effective in discriminating the performance of
the methods.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
ρi(1) 0.042 0.042 0.000 0.125 0.083 0.042
ρ̄i(1) 0.052 0.064 0.008 0.098 0.057 0.028

Table 2: Value of ρi(x) and ρ̄i(x) at x = 1

6. CONCLUSION
This paper introduced the probabilistic performance profi-

les, a tool for analyzing benchmark results which extends
the functionality of its predecessor by allowing the represen-
tation of the uncertainty inherent to many experimental se-
tups. This ability is particularly important in the evaluation
of stochastic methods, since in this case ignoring the vari-
ability of the algorithms may lead to deceptive conclusions.
Probabilistic performance profiles are a general framework
that can be specialized to many particular situations. As
a standard approach, we assume the behavior of the algo-
rithms is the additive effect of many random variables, which
amounts to modeling the indexes derived from the perfor-
mance metrics as normal variables. As shown, this approach
succeeds in unveiling hidden trends present in data from real
benchmark experiments.
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Figure 4: Results of 2009 Black Box Optimization Benchmarking Workshop. The data correspond to 15 executions of the
methods. The algorithms’ names were omitted to improve the readability of the graphics.
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Figure 5: Replot of some of the performance profiles shown in Figure 4.
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