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Recent years have witnessed the emergence of severakoginfent-learning techniques that make it possible
to learn a decision policy from a batch of sample transitioAsnong them,kernel-based reinforcement
learning (KBRL [5]) stands out for two reasons. First, unlike othepeagximation schemes KBRL always
converges to a unique solution. Second, KBRL is consistetité statistical sense, meaning that additional
data always improve the quality of the resulting policy andrgually lead to optimal performance.

Despite its nice theoretical properties, KBRL has not beétely adopted by the reinforcement-learning
community. One possible explanation for this is the high potational cost of this approach. As discussed
by Jong and Stone [3], KBRL can be seen as the derivation ofta fifarkov decision process (MDP) with
n states, where is the number of sample transitions used in the approximafibis dependence ongives
rise to a dilemma: on the one hand one wants as much data dslpésslescribe the dynamics of the system,
but on the other hand the number of transitions should bel &maligh to allow for the numerical solution
of the resulting model. In this short note we describe anrélyo that provides a practical way of weighting
the relative importance of these two conflicting objectivEke idea is to fix the size of the MDP generated
by KBRL and to incorporate to this model all the informatiantained in the data.

The approach proposed here is based on a special decorpagita transition matrix calledtochastic
factorization[2, 1]

Definition. Given a stochastic matriP € R"*?, the relationP = DK is called astochastic factorization
of Pif D € R andK € R™*? are also stochastic matrices.

The stochastic factorization is a particular case of noatiegmatrix factorization. Its importance lies on the
following intriguing property: given a stochastic factration of a square matri = DK, one carswap
the factors of the factorization to obtain another traositnatrixP = KD which retains some fundamental
characteristics oP. In particular, it is possible to show that each recurreas€linP has a corresponding
such class iP with the same reducibility and same period [2]. Therefoepahding on the application of
P, one can replace this matrix wilR, which may result in substantial computational gains wherg n.
For example, the stochastic factorization can be used toceethe number of operations involved in the
computation of a Markov chain’s stationary distributioniothe determination of a decision policy’s value
function [2, 1].

In the case of KBRL, the stochastic factorization “trick’ndae applied to reduce the number of states in the
MDP generated by this algorithm. L&t = {(z¢,r¢, y#)|i = 1,2,...,n,} be a set of sample transitions
associated with action € A, wherex?,y? € S andr¢ € R. The MDP constructed by KBRL has the
following transition and reward functions [3]:

a K :L’,L'7:Ea,if1":ya, a T,a” if:L":ya7

P (xjlri) = { 0, (()therl\C/\)/ise oo and  R*(zi,z;) = { 0]: othe]rwiself
wherex® is an appropriately defined kernel [5]. Since only transgi@nding in stateg? have a nonzero
probability of occurrence, one can solve a finite MDP compdsg these states only. After the optimal
value function of such MDP has been found, the values of tlggnad states can be computed@éz, a) =
Yo k(w2 [ 4+ yV*(ys)], wherey is the discount factor [6]. The strategy kérnel-based stochastic
factorization(KBSF) is to select a set of representative sta(tgsqg,. ,qm} and then create matricd3*
andK® whose elements are given by¢, = x%(y?,q;) andk k*(q;, x%), wherex? is also a kernel.
Depending on how the statgsand the ﬁernel&q are deflned] one h I%“ ~ Peforalla € A. The
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important point is that the matric&” are never actually computed, but instead one solves an MEPwi
states whose dynamics are givenBy = K*D® andr?, with 7¢ = Zj ki;r$. Notice that, depending on
the value ofm, this strategy may result in a significant economy in termsashputational effort. As for
theoretical guarantees, it is possible to bolnd" — Dv* ||, but unfortunately space limitation precludes a
full presentation of the proof here. Empirically, it has besserved that KBSF is able to find very good
decision policies using only a fraction of the arithmetiemions performed by other algorithms. Figure 1
shows a small sample of the computational experimentsathott so far.

8. 7 SINGLE POLE

KBRL(100) Algorithm Ep. Mea:teps .
KBRL(600) 26.36 1069.61 1243.83
o KBRL(900) 62.28 1931.43 1380.41
S KBRL(1200) 7457 2360.12 1145.55
KBRL(1500) 55.19 1866.84 1319.84
KBSF(94787, 25) 92.59 2779.15 781.07
KBSF(94787, 50) 99.20 2976.09 265.87
o | KBSF(n, 100) KBSF(94787, 75) 100.00 3000.00 0.00
o ' KBSF(94787,100) 100.00 3000.00 0.00
| DOUBLE POLE |
LSPI(17319,100) 4.44 296.93 646.01
LSPI(17319,150) 9.01 396.77 841.03
S LSPI(17319,200) 0.00 71.01 79.91
KBRL(500) LSPI(17319,250) 1.11 12059  359.44
------------------------------------ KBSF(17319,100) 42.47 1568.57 1321.06
KBSF(17319,150) 61.98 2128.85 1246.90
KBSF(17319,200) 71.23 2348.42 1140.52
< KBSF(17319,250) 75.06 2381.21 1161.26
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Pole balancing[7]: transitions collected by a ran-
dom exploration policy inl000 episodes; states
q; defined byk-means; test set composed by
81 states equally spaced in the region defined
by +[1.8,1.8,37/20, 37/20], for the single pole
case, and by-[0.72,0.72, 37 /50, 37 /50, 0, 0] for

the double pole version of the problem. LSPI [4]
and KBSF used the same Gaussian kernels.

Mountain car [6]: transitions uniformly sam-
pled from S using a generative model; statgs
evenly distributed over the state spa6e test
set composed by5 states equally spaced on
[—1,-0.07] x [0.15,0.02].

Figure 1: Results of computational experiments. The firshioer after the algorithms’ namesis the
number of sample transitions used in the approximation,taadsecond one is, the size of the model
generated by each method (in the case of KBRandm coincide). The decision policies were evaluated
in test sets composed by states from which the task couldetrivbally solved (see above). The results
correspond to an average computed @eeindependent runs of each algorithm.
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