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Recent years have witnessed the emergence of several reinforcement-learning techniques that make it possible
to learn a decision policy from a batch of sample transitions. Among them,kernel-based reinforcement
learning (KBRL [5]) stands out for two reasons. First, unlike other approximation schemes KBRL always
converges to a unique solution. Second, KBRL is consistent in the statistical sense, meaning that additional
data always improve the quality of the resulting policy and eventually lead to optimal performance.

Despite its nice theoretical properties, KBRL has not been widely adopted by the reinforcement-learning
community. One possible explanation for this is the high computational cost of this approach. As discussed
by Jong and Stone [3], KBRL can be seen as the derivation of a finite Markov decision process (MDP) with
n states, wheren is the number of sample transitions used in the approximation. This dependence onn gives
rise to a dilemma: on the one hand one wants as much data as possible to describe the dynamics of the system,
but on the other hand the number of transitions should be small enough to allow for the numerical solution
of the resulting model. In this short note we describe an algorithm that provides a practical way of weighting
the relative importance of these two conflicting objectives. The idea is to fix the size of the MDP generated
by KBRL and to incorporate to this model all the information contained in the data.

The approach proposed here is based on a special decomposition of a transition matrix calledstochastic
factorization[2, 1]:

Definition. Given a stochastic matrixP ∈ R
n×p, the relationP = DK is called astochastic factorization

of P if D ∈ R
n×m andK ∈ R

m×p are also stochastic matrices.

The stochastic factorization is a particular case of nonnegative matrix factorization. Its importance lies on the
following intriguing property: given a stochastic factorization of a square matrix,P = DK, one canswap
the factors of the factorization to obtain another transition matrixP̄ = KD which retains some fundamental
characteristics ofP. In particular, it is possible to show that each recurrent class inP has a corresponding
such class in̄P with the same reducibility and same period [2]. Therefore, depending on the application of
P, one can replace this matrix with̄P, which may result in substantial computational gains whenm ≪ n.
For example, the stochastic factorization can be used to reduce the number of operations involved in the
computation of a Markov chain’s stationary distribution orin the determination of a decision policy’s value
function [2, 1].

In the case of KBRL, the stochastic factorization “trick” can be applied to reduce the number of states in the
MDP generated by this algorithm. LetXa = {(xa

i , r
a
i , y

a
i )|i = 1, 2, ..., na} be a set of sample transitions

associated with actiona ∈ A, wherexa
i , y

a
i ∈ S andrai ∈ R. The MDP constructed by KBRL has the

following transition and reward functions [3]:

P a(xj |xi) =

{

κa(xi, x
a
k), if xj = yak ,

0, otherwise and Ra(xi, xj) =

{

rak , if xj = yak,
0, otherwise,

whereκa is an appropriately defined kernel [5]. Since only transitions ending in statesyai have a nonzero
probability of occurrence, one can solve a finite MDP composed by these states only. After the optimal
value function of such MDP has been found, the values of the original states can be computed asQ(x, a) =
∑na

i=1
κa(x, xa

i ) [r
a
i + γV ∗(yai )], whereγ is the discount factor [6]. The strategy ofkernel-based stochastic

factorization(KBSF) is to select a set of representative states{q1, q2, ..., qm} and then create matricesDa

andKa whose elements are given by:daij = κq(yai , qj) andkaij = κa(qi, x
a
j ), whereκq is also a kernel.

Depending on how the statesqi and the kernelsκq are defined, one hasDa
K

a ≈ P
a for all a ∈ A. The
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important point is that the matricesPa are never actually computed, but instead one solves an MDP with m
states whose dynamics are given byP̄

a = K
a
D

a andr̄a, with r̄ai =
∑

j k
a
ijr

a
j . Notice that, depending on

the value ofm, this strategy may result in a significant economy in terms ofcomputational effort. As for
theoretical guarantees, it is possible to bound‖ v

∗ −Dv̄
∗ ‖, but unfortunately space limitation precludes a

full presentation of the proof here. Empirically, it has been observed that KBSF is able to find very good
decision policies using only a fraction of the arithmetic operations performed by other algorithms. Figure 1
shows a small sample of the computational experiments carried out so far.
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SINGLE POLE
Algorithm Ep. ∗ Steps

Mean S.D.†

KBRL(600) 26.36 1069.61 1243.83
KBRL(900) 62.28 1931.43 1380.41
KBRL(1200) 74.57 2360.12 1145.55
KBRL(1500) 55.19 1866.84 1319.84
KBSF(94787, 25) 92.59 2779.15 781.07
KBSF(94787, 50) 99.20 2976.09 265.87
KBSF(94787, 75) 100.00 3000.00 0.00
KBSF(94787, 100) 100.00 3000.00 0.00

DOUBLE POLE

LSPI(17319,100) 4.44 296.93 646.01
LSPI(17319,150) 9.01 396.77 841.03
LSPI(17319,200) 0.00 71.01 79.91
LSPI(17319,250) 1.11 120.59 359.44
KBSF(17319,100) 42.47 1568.57 1321.06
KBSF(17319,150) 61.98 2128.85 1246.90
KBSF(17319,200) 71.23 2348.42 1140.52
KBSF(17319,250) 75.06 2381.21 1161.26
∗Percentage of episodes in which the pole was bal-
anced for3000 steps;†Standard deviation

Mountain car [6]: transitions uniformly sam-
pled fromS using a generative model; statesqi
evenly distributed over the state spaceS; test
set composed by25 states equally spaced on
[−1,−0.07]× [0.15, 0.02].

Pole balancing[7]: transitions collected by a ran-
dom exploration policy in1000 episodes; states
qi defined byk-means; test set composed by
81 states equally spaced in the region defined
by ±[1.8, 1.8, 3π/20, 3π/20], for the single pole
case, and by±[0.72, 0.72, 3π/50, 3π/50, 0, 0] for
the double pole version of the problem. LSPI [4]
and KBSF used the same Gaussian kernels.

Figure 1: Results of computational experiments. The first number after the algorithms’ names isn, the
number of sample transitions used in the approximation, andthe second one ism, the size of the model
generated by each method (in the case of KBRLn andm coincide). The decision policies were evaluated
in test sets composed by states from which the task could not be trivially solved (see above). The results
correspond to an average computed over20 independent runs of each algorithm.
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