
On the Characteristics of Sequential Decision

Problems and Their Impact on Evolutionary

Computation and Reinforcement Learning

André M. S. Barreto1, Douglas A. Augusto2, and Helio J. C. Barbosa1

1 Laboratório Nacional de Computação Cient́ıfica
Petrópolis, RJ, Brazil
{amsb,hcbm}@lncc.br

2 COPPE–Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brazil
douglas@coc.ufrj.br

Abstract. This work provides a systematic review of the criteria most
commonly used to classify sequential decision problems and discusses
their impact on the performance of reinforcement learning and evolu-
tionary computation. The paper also proposes a further division of one
class of decision problems into two subcategories, which delimits a set
of decision tasks particularly difficult for optimization techniques in gen-
eral and evolutionary methods in particular. A simple computational
experiment is presented to illustrate the subject.

1 Introduction

In a sequential decision-making problem the consequences of a decision may last
for an arbitrarily long time [13]. Thus, a choice that seems beneficial from a
short-sighted perspective may reveal itself to be disastrous in the long run. In
the game of chess, for example, a move that captures one of the opponent’s
pieces may also expose the king and eventually lead to a defeat.

Many real-world tasks involve this tradeoff between immediate and long-term
benefits. Problems of practical and economical interest arising in areas as diverse
as operations research, control theory and economics all fit within the decision-
making framework [20]. The importance of the development of reliable methods
to automatically solve sequential decision tasks cannot be overemphasized.

One of the main issues regarding the solution of sequential decision tasks
is the so-called temporal credit-assignment problem: how to apportion credit to
individual decisions by looking at the outcome of a sequence of them [16]. For
example, after being surprised by a checkmate, a chess player would like to know
which moves were responsible for the defeat and which were not. There are two
main approaches to address the temporal credit-assignment problem:

– One may perform the credit assignment implicitly, by evaluating each deci-
sion policy as a whole and then combining the most successful ones in the

hope that better policies will come forth. In the example of chess, each deci-
sion policy would be a strategy to play the game. This type of phylogenetic

learning is the approach adopted by evolutionary methods [5].

– Another possibility is to resort to an ontogenetic learning paradigm, in which
a single decision policy is gradually refined based on the individual eval-
uation of the decisions made (in the game of chess each move would be
evaluated separately). This is the basic idea behind reinforcement-learning
algorithms [17].

The advantages and drawbacks associated with the phylogenetic and the on-
togenetic learning have been the subject of some debate. Sutton and Barto [17]
argue that evolutionary methods cannot be considered as true reinforcement-
learning techniques because they are not able to use valuable information avail-
able during the learning process. In contrast, Moriarty et al. [12] list several
advantages of using evolutionary methods to solve sequential decision problems.
Indeed, many researchers have successfully applied evolutionary algorithms to
decision tasks, not rarely obtaining better results than reinforcement-learning
methods on the same tasks [22, 11, 6]. On the other hand, it is also possible to
find reports of experiments in which evolutionary methods failed entirely while
reinforcement learning performed well [1].

The aim of this work is to contribute to the ongoing discussion by noting that
the performance of both evolutionary computation and reinforcement learning
can be strongly influenced by the characteristics of the task at hand. Thus,
instead of asking which approach is the best choice to solve sequential decision
problems in general, one should try to identify the characteristics of a task that
make it more or less amenable to be solved by each technique. Ideally, one
would have well-defined categories of decision problems in which the expected
performance of evolutionary computation and reinforcement learning was known.
This way, the choices involved in the solution of a given problem would be less
subject to intuition or personal inclination of the designer.

This paper represents a small step towards the scenario described above. It
starts with a brief review of the criteria already used to classify decision problems
and discusses the expected behavior of evolutionary computation and reinforce-
ment learning on the resulting categories. This is done in Section 2. Then, in
Section 3, a subdivision of one of these categories is proposed. As will be seen,
this new dimension of classification is of particular interest for the evolutionary-
computation community, since it clearly delineates a class of decision problems
in which optimization methods are simply not applicable. The new categories
also help to understand the disparity on the reports of previous experiments
comparing reinforcement learning and evolutionary methods. Section 4 presents
a simple computational experiment to illustrate the issues discussed in the pre-
vious section. Finally, the main conclusions regarding the present investigation
are presented in Section 5.

2 Classification of Sequential Decision Problems

Sequential decision problems can be dealt with at different levels of abstrac-
tion. In the model considered here an agent must learn how to perform a task
by directly interacting with it—thus, the task is sometimes referred to as the
environment [17]. The interaction between agent and environment happens at
discrete time intervals. At each time step t the agent occupies a state si ∈ S and
must choose an action a from a finite set A. The sets S and A are called the
state and action spaces, respectively. The execution of action a in state si moves
the agent to a new state sj , where a new action must be selected, and so on.

Each transition si
a
−→ sj has an associated reward r ∈ R, which provides eval-

uative feedback for the decision made. The use of rewards is a simple mechanism
to represent the tradeoff between immediate and long-term benefits present in
sequential decision problems. For example, if one wishes to model the game of
chess, it suffices to associate a positive reward with every transition leading to a
win and a negative reward with those transitions taking to a defeat. In this case,
maximizing the expected reward corresponds to maximizing the probability of
winning the game [17]. Given the above model of the decision-making process,
a sequential decision problem can be classified as:

1. Markovian / Non-Markovian: In a Markovian decision problem the tran-
sitions and rewards depend only on the current state and the action selected
by the agent [13]. Another way to put it is to say that Markovian states
retain all the relevant information regarding the dynamics of a task: once
the current state is known, the history of transitions that took the agent to
that position is irrelevant for the purpose of decision making. In the game
of chess, for example, a particular configuration of the board is all what is
needed for an informed decision regarding the next move. On the other hand,
upon deciding whether or not to concede a draw, a player may benefit from
information about the history of previous games.

Reinforcement-learning algorithms were developed based on the Markovian as-
sumption. In particular, they rely on the concept of a value function, which
associates every state-action pair (s, a) with the expected reward following the
execution of a in s [17]. It is not hard to see, therefore, that reinforcement learn-
ing is particularly sensitive to the Markov property: if the dynamics of a task
depend on the history of transitions executed by the agent, it makes little or no
sense to associate (s, a) with a specific sequence of rewards. This is not to say that
it is impossible to apply reinforcement learning to non-Markovian tasks; how-
ever, at the current stage of theoretical development a non-Markovian problem
still represents a considerable obstacle for reinforcement-learning algorithms in
general. On the other hand, evolutionary algorithms do not associate credit with
individual actions, but rather evaluate decision policies as a whole. Therefore,
each state-action pair is considered in the context of an entire trajectory of the
agent. This focus on the net effect of a sequence of actions is much more robust
with respect to the Markov property (for a particularly enlightening example,
see the article by Moritarty et al. [12]).

2. Deterministic / Stochastic: In a deterministic decision problem the exe-
cution of action a in state si always takes the agent to the same state sj .
In contrast, in a stochastic environment each transition is associated with
a probability distribution over the state space S—that is, the agent may
end up in different states on two distinct executions of a in si. The game of
chess is clearly deterministic, whereas blackjack is an example of stochastic
task [17].

A deterministic task is a degenerate stochastic environment in which the prob-
ability distributions associated with the transitions have only one nonzero ele-
ment. Thus, any method designed for the latter category of decision problems
should in principle also work in the former. Reinforcement-learning algorithms
were developed with the stochastic scenario in mind, and apart from minor
technical details the above distinction is irrelevant for them. Evolutionary com-
putation can also be applied to both deterministic and stochastic tasks, but
the latter require some caution. Since in stochastic tasks the same sequence of
actions may result in different trajectories, an individual should not be evalu-
ated on the basis of a single interaction with the environment (this would be
like evaluating a chess player based on a single game). One way to circumvent
this difficulty in evaluating candidate solutions is to resort to one of the many
techniques available to deal with a noisy evaluation function (see the article by
Moriarty et al. [12]).

3. Small / Large: Here, the terms “small” and “large” refer to the size of the
state space with respect to the storage capacity of current computers. If a
sequential decision problem is such that all state-action pairs can be stored
in a look-up table, this problem is considered small. If S is large enough
to preclude such storage, the task is considered large. Obviously, a decision
problem with a continuous state space is always large.

As discussed above, standard reinforcement-learning algorithms associate every
state-action pair with a number, which amounts to a storage requirement of
O(|S||A|). Obviously, when S is large this requirement cannot be fulfilled, and,
therefore, one must resort to some form of approximation. Unfortunately, it is
well known that the combination of reinforcement learning with general func-
tion approximators can easily become unstable [2, 18, 19]. One alternative is to
use approximators with a linear dependence on the parameters, which results
in stable reinforcement-learning algorithms [18, 9]. However, the performance of
such algorithms is generally very sensitive to the set of features used in the ap-
proximation, which, in principle, must be handcrafted. Evolutionary algorithms
can be easily combined with any type of approximator, and hence they can be
more naturally applied to decision problems with a large state space.

4. Stationary / Non-stationary: In a stationary decision problem the dy-
namics of the environment are fixed, that is, the rules governing the tran-
sitions of the agent and the delivery of rewards do not change over time.
A non-stationary environment is characterized by a changing environment,
which means the performance of a decision policy may also vary with time.

A non-stationary decision problem is considerably more difficult than a sta-
tionary one for both reinforcement learning and evolutionary algorithms. Nev-
ertheless, both approaches can be made to work in these problems with slight
modifications in their standard forms. In the case of reinforcement learning, a
non-stationary environment imposes a particularly severe version of the explo-
ration/exploitation dilemma [17]. In order to address this problem, one must
adopt techniques to guarantee a constant exploration of the environment, such
as offering bonus rewards in states that have not been visited for a long time [17].
In the case of evolutionary computation, the standard strategy to address non-
stationariness is to maintain the diversity within the population of candidate
decision policies [12]. This way, changes in the dynamics of the problem will
favor policies that perform better on the new environment, guiding the evolu-
tionary search in the right direction.

5. Episodic / Continual: In an episodic task the interaction between agent
and environment can be naturally broken into trials or episodes [17]. Each
episode ends in a special state called a terminal state. There might be one or
several such states. In chess, for example, every configuration of the board
representing the end of a game would be a terminal state. In continual tasks
the decision process goes on endlessly, without a clear criterion for inter-
rupting it. One example of continual task is the automatic stock trading, in
which an agent must decide whether to buy or sell stocks depending on the
market situation.

Though not as commonly noted as the previous four categories, the distinction
between episodic and continual tasks is of particular interest for evolutionary
computation. It is well known that the search performed by evolutionary algo-
rithms is based on information gathered between episodes, but not within them.
This creates difficulties in the evaluation of candidate decision-policies for a con-
tinual task. Since in this case there is no clear criterion for interrupting the
interaction of the agent with the environment, the evaluation of an individual
must be truncated at an arbitrary point. Depending on the problem, it might
be difficult to determine how much experience is necessary to properly measure
the quality of an individual. From the reinforcement-learning perspective, the
distinction between episodic and continual tasks is mostly irrelevant, since in
the ontogenetic paradigm learning takes place both inter- and intra-episodes.

Notice that the dimensions of classification discussed above are orthogonal
to each other, that is, the inclusion of a decision problem in one category does
not influence its classification with respect to another criterion. This amounts
to 25 different classes of decision problems. Obviously, it is possible to refine the
above classification system by adding other dimensions to it. For example, at a
higher level of generality it is possible to distinguish problems with a continuous
action space from those with a finite number of actions available. Similarly,
one can consider tasks in which the interaction between agent and environment
happens continuously rather than at discrete time intervals [13]. The next section
discusses another way to extend the above classification scheme.

3 A New Dimension of Classification

Among the classification criteria discussed in the previous section, the distinction
between continual and episodic tasks is especially important for evolutionary
methods. As discussed, continual tasks may create difficulties for these methods
because the evaluation of an individual must be interrupted at a somewhat
arbitrary point. Though this is certainly an obstacle, it does not prevent the
use of evolutionary computation in the solution of continual decision-problems.
In fact, this issue is similar to that of generalization in supervised learning, a
well-understood problem for which several effective techniques exist [8].

Based on the discussion above, one may come to the following conclusion:
evolutionary methods work well on episodic problems and, as long as the right
techniques are employed, they can also be used on continual tasks. Unfortunately,
the situation is a bit more complicated than that. Surprisingly enough, the most
severe limitation of evolutionary computation manifests itself not on continual
tasks, but on a particular type of episodic decision problem. As discussed before,
in episodic tasks the interaction between agent and environment ends when the
former reaches one of possibly many terminal states. But terminal states are not
all the same; some represent desirable situations while others represent situations
one would rather stay away from. This gives rise to the following definitions: if a
terminal state is associated with the accomplishment of a task, such as winning a
game or finding the exit of a maze, it is called a goal state. If, on the other hand, a
terminal state represents an error of the agent, it is called a dead-end. Examples
of dead-ends include: dropping the ball in a game like volleyball, falling off a
suspended race track, losing all the money in a game of chance. This distinction
between different types of terminal states induces a division of episodic tasks
into two sub-categories:

5.1. Goal seeking / Error avoidance: An episodic decision problem is called
a goal-seeking task if its terminal states represent the accomplishment of the
task. Usually, the arrival at a goal state is accompanied by a positive reward
or by the ceasing of a stream of negative rewards. In an error-avoidance
episodic-task the terminal states are associated with undesirable situations.
More specifically, the terminal states are “dead-ends” representing bad de-
cisions that are irreversible. The delivery of rewards in an error-avoidance
task follows the opposite logic of that of goal-seeking tasks.

Notice that, in contrast with the categories discussed in the previous section, the
above classes of decision problems are not mutually exclusive, since it is possible
for a task to simultaneously have goals and dead-ends. For example, Randløv
and Alstrøm [14] proposed a task in which the objective is to balance and ride
a bicycle to a target location. Thus, one must avoid terminal states representing
the falling off the bike while seeking for those terminal states associated with
the goal region.

In principle, there is no reason to believe the distinction between goal-seeking
and error-avoidance tasks is of any relevance to reinforcement learning. In fact,

it is possible to find in the literature examples of reinforcement-learning appli-
cations which can be clearly identified with both categories [17]. In contrast, the
performance of evolutionary methods can be highly influenced by the type of
episodic decision-problem at hand. Usually, error-avoidance tasks cause no trou-
ble for evolutionary computation. This is because in this type of problem it is
straightforward to rank unsuccessful candidate solutions: the longer it takes for
a decision policy to reach a dead-end, the better its evaluation. As a side effect,
in an error-avoidance task the time spent in the evaluation of an individual is
normally proportional to its quality. This is also a very desirable property, since
it induces a smart allocation of computational resources: the evolutionary pro-
cess will quickly evaluate a large number of poor solutions and eventually focus
on candidate decision-policies that are worth the computational effort.

Unfortunately, the situation with goal-seeking tasks is quite different. In this
type of task one is interested in finding a decision policy able to reach a specific
set of states. Since the position of such states is not known beforehand, it is not
clear how to compute the kind of quality measure required by the phylogenetic
search, such as the distance from a given state to the closest goal. This makes
it hard for evolutionary algorithms to differentiate between candidate solutions
that are unable to accomplish the task. Of course, there are situations in which
it is possible to estimate the quality of a decision policy based on additional
information about the problem. However, when such information is not available,
the evolutionary process is reduced to a random search until a successful solution
luckily emerges in the population. Depending on the difficulty of the task, this
might be a very unlikely event [1].

Notice that this question is not related to design choices such as the type
of representation or genetic operators used by the evolutionary algorithm. In
fact, this issue is intrinsic to any goal-seeking task and any optimization method
which basis its search on the relative merit of candidate solutions. Reinforcement
learning algorithms do not suffer from this difficulty because they evaluate each
decision made by the agent individually. Hence, even before reaching the goal,
the agent has an estimate of the effects of the decisions made so far.

The distinction between goal-seeking and error-avoidance episodic-tasks sheds
some light on the apparent inconsistency on previous accounts of experiments
comparing reinforcement learning and evolutionary algorithms. For example, in
a sequence of scientific works initiated in 1993 by Whitley et al. [22], several
researchers report an overwhelming advantage of evolutionary methods over re-
inforcement learning on experiments with a control problem known as the pole-
balancing task [11, 10, 7, 15, 6]. In the pole-balancing task one has to apply forces
to a wheeled cart moving along a limited track in order to keep a pole hinged
to the cart from falling over. When formulated as a Markovian problem, the
characteristic of pole-balancing that seems to favor evolutionary computation
the most is the task’s continuous state space. Nevertheless, the fact that it is
an error-avoidance task may play an important role as well. The experiments
of Barreto and Anderson [1] with the Acrobot task corroborates this hypoth-
esis. The Acrobot is a continuous problem in which the objective is to help a

gymnast-robot swinging on a high bar to raise its feet above the bar. It is, there-
fore, a goal-seeking task. In their experiments with the Acrobot, Barreto and
Anderson were unable to find a single decision policy able to accomplish the
task when using an evolutionary algorithm. In contrast, reinforcement learning
easily solved the problem.

4 An Illustrative Experiment

This section presents a computational experiment to illustrate the issues involved
in the solution of episodic tasks using evolutionary methods. The experiment
concerns a deterministic environment that can be easily configured as either an
error-avoidance or a goal-seeking task.

In the proposed problem an agent must learn how to perform by directly
interacting with a two-dimensional maze. The dynamics of the maze follow the
convention usually adopted in this type of task: at every state, there are four
actions available—north, south, east and west—whose effect is the movement
of the agent in the corresponding direction. To allow for a broader analysis,
the experiments were not performed on a single maze, but rather on a set of
mazes with similar characteristics. All mazes were based on n×n grids and had
one entrance at the upper-left corner. The position of the goal was selected at
random. The mazes were generated in such a way that all states were connected
to at least two other states (see Fig. 1).

Fig. 1: Example of 10 × 10 maze

Two formulations of the problem were used. The first one is a typical error-
avoidance task: the agent must travel inside the maze for as long as possible
without hitting any walls (thus, the exit of the maze is ignored). If the agent
runs into a wall, it gets a negative reward and is repositioned at the entrance
of the maze. In order to avoid trivial solutions in which the agent repeatedly
visits two neighbor cells, the state visited at time t was treated as a wall at
time t + 1 (but not at t + 2). This forced the agent to look for cycles within the
maze. The second version of the problem has the usual description of a maze: the
agent must find a path from the entrance to the exit (that is, it gets a positive

reward when it finds the goal state). This is clearly a goal-seeking task. Notice
that both versions of the problem are deterministic, stationary, and episodic.
For the sizes of mazes used in the experiments, they are also small. Since in the
error-avoidance task the transitions depend on the states previously visited by
the agent, this is a non-Markovian problem. The goal-seeking task is Markovian.

The evolutionary method adopted in the experiments was a generational
genetic-algorithm using a population of 100 individuals. The decision policies
were represented as n2-dimensional vectors, where n is the dimension of the
maze. The elements of the vectors were one of the four actions available in
the task, indicating the direction selected by the policy in each state of the
maze. A two-point crossover was employed for recombination, with probability of
occurrence of 0.9 [5]. After an individual had been created, the random mutation
operator was independently applied to each of its elements with probability 1/n2.
The candidate solutions were selected for reproduction based on linear ranking
using a selective pressure of 1.5 [21]. At every generation the best solution found
up to that point was copied to the next generation without modification.

As one would expect, the evaluation of candidate decision-policies was easy in
the error-avoidance version of the task: the fitness of an individual was defined
as the number of steps it performed before running into a wall. Notice that,
considering the representation used, if a decision policy could avoid the walls for
n2 steps, it could do so indefinitely. Thus, upon performing this number of steps
a decision policy was considered successful.

The definition of an evaluation function was not as straightforward in the
goal-seeking version of the task. Since one does not know the number of steps
separating a given state from the goal, it is necessary to resort to alternative
sources of information to build an evaluation scheme that (hopefully) helps the
agent to accomplish its objective. By analyzing the dynamics of the present task
and the representation used by the genetic algorithm, it is clear that a decision
policy cannot escape from the maze if it runs into a wall or visits a state more
than once. Hence, the evaluation of an individual can be interrupted as soon as
one of these events occur. Still, one is left with the problem of estimating the
quality of a decision policy—that is, how far it is from completing the task.

In order to illustrate the issues involved in the derivation of an evaluation
function for a goal-seeking task, two scenarios were considered in the experi-
ments. In the first one the designer knows nothing about the task but its dy-
namics. In this case, a possible approach is to stimulate the candidate decision-
policies to explore the maze as much as possible, in the hope that one will luckily
find the goal. Thus, in this version of the task the fitness of an individual was
defined as the number of steps it executed before hitting a wall or encountering
an already-visited state. In the second formulation of the goal-seeking task the
designer knew the coordinates of the goal state.3 In this case, the fitness of an
individual was defined as n2−d, where d is the Manhattan distance between the
last state visited by the agent and the goal.

3 The coordinates of the states were defined as their indices in the n×n grid underlying
the maze.

Figure 2 shows the results obtained by the genetic algorithm after 500 gen-
erations on mazes of different sizes. Since the number of generations was fixed
in the experiments, it is natural to observe a decrease on the success rate of the
algorithm as the dimension of the mazes increases. However, the performance of
the evolutionary method degenerates much faster on the goal-seeking task, as
shown in the figure. This illustrates the issue discussed in the last section: since
in the goal-seeking version of the problem the evaluation functions do not reflect
the true objective of the agent, the performance of the algorithm deteriorates
when a lucky move into the goal becomes less and less likely to occur.

5x5 10x10 15x15 20x20

S
u
c
c
e
s
s
 r

a
te

 (
%

)

0
2
0

4
0

6
0

8
0

1
0
0

Error avoidance
Goal seeking with exploration
Goal seeking with distance

Fig. 2: Results obtained by the genetic algorithm on the maze task. In the error-
avoidance task a run was considered successful if the agent could avoid the walls for
n

2 steps. In the goal-seeking task a successful run was characterized by the agent find-
ing the goal. The values correspond to an average computed over 500 mazes of each
dimension. The same mazes were used for the goal-seeking and error-avoidance tasks.

Perhaps more surprising is the comparison between the two evaluation func-
tions used in the goal-seeking task. Since the fitness based on the distance to the
goal uses more information than its naive explorative counterpart, one would
expect the former to generate better results. The reason why this is not so is
unclear. The explanation might be related with the presence of multiple local
minima represented by states close to the goal in the Euclidean sense but far
away inside the maze. Incidentally, this experiment shows that the availability
of information about a goal-seeking problem is no guarantee of success for an
evolutionary method.

5 Conclusions

Evolutionary computation and reinforcement learning address the sequential
decision-making problem in completely different ways, and their advantages and

drawbacks may be emphasized or disguised by the features of a specific task [17,
12]. Therefore, an important goal is to discover characteristics of a decision prob-
lem that can be easily identified and that at the same time provide some hint as
to which of the two approaches should be adopted to solve the problem.

The contribution of this paper for the above scenario is twofold. First, it
provides a systematic review of the criteria most commonly used to classify de-
cision problems and discusses their impact on the performance of reinforcement
learning and evolutionary computation. To the best of the authors’ knowledge,
this is the first attempt to organize this information in an easily accessible form.
The paper also proposes the division of the class of episodic problems into two
subcategories, which delimits a set of decision problems particularly difficult for
optimization techniques in general and evolutionary methods in particular.

In an error-avoidance task the decision-making process lasts until the agent
makes a mistake. This category of decision problem is usually amenable to evo-
lutionary methods, since in this case it is trivial to evaluate decision policies
that have failed to accomplish the task. On the other hand, in goal-seeking
tasks unsuccessful candidate solutions cannot be easily ranked, since all decision
policies unable to find a goal state are in principle equally bad. This subjects
the use of evolutionary algorithms to the availability of prior information about
the problem. There also exist episodic decision-problems whose characteristics
can be identified with both error-avoidance and goal-seeking tasks. In problems
with mixed features like this, evolutionary methods are expected to perform well
without specific knowledge about the problem if the avoidance of errors helps
the agent to get to the goal.

As discussed in the paper, the characteristics of a sequential decision problem
have different effects over reinforcement learning and evolutionary algorithms:
some characteristics will favor one over another, while others will have the same
impact on both approaches. In some cases, the description of a given problem will
make it obvious which paradigm one should resort to. In general, however, one
should not expect the classification of a decision problem to provide such a clear-
cut answer. Therefore, it might be a good idea to see evolutionary computation
and reinforcement learning as complementary rather than mutually exclusive
approaches. This seems to be the underlying assumption behind the learning

classifier systems, a rule-based approach for solving decision problems which
combines ideas from reinforcement learning and evolutionary computation [3].
It should be noted, however, that learning classifier systems still lack a strong
mathematical basis, and much research must be done in order to understand
the subtle interactions between the ontogenetic and the phylogenetic learning
processes [4].

Acknowledgments

The authors would like to thank the support provided by the Brazilian agencies
CNPq (grant 311651/2006-2), FAPERJ (grant E-26/102.825/2008), CAPES,
and ANP.

References

1. A. M. S. Barreto and C. W. Anderson. Restricted gradient-descent algorithm
for value-function approximation in reinforcement learning. Artificial Intelligence,
172(4-5):454–482, 2008.

2. J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: Safely
approximating the value function. In Advances in Neural Information Processing

Systems, pages 369–376. MIT Press, 1995.
3. L. Bull and T. Kovacs, editors. Foundations of Learning Classifier Systems.

Springer, 2005.
4. J. Drugowitsch. Design and Analysis of Learning Classifier Systems—A Proba-

bilistic Approach. Springer, 2008.
5. D. Goldberg. Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley Reading, MA, 1989.
6. F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated neural evolution

through cooperatively coevolved synapses. Journal of Machine Learning Research,
9:937–965, 2008.

7. F. J. Gomez. Robust non-linear control through neuroevolution. PhD thesis, The
University of Texas at Austin, 2003. Technical Report AI-TR-03-303.

8. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer, 2002.
9. M. G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine

Learning Research, 4:1107–1149, 2003.
10. D. E. Moriarty. Symbiotic Evolution of Neural Networks in Sequential Decision

Tasks. PhD thesis, The University of Texas at Austin, 1997.
11. D. E. Moriarty and R. Miikkulainen. Efficient reinforcement learning through

symbiotic evolution. Machine Learning, 22(1–3):11–32, 1996.
12. D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette. Evolutionary algorithms for

reinforcement learning. Journal of Artif. Intelligence Research, 11:241–276, 1999.
13. M. L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons, Inc., 1994.
14. J. Randløv and P. Alstrøm. Learning to drive a bicycle using reinforcement learning

and shaping. In Proc. of the Fifteenth Int. Conf. on Machine Learning, pages 463–
471, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

15. K. O. Stanley. Efficient evolution of neural networks through complexification. PhD
thesis, The University of Texas at Austin, 2004.

16. R. S. Sutton. Learning to predict by the methods of temporal differences. Machine

Learning, 3:9–44, 1988.
17. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT

Press, 1998.
18. J. N. Tsitsiklis and B. V. Roy. Feature-based methods for large scale dynamic

programming. Machine Learning, 22:59–94, 1996.
19. J. N. Tsitsiklis and B. V. Roy. An analysis of temporal-difference learning with

function approximation. IEEE Trans. on Automatic Control, 42:674–690, 1997.
20. D. J. White. Real applications of Markov decision processes. Interfaces, 15:73–83,

1985.
21. D. Whitley. The GENITOR algorithm and selective pressure: why rank-based

allocation of reproductive trials is best. In Proc. of the Third Int. Conf. on Genetic

Algorithms and their Applications, pages 116–121. Morgan Kaufmann, 1989.
22. D. Whitley, S. Dominic, R. Das, and C. W. Anderson. Genetic reinforcement

learning for neurocontrol problems. Machine Learning, 13(2-3):259–284, 1993.

