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ABSTRACT

In this paper we argue that the performance of evolution-
ary computation on sequential decision problems strongly
depends on the characteristics of the task at hand. On
“error-avoidance” tasks, in which the decision process is in-
terrupted every time a bad decision is made, evolutionary
methods usually perform well. However, the same is not true
for “goal-seeking” tasks, in which the objective is to find one
or more target locations. In this case, it is not clear how to
evaluate the unsuccessful candidate solutions, and the per-
formance of evolutionary computation may depend on prior
knowledge about the problem. Even though the hypothesis
of this paper is essentially a conceptual one, we support our
ideas with a computational experiment.

Categories and Subject Descriptors: I.2.8 [Computing
Methodologies]: Solving, Control Methods, and Search

General Terms: Performance

Keywords: Sequential Decision Problems, Evolutionary
Computation, Reinforcement Learning

1. INTRODUCTION
One of the main issues regarding the solution of sequen-

tial decision tasks is the so-called temporal credit-assignment

problem: how to apportion credit to individual decisions by
looking at the outcome of a sequence of them [2]. Evolution-
ary methods perform the temporal credit-assignment implic-
itly, by evaluating each decision policy as a whole and then
combining the most successful ones in the hope that better
policies will come forth [1]. In this work we argue that this
strategy is not equally effective on all kinds of sequential
decision tasks. In particular, we identify two categories of
decision problems in which the performance of evolutionary
computation is quite different.

We call error-avoidance tasks problems in which the deci-
sion process lasts until the agent makes a mistake. The task
of balancing a pole hinged to a cart, a classic control problem
used for years as a benchmark, is an example of this type
of decision task [4]. Evolutionary methods perform well on
error-avoidance tasks because it is usually straightforward
to evaluate poor decision policies in these problems. For
example, in the pole-balancing task one can easily rank the
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unsuccessful candidate policies based on the number of steps
they could balance the pole for. However, there also exist
problems where bad policies cannot be ranked in a mean-
ingful way. This is the case of goal-seeking tasks, in which
the objective is to find a goal region whose location is not
known beforehand (like in a maze, for instance). Since in
these problems it is not possible to compute the distance
from a given state to the goal, it is not clear how to differ-
entiate between decision policies that never reach it.

2. MAIN HYPOTHESIS
Error-avoidance tasks present two characteristics that

make them particularly favorable for the type of search
carried out by evolutionary computation. Specifically, it is
fairly easy to evaluate candidate solutions in these problems
because:

1. One can rank unsuccessful decision policies based on
the amount of time they could avoid making a mistake.

2. Usually, the worse the performance of a candidate de-
cision policy, the faster its evaluation.

It is not hard to see that item 1 is absolutely fundamental
for the evolutionary process: if candidate decision policies
that have failed in the task cannot be ranked, there is no
selective pressure towards better solutions. Although not
essential, item 2 is also very desirable, since it induces a
smart allocation of computational resources. When item 2
is true, the evolutionary process will quickly evaluate a large
number of poor solutions and eventually focus on individuals
that are worth the computational effort.

Unfortunately, not all sequential decision problems have
the properties listed above. As described, in goal-seeking
tasks one is interested in finding a decision policy able to
reach a specific set of states. This makes it hard for opti-
mization techniques in general, and evolutionary methods in
particular, to differentiate between candidate solutions that
are unable to accomplish the task. Notice that this question
is not restricted to any specific task, neither is it related to
design choices such as the type of representation or genetic
operators used by the evolutionary method. In fact, this is-
sue is intrinsic to any goal-seeking task and any optimization
method which bases its search on the relative merit of candi-
date solutions. Since the information that really matters is
not available during the search, one must find an alternative
source of information that provides an estimate of a decision



policy’s quality—that is, of how far it is from completing the
task. This information may or may not be available.

3. ILLUSTRATIVE EXPERIMENT
The central argument of this work is a conceptual issue

and as such it can be intuitively understood. For the sake of
completeness, though, we present in this section a compu-
tational experiment providing evidence for our hypothesis.1

In particular, we present a sequential decision task that can
be easily configured as either an error-avoidance or a goal-
seeking task. We show how the performance of a genetic al-
gorithm degenerates when one switches from one version of
the problem to the other. In order to put the results of the
genetic algorithm into perspective, we contrast them with
the results obtained by Q-learning, a popular reinforcement-
learning algorithm commonly used to solve sequential deci-
sion problems [3].

In the decision task we propose an agent must learn how
to perform by directly interacting with a two-dimensional
maze. In order to get more reliable results, instead of using
one specific maze we tested the algorithms on a set of mazes
with similar characteristics. All mazes were based on n× n

grids and had one entrance and one exit. The entrance was
constrained to be on the upper-left corner of the maze, while
the exit was always on the bottom-right corner. The mazes
were “perfect” or “simply connected,” meaning that there
was one and only one path from each state to any other
state of the maze.

We used two different formulations of the task. In the
first one the agent must find the longest path it can travel
from the entrance of the maze without visiting the same
state twice (thus, in this version of the task the exit of the
maze is ignored). Also, every time the agent hits a wall it is
repositioned at the entrance of the maze. This configuration
of the problem results in an error-avoidance decision-task.
For this version of the problem the fitness of a candidate
solution was defined as the number of steps performed until
it hits a wall or returns to a previously visited state.

In the second version of the problem the agent must find
the path from the entrance to the exit of the maze, and it
remains at the same state when it runs into a wall. Obvi-
ously, this is a goal-seeking task. Since in this problem it is
not possible to compute the distance from a particular state
to the goal, the evaluation of a candidate policy was based
on the number of steps it performed inside the maze. This
strategy is a good example of how prior knowledge about the
problem can be incorporated into an evolutionary method:
since one knows the entrance and the exit of the mazes are
always located at opposite corners, one can favor those deci-
sion policies that travel farther into the maze. Even though
this fitness function does not reflect the true objective of the
problem, it is not clear how to do better with the informa-
tion available on the task.

We fixed an upper bound of n2
× 25, 000 transitions for

the genetic algorithm and Q-learning to find a solution for
each version of the problem. Table 1 and Figure 1 show the
results obtained by both methods on the experiments. The
algorithms were executed using a set of parameters specif-
ically optimized for each configuration of the task. The

1Due to space limitation we are unable to give all the details
of the experiment. A longer version of the paper with a full
description of the experiment will be made available soon.

results correspond to an average obtained over 150 mazes
of each dimension. As shown in Table 1, in the first ver-
sion of the problem both methods perform similarly. In
contrast, when the problem is formulated as a goal-seeking
task, the reinforcement-learning algorithm significantly out-
performs the evolutionary method (see Figure 1). These
results clearly support our hypothesis.

Table 1: Length of the Solution Found Relative to
the Longest Path (%). S.D. = “standard deviation”

Size Mean Max. Min. S.D.
Genetic algorithm

5× 5 99.25 100.00 80.00 2.96
10× 10 81.38 100.00 18.52 20.81
15× 15 57.38 92.98 12.32 18.14
20× 20 37.61 87.80 6.44 16.86

Q-learning
5× 5 96.11 100.00 61.11 7.96

10× 10 80.35 100.00 35.59 16.40
15× 15 52.54 100.00 16.67 16.79
20× 20 34.99 82.93 12.83 11.55
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Figure 1: Proportion of Runs in Which the Agent
Learned How to Escape from the Maze
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