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Abstract

This work presents the restricted gradient-descent (RGD) algorithm, a training method for local radial-basis function networks
specifically developed to be used in the context of reinforcement learning. The RGD algorithm can be seen as a way to extract
relevant features from the state space to feed a linear model computing an approximation of the value function. Its basic idea is to
restrict the way the standard gradient-descent algorithm changes the hidden units of the approximator, which results in conservative
modifications that make the learning process less prone to divergence. The algorithm is also able to configure the topology of the
network, an important characteristic in the context of reinforcement learning, where the changing policy may result in different
requirements on the approximator structure. Computational experiments are presented showing that the RGD algorithm consistently
generates better value-function approximations than the standard gradient-descent method, and that the latter is more susceptible to
divergence. In the pole-balancing and Acrobot tasks, RGD combined with SARSA presents competitive results with other methods
found in the literature, including evolutionary and recent reinforcement-learning algorithms.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Reinforcement learning; Neuro-dynamic programming; Value-function approximation; Radial-basis-function networks

1. Introduction

Sutton and Barto [77] and Kaelbling et al. [37] describe reinforcement learning as a class of problems, rather than
as a set of techniques. In this paradigm, an agent must learn how to act through direct interaction with an environment.
The only information available to the agent is a reinforcement signal providing evaluative feedback for the decisions
made.

This rather informal definition is sufficient to explain the increasing interest in the field from the artificial intelli-
gence and machine learning communities. First of all, this framework is a crude but appealing model of what actually
happens in nature, and the analogy with animal behavior is almost irresistible [64,76]. From an engineering perspec-
tive, the reinforcement-learning paradigm is also tempting, since it transfers to the learning system the burden of
figuring out how to accomplish a task. This way, instead of providing a set of examples with the desired behavior, as
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in supervised learning, the designer is left with the much simpler task of representing a problem in terms of reward
and punishment signals only. If, for example, one wanted to have a mobile robot travel from one point to another, it
could be done by simply giving the robot a reward when the goal was reached.

In order for the above scenario to be true, however, several obstacles other than those in the robot’s trajectory
must be overcome. One of the major difficulties arises from the combination of reinforcement learning and function
approximation. If one wants to solve real-world reinforcement learning tasks—where the number of possible states
of the system is usually too large to allow an exhaustive exploration—it is necessary to provide the agent with the
ability to generalize. Nevertheless, as is now well known (though not completely understood), the combination of
reinforcement learning algorithms with function approximators can easily become unstable, and finding a feasible
way to merge both paradigms is today an active area of research in machine learning.

This paper presents an attempt in this direction, namely a training method for local radial-basis function networks
especially designed to be used in the context of reinforcement learning. The restricted gradient-descent (RGD) algo-
rithm is essentially a modified version of the standard gradient-descent method, and as such it inherits both its qualities
and drawbacks. However, the restrictions imposed by RGD on the application of gradient-descent’s delta rule make it
less prone to divergence. In the RGD algorithm the center of the radial functions are always moved toward the current
state, which tends to confine them to the convex-hull formed by the training data. Also, the widths of the radial-basis
functions are only allowed to shrink, and thus they can not possibly diverge to infinity. Obviously, these restrictions
on the delta rule limit the trajectory of the approximator’s parameter vector in the parameter space. This lost of flexi-
bility is compensated by the on-line allocation of new hidden units, which results in a monotonically increasing of the
approximation granularity.

This work is organized as follows. Section 2 presents a brief review of reinforcement learning, focusing on methods
that rely on the concept of a value function to address this problem. As mentioned, the stability of such methods can
be affected by the use of function approximators. This issue is discussed in more detail in Section 3. One way to
alleviate the instability caused by the use of approximators is to adopt linear models operating on features extracted
from the original state space. Section 4 discusses the concept of “features” used in this paper, as well as a way to
select them using local radial-basis functions. Section 5 presents the RGD algorithm, which can be seen as a strategy
to extract relevant features from the state space. This algorithm is applied in Section 6 to a series of computational
experiments. Particularly, the performance of RGD is compared to that of the standard gradient-descent method and
to several traditional reinforcement-learning algorithms using other techniques to approximate the value function.
Section 7 presents an overall analysis of the experiments and a hypothesis explaining the stable behavior of the
restricted gradient-descent algorithm. Finally, in Section 8 the main conclusions about this research are presented, and
some possible directions for future work are discussed.

2. Reinforcement learning

The goal of the agent in reinforcement learning is to find a policy π—a mapping from states to actions—that
maximizes the expected return. The return Rt is the total reward the agent receives in the long run from time t on:

Rt = rt+1 + γ rt+2 + γ 2rt+3 + · · · =
∞∑
i=0

γ irt+i+1,

where γ ∈ [0,1] is the discount factor. This parameter determines the relative importance of the individual rewards,
depending on how far in the future they are.

The rewards r ∈ � are given by the environment to the agent each time it performs an action. Usually, this inter-
action happens in discrete steps: at each time step t , the agent selects an action a ∈ A(st ) as a function of the current
state st ∈ S. The sets S and A(st ) are part of the environment and represent the possible states of the system and the
available actions in each state st . As a response to the action a, the agent receives from the environment a reward
rt+1 and a new state st+1. This loop is repeated indefinitely or until the agent reaches a terminal state. The interaction
between agent and environment can be formalized as a Markov decision process [10,14,54].

One way to address the reinforcement-learning problem is to search for a good solution in the policy space directly.
This could be done, for example, by parametrizing π and then have an evolutionary algorithm search for good policies
[35,88]. Another approach is to compute an approximation of the gradient of the average reward with respect to the
parametrized policy, which can be used to perform gradient ascent [7,8,73].
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Another way to deal with the reinforcement learning problem is to use methods derived from dynamic program-
ming [9,14,54]. One advantage of this approach is the fact that dynamic programming has been studied for a long
time, and is now supported by a strong and well understood theoretical basis. Central to the dynamic programming
approach is the concept of a value function. The action-value function of a given policy π associates each state–action
pair (s, a) with the expected return when performing action a in state s and following π thereafter:

Qπ(s, a) ≡ Eπ {Rt | st = s, at = a},
where Eπ { } denotes the expected value when following policy π . Since the notation above is widely adopted, the
action-value function is usually referred to as the Q-function. Once the Q-function of a particular policy πk is known,
we can derive a new policy, πk+1, which is greedy with respect to Qπk (s, a):

πk+1(s) = arg max
a∈A(s)

Qπk (s, a). (1)

The policy πk+1 is guaranteed to be at least as good as (if not better than) the policy πk . This is the fundamental
idea of the reinforcement learning algorithms based on dynamic programming: given an initial arbitrary policy π0,
compute its value function Qπ0(s, a) and then generate a better policy π1 which is greedy with respect to this function.
The next step is to compute Qπ1(s, a), use it to generate a new policy π2, and so on. Under certain assumptions, the
successive alternation of these two steps—policy evaluation and policy improvement—can be shown to converge to
the optimal policy π∗, which maximizes the expected return on every state.

Of course, the above process can be executed in different levels of granularity. It is not necessary, for example, to
have an exact Q-function Qπk(s, a) to perform the policy improvement step. One can compute a rough approximation
of this function and then use it to generate a new policy πk+1. The improvement step itself can be performed in
different levels. Eq. (1) could be used to update the policy πk on a single state, a set of them, or on the entire state space
S. The exact way the policy evaluation and policy improvement steps are performed defines the different reinforcement
learning algorithms.

2.1. Computing the value function

A complete control problem can be broken into two stages: policy evaluation and policy improvement. The policy
improvement step is usually easy to compute. This is especially true if A(st ) is finite and small for every st , in which
case it is reduced to the computation of the “max” operator in (1). Therefore, much of the effort in reinforcement
learning research is devoted to the evaluation problem, that is, given a policy π how to compute its value function.

Suppose the state space is a finite set. One way to do policy evaluation is to use sample trajectories to compute the
average return associated with each state–action pair [5,45]:

Qπ
k (s, a) = 1

k

k∑
i=1

Ri
t , with st = s and at = a, (2)

where Ri
t are actual returns following the visits to (s, a). It can be shown that the sequence Qπ

1 ,Qπ
2 , . . . ,Qπ∞ asymp-

totically approaches the true Q-function of π [77]. One drawback of this approach is the fact that it can be naturally
applied only to tasks where the interaction between agent and environment can be broken into subsequences or “trials”,
as in a maze, for example, where a new trial starts every time the agent reaches the goal. We call each subsequence an
episode [77].

Even if the task can be subdivided into episodes, when using (2) the agent does not learn anything during each
interaction, but only between them, when the collected data can be used to update Qπ

k . It is possible for the agent
to learn while interacting with the environment. This is because of a recursive relation between states known as the
Bellman equation [9]:

Qπ(s, a) = Eπ

{
rt+1 + γQπ

(
st+1,π(st+1)

) | st = s, at = a
}

=
∑
s′

P a
ss′

[
Ra

ss′ + γQπ
(
s′,π(s′)

)]
, (3)

where P a
ss′ is the probability of reaching state s′ when in state s and performing action a and Ra

ss′ is the expected
reward of this transition.
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Eq. (3) is one of the most important results in dynamic programming, and is the core of most value-function based
reinforcement-learning methods. First of all, Qπ is the unique solution for its Bellman equation, and thus solving (3)
for every state–action pair corresponds to finding the true Q-function of π . Furthermore, the Bellman equation makes
it possible to update the Q-values of a state s based on the estimated value of its successors. This is what Sutton and
Barto [77] call bootstrapping, and is the basic mechanism through which an agent can learn while interacting with its
environment.

If the environment’s dynamics are completely known—that is, if P a
ss′ and Ra

ss′ are given—the Bellman equations
of all state–action pairs can be written as a system of linear equations whose solution is the true value function of π .
One way to solve this system is to use iterative methods in which the approximation of Qπ is successively refined
based on its past estimates [14,54]:

Qπ
k+1(s, a) =

∑
s′

P a
ss′

[
Ra

ss′ + γQπ
k

(
s′,π(s′)

)]
. (4)

The above algorithm is known as iterative policy evaluation. It can be applied synchronously, where the old values
Qπ

k (s, a) are kept during one iteration, or in a Gauss–Seidel style, in which the most recent available values are used
to make up the targets for the updates. In both cases, however, a model of the system is required. This restriction can
be removed if P a

ss′ and Ra
ss′ are estimated from sample transitions from the environment or a generative model. This

is the basic idea of the temporal-difference learning methods [74], whose update rule can be written as:

Qπ
k+1(s, a) = Qπ

k (s, a) + α
[
r + γQπ

k

(
s′,π(s′)

) − Qπ
k (s, a)

]
, (5)

where r is the reward received in one transition from state s to s′ and α ∈ [0,1] is the learning rate. Temporal-
difference (TD) learning is one of the central ideas of reinforcement learning. It makes it possible for the agent to
learn while interacting with the environment without knowledge of its dynamics. With the use of eligibility traces,
the TD method can update more than one Q-value at each iteration. This generates a family of algorithms known as
TD(λ) [67].

Eq. (5) can be modified to deal with the complete control problem, that is, besides the evaluation step, also to
perform the policy improvement step. This is done by incorporating the “max” operator into the update rule, and the
resulting algorithm is called Q-learning [83]. If the policy improvement step is applied after each temporal-difference
update—that is, if (1) and (5) are applied alternately—one has the SARSA algorithm [57,75].

The algorithms represented by (4) and (5) and their control counterparts are guaranteed to converge to the true
value function Qπ if certain assumptions are respected [14,24,36,66]. One of these assumptions is that Qπ

k is stored
in a lookup-table, with one entry for each state–action pair. This makes the application of the standard version of these
methods to large or continuous state spaces infeasible.

3. Reinforcement learning and function approximation

In real-world reinforcement learning tasks, it is usually not possible to visit every state–action pair (s, a), and
thus the agent must be able to generalize from its limited experience. In the context of dynamic-programming based
algorithms, this means the value function must be represented by a function approximator.

Generalization from examples has been studied in artificial intelligence for many years, and there is now a great
body of research on function approximation that can be borrowed from supervised learning. However, the combination
of reinforcement learning and function approximators is not a straightforward task, for several reasons:

(1) In reinforcement learning, it is important that learning occurs on-line, while the agent interacts with the environ-
ment. This requires methods that are able to deal with incrementally acquired data, instead of a static training
set [77,85].

(2) Also, if a bootstrapping method is adopted, the target values to be used as training examples—the right-hand side
of (4) and (5), for example—are highly non-stationary. If the policy changes during the learning process, this
problem can get even worse, since the distribution from which the training examples are picked may also change
over time [55].

(3) As observed by Boyan and Moore [19] and Gordon [32], even if the function approximator is able to approximate
the final value function Qπ , it might not be able to represent the intermediary versions Qπ of this function.
k
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(4) In the complete control problem, even if a good approximation of the optimal value function Q∗ is found, the
approximation error may cause the resulting policy π to perform very poorly [13,58,68,89].

Despite all these difficulties, reinforcement learning with function approximators has been successfully applied
in various domains. Classical examples in game playing are the Samuel’s checker player [60,61] and Tesauro’s TD-
Gammon, a program based on reinforcement learning which is able to play backgammon near the level of the world’s
strongest grandmasters [79]. The reinforcement learning paradigm has also been applied to different sequential de-
cision tasks, such as shop-schedule strategies for NASA space shuttle missions [90], elevator dispatch control [23],
dynamic channel allocation in cellular telephone networks [65] and regulation of an irrigation network [34]. In ro-
botics, reinforcement learning algorithms combined with function approximation have been used, for example, for
navigation control [25,41] and to help robots to walk [12] and to play soccer [72].

The contrast between the theoretical obstacles and the practical successes in applying reinforcement learning with
function approximators resulted in great interest in the area. Some of the earlier works presented discouraging re-
sults, with simple counterexamples in which the most popular methods would fail dramatically [4,19,32,81]. Later,
Sutton [75] showed that some of these counterexamples could be solved when using a linear approximator and on-
line state sampling (that is, sampling the transitions according to the current policy π ). Based on this observation,
Tsitsiklis and Roy [82] proved that TD(λ) with this configuration converges with probability 1. This result created
a strong tendency toward the use of linear models in reinforcement learning, for which several theoretical analyses
exist [53,56,63,78]. The strongest results in the current literature are those regarding the convergence of control algo-
rithms with linear function approximators [33,39,48,49]. Among these, kernel-based reinforcement learning [48] and
the least-squares policy iteration algorithm (LSPI) [39] deserve special attention, and will be discussed further in the
text.

4. Features as local basis functions

As mentioned, recent theoretical and practical results in the reinforcement-learning literature consider the use of
linear approximators. One way to represent the Q-function in the case of discrete actions is to have one linear model
for each possible action:

Q̃π
a (s) =

m∑
i=1

wa
i θi(s), for all a ∈ A(s) (6)

where wa
i are the linear weights associated with action a and θi(s) are the m features representing state s (common

to all �wa).
The concept of feature used here is the same used by Tsitsiklis and Roy [82], and corresponds to what kind of

information the agent extracts from the environment. The definition of a suitable feature space is a fundamental
step for any reinforcement learning method, and is completely task-dependent. To illustrate this statement, one can
compare two well known card games, blackjack and poker. While in the first one the values of the card ranks are
enough to derive a good strategy, an agent unable to distinguish the suits on the cards would not perform very well
playing poker.

Usually, the identification of which features should be used is not a trivial task. If one has enough knowledge about
the domain of interest, it might be a good strategy to handcraft the structure of the linear approximators and to adhere
as tightly as possible to the frameworks for which guarantees exist. If this is not the case, it might be desirable to
automate this process, since the alternative would be an expensive trial-and-error procedure.

4.1. Local radial-basis functions

One way to extract features from the state space is to use basis functions [81]. In this way, each feature θi(s) is
a function mapping S into �. It has been claimed in the literature that the functions θi should be local, that is, they
should present a significant activation in only a limited region of the state space [3,69,80]. The main motivation for
this is to avoid a phenomenon known as interference [26]. Interference happens when the update of one state–action
pair changes the Q-values of other pairs, possibly in the wrong direction.
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Interference is naturally associated with generalization, and also happens in conventional supervised learning.
Nevertheless, in the reinforcement learning paradigm its effects tend to be much more harmful. The reason for this
is twofold. First, the combination of interference and bootstrapping can easily become unstable, since the updates
are no longer strictly local. The convergence proofs for the algorithms derived from (4) and (5) are based on the fact
that these operators are contraction mappings, that is, their successive application results in a sequence converging
to a fixed point which is the solution for the Bellman equation [14,36]. When using approximators, however, this
asymptotic convergence is lost, since the update of one state–action pair (s, a) can change the Q-values of other pairs
(si , aj ), with si 	= s or aj 	= a. In this case, the approximation errors on the points (si , aj ) may increase, and if Q̃π

aj
(si)

are subsequently used as the target values for other updates (as in (5)), the errors are passed on, easily spreading out
over the entire domain.

Another source of instability is a consequence of the fact that in on-line reinforcement learning the distribution
of the incoming data depends on the current policy. Depending on the dynamics of the system, the agent can remain
for some time in a region of the state space which is not representative of the entire domain. In this situation, the
learning algorithm may allocate excessive resources of the function approximator to represent that region, possibly
“forgetting” the previous stored information [85].

One way to alleviate the interference problem is to use a local function approximator. The more independent each
basis function is from each other, the less severe this problem is (in the limit, one has one basis function for each
state, which corresponds to the lookup-table case) [86]. A class of local functions that have been widely used for
approximation is the radial basis functions (RBFs) [52]. The characteristic feature of local RBFs is the fact that their
value decreases monotonically with the distance from a central point, called the center �c of the radial function. The
width σ of the RBF determines how fast its value drops. As first noticed by Broomhead and Lowe [21] and Poggio
and Girosi [51], the radial basis function paradigm for approximation can be structured as an artificial neural network.
In this case, the RBFs are the activation functions of the network’s hidden units. It has been shown that, if there is
no limit on the number of radial functions available and their centers and widths are adapted during training, an RBF
network is a universal approximator [29].

5. Restricted gradient-descent algorithm

It is possible to use an RBF network to approximate the reinforcement-learning value function. In this case, defining
the hidden layer of the network corresponds to determining the structure of the feature space wherein the linear model
will operate. This is not a trivial task: the configuration of an RBF-network hidden layer requires the definition of the
number of radial functions, their centers and widths.

This section presents the restricted gradient-descent algorithm, a training method for local RBF networks developed
to be used in the context of reinforcement learning. This means it can operate on-line, deal with non-stationary data
and adapt the network topology according to the complexity of the value function. To achieve this the RGD algorithm
relies on two basic mechanisms. The first of them, discussed in Section 5.1, is the strategy adopted to allocate new
units for the hidden layer. Section 5.2 presents the second ingredient of RGD, namely the mechanism through which
features to be used in the value-function approximation are determined. Finally, in Section 5.3 the complete RGD
algorithm is presented, and a pseudo-code for the case in which it is combined with TD learning is given.

The use of local radial functions in reinforcement learning is by no means a new idea. See, for example, [3,44,
48,58,59], just to cite a few. Instead of going over the details of each previous attempt to use RBF networks to
approximate the value function, we simply point out the similarities and differences of each approach with respect to
our algorithm while RGD’s characteristics are presented. For a throughout review, the reader is redirected to Ratitch’s
PhD thesis [55].

5.1. Dynamic allocation of resources

One decision that has a strong impact on the performance of an RBF network is the number of units in its hidden
layer. If there are too few units (or features), the model might not be able to represent the value function with the
necessary accuracy to generate a good policy. On the other hand, an excessive number of hidden nodes makes the
learning process much slower, besides potentially harming the generalization capability of the network.
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It is desirable to be able to adapt the topology of the approximating model according to the complexity of the value
function being approximated. This is especially true in the complete control problem, since the value function changes
every time a policy-improvement step is performed. When using local RBF networks, it is possible to allocate new
hidden units “on-demand”, based on the pattern of activity of the network. One can, for example, place new RBFs in
the regions of the state space where the approximation error is unusually large [27,50].

The allocation of new units based on the approximation error requires the definition of either a schedule or a
threshold to trigger the process [59]. Usually, both values are very domain specific. Another idea is to try to “cover”
the relevant areas of the state space equally, assuring that each state visited by the agent results in a minimum activation
level of the RBF network. If after the presentation of a state �s the activation of the network is below a specific threshold
τ , a new RBF is added to the model, with its center coincident with �s [46,55].1 One advantage of using such a strategy
is that the threshold τ can be defined independently of the domain, and can be seen as a way to control the overlap—
and thus the interference—between RBFs.

The latter strategy has still another advantage: it can be used to guarantee a regular coverage of the state space even
if the granularity of the approximator dynamically increases (that is, if the widths of the RBFs decrease over time).
This is an essential characteristic that makes the adaptive process of the RGD algorithm possible, as described in the
next section.

5.2. Defining features based on the approximation error

As noted by Sutton and Barto [77], in reinforcement learning the structure of the approximator should be related
to the complexity of the value function. Different regions in the domain of this function may require different levels
of granularity, and ideally the approximator’s structure would reflect this requirement. A strong indication of the
need for a finer granularity is a large approximation error. However, using this information to determine the network
topology is not straightforward, since any error function is discontinuous with respect to the number of RBFs in the
network’s hidden layer. Since the gradient of the error function with respect to the number of hidden units is not
computable, one can try to detect the need for a finer grain indirectly. Particularly, if the conventional gradient-descent
method successively reduces the RBFs’ widths, new radial functions can be added in the areas of the state space left
uncovered.

Given a target value Qπ(s, a) (which can be obtained based on (2), (4) or (5)), suppose the objective is to minimize
the following weighted euclidean-norm:

ξ1 =
∑

ρε2 =
∑
(s,a)

ρ(s, a)
(
Qπ(s, a) − Q̃π

a (s)
)2

, (7)

where ρ(s, a) is a distribution weighting the errors of different state–action pairs. In this case, the incremental gradient-
descent algorithm will change the parameters of a local RBF in two distinct ways, depending on the relationship
between the approximation error ε and the RBF’s output weights wa

i . If εwa
i > 0, the width σi of the radial basis

function will be enlarged and its center �ci will be moved toward the current state �s, as shown in Fig. 1. If εwa
i < 0, the

opposite changes will be performed: the RBF’s width will be reduced and its center moved away from the current state
(Fig. 2). A more formal presentation with the update equations for the Gaussian function can be found in Appendix A.

The indiscriminate application of the updates described above can easily lead to divergence. In bootstrapping
reinforcement-learning the target values used to update Q̃π (·) depend on the current approximation of the Q-function.
Notice, for example, how in (4) and (5) the computation of a new estimate Q̃π

k+1(·) depends on the previous Q̃π
k (·).

So, if there is a source of error in the updates, this error will be amplified at each iteration, and the cumulative effect
of this will be an unbounded growth of the approximation error. There is some evidence in the literature that one such
a source of error is an exaggeration of the Q-values [32,48,56,80]. The underlying idea is that the combination of the
“max” operator in (1) with the inevitable imprecision on the estimate Q̃π

k (·) is likely to bias Q̃π
k+1(·) upward. In the

case of local RBFs, this systematic overestimation will result in a never-stopping increase of the functions’ widths
(see Fig. 1(b)). In fact, this phenomenon was observed in our preliminary experiments with reinforcement learning
and RBF networks, and was one of the motivations for the development of the RGD algorithm.

1 We use ‘�s ’ instead of ‘s’ whenever we want to emphasize that the state s is a vector, that is, S ⊂ �n.
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(a) Original RBF (b) Width is enlarged (c) Center is moved toward the current state

Fig. 1. Changes made when εwa
i

> 0.

(a) Original RBF (b) Width is reduced (c) Center is moved away from the current state

Fig. 2. Changes made when εwa
i

< 0.

The idea of RGD is to restrict the modifications performed by the standard gradient-descent algorithm to the
RBFs’ parameters. If the widths of the radial functions are only allowed to “shrink”, one has an approximator whose
granularity is steadily increasing. Obviously, this process will leave some areas of the state space uncovered, which
can be compensated by the allocation of new hidden units. As the reduction of the RBFs’ widths is error driven, the
resulting procedure is a training algorithm which increases the number of features used by the linear model based
indirectly on the approximation error.

5.3. Algorithm

Algorithm 1 shows a pseudo-code of RGD combined with TD(0). Notice that this is essentially the TD-learning
algorithm using a linear approximator, except for the block of code detached between dotted lines. The extension for
the case where λ > 0 as well as for the control algorithms is straightforward.

As shown in Algorithm 1, the first step of the RGD method is to check whether the most activated unit is below
the threshold τ . If so, a new RBF θm+1 is added to the network, coincident with the current state �s. The width σm+1
of the new RBF determines the overlap between this function and its neighbors, and its definition together with τ

allows for some control on the level of interference between the functions. If σm+1 and τ are sufficiently small, the
changes performed by the RGD algorithm on the hidden layer may be restricted to the most activated unit θi , since
the activation level of the others will usually not be very high. The changes on the RBF’s parameters depend on εwa

i ,
as discussed before. If εwa

i > 0, �ci is moved towards �s, and its width is left unaltered; if εwa
i < 0, the width of the

radial function is reduced, and no changes are made to its center.
Reducing the RBFs’ widths has two desirable effects. First, it decreases the overlap between functions, which helps

to maintain the locality of the model. Also, since the reduction is proportional to the approximation error, the size of
the radial functions tends to reflect the shape of the value function, with narrower RBFs in the areas where it is more
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loop
initialize �s
a ← π(�s) {action given by π for �s}
repeat

perform action a and observe next state �s2 and reward r

a2 ← π(�s2)

ε ← r + γ Q̃π
a2

(�s2) − Q̃π
a (�s) {compute TD-error}

�wa ← �wa + αε�θ {update the linear weights}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
θi ← maxj θj (�s) {find the most activated unit}
if θi < τ then

allocate new hidden unit θm+1
else

if εwa
i > 0 then �ci ← �ci − β ∂ε2

∂ �ci
{move �ci towards �s}

else σi ← σi − β ∂ε2

∂σi
{decrease σi}

end if
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
�s ← �s2
a ← a2

until state �s is terminal
end loop

Algorithm 1. RGD-TD(0).

complex. If the learning rate β is small, moving the centers of the radial functions always in the direction of the
current state tends to confine the RBFs in the convex-hull defined by the training data-points. This might also be a
desirable property, since the approximator’s resources will be concentrated in the regions of the state space where the
data lies [69].

As mentioned before, the widths of the RBFs should be defined in order to guarantee some overlap between the
functions. One way to do that is to define σm+1 so that the activation of the new RBF θm+1 will equal τ at the center
of the most activated unit θi ; that is:

σm+1 = σ such that θm+1(�ci; �cm+1, σ ) = τ, (8)

where the dependency of θm+1 on the parameters �cm+1 and σ has been emphasized. Notice that when using this
strategy the width of a new RBF will depend on the widths of the previous ones: the larger the width of its neighbor
θi , the larger σm+1 will be, since the threshold τ will be “triggered” further from �ci . Suppose we start with a single
RBF in the network. How, then, to define the width σ1 of this function? Clearly, an underestimated σ1 will result in an
excessive number of hidden units in the final network generated by RGD. As the RBFs’ widths are constantly reducing,
however, an overestimated value for this parameter should not harm the approximation. This issue is discussed in more
detail in Section 6.1.

Another question that arises naturally is when to stop shrinking the RBFs: as the minimization is being made in
the least-squares sense, the otherwise local minima will generate approximation residuals in both directions, and the
alternate signs of εwa

i will result in a never-stopping decrease of the RBFs’ widths. The decision on when to stop
the shrinking process is left to the user, who should define an appropriate stop criterion depending on the task. This
is where specific domain knowledge should be incorporated to the process such as, for example, an upper bound
on the number of hidden units or a threshold for the approximation error. The next section will show computational
experiments using different stop criteria.

6. Computational experiments

In this section we present an empirical analysis of RGD. Four tasks were used to evaluate different aspects of this
algorithm. In Section 6.1 we use a simple maze to study the general behavior of RGD. Particularly, we focus on the
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(a) Maze with optimal policy. The
arrows represent the sum of the
unit-length vectors corresponding
to the optimal actions. The sym-
bol � is used to denote states for
which all actions have the same
value-function.

(b) Value function’s gray map. The
brighter a state, the higher its value
function. Walls are represent as
black squares.

(c) Value function’s landscape. The
value of the internal walls are consid-
ered to be min(s,a) Qπ∗

(s, a) − 1.

Fig. 3. Maze task.

policy evaluation problem to analyse how the two main parameters of RGD affect its performance. In Section 6.2
the results of RGD on the mountain-car task are contrasted with those of its direct “ancestor”, namely the standard
gradient-descent method. The latter is applied to both linear and non-linear models of different sizes, which allows
us to evaluate the quality of the features selected by RGD. Finally, in Sections 6.3 and 6.4 RGD is compared with
other algorithms found in the literature in more challenging control problems. We use the pole-balancing and the
Acrobot tasks to check the performance of RGD against evolutionary and recent reinforcement-learning algorithms.
The configuration used by RGD in the experiments is discussed in Appendix B.

6.1. Maze

Section 5 presented several statements regarding the expected behavior of the RGD algorithm. In this section a
very simple task will be used to verify these assertions. The task is a 25 × 25 maze presented by Menache et al. [44]
and shown in Fig. 3(a). The objective in this domain is to find one of the goal states (marked with “G”) as quickly as
possible. The actions available at every state are north, south, east and west, corresponding to the four possible
directions. The arrows in Fig. 3(a) represent the optimal policy π∗ for the following reward function: each time the
agent performs an action, it receives a reward of −0.5, except if it ends up in one of the two goal states, in which case
it gets a reward of +8 and is repositioned at a random state. If the agent runs into a wall (the limits of the maze or the
dark gray squares in Fig. 3(a)), it remains in the same state, but still gets a “reward” of −0.5. Figs. 3(b) and 3(c) show
the corresponding state-value function2 for the case of a discount factor γ = 0.9.

The task in this first experiment is to use the RGD algorithm to perform the policy evaluation step, that is, given
π∗ use Algorithm 1 to compute the corresponding value function Qπ∗

(s, a). In order to assess the quality of the
approximation Q̃π∗

(s, a) we report the measure ξ1 defined in (7). However, it is known that even small approximation
errors can result in large deviations of the approximated policy π̃ with respect to the true π , as discussed in Section 3.
Since the final goal of reinforcement learning is to find a good policy (and not a good value-function approximation),
we defined another metric, which can be seen as a measure of how well one can “restore” π from its approximate
value function Q̃π (s, a). The metric ξ2 is defined as follows:

ξ2 = 1

|S|
∑

s

δ
(
π(s), π̃(s)

)
, with δ

(
π(s), π̃(s)

) =
{

1 if π(s) 	= π̃(s),

0 otherwise.

We defined a simple strategy to control the complexity of the models generated by the RGD algorithm: when the
number m of units in the RBF network reaches a limit mmax, no more changes are made to its hidden layer (that

2 The value function of a state s is defined as V π (s) = maxa Qπ (s, a).
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(a) ξ1 (b) ξ2

Fig. 4. Results on the maze task with σ1 = 30. The points correspond to the results achieved after 1,000,000 transitions. Averaged over 50 runs.

(a) ξ1 (b) ξ2

Fig. 5. Results on the maze task with τ = 0.5. The points correspond to the results achieved after 1,000,000 transitions. Averaged over 50 runs.

is, neither new RBFs are added nor the ones already in the model have their parameters changed). Fig. 4 shows
the performance of the RGD algorithm when using different values for mmax and τ (the initial width used in this
experiment was σ1 = 30, which leads to an activation level of the first RBF greater than 0.5 over the entire state
space). The first thing to notice when analysing Fig. 4 is that the metrics ξ1 and ξ2 are in fact not as correlated as one
would expect. Even so, note how an intermediary value of τ = 0.5 generates the best results for both measures. The
difference is particularly relevant when one considers ξ2: for τ = 0.1 and τ = 0.9, the policies π̃ found by RGD vary
between an error rate of 30% and 40% (regardless of the number of RBFs), while for τ = 0.5 the quality of the policy
increases monotonically with the number of hidden units. Apparently, a high value for τ increases the interference
between the radial functions, while too low a value decreases the smoothness of the function computed by the RBF
network.

We now use the value τ = 0.5 found in the last experiment to check the performance of RGD under different values
for σ1 and mmax. If there were no limit on the number of hidden units, smaller values for the initial width σ1 would
probably generate better results, since the number of RBFs in the final network’s hidden layer would increase. If the
resources are limited, though, using larger widths might be a better choice. Fig. 5 makes it clear that using an initial
width σ1 = 1—which generates an activation level greater than τ = 0.5 over only one state s—degrades the results of
RGD almost under all values of mmax.

Besides influencing the widths of the new RBFs, a large σ1 also increases the number of adaptation steps of the
first hidden unit, which provides an initial approximation of Qπ(s, a). But how large should σ1 be? Fig. 5 shows that
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(a) ξ1—minimum at (7.5,0.5) (b) ξ2—minimum at (15,0.7)

Fig. 6. Gray map representing the results on the maze task with mmax = 15. The brighter the square, the worse the performance of the RGD
algorithm. The points correspond to the results achieved after 1,000,000 transitions. Averaged over 50 runs.

(a) Policy π̃ generated by the
agent. The light gray areas rep-
resent states for which π̃(s) 	=
π∗(s).

(b) Gray map of the value function
generated by the agent.

(c) Landscape of the value function
generated by the agent. The value
of the internal walls are considered
to be min(s,a) Q̃π∗

(s, a) − 1.

Fig. 7. Results on the maze task after 1,000,000 transitions using τ = 0.5 and σ1 = 15.

the difference on the results when the initial width changes from 15 to 30 is not very significant. Intuitively, one can
say that, if the number of transitions is large enough, the performance of the RGD algorithm will not change very
much when σ1 is above a threshold σ ∗, since the RBFs will shrink down to their “right” size. The closer σ1 is to σ ∗,
the faster RGD will find a reasonable solution. The exact value of σ ∗ is domain-dependent, and might vary with the
number of transitions (obviously, if the number of transitions is fixed, too large a σ1 will result in poor performance,
since the RBFs’ widths will not have enough time to adjust).

The value of the “ideal” initial width σ ∗ may also depend on the parameter τ , since it changes the way σ1 affects the
widths of the RBFs that will be created (see (8)). To illustrate this point, we performed several experiments in which
the maximum number of RBFs was fixed at mmax = 15 while τ and σ1 changed. The results after 1,000,000 transitions
are shown in Fig. 6. Notice that extreme values for both τ and σ1 result in bad performance of the RGD algorithm.
In general, the configurations in the center of Figs. 6(a) and 6(b) perform better than those in the edges. Even though
neither of the two metrics has a minimum at the exact center, both of them present their best performances with a
configuration close to σ1 = 15 and τ = 0.5.

Fig. 7 shows the result of a single execution of the RGD algorithm using τ = 0.5, σ1 = 15 and mmax = 15. As
shown in Fig. 7(a), after 1,000,000 transitions the agent’s policy π̃ selects the optimal action in more than 80% of
the state space. Notice that the wrong choices are concentrated in the areas where the concavity of the value function
changes, particularly around the internal walls. The reason for this is clear when one observes Fig. 7(b), which shows
how the high values of the states close to the goal go across the limits of the internal walls, causing states on the
opposite side of the walls to have high Q-values. Even though, Fig. 7(c) shows that the approximation Q̃π∗

(s, a)
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Fig. 8. Configuration of the RBFs on the maze task after 1,000,000 transitions. The parameters used were τ = 0.5, σ1 = 15 and mmax = 15. The
contours were drawn at θi (s) = τ = 0.5.

performed by the resulting RBF network was able to assimilate the overall characteristic of the true value function
Qπ∗

(s, a).
An interesting issue is how exactly the approximation shown in Fig. 7(c) is constructed. It is expected that the RBF

network’s structure reflects the landscape of the value function, with a larger number of narrower RBFs in the areas
where its value changes more abruptly. This expectation is confirmed in Fig. 8, which shows the distribution of the
radial functions in the two-dimensional state space after the run described above terminated. Notice how the RGD
algorithm managed to concentrate more resources of the approximator in the areas surrounding the two goals and the
internal walls, where the value function is more complex.

Another point that comes up naturally regards the susceptibility of RGD to the presence of noise. In principle,
one might suspect that RGD would not perform very well under stochastic environments, since the noise could cause
the RBFs to ratchet down to zero width. We believe, however, that noise has the same effect on RGD as the residual
errors intrinsic to the least-squares approximation. If no stop criteria are used to interrupt the shrinking of the RBFs,
the widths of these functions will never stop decreasing, even if the environment is deterministic. Therefore, an
adequate stop criterion would interrupt the decreasing of the radial function’s widths caused by noise, just like in
the deterministic case. If this is true, the sensitivity of RGD to noise is more related to the strategy used to stop the
shrinking of the RBFs than to the algorithm’s mechanism itself.

To test our hypothesis, we re-ran the experiment with the maze task, but now with some noise added to the envi-
ronment’s dynamics. Specifically, when the agent selected one of the four possible directions north, south, east
or west, it was moved in the right direction with probability 1 − η; with probability η (the “noise”) it was randomly
positioned in one of the 4 neighbor cells. Fig. 9 shows the effect of different levels of noise on the performance of
RGD. Notice that, when using mmax as the stop criterion, the presence of noise does not affect the quality of the
approximation. Actually, one can easily see that ξ1 drops slightly when η = 0.4 and η = 0.5, probably because of the
new shape of the value function (when the level of noise η is increased, the value function of neighbor states get closer
to each other, since all the actions can lead to any of the neighbor cells).

6.2. Mountain car

When a stop criterion is used to interrupt the adaptation of the RBFs, the RGD algorithm operates in two distinct
stages. In the first one it configures the hidden units of the RBF network, which corresponds to determining which
features will be used by the output layer. After the stop criterion has been satisfied, the network’s hidden layer is kept
fixed, and RGD is reduced to the standard gradient-descent method applied to a linear model. An interesting question
is whether the features selected by RGD in the first stage are really helpful for the value-function approximation in
the second.

To investigate this issue we chose the mountain-car task [67]. In this domain the goal is to drive a car out of a
valley. The challenge relies on the fact that the car’s engine is not strong enough to pull it up the slope it is facing: the
only way to escape is to first move away from the goal and up the other slope until enough inertia has been built up
to carry the car out of the valley. This task has a continuous state space, with each state s represented by the position
and velocity of the car. There are three possible actions in every state: full throttle forward, full throttle reverse and
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Fig. 9. Box-and-Whisker plots of the RGD results on the maze task under different noise levels. The values correspond to the approximation error
achieved by the agent after 1,000,000 transitions using τ = 0.5, σ1 = 15 and mmax = 15. The boxes in the graphics represent the median and the
lower and upper quartiles. The dotted lines extend up to the extreme values. Statistics computed over 50 runs.

zero throttle. The agent receives a reward of −1 at every time step until it moves past its goal position at the top
of the mountain, which ends the episode with a reward of 0. An episode may also terminate if the agent does not
reach the goal within 1000 steps. Regardless of how the previous one has been terminated, a new episode is always
started at a random position. The equations governing the system were implemented exactly as described by Sutton
and Barto [77], with a discount factor γ = 1 and the input variables normalized to lie in the interval [0,1].

The mountain car is a complete control problem. To deal with this task we adopted the already mentioned
SARSA(λ) algorithm using no eligibility traces (that is, λ = 0; see Appendix B for details). In order to analyse
the quality of the features selected by RGD we combined SARSA with this algorithm and also with the standard
gradient-descent method applied to linear RBF networks of two different sizes. The linear models had 4 and 9 fixed
RBFs evenly distributed over the two-dimensional state-space. To guarantee that the comparison would be made be-
tween models of about the same size, the parameter mmax of the RGD algorithm was assigned the same values (recall
that mmax is only an upper limit on the number of hidden units). The widths of the fixed radial functions were de-
termined using (8) with an activation level of 0.5. The initial widths σ1 used by RGD were determined as being 1.5
the widths of the fixed RBFs in the linear model of the same size. Based on the experiments of the last section, the
minimum-activation threshold used by RGD to allocate new units was set as τ = 0.5.

To assess the quality of the approximation constructed by both methods, we counted after each episode the number
of steps taken by the agent to escape from 100 randomly-selected states (the same set of states was used for all the
experiments). Fig. 10 shows these numbers for RGD and the standard gradient-descent algorithm applied to RBF
networks with fixed hidden units. Notice in Fig. 10(a) how the performance of the networks with 4 fixed hidden units
degenerates after episode 20,000 (observe that the shadowed regions representing the 95% confidence interval of both
methods do not overlap after around episode 30,000). With the 9 fixed-units networks a different phenomenon occurs,
as shown in Fig. 10(b): their performance degrades from episode 10,000 up to around episode 30,000, when it starts
to improve again. The results of the RGD algorithm make it clear that, at least in this problem, its strategy to position
the RBFs leads to a stable behavior. Notice how the policy generated by SARSA-RGD consistently keeps the number
of steps to escape under 100, even when using only 4 RBFs in the hidden layer.

In Section 4 we mentioned that the indiscriminate application of the delta rule on the on-line gradient-descent
algorithm may lead to divergence in the context of reinforcement learning. To verify this statement we repeated the
experiment above with the standard gradient-descent algorithm applied to an RBF network with a tunable hidden
layer. The networks were initialized exactly as before, but now the centers and widths of the RBFs were allowed to
adapt.

Table 1 shows the average results achieved by RGD and the standard gradient-descent method applied to RBF
networks with fixed and adjustable RBFs. The values correspond to the performance of the agent after 50,000 episodes.
Notice that when using 4 units in the hidden layer the RBF network with adjustable units is unable to learn anything
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(a) 4 RBFs (b) 9 RBFs

Fig. 10. Average number of steps taken to escape from 100 randomly-selected initial states of the mountain-car task. The shadowed gray regions
correspond to the 95% confidence interval computed for 50 runs.

Table 1
Average number of steps taken to escape from 100 randomly-selected initial states of the mountain-car task. The values correspond to the results
achieved after 50,000 episodes using SARSA(0) algorithm with the models shown. The numbers on the left refer to the number of hidden units
used by the RBF networks (for the RGD algorithm this is the value used for mmax). Averaged over 50 independent runs. “SD” stands for standard
deviation and “95% CI” is the confidence interval at the 95% probability level

Mean Best Worst SD 95% CI

Fixed RBFs 172.91 93.58 269.30 63.52 [155.30,190.52]
4 Adjustable RBFs 890.69 890.69 890.69 0.00 [890.69,890.69]

RGD (σ1 = 0.85) 76.65 49.33 222.34 34.30 [67.14,86.16]

Fixed RBFs 73.85 63.80 97.48 9.45 [71.23,76.47]
9 Adjustable RBFs 205.96 46.11 890.69 305.69 [121.23,290.69]

RGD (σ1 = 0.58) 52.04 47.04 75.77 9.76 [49.33,54.75]

about the task, performing a number of steps near the maximum possible in all final episodes of all runs (theoretically,
a failure to escape from all 100 initial states would result in an average of 1000 steps. The number 890.69 probably
reflects the presence of trivial states from which the car is able to escape the valley no matter what actions are selected
by the agent). When the number of hidden units is increased to 9 the performance of the model with adjustable
RBFs improves, but is still worse than the other two. For both 4 and 9 units in the hidden layer the RGD algorithm
presents results substantially better than those obtained by the standard gradient-descent algorithm. This difference is
statistically significant at the 95% probability level.3 Notice that the worst result of RGD corresponds to an average of
222.34 steps to escape from the 100 initial states. This is much smaller than the maximum number of steps possible,
which indicates convergence to a reasonable solution in all cases.

The experiments with the mountain-car task make it clear that RGD is able to generate better results than the
standard gradient-descent algorithm. Why exactly does it happen? Besides the on-demand allocation of new units,
RGD has three characteristics that distinguish it from the standard gradient-descent method: the widths of the radial
functions are only allowed to shrink, its centers only move towards the current state, and only the most activated unit
has its parameters changed. An interesting question is whether all these features are really necessary, and how they
interact with each other. To answer that, we performed a series of experiments in which each one of RGD’s features
was “turned on” and “off”. The results are shown in Table 2. The first row corresponds to the case where RGD behaves
more similarly to the standard gradient-descent algorithm, while the last one corresponds to the actual RGD.

3 For the statistical tests, we used Student’s “t-test” or the “u-test” from Mann and Whitney [42], depending on whether the data were normally
distributed or not.
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Table 2
Average number of steps taken to escape from 100 randomly selected initial states of the mountain-car task. The values correspond to the results
achieved after 5000 episodes using SARSA(0) algorithm combined with RGD using different configurations. The parameters of the RGD algorithm
were set as τ = 0.5, σ1 = 0.58 and mmax = 9. Averaged over 50 independent runs. The columns “W”, “C” and “U” indicate the restrictions used by
each configuration. “W” and “C” refer to the changes performed by the algorithm to the widths and center of the RBFs, respectively. The column
“U” indicates whether all or only the most activated unit is changed at each iteration. An “–” means all the changes are made indiscriminately (as
in the standard-gradient algorithm); a “�” indicates only restricted changes are made, as in RGD

Restrictions Mean Best Worst SD 95% CI

W C U

1 – – – 547.88 50.48 890.69 392.76 [439.01,656.75]
2 – – � 695.66 55.81 890.69 350.72 [598.45,792.87]
3 – � – 548.24 48.80 890.69 408.81 [434.92,661.56]
4 – � � 742.28 50.11 890.69 314.28 [655.17,829.39]
5 � – – 79.57 49.12 161.48 28.79 [71.59,87.55]
6 � – � 72.52 48.14 156.16 22.60 [66.26,78.78]
7 � � – 62.88 48.33 479.43 60.48 [46.12,79.64]
8 � � � 61.71 47.35 137.94 19.13 [56.4,67.01]

The first thing that stands out when observing Table 2 is the big difference between the values shown in the first
four rows and those in the last four ones. This makes it clear that the restriction on the changes made to the RBFs’
widths is the main mechanism through which RGD achieves good performance. When considering the cases in which
the RBFs are only allowed to shrink (rows 5 through 8), moving the centers of the radial functions always towards the
current point seems to be a good strategy: notice how the means of rows 7 and 8 are smaller than the corresponding
rows 5 and 6. Finally, moving only the most activated unit seems to increase the stability of the algorithm, as shown
by the standard deviations. Notice how this value drops from row 5 to 6 and 7 to 8 (and also from row 1 to 2 and 3
to 4).

As a final observation, it should be mentioned that RGD achieved its best performance when using all three features
that distinguish it from the standard-gradient algorithm; notice how the last row of Table 2 presents the best values
for all the statistics shown. The differences between the mean shown in the last row and all the others are statistically
significant at the 95% level, except for the 7th row, whose average number of steps is statistically identical to that of
the standard RGD. This indicates that moving all the units or only the most activated one does not have a strong effect
on the final results. It is important to notice, however, that the latter requires a much smaller number of operations,
and thus might be a better choice.

6.3. Pole balancing

The pole-balancing problem is a classic reinforcement-learning task studied by many authors [1,6,45]. The ob-
jective here is to apply forces to a wheeled cart moving along a limited track in order to keep a pole hinged to the
cart from falling over. At every time step the agent receives information regarding the position and velocity of the
cart, the angle between the cart and the pole, and the angular velocity of the pole, which constitutes a 4-dimensional
continuous state space. There are two actions available at every state: push the cart either left or right with a force of
constant magnitude. If the pole falls past a 12-degree angle or the cart reaches the boundaries of the track the agent
gets a reward of −1 and a new episode is started. At all other steps the agent receives a reward of 0.

Here we use the pole-balancing task to compare the performance of the RGD algorithm with that of other methods
found in the literature. As a basis for our comparison we chose the work of Moriarty and Miikkulainen [47], in which
the authors evaluate the performance of several techniques on the pole-balancing problem, including evolutionary and
more traditional reinforcement-learning algorithms. More specifically, their “Symbiotic, Adaptive Neuro-Evolution”
algorithm (SANE) is compared to the GENITOR system of Whitley et al. [88], the Adaptive Heuristic Critic (AHC)
with both single-layer [6] and two-layer networks [2] and a lookup-table version of the Q-learning method of Watkins
and Dayan [84]. The discretization of the state-space used by the single-layer AHC and the Q-learning algorithms was
based on the work of Barto et al. [6], in which prior knowledge about the domain was used to partition the space into
162 non-overlapping regions. The other methods received the continuous values of the state variables. For our exper-
iments we adopted the SARSA(λ) algorithm combined with RGD as in Section 6.2, but now with eligibility traces
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Table 3
Results averaged over 50 runs on the pole-balancing task. The episodes refer to the number of attempts (or “starts”) necessary to balance the pole
for 120,000 steps starting with the pole straight up and the car centered in the track

Episodes to learn Failures Free
parametersMean Best Worst SD

1-layer AHC 232 32 5003 709 0 162 × 2
2-layer AHC 8976 3963 41308 7573 4 35 × 2
Q-learning 1975 366 10164 1919 0 162
GENITOR 1846 272 7052 1396 0 35
SANE 535 70 1910 329 0 40
SARSA-RGD 411 5 924 237 0 18.6 ± 2.9

with a decay rate of λ = 0.5. The initial width σ1 = 1 was computed so that the first RBF would have an activation
level greater than τ = 0.5 over the entire state space. In order to have a fair comparison, we ran our simulations on a
version of the pole-balancing task implemented exactly as described by Moriarty and Miikkulainen [47].

The task in the first experiment was to find a network able to balance the pole for 120,000 time steps starting with
the pole straight up and the cart centered in the track. Neither the cart nor the pole had any initial velocity. A failure
was said to occur if the agent was not able to achieve the goal within 50,000 episodes. Notice that with this task it
is not straightforward to use a fixed exploration strategy with SARSA (we adopted ε-greedy exploration with a fixed
ε, as detailed in Appendix B). Since this algorithm does not have an explicit actor—but instead derives it from the
current approximation of Qπ(s, a)—the only way to balance the pole for a reasonable amount of time is to reduce
the exploration rate, since exploratory moves can easily end an episode. In this context, though, defining a decreasing
schedule for ε could make the analysis of RGD’s performance more difficult, since the success of this algorithm would
depend on one more parameter.4 Therefore, instead of gradually decreasing the exploration rate we simply tested the
performance of the current RBF network after each episode. This test was performed without exploring or learning,
very much like a “validation” step in supervised learning [62]. If the network was able to balance the pole for 120,000
steps, the run was terminated. If not, the learning process continued with a fixed ε-greedy exploration. Notice that
with such an “external” criterion to interrupt the training process no special care had to be taken to stop the shrinking
process of the RGD algorithm.

Table 3 shows several statistics regarding the number of episodes taken by each method to balance the pole. Notice
how these numbers are extremely favorable to RGD: besides learning the task faster, this algorithm also presented a
stable behavior, as shown by the lower standard deviation. These results are even more impressive when one considers
that the other methods do not configure the topology of the approximators, using instead models whose complexity
are known to be sufficient for this problem. Particularly, the 1-layer AHC—the only algorithm to learn faster than
RGD on average—used a set of features constructed based on knowledge about “useful regions” of the state space [6],
which in theory makes the task much easier. Notice also that the models generated by RGD were on average simpler
than those used by the other algorithms, as shown by the number of free parameters associated with each method (the
AHCs adopted two networks of the same size, one for the actor and one for the critic).

The success of RGD in this experiment might be a consequence of the stop criterion used by this algorithm: as the
task is always initialized at the same start position, checking the current solution against the initial state corresponds to
verifying if the policy derived from Q̃(s, a) is able to accomplish the task. This is the same as having a validation set in
supervised learning that is coincident with the final test set. Indeed, this stop criterion may generate highly specialized
solutions, able to perform the task only in the restricted set of states tested. Even though, this might be a valid strategy
in tasks that are initialized always in the same way, as is the case of this version of the pole-balancing problem. Notice
also that this is the same stop criterion adopted by the evolutionary methods, both of them outperformed by RGD. In
the next experiment we will verify how this strategy to stop the learning process extends to domains with a larger set
of initial states.

The agents trained in the last experiment were able to balance the pole from one specific start position, namely:
the pole straight up, the car centered and both velocities equal zero. A more interesting challenge is to learn the task

4 The strategy adopted by Moriarty and Miikkulainen [47] to stop the Q-learning algorithm is not clear.
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over a range of initial states and then try to generalize over the entire state space. Our second experiment was set
up in order to reproduce this scenario: it was configured exactly as the previous one, but instead of always starting
the learning process at the same state, the four input variables were randomly selected from the range of possible
values. In the work of Moriarty and Miikkulainen [47] all the algorithms were interrupted when the pole had been
balanced for 120,000 time steps from any initial random position. To be coherent with our decision of not decreasing
the exploration rate, we generalized the stop criterion used in the last experiment: now, the process was stopped when
the network being constructed by RGD was able to balance the pole for 1000 steps from n consecutive start positions,
with no failure. This test was made with the model fixed and no exploratory moves.

To verify the quality of the solutions generated by each algorithm we measured their generalization ability against
100 random initial states. These values are shown in Table 4, along with the number of episodes taken by each method
to achieve the goal. The first thing to note is that using only 1 start position as a criterion to stop RGD’s learning
process does indeed result in very specialized solutions, as discussed before. Notice that, when using this strategy, the
RGD algorithm presents a reasonable learning rate, but very bad generalization. When the number of start positions
used as the stop criterion is increased, the expected phenomenon occurs: the number of episodes to accomplish the
task also increases, and the resulting RBF networks present much better generalization. Notice that the results of
SARSA-RGD when using n = 5 and n = 7 are quite good, specially considering that many of the initial states used
to assess the networks’ generalization represent irrecoverable situations, that is, states from which it is impossible to
balance the pole [88].

The values shown in Table 4 make it clear that the RGD algorithm takes a larger number of episodes to learn the
pole-balancing task than the other algorithms. This is true even when only 1 initial state is used to stop RGD. Why does
it happen? The algorithms being compared in this section can be divided in three categories, according to the feature
space they work in. Q-learning and 1-layer AHC operate on a set of features pre-selected based on human knowledge
about the problem. The 2-layer AHC, GENITOR and SANE extract the features used in the approximation through a
mapping from the original input space to a higher dimensional hidden space of fixed size. The RGD algorithm belongs
to a third category, in which the dimension of the hidden space is also learned. We conjecture that the difference on
the number of episodes to learn the task is related to the amount of a priori information given to each algorithm about
the feature space.

Even using less information about the feature space RGD presented the best generalization performance among
the tested algorithms (except for the SARSA-RGD-1 case, in which the algorithm clearly stopped prematurely). At
the 95% probability level, the difference on the generalization of the other algorithms is not statistically significant,
except between 1-layer AHC (the best) and Q-learning, which presented the worst generalization among all. When
comparing RGD with the others, the difference on the mean generalization is significant for n � 5. Notice, however,
that the stop criterion used by RGD was specially designed to improve generalization, and in principle it is possible
to come up with similar strategies for the other algorithms.

The values shown in Table 4 clearly indicate that RGD is a stable algorithm, at least in the pole-balancing task.
Notice that for n � 3 this algorithm presents very low standard deviations of the generalization metric, and the worst

Table 4
Results averaged over 50 runs on the pole-balancing task. The episodes refer to the number of attempts necessary to balance the pole from a random
initial position. The generalization was measured as the number of initial states out of 100 randomly-selected ones from which the trained agents
were able to balance the pole for 1000 time steps. The “n” in the SARSA-RGD-n labels represent the number of states used as stop criteria (that
is, the number of consecutive start positions from which the agent was supposed to balance the pole to terminate an episode)

Episodes to learn Generalization

Mean Best Worst SD Mean Best Worst SD

1-layer AHC 430 80 7373 1071 50 76 2 16
2-layer AHC 12513 3458 45922 9338 44 76 5 20
Q-learning 2402 426 10056 1903 41 61 13 11
GENITOR 2578 415 12964 2092 48 81 2 23
SANE 1691 46 4461 984 48 81 1 25

SARSA-RGD-1 2844 1102 5993 1367 15 61 1 21
SARSA-RGD-3 6618 2340 14846 2670 50 68 16 12
SARSA-RGD-5 8455 2249 23666 4250 56 74 17 12
SARSA-RGD-7 11387 2976 26851 5534 58 80 40 8
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network found in all 50 runs of all 3 configurations was able to balance the pole in 16% of the states tested, which
is not bad when compared to the other methods. Another indication of RGD’s stability is the fact that it has not
failed to balance the pole in any of the 50 runs, in contrast with 1-layer AHC (3 failures) and 2-layer AHC, with 14
failures.5 Finally, it is interesting to note that the size of the RBF networks generated by RGD are compatible with
the complexity of the models used by the other methods (shown in Table 3), spanning from an average of 50 free
parameters for n = 3 to 86 when n = 7.

The conclusion is that the RGD algorithm is a viable alternative in problems similar to the pole-balancing task. If
one has enough information about the state-space to partition it or even to define the right structure of the approximator,
any of the methods shown in the upper half of Table 4 would be expected to perform similarly. If this information is
not available, RGD might be a good choice.

A final point should be mentioned regarding the performance of the evolutionary methods (GENITOR and SANE)
on the experiments with the pole-balancing task. Evolutionary algorithms have always been particularly successful on
this task, since the early works [88] until more recently (see [31] and references therein). So much so that the pole-
balancing has become a benchmark problem in the field, and since the publication of Moriarty and Miikkulainen’s
work more difficult versions of the task have been proposed and successfully addressed [31,35,71]. In addition, com-
parisons between recent evolutionary methods and traditional value-based reinforcement learning algorithms seem to
indicate a clear advantage of the first over the second [31].6

However, we believe part of this success is due the fact that the pole-balancing belongs to a class of control
problems particularly suitable for optimization techniques. As well known, the search performed by evolutionary
algorithms is based on information gathered between episodes, but not within them. This type of search is feasible
in tasks like balancing a pole, where the learning process spans a large number of short episodes. However, it does
not seem practical to use evolutionary methods in tasks where the episodes themselves are long, as for example in
the game of chess. The methods based on temporal-difference learning, on the other hand, tend to be less sensitive
to this aspect, since the learning occur both intra and inter episodes. Perhaps more importantly, in the pole-balancing
problem it is possible to assess the quality of a candidate solution even if it has failed to accomplish the task (here, the
quality was measured by the number of steps a solution could balance the pole for). Although many problems have a
similar formulation, this is not always true. In shortest-path problems very little information can be gathered from a
failure other than the reinforcement signal, and ranking the potential solutions is no longer a trivial task. In the next
section we present a control problem with such a characteristic, and make the present discussion more concrete.

6.4. Acrobot

Underactuated mechanical systems have more degrees of freedom than actuators. Examples of such systems in-
clude manipulator arms on diving vessels or spacecrafts, non-rigid body systems, and balancing systems such as
unicycles or dynamically stable legged robots [17]. In this section we study the Acrobot, an underactuated non-linear
system that has been studied by both control [70] and machine-learning [16,75] researchers. The Acrobot is an in-
teresting task because its dynamics are complex enough to yield challenging control problems, yet simple enough to
permit a complete mathematical analysis and modeling. In our experiments we used a simulator whose equations of
motion are given in [17,70,77].7

The Acrobot is a two-link robot arm powered at the elbow but free-swinging at the shoulder. It resembles a gymnast
swinging on a bar, in which case only the joint corresponding to the gymnast’s waist can exert torque (thus the name).
The goal is to swing the gymnast’s “feet” above the bar by an amount equal to one of the links as fast as possible (a
reward of −1 is given to the agent on all time steps, with no discounting). The choice to be made at every time step is
the torque applied at the second joint. Following Sutton [75], we restricted the options to three choices: positive torque
of +1 Nm, negative torque of −1 Nm, or no torque at all. The state-space is continuous and 4-dimensional, with two

5 Following Moriarty and Miikkulainen [47], the failure cases were not included in the statistics of Table 4.
6 Gomez et al. focus on the problem of solving a sequence of increasingly difficult versions of the pole-balancing task, some of them not solved

by value-function based methods [31]. Unfortunately, they do not report a measure of the generalization capability of their evolved networks, which
seems to be a dimension in which traditional reinforcement-learning algorithms produce competitive results.

7 We used 4th order Runge–Kutta integration with a time step of 0.005 seconds and actions chosen after every 10 time steps (the reason for such
choices is given further in the text). The constants were set as in [17,75], and we did not restrict the velocities of the links.
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variables representing the joint positions and two representing the joint angular velocities. All episodes are started at
the stable position �s = [0,0,0,0], and terminate when the agent reaches the goal or a maximum of 1000 steps.

In our simulations actions were applied at a frequency of 20 Hz, contrasting with the usual choice of 5 Hz. This
modification makes the task considerably harder, and also explains the larger number of steps taken by the agents to
reach the goal in our experiments when compared to previous results [16,75]. Notice that the Acrobot task formulated
in this way is a relatively hard shortest-path problem, and as such it presents the characteristics discussed in the last
section. In particular, a “bad” agent/controller will often perform a sequence of actions that will never lead to the
goal, which results in the episode being truncated at an arbitrary point. Therefore, the only information returned by an
agent that has failed to accomplish the task is a “failure signal”. Any optimization technique that relies on the concept
of an objective function—evolutionary methods included—will have problems ranking the unsuccessful candidate
solutions. In fact, unless a successful solution luckily emerges in the process (which is highly unlikely in this case),
the optimization will be reduced to a random search.

In order to check the last statement, we implemented four evolutionary methods and tested them on the Acro-
bot task. We tried a conventional real-coded genetic algorithm [30], its steady-state version (which is very similar
to the GENITOR algorithm of the last section [88]), and two evolution strategies: (1,10)-ES and (1 + 10)-ES [15],
which have recently shown excellent performance on the pole-balancing task when combined with genetic program-
ming [87]. In all of them an individual encoded the linear weights of an RBF network with 81 Gaussian units evenly
distributed over the state space (we tried 10 different levels of overlap between the functions, as detailed below).
Besides the RBFs, we also adopted a constant term. As in (6), we used one linear model for each action, thus each
candidate solution was a real-vector of length 3 × 82 = 246. The fitness of a solution was defined as 1000 −ns, where
ns is the number of steps taken by the corresponding policy to accomplish the goal. The genetic algorithms used a
population of 100 individuals, and all four methods were interrupted after 10,000 evaluations had been carried out.8

All other choices were standard [38]. Each algorithm was executed 10 times for each configuration of the hidden layer,
resulting in 100 independent runs; none of them was able to find a single individual capable of achieving the goal in
less than 1000 steps.9

Given the bad results achieved by the evolutionary methods, we proceeded to try a value-function based method,
namely the least-squares policy iteration algorithm (LSPI) [39]. LSPI is an approximate policy-iteration algorithm. It
extends the benefits of least-squares temporal difference (LSTD) [18,20] to the control problem. Like the second, the
former makes efficient use of data and eliminates learning parameters. Unlike LSTD, LSPI does not need a model of
the system to perform the policy update and can be used with data collected from any reasonable sample distribution.
The LSPI algorithm enjoys good convergence properties [39] and has been applied to several problems [40].

The first step when applying LSPI to any task is to collect data in the form of transitions (s, a, r). Usually, sample
trajectories are generated by exploratory policies [39]. However, using random policies in the Acrobot task tends to
concentrate the data around the equilibrium state �s = [0,0,0,0]. Sampling transitions from a random distribution is
not a trivial task with the Acrobot, either. First, the variables representing the links’ velocities are not bounded, and
we have to define an interval from which to pick the samples. More importantly, we want the data to be concentrated
in the relevant regions of the state space, which is hard to define a priori. In order to overcome these difficulties, we
decided to implement a graphical interface and let some people “play” with the Acrobot. Based on the movements of
the Acrobot on the screen, the person could choose at every time step the torque to be applied on the system, like a
very simple videogame. The idea was to figure out what parts of the state space are really visited during a reasonable
episode, and also to set up a baseline against which to compare the algorithms’ results. Each person was asked to
interact with our simulator until he/she got familiarized with the system’s dynamics. After that, each person played

8 This number was set in order to make the number of operations compatible with those performed by the other methods applied to this task. In
particular, since each evaluation takes approximately 1000 × |A| × m operations, where m = 82 is the number of features used, the total cost of
each run was of the order of magnitude of 109 operations.

9 Notice that this formulation of the Acrobot task was deliberately designed to illustrate the difficulty of applying conventional optimization
techniques to hard shortest-path problems. The “standard” version of the problem—in which actions are applied at a frequency of 5 Hz—is easily
solved by evolutionary methods [43]. Notice also that the only information used to define the fitness of an individual was ns, the number of steps
taken by it to reach the goal. It is, of course, possible to design more elaborate fitness functions [22,91], but this requires domain-specific knowledge
not used by the value-function based methods.
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Table 5
Results obtained by 5 different people with our Acrobot simulator. The
values refer to the number of steps taken to swing the Acrobot’s tip
above the bar. Averaged over 10 episodes

Person Mean Best Worst SD

1 402.0 302 472 49.16
2 290.6 232 630 121.22
3 365.6 299 673 110.62
4 453.4 245 651 106.28
5 612.6 391 996 217.68

for 10 episodes and we recorded the data generated. We were helped by 5 people, which resulted in 21,242 transitions.
The detailed information regarding this experiment is given in Table 5.

Our first attempt was to use the data generated by the humans’ interaction with the system directly, but LSPI was
not able to find any policy capable of performing the task when using this dataset. Thus, we generated a larger dataset
in the following way. First, we bounded the four variables based on our human-generated dataset (that is, the limits of
the intervals were defined as the minimum and maximum values present in the data for the corresponding variable).
Then, we picked 10,000 states �si evenly distributed over the hypercube defined by these intervals, and in each �si we
applied each one of the 3 actions. This resulted in a dataset with 30,000 transitions. All the results of LSPI reported
here were generated using this dataset.10

We began our experiments with LSPI using a Gaussian RBF network with 16 hidden units located in a 2 × 2 ×
2 × 2 grid, plus a constant term. Unfortunately, none of our experiments with this architecture were successful, and
thus we increased the granularity of the grid to 81 RBFs. We used the same width σ for all hidden units, and tried
different values for this parameter. In particular, we used (8) to define several levels of overlap τ between neighbor
radial functions. We started with the intuitive values τ ∈ {0.9,0.7,0.5,0.3,0.1}, but since we noticed smaller values
generated better results, we also tried τ ∈ {0.09,0.07,0.05,0.03,0.01}. This resulted in 10 different configurations
of the hidden layer (these were the configurations used in the experiments with the evolutionary methods). LSPI was
executed for 10 iterations, and since each iteration takes around m2 ×30,000+(m×|A|)3 operations, the total number
of operations performed on each run was of the order of 109.

Table 6 presents preliminary results of LSPI on the Acrobot task when using different levels of overlap between
the RBFs. Notice that for τ = 0.9, τ = 0.7 and τ = 0.5 none of the 10 runs was able to find a policy that could swing
up the Acrobot in less than 1000 steps. This may not come as a surprise for the first two values, but we expected better
results for τ = 0.5. Anyway, the results improve significantly for smaller levels of interference between the RBFs, and
for τ ∈ [0.05,0.1] the average results obtained by LSPI are better than those achieved by 4 out of 5 people who tried
our simulator. The LSPI algorithm reaches its best performance at τ = 0.05, with the smallest average and standard
deviation among all. We used this configuration to run extra experiments with LSPI, as will be described further in
the text.

The experiments with the RGD algorithm were much simpler to do, since we did not have to define a dataset. We
simply combined RGD with SARSA(0) and executed it on-line. We used ε-greedy exploration with a fixed ε = 0.5.
As in the previous experiment, the agent was allowed to explore during learning only, which explains such a large
exploration rate. Every time we wanted to check the performance of the current RBF network we fixed ε = 0, which
corresponds to using the greedy policy with respect to the current value-function approximation. All the results of
RGD refer to this setting. We adopted a decaying learning rate starting at α = 10−3 and going down to α = 10−6. The
number of episodes performed during learning was defined in order to make the computational cost of SARSA-RGD
compatible with LSPI’s. Since in our current RGD implementation each step takes approximately 8m operations, and
considering each episode takes at most 1000 steps, we set the number of episodes as 600 for the 16-RBF case and as

10 We tried several other datasets as, for example, sampling a larger number of transitions as described above or merging human-generated data
with transitions uniformly sampled. None of them resulted in any improvement on LSPI’s results.
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Table 6
Results of LSPI on the Acrobot task. Each run consisted of 10 iterations. Aver-
aged over 10 runs

τ Mean Best Worst SD

0.90 1000.0 1000 1000 0.00
0.70 1000.0 1000 1000 0.00
0.50 1000.0 1000 1000 0.00
0.30 927.5 855 1000 76.42
0.10 353.3 257 1000 227.60
0.09 364.9 288 1000 223.44
0.07 384.8 313 1000 216.18
0.05 335.0 315 343 12.89
0.03 422.4 374 800 133.22
0.01 562.9 431 1000 170.14

Table 7
Results obtained by SARSA-RGD on the Acrobot task with several parameter configurations. The value of the hidden layer’s learning rate β is
given relative to α, the learning rate of the linear parameters. Results averaged over 10 runs

Parameters mmax = 16 RBFs mmax = 81 RBFs

τ σ1 β Mean Best Worst SD Mean Best Worst SD

0.5 10 0.1α 471.2 295 1000 280.54 264.2 245 343 29.62
0.5 10 α 633.7 297 1000 318.28 261.1 242 283 14.69
0.5 50 0.1α 327.9 247 411 56.25 300.4 247 459 73.30
0.5 50 α 307.9 224 358 35.02 272.3 248 297 16.73
0.7 10 0.1α 647.2 275 1000 371.96 256.6 243 280 12.47
0.7 10 α 438.1 293 1000 296.16 567.6 260 1000 372.38
0.7 50 0.1α 502.6 273 1000 343.43 254.5 244 285 11.57
0.7 50 α 431.8 274 1000 299.80 253.3 230 282 15.04

3000 for the experiments with 81 hidden units.11 We experienced with different values for τ , σ1 and β (the hidden
layer’s learning rate). The results are shown in Table 7.

The first thing that stands out in Table 7 is the fact that SARSA-RGD was able to find successful policies even
when using a maximum of only 16 hidden units to approximate the Q-function. We believe the strategy used by RGD
to configure the hidden layer is playing an important role here, specially considering LSPI was unable to find a single
successful solution using the same network architecture. Notice that for τ = 0.5 and σ1 = 50 the results obtained by
SARSA-RGD with a 16-RBF network are competitive with those achieved by LSPI with 81 RBFs, and really close
to the best results found by human experience. When mmax = 81 hidden units, SARSA-RGD consistently overcomes
LSPI and often the best results of Table 5. Perhaps more importantly, RGD manages to find a solution for the problem
in all 10 runs of 7 out of 8 configurations.

In order to get more reliable results, we reran the experiments with the best configuration of each algorithm, now
averaging over 50 executions. LSPI was applied to an RBF network with 81 hidden units and an overlap of τ = 0.05
between neighbor functions. RGD used the parameters on the last row of Table 7, namely mmax = 81, τ = 0.7,
σ1 = 50, and β = α. The results are shown in Fig. 11 and Table 8.

Fig. 11 shows the performance of both LSPI and SARSA-RGD over time. Notice how LSPI makes little progress
after the first iteration, and after the 5th one all the 50 runs converge to about the same solution, which remains
unaltered until the last iteration. At the 95% confidence level, we can say LSPI will find a policy that needs at least
332 steps to accomplish the task, as shown by the last column of Table 8. Contrasting with LSPI, RGD’s results
decrease monotonically until around episode 1500, and after this point the results seem to bounce around 300 steps.
The confidence interval of RGD’s final result is about 8.8 times wider than LSPI’s, which suggests more variation
on the algorithm’s behavior from one run to the other. Even so, there is a clear advantage of the first algorithm over

11 The resulting numbers of operations are of the same order of magnitude as those performed in 10 iterations of LSPI with models of the same
size, namely of the order of 107 and 109, respectively.
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Fig. 11. Results achieved by the best configurations of LSPI and SARSA-RGD on the Acrobot task (see text for details). The shadowed gray regions
correspond to the 95% confidence interval computed for 50 runs.

Table 8
Results achieved by the best configurations of LSPI and SARSA-RGD on the Acrobot task (see text for
details). LSPI’s numbers correspond to the results found after 10 iterations; SARSA-RGD was allowed to
run for 3000 episodes (these values result in both algorithms performing a number of operations of the order
of magnitude of 109). Averaged over 50 runs

Mean Best Worst SD 95% CI

LSPI 335.90 315 343 12.11 [332.54,339.26]
SARSA-RGD 276.56 238 1000 106.62 [247.01,306.11]

the second. Notice in Fig. 11 how RGD’s curve crosses LSPI’s between episodes 600 and 900 (which corresponds
to the second and third iterations of LSPI), and after episode 1200 the confidence intervals do not overlap anymore.
Note also that the final result of RGD represents a reduction of almost 60 steps over that of LSPI, on average. As a
final point, we should mention that RGD was able to find policies able to control the Acrobot at the same level of
proficiency of the most skilled people who tried our simulator.

In our experiments with the Acrobot the SARSA-RGD algorithm was able to achieve better results than LSPI
performing roughly the same number of operations. We believe this happened for two main reasons. First, the way
data was collected and used by both algorithms was quite different. When merged with SARSA, RGD is an on-line
algorithm, and as such it actively gathers data according to its exploration strategy. Normally, the greedy action with
respect to the current Q-function will be chosen more often than the others. This results in some regions of the state
space being visited more often than others, which is equivalent to saying the corresponding states are assigned higher
weights in the Q-function approximation (see (7)). In shortest-path problems this characteristic may be crucial, since
regions of the state space “far” from the path being explored by the agent will simply be ignored. With LSPI, it is hard
to define beforehand which states are important and which are not, and the usual choice is a uniform coverage of the
state space. Thus, a lot of computational effort is wasted in the approximation of the Q-function in regions of the state
space that will never be visited by the agent in practice.12

However, this fact alone might not be sufficient to explain the superior performance of SARSA-RGD when com-
pared to LSPI. To check this out, we reran the experiments with SARSA, but now using the standard gradient-descent
algorithm instead of RGD. We used an RBF network with 81 fixed hidden-units evenly distributed over the state
space and tried two levels of overlap between the functions: τ = 0.7 and τ = 0.5. All the parameter values used in the

12 One way to remedy this with LSPI is to resample the transitions (s, a, r) at each iteration according to the current greedy policy [39].
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experiments with RGD were kept, resulting in an on-line algorithm with exactly the same exploration strategy. For
each level of interference between RBFs we executed SARSA for 10 times. None of them resulted in a policy able to
accomplish the task.

Another characteristic of RGD that might have helped on the Acrobot task is its strategy to define the feature space,
that is, the way it configures the number of basis functions in the model, as well as its centers and widths. The results
with the 16-RBF networks supports this hypothesis, since LSPI was not able to find a single solution for the problem
using the same number of hidden units equally spaced over the state space. An interesting question here is: how
would another non-linear method do on the Acrobot task under the same circumstances of RGD? To answer that, we
performed yet another test: we reran the last experiment, but now we let the gradient descent method also configure
the RBFs’ centers and widths. The functions were initially positioned as in the last experiment, and again we tried
two values for τ : 0.7 and 0.5. As in the experiments with RGD, we tested two values for the hidden layer’s learning
rate, β = α and β = 0.1α. All the remaining parameters were set with the same values as before. We executed the
algorithm for 10 runs with each configuration, which resulted in 40 independent runs. Again, none of the runs resulted
in a successful solution.

7. Discussion

It is probably possible to improve the results of both RGD and the other algorithms on the tasks studied by using
more specific configurations. We prefer instead to concentrate on the behavior of the algorithms without too much
tweaking or use of domain knowledge, which in our opinion better reproduces a real-world scenario. The experiments
performed in this way have shown that the RGD algorithm shares with the standard gradient-descent method one of
its most desirable characteristics: generality. In all domains it was tested, RGD presented a stable behavior and was
able to find reasonable solutions using several parameter configurations.

The main difference between RGD and the standard gradient-descent algorithm is in the application of the delta
rule. In particular, in the RGD algorithm the widths of the RBFs are only allowed to shrink, and the centers always
move towards the current state. These modifications are conservative, in the sense that they can not lead to divergence
of the parameters to infinity. As long as a sufficiently small learning rate is adopted, the widths of the radial functions
will asymptotically approach zero, and its centers will be confined to the convex hull defined in the state space by the
data.

Another difference between RGD and the gradient-descent method is the possibility of allocating new hidden units.
The strategy used by RGD to add and position the radial functions follows the basic philosophy of the so-called “self-
organizing networks” [27,28]: 1) determine the hidden unit that is closest to the current input vector, 2) move it (and
optionally its k-nearest neighbors) towards the input vector and 3) add new units on-demand, according to a pre-
defined insertion criterion. One objective of such unsupervised-learning methods is dimensionality reduction [28]. In
principle, if the states that come up in the agent interaction with a reinforcement-learning environment are concentrated
in a low-dimensional subspace of the original state space, one can expect that RGD will restrict the RBFs to such a
subspace. Notice, however, that generally this will not be the case, and therefore RGD is subjected to Bellman’s “curse
of dimensionality” [11], in the sense that the number of RBFs in the approximator will grow exponentially with the
number of dimensions of the state space.

7.1. Kernel-based reinforcement learning

We believe that increasing the number of RBFs while decreasing their widths is the main mechanism through which
RGD achieves its good results (see Table 2). Although derived from intuitive ideas, this strategy has surprisingly
many similarities with the work of Ormoneit and Sen on “kernel-based reinforcement learning” [48], which has a
more theoretical perspective. In their work, the authors show how the Q-function can be approximated by a sum of
weighting kernels, which resembles a local RBF network whose functions are centered at the states �si . Ormoneit and
Sen argue that this schema can be used to derive an iterative update rule similar to (4), and prove that the resulting
Q̃π (s, a) converges in probability to the true Qπ(s, a) as the number of sample transitions used in the approximation
increases. This is a very desirable property, which the authors call consistency: additional training data always improve
the quality of the approximation Q̃π (s, a), and eventually leads to optimal performance. In the reinforcement learning
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context, this property is very hard to establish for conventional parametric approximators such as neural networks
with a fixed architecture trained by the standard gradient-descent algorithm [48].

Besides some simple assumptions on the reward, transition and kernel functions, the only requirement for the
above convergence to be true is that the weighting kernels “shrink” with increasing sample size at an “admissible”
rate. Since in kernel-based reinforcement learning there is one kernel function for each sample transition, the last
statement is equivalent to saying that the widths of the functions should decrease to zero as their number increases.
Also, this reduction should not happen too fast, in order to guarantee a certain degree of overlap between neighbor
functions. This is very similar to the reasoning behind RGD, though in the opposite direction: while in kernel-based
reinforcement learning the number of functions determines their widths, in the RGD algorithm the opposite happens.
Notice, however, that having one kernel for each sample transition is not feasible in practice (especially in on-line
learning), and therefore RGD’s strategy to configure the hidden layer can be regarded as a practical approach for
defining the kernel functions.

It is somewhat surprising that two works following so different lines of thought have come to so similar conclusions,
and in our opinion this strengthens our empirical arguments. More importantly, it opens up new interesting possibilities
for future research. We believe it might be possible to fit RGD (or a slightly modified version of it) within the kernel-
based reinforcement-learning framework.

8. Conclusions

The restricted gradient-descent algorithm is essentially a strategy to extract important features from the state space.
If one has enough information about the problem at hand to handcraft the feature space, it is certainly a better choice
to do so and use a linear model to perform the value-function approximation. On the other hand, if not much is known
about the domain, the RGD algorithm may be an appealing alternative.

RGD is basically a modified version of the standard gradient-descent algorithm, and as such it inherits both its
qualities and drawbacks. In particular, it is very simple and general, that is, it has wide applicability and requires
minimal use of domain knowledge, as shown by the experiments. Our algorithm presents still some advantages when
compared to its unrestricted form: since the changes performed by RGD are conservative, the non-linear parameters of
the approximator can not diverge. Besides, RGD is able to configure the topology of the RBF networks, which may be
an important feature in some situations. On the downside, we can mention the facts that RGD makes inefficient use of
data when compared to least-squares methods like LSTD, and that its performance depends on the right definition of
its parameters. Also, it is sensitive to the dimensionality of the state space, meaning that the size of the RBF network
will usually grow exponentially with the dimension of the input space.

The study presented in this work is fundamentally an empirical analysis, intended to show the feasibility of applying
the RGD algorithm to reinforcement-learning benchmark tasks. Specifically, it has been shown that this algorithm
combined with SARSA presents competitive results with other methods found in the literature, including evolutionary
and traditional reinforcement-learning algorithms. When merged with SARSA, RGD becomes an on-line and “on-
policy” algorithm, that is, learning takes place while the agent interacts with the environment and data are collected
according to the agent’s actual experience. It is not difficult to think of other combinations that would give rise to
algorithms with different characteristics (RGDQ-learning, for example, would be an on-line and off-policy algorithm).
It is also conceivable to use a model of the environment to aid in the learning process.

A more theoretical analysis of RGD is desirable, especially regarding its connections with Ormoneit and Sen’s
kernel-based reinforcement learning. Like RGD, kernel-based learning relies on a local approximator with an open
architecture, and in both cases an increase on the number of basis functions results in a decrease of their widths. As a
theoretical framework the kernel-based approach enjoys much stronger convergence properties, but is not practical. On
the other hand, RGD is practical, but lacks theoretical performance guarantees. We believe bridging the gap between
them would be beneficial for both.
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Appendix A. Update equations for the Gaussian function

The Gaussian function is given by:

θi(�s) = exp

(
−‖�s − �ci‖2

σ 2
i

)
(A.1)

where ‖.‖ denotes the Euclidean norm and σi > 0. The value function computed by an RBF network using m Gaussian
units has the following form for a given action a:

Q̃π
a (�s) =

m∑
i=1

wa
i θi(�s).

When using the on-line gradient-descent algorithm to minimize (7), the update rule for the RBFs’ widths is:

�σi
= −∂ε2

∂σi

= εwa
i 4θi(�s)‖�s − �ci‖2

σ 3
i︸ ︷︷ ︸

always �0

.

It is easy to note that the nature of the change performed by the delta rule will depend on the sign of εwa
i , since all

other terms are non-negative. If εwa
i > 0, the width will be enlarged; if εwa

i < 0, it will be reduced. Similar situation
happens with the centers �ci :

� �ci
= −∂ε2

∂ �ci

= εwa
i

4θi(�s)
σ 2

i︸ ︷︷ ︸
always �0

(�s − �ci). (A.2)

In this case, if εwa
i > 0 the center �ci will be moved toward the current state �s; if εwa

i < 0 it will be moved away
from �s.

Appendix B. RGD configuration on the experiments

The RBF networks generated by RGD to approximate the value function Qπ(s, a) had the structure shown in (6),
that is, one output layer for each possible action a. The Gaussian function given by (A.1) was used as the hidden units’
activation in all the experiments. We always started the learning process with a single unit in the network’s hidden
layer, and the widths of new RBFs were defined using (8). The hidden layer’s learning rate β was set as 0.1α, where
α is the learning rate used for the output layer (empirically, we found out that using β < α results in a more stable
behavior of RGD). On the experiments with the Acrobot we also tested α = β , as discussed in the text. The value of
α varied among experiments. As in the maze and mountain-car tasks the number of steps to learn was not the focus of
the analysis, we used a small learning rate α = 10−4. The same learning rates were used for the RBF networks with
fixed and tunable hidden units in Section 6.2. In Section 6.3, on the other hand, the learning performance of RGD
was compared with that of other algorithms, and thus a larger learning rate α = 10−1 was adopted. On the Acrobot
task we used a decaying learning rate, as discussed in Section 6.4. No eligibility traces were used in the experiments,
except in the pole-balancing task, where a decay rate of λ = 0.5 was adopted. With the SARSA algorithm an ε-greedy
exploration strategy was used, and unless otherwise noted ε was set as 0.15 (which means the action presenting the
largest value function was selected 85% of the time and in the remaining an action was picked uniformly at random).
The value for τ and σ1 are discussed in the text. All the parameters were determined empirically, based on a small set
of preliminary experiments.
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