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Resumo
Nesta tese, estudamos três modelos matemáticos em neurociência computacional. Um
modelo matemático para a iniciação e propagação de um potencial de ação em um neurônio
foi nomeado após seus criadores em 1952. Desde então, o modelo Hodgkin-Huxley (H-H), ou
modelo baseado em condutância, tem sido amplamente usado no mundo da fisiologia. Um
sistema de quatro equações diferenciais ordinárias não-lineares acopladas, como o modelo
H-H, é geralmente difícil de analisar. Nesse contexto, alguns novos modelos desenvolvidos
parecem satisfatoriamente reduzi-lo de quatro para três ou duas equações diferenciais.
Um dos modelos reduzidos, com um sistema de duas equações diferenciais ordinárias
não-lineares acopladas, é o modelo FitzHugh-Nagumo (F-N).

Por outro lado, na matemática, é mais fácil trabalhar com equações diferenciais lineares
do que com equações não lineares (modelos H-H e F-N). Por essa razão, iniciamos nossa
pesquisa com a equação de cabo, uma equação diferencial parcial linear que descreve a
voltagem em um cabo cilíndrico reto. Este modelo foi aplicado para modelar o potencial
elétrico em dendritos e axônios. No entanto, às vezes, essa equação pode resultar em
previsões incorretas para algumas geometrias realistas, especialmente quando o raio do
cabo muda significativamente.

O principal objetivo deste trabalho foi, então, estimar parâmetros nos modelos mencionados
anteriormente, dada a medição do potencial de membrana (problemas inversos). Para
resolver os problemas inversos, consideramos os métodos de regularização iterativos, como
o método de Landweber e o método de erro mínimo. Calculamos a adjunta da derivada de
Gâteaux usando diferentes abordagens para cada um dos nossos problemas. Além disso,
implementamos numericamente os métodos para mostrar sua eficiência, usando os métodos
numéricos Euler explícito e Euler implícito.

Em seguida, descrevemos nossos problemas inversos. Na equação de cabo, determinamos
condutâncias aproximadas com distribuição não uniforme, tanto em uma única ramificação
quanto em uma árvore. Para obter os parâmetros desconhecidos na equação de cabo,
usamos a iteração Landweber. Aplicamos o método de erro mínimo para encontrar uma
função desconhecida aproximada no modelo FitzHugh-Nagumo. No modelo de Hodgkin-
Huxley, estimamos as condutâncias máximas (três constantes), o número de partículas de
ativação e inativação nos canais iônicos (três constantes) e também os parâmetros com
distribuição não uniforme. Usamos o método do erro mínimo novamente, na equação H-H,
para aproximar os parâmetros desconhecidos.

Palavras chaves: Modelo de Hodgkin-Huxley, Modelo FitzHugh–Nagumo, Equação do
Cabo, Problema Inverso, Métodos de Regularização Iterativos.



Abstract
In this thesis, we studied three mathematical models in computational neuroscience. A
mathematical model for the initiation and propagation of an action potential in a neuron
was named after its creators in 1952. Since then, the Hodgkin-Huxley (H-H) model, or
conductance-based model, has been used vastly in the world of physiology. A system of
four coupled nonlinear ordinary differential equations, such as the H-H model is usually
difficult to analyze. In this context, some new models developed appear to satisfactorily
reduce it from four to three or two differential equations. One of the reduced models, with
a system of two coupled nonlinear ordinary differential equations, is the FitzHugh–Nagumo
(F-N) model.

On the other hand, in mathematics, it is easier to work with linear differential equations
than with nonlinear equations (H-H and F-N models). For this reason, we begin our
research with the cable equation, one linear partial differential equation that describes
the voltage in a straight cylindrical cable. This model has been applied to model the
electrical potential in dendrites and axons. However, sometimes this equation might result
in incorrect predictions for some realistic geometries, in particular when the radius of the
cable changes significantly.

The main goal of this work was then to estimate parameters in the previously mentioned
models, given the membrane potential measurement (inverse problems). To solve the
inverse problems we consider iterative regularization methods, as the Landweber and the
minimal error methods. We compute the adjoint of the Gateaux derivative using different
approaches for each one of our problems. Also, we numerically implement the methods
in order to show their efficiency, using the forward Euler and backward Euler numerical
methods.

Next, we describe our inverse problems. In the cable equation, we determine approximate
conductances with non-uniform distribution, both in a single branch and in a tree. To
obtain the unknown parameters in the cable equation we used the Landweber iteration. We
apply the minimal error method to find an approximate unknown function in the FitzHugh-
Nagumo model. In the Hodgkin-Huxley model, we estimate the maximal conductances
(three constants), the number of activation and inactivation particles in the ion channels
(three constants), and also parameters with non-uniform distribution. We use the minimal
error method again, in the H-H equation, to approximate the unknown parameters.

Keywords: Hodgkin-Huxley Model, FitzHugh–Nagumo Model, Cable Equation, Inverse
Problem, Iterative Regularization Methods.
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1 Introduction

In this introductory chapter, we present the general aspects of the thesis, starting
with the motivation and basic concepts of physiology. Next, we describe the mathematical
models used in the thesis, followed by the objectives and contributions of the work. The
chapter concludes with a description of the thesis structure.

1.1 Motivation
Neurodegenerative disease results from the progressive loss of structure or function

of neurons, including the death of neurons. Examples of neurodegenerative diseases are
Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Parkinson Disease (PD) and
Alzheimer Disease (AD). The causes of their appearance and how such degradation can
affect body movements and brain functioning, causing dementia, are not yet known. These
diseases affect millions of people worldwide and presently represent the most important
medical and socioeconomic problems (Ramanan e Saykin (2013)).

Nowadays, as a result of increased life expectancy and population demographics
changes, neurodegenerative diseases are becoming more common. Neurodegenerative
disorders account for a significant and increasing portion of morbidity and mortality rates
in the world and cause a high economic burden.

Globally, neurological disorders are responsible for about 4% of all deaths and about
5% of disability-adjusted life years attributable to noncommunicable disease. The diagnosis
of a neurological disease can be devastating, and in most instances there is no cure. A
recent editorial by the Lancet pointed out that neurological diseases remain neglected
and ignored: ‘unlike cancer, stroke, and diabetes, which all have strategies and clinical
champions, degenerative disorders are heterogeneous and complex’ (Pearce e Kromhout
(2014)).

The diagnosis of these diseases is not easy, and healthcare costs related to diseases
are projected to rise drastically in the near future. In this context, accurate diagnosis
increases the chance of an effective treatment and reduced disability over time, consequently
also reducing direct and indirect healthcare costs (Batista e Pereira (2017)).

One way to learn about how a disease works is to develop a model system that
recapitulates the hallmark characteristics of the disease. Powerful experimental model
organisms such as the mouse, fruit fly, nematode worm, and even baker’s yeast have been
used for many years to study neurodegenerative diseases and have provided key insights
into such disease mechanisms.
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The need for improvements in the identification, understanding and treatment of
neurodegenerative diseases is therefore of utmost importance. This serves as a motivation
for the countless researches whose focus is the neuron, as in the present work.

1.2 Basic concepts of physiology
To motivate and better contextualize the mathematical models developed, this

section highlights the most important physiological concepts developed in the thesis.

1.2.1 The Neuron

The nervous system is a complex network of nerves and cells that carry messages
between the brain and spinal cord to various parts of the body.

A neuron is a nerve cell that is the basic building block of the nervous system.
Neurons are similar to other cells in the human body in a number of ways, but there is
one key difference between neurons and other cells: neurons are specialized in transmitting
information throughout the body.

These highly specialized cells are responsible for communicating information in
both chemical and electrical forms. There are also several different types of neurons
responsible for different tasks in the human body. According to Azevedo et al. (2009),
there are about 86 billion neurons in the human nervous system, and each one has on the
order of 1000-10,000 connections to other neurons. A nerve cell (see Figure 1) has four
basic parts: the dendrites, the cell body (also called the "soma"), the axon and the axon
terminal.

• Dendrites - Extensions from the neuron cell body that takes information to the cell
body. Dendrites usually branch close to the cell body.

• Cell body (soma) - the part of the cell that contains the nucleus.

• Axon - the extension from the neuron cell body that takes information away from
the cell body. One single axon projects out of each cell body.

• Axon terminal - the ending part of an axon that makes synaptic contact with another
cell.

1.2.2 Membrane potential

The membrane separates the extracellular space, outside of the cell, from the cytosol
inside the cell. The plasma membrane is the border between the interior and exterior of a
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Axon terminals
Soma 

Dendrites

Axon

Figure 1 – Biological neuron. Adapted from link: Biological-neuron.

cell. The membrane potential (also voltage) is the difference in electric potential between
the interior and the exterior of a biological cell, see Figure 2-A. The voltage (Ermentrout
e Terman (2010)) is conventionally defined as

V = Vin − Vout,

where Vin and Vout are the potentials inside and outside the cell, respectively.

A nerve impulse is an electrical signal that travels along an axon, see Figure 2-B.
There is an electrical difference between the inside of the axon and its surroundings, like a
tiny battery. When the nerve is activated, there is a sudden change in the voltage across the
wall of the axon, caused by the movement of ions in and out of the neuron. This triggers
a wave of electrical activity that passes from the cell body along the length of the axon
to the synapse (Synapses are connections between neurons through which "information"
flows from one neuron to another).

(A)   Cell membrane (B)   Nerve impulse

Figure 2 – Cell membrane and Nerve impulse. Adapted from links: Cell-Membrane and Nerve-
Impulse, respectively.

The resting membrane potential, or simply the resting potential, refers to the
potential across the membrane when the cell is at rest. A neuron at resting potential has
a membrane with established amounts of sodium Na+ and potassium K+ ions on either
side, leaving the inside of the neuron negatively charged relative to the outside. A typical
neuron has a resting potential of about -70 mV .

https://towardsdatascience.com/deep-learning-versus-biological-neurons-floating-point-numbers-spikes-and-neurotransmitters-6eebfa3390e9
https://socratic.org/questions/ what-biomolecules-are-found-in-the-cell-membrane
http://simplebiologyy. blogspot.com/2014/08/conduction-of-nerve-impulse.html
http://simplebiologyy. blogspot.com/2014/08/conduction-of-nerve-impulse.html
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An action potential occurs when the membrane potential of a specific cell location
rapidly rises and falls. In order for a neuron to move from resting potential to action
potential, the nerve cell must be stimulated by pressure, electricity, chemicals, or another
form of stimuli. The level of stimulation that a neuron must receive to reach action potential
is known as the threshold of excitation, and until it reaches that threshold, nothing will
happen.

The action potential is characterized by three different steps: Depolarization,
Repolarization and Hyperpolarization. These three steps are described below.

Step 1: Depolarization

A stimulus starts the depolarization of the membrane, and then sodium channels
open in response to that stimulus. Na+ rush into the cell through diffusion. The
final potential difference is +30 mV.

Step 2: Repolarization

Na+ channels close and K+ channels open. K+ rush out of the cell through diffusion.
The potential difference is slightly below −70 mV.

Step 3: Hyperpolarization

The state of neuron in which more negative charge is developed inside the membrane
is called Hyperpolarization. Sodium-Potassium exchange pump moves Na+ out and
K+ in. The potential difference is below −70mV .

In neuroscience, the threshold potential is the critical level to which a membrane
potential must be depolarized in order to initiate an action potential. Threshold potentials
are necessary to regulate and propagate signaling.

In Figure 3 we show the resting and action potentials. Number one is the resting
potential, and numbers two, three and four represent the action potential.

1.3 Mathematical models in computational neuroscience

1.3.1 History of the Hodgkin–Huxley Equations

The initiation and propagation of electrical signals in nerves and other excitable
tissues have fascinated physiologists for well over a century.

As early as 1902, the idea that the nervous impulse occurred as the result of a
change in the permeability of the axonal membrane to ions was alive in the mainstream
physiological literature. The German physiologist Julius Bernstein had proposed that K+

ions were responsible for the resting potential of nerve and muscle cells and that during
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Figure 3 – Resting and action potentials. Adapted from link: Action-potential.

(what we would now call) an action potential, the membrane increased in permeability
to other ions (Bernstein (1902), Bernstein (2013)). Bernstein was also the first to apply
the Nernst equation to the problem of evaluating the resting potential across an excitable
cell membrane, the generalization of which we now know as the Goldman-Hodgkin-Katz
equation.

In 1907, the French physiologist Louis Lapicque investigated one of the earliest
models of a neuron (integrate-and-fire model): as the inward current is applied to a neuron,
the membrane voltage increases with time until it reaches the threshold voltage (Lapicque
(1907)).

In 1939, Howard Curtis and Kenneth Cole managed to prove Bernstein’s hypothesis.
They applied both experimental and analytic techniques to measure the electrical properties
of cell membranes (Cole e Curtis (1939)).

During his postdoctoral year in the U.S. in 1937-1938, Hodgkin established connec-
tions with Cole’s group at Columbia and learned how to dissect squid axons. He returned
to Cambridge in 1938 and in the following year started a collaboration with A. F. Huxley,
(Keener e Sneyd (2009)).

Between 1946 and 1952, Hodgkin and Huxley, initially in collaboration with Bernard
Katz, set about using the newly developed voltage-clamp technique to dissect the basis of
the changes in selective permeability that occur during the propagation of action potentials
in the squid giant axon. The goal was to determine the laws that govern the movement
of ions in a nerve cell during an action potential. This culminated in the publication of
five seminal papers in the Journal of Physiology in 1952, (Vandenberg e Waxman (2012)).
The first paper examined the measurement of current-voltage relationships in the giant

https://biology.stackexchange.com/ questions/44154/why-does-the-intensity-of-an-action-potential-once-generated-at-the-trigger-zone
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squid axon membrane (Hodgkin, Huxley e Katz (1952)). The second paper described the
basic characteristics of the currents carried by sodium and potassium ions (Hodgkin e
Huxley (1952a)). The third paper examined the effect of varying the time and duration
of depolarization and repolarization steps on the different components of the membrane
current (Hodgkin e Huxley (1952b)). The fourth paper outlined how the inactivation
process gradually reduces sodium permeability after undergoing the initial rise associated
with depolarization (Hodgkin e Huxley (1952c)). Finally, the fifth paper (Hodgkin e Huxley
(1952d)) put together all of the information from the previous articles and turned them
into a mathematical model (see Equation (1.8)).

In 1963, the Nobel Prize in Physiology or Medicine was awarded to Hodgkin and
Huxley for their groundbreaking research on the squid giant axon.

Hodgkin Huxley

Figure 4 – Alan Lloyd Hodgkin and Andrew Fielding Huxley. Adapted from link: Hodgkin-
Huxley.

1.3.2 The Hodgkin–Huxley Model

One of the most important models in computational neuroscience is the Hodgkin-
Huxley model. Next, we describe it and finalize this section with the Hodgkin-Huxley
equation (1.8).

1. The results obtained by Hodgkin-Huxley suggest (see, for example, table 1 from
Hodgkin, Huxley e Katz (1952)) that the electrical behavior of the membrane may
be represented by the network shown in Figure 5.

2. According to Kirchhoff’s law, the total membrane current or external current Iext

is the sum of the capacitive current IC and the ionic current Iion (inward current
positive). Thus

Iext = IC + Iion,

https://www.swarthmore.edu/NatSci/echeeve1/Ref/HH/HHmain.htm
https://www.swarthmore.edu/NatSci/echeeve1/Ref/HH/HHmain.htm


Chapter 1. Introduction 21

where
IC = CM

∂V

∂t
,

the parameters CM , t and ∂V/∂t are the membrane specific capacitance per unit
area, the time and the derivative of the voltage with respect to time, respectively.

From the two equations above, we have

Iext = CM
∂V

∂t
+ Iion. (1.1)

3. From Figure 5, the ionic current is the sum of three currents

Iion = INa + IK + IL, (1.2)

where INa, IK and IL are the potassium, sodium and leak ionic currents, respectively.
The leak current consists mainly of Cl− ions, and approximates the passive properties
of the cell.

4. The sodium current (INa) is equal to the sodium conductance (gNa) multiplied by the
difference between the membrane potential (V ) and the equilibrium potential (ENa)
for the sodium ion. Similar equations apply to the IK and IL currents (Hodgkin e
Huxley (1952b)). Thus

INa = gNa(V − ENa), IK = gK(V − EK), IL = GL(V − EL), (1.3)

where gNa, gK and GL are the sodium, potassium and leak current conductances,
respectively. The equilibrium potential of sodium, potassium and leak current is
represented by ENa, EK and EL, respectively. The experiments of Hodgkin and
Huxley suggest that gNa and gK are functions of both time and potential membrane,
but ENa, EK , EL, CM and GL are constants (Hodgkin e Huxley (1952d)).

+

--
+

+

-

Outside

Iside

Figure 5 – Electrical circuit representing membrane. rNa = 1/gNa; rNa = 1/gNa; rL = 1/gL.
rNa and rK vary with time and membrane potential; the other components are
constant.
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5. Using voltage-clamp data (see Figure 6), Hodgkin and Huxley derived expressions
for K+ and Na+ conductances. They proposed that

gNa(V, t) = GNan
4(V, t) and gK = GKm

3(V, t)h(V, t), (1.4)

whereGNa andGK are the maximal sodium and potassium conductances, respectively.
The variable n describes the activation of the potassium channels, m describes the
activation of the sodium channels, and h describes the inactivation of the sodium
channels; these parameters take values between 0 and 1. The exponent of n signifies
the number of gating particles on the channel. The exponents of m and h represent
three activation gates and one inactivation gate, respectively (Gutkin, Pinto e
Ermentrout (2003)).

In addition, m n and h satisfy the following differential equation:

∂X
∂t

(V, t) = αX (V )(1−X (V, t))− βX (V )X (V, t) where X = m,n, h. (1.5)

The experiments performed by Hodgkin and Huxley suggest that:

αm(V ) = (25− V )/10
exp((25− V )/10)− 1 , βm(V ) = 4 exp(−V/18),

αn(V ) = (10− V )/100
exp((10− V )/10)− 1 , βn(V ) = 0.125 exp(−V/80),

αh(V ) = 0.07 exp(−V/20), βh(V ) = 1
exp((30− V )/10) + 1 .

(1.6)

In this work, we add the following initial conditions to (1.1) and (1.5)

V (0) = V0, m(0) = m0, n(0) = n0, h(0) = h0, (1.7)

where the constants V0, m0, n0 and h0 are given data.

Then, from (1.1-1.7) we have the following ordinary differential equation (ODE):

CM
∂V

∂t
= Iext −GNam

3h(V − ENa)−GKn
4(V − EK)−GL(V − EL);

∂m

∂t
= (1−m)αm(V )−mβm(V );

∂n

∂t
= (1− n)αn(V )− nβn(V );

∂h

∂t
= (1− h)αh(V )− hβh(V );

V (0) = V0, m(0) = m0, n(0) = n0, h(0) = h0.

(1.8)
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Figure 6 – Conductance changes as a function of time at different voltage clamps. A: The
response of gK to a step increase in V and then a step decrease. B: Responses
of gK to step increases in V of varying magnitudes. C: Responses of gNa to step
increases in V of magnitudes given by the numbers on the left, in mV. The
smooth curves are the model solutions. Adapted from (Keener e Sneyd (2009)).

1.3.3 The FitzHugh-Nagumo Model

The four dimensional Hodgkin-Huxley equations are considered as the proto-
type for the description of neural pulse propagation. Their mathematical complexity
and sophistication prompted the elaboration of a simplified two-dimensional model, the
FitzHugh–Nagumo equations, which preserve many of the former’s dynamical features.
This model has been used to model many physiological systems from nerve to heart to
muscle and is a favorite model for the study of excitability (Ermentrout e Terman (2010)).
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The FitzHugh–Nagumo model has the form
∂V

∂t
= I + g(V )− υ,

∂υ

∂t
= eV − fυ,

(1.9)

where g(V ) = V (V − d)V , V is the action potential, I is the stimulus current and υ is
called recovery variable, which measures the cell excitability state (Phillipson e Schuster
(2005)). The parameters d, e and f are dimensionless and positive. Note that, from (1.8),
υ plays the role of all three variables m, n and h, also I plays the role of Iext. In this
Thesis, we add the initial conditions V0 and υ0. Thus, from (1.9) and the initial conditions
we have 

∂V

∂t
= I + g(V )− υ,

∂υ

∂t
= eV − fυ,

V (0) = V0; υ(0) = υ0,

(1.10)

where the constants V0 and υ0 are given data.

Other choices for g(V ) include McKean model, for which

g(V ) = H(V − d)− V,

where H is the Heaviside function (Keener e Sneyd (2009)). This choice is recommended
because the model is piecewise linear, allowing explicit solutions for many interesting
problems. Another example of piecewise linear model, also proposed by McKean, is

g(V ) =


−V, for V < d/2

V − d, for d/2 < V < (1 + d)/2

1− V, for V > (1 + d)/2

The FitzHugh–Nagumo equations can be derived from a simplified model of the cell
membrane, Figure 7. Here, the cell consists of three components: a capacitor representing
the membrane capacitance, a nonlinear current-voltage device for the fast current, and
a resistor, inductor, and battery in series for the recovery current (see Keener e Sneyd
(2009), pages 218-219).

1.3.4 The Cable Equation

We have discussed the effects of neurotransmitter-gated ion channels, leakage
channels, and voltage-dependent ion channels on the membrane potential of a neuron.
In order to get a comprehensive view of the state of a neuron, we must also include the
conductance properties and the physical shape of the neuron. In contrast to axons with
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Figure 7 – Circuit diagram for the FitzHugh-Nagumo equations. Adapted from (Keener e
Sneyd (2009)).

active membranes able to generate action potentials, dendrites have been seen historically
more like passive conductors, analogous to long cables. The physics of conducting cables
was worked out in the mid 19th century by Lord Kelvin, enabling the first transatlantic
communication cables. Since then, many researchers have applied this theory to neu-
ral transmission. One example is Wilfrid Rall, who contributed to the theory and its
applications (Trappenberg (2009)).

In the present subsection, we consider a cell shaped as a long cylinder, or cable, of
radius a. We assume that the current flow is along a single spatial dimension, x, the distance
along the cable. In particular, the membrane potential depends only on the x variable, not
on the radial or angular components. The cable equation is a partial differential equation
that describes how the membrane potential depends on currents entering, leaving, and
flowing within the neuron. The equivalent circuit is shown in Figure 8. The cable equation
is

CM
∂V

∂t
= Iext − Iion, (1.11)

while in Subsection 1.3.2 Iext is a constant, in this Subsection

Iext = 1
RI +RE

∂2V

∂x2 , (1.12)

where RI is the internal resistance, RE is the external resistance and ∂2V/∂x2 second
derivative of the voltage with respect to space.

In the squid giant axon, the ionic current Iion is a function of m, n, h, and V as
described in Subsection 1.3.2. This choice for Iion allows waves that propagate along the
axon at a constant speed and with a fixed profile. They require the input of energy from



Chapter 1. Introduction 26

the axon, which must expend energy to maintain the necessary ionic concentrations, and
thus they are often called active waves (Keener e Sneyd (2009)). For a passive cable and
one ionic channel,

Iion = G(V − E), (1.13)

where G is the conductance and E is the equilibrium potential. There are some cables,
primarily in neuronal dendritic networks, for which this is a good approximation in the
range of normal activity. For other cells, activity is passive only if the membrane potential
is sufficiently small.

From equations ((6.36)-(6.38)) we have the following partial differential equation
(PDE)

CM
∂V

∂t
= 1
RI +RE

∂2V

∂x2 −G(V − E). (1.14)

To Equation (6.39) we add boundary and initial conditions given by

∂V

∂x
(t, 0) = p(t), ∂V

∂x
V (t, L) = q(t), V (0, x) = r(x), (1.15)

where the function p, q and r are given data. The time t ∈ (0, T ) and the space x ∈ (0, L).

We next rewrite Equations (6.39) and (6.40) in a slightly more convenient form

CM
∂V

∂t
= 1
RI +RE

∂2V

∂x2 −G(V − E), for 0 < t < T, 0 < x < L,

V (0, x) = r(x) for 0 < x < L,

∂V

∂x
(t, 0) = p(t), ∂V

∂x
(t, L) = q(t) for 0 < t < T .

(1.16)

Madureira e Valle (2017) presents a mathematical modeling of the previous equation.

x

RI

RE

CMR

a
Iext

Figure 8 – Equivalent circuit for a uniform passive equation. Iext is the current across the
membrane, RI is the internal resistance, RE is the external resistance, and CM
is the membrane capacitance. Also, the resistance of the potassium channel is
given by R = 1/G, where G is the conductance. In this figure we consider only
one ionic channel. Adapted from (Ermentrout e Terman (2010)).
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1.4 Objectives and contributions
In this work, we consider models (1.8), (1.10) and (6.41). We present now the

objectives and contributions of this Thesis to these equations.

Objective

Given the measurement of membrane potential, this Thesis pursues three main
goals: (i) to estimate unknown parameters in Hodgkin-Huxley model (ODE (1.8)); (ii) to
obtain approximate values for unknown parameters in FitzHung-Nagumo model (ODE
(1.10)); and (iii) to find approximate values for unknown parameters in cable equation
(PDE (6.41)).

Naturally, the achievement of such objectives implies several activities and also
specific goals, which are listed here:

1. Iterative regularization methods.

Here we admit the existence of a single solution to the inverse problems. However,
stability is not guaranteed. Stability is necessary if we want to ensure that small
variations in the data lead to small changes in the solutions.

To achieve our goals, the first step was to apply iterative regularization methods
that controls the instability of the problems. With certain hypotheses and with a
stopping criterion, the method guarantees an approximate solution to problem, and
when the noise level is zero, the method converges to the exact solution. In this work,
we utilize gradient-type methods which are iterative regularization methods.

2. Adjoint of the Gateaux derivative.

The adjoint of the Gateaux derivative from the proposed methods are unknown. In
all our problems, in a different way, we compute the unknown operator, this is one
of our main results.

3. Numerical implementation.

Another result of this work was the computational implementation, which was done
through adequate and efficient numerical methods. The implementation was verified
and validated through a series of known computational experiments and compared
with literature data.

Contributions

During the preparation of this Thesis, relevant results were compiled in six
manuscripts. Preliminary results were presented in the form of one poster, two articles
in national and international conferences and three paper (two submitted for publication
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and one in preparation). Also, we presented five lecture: PROEX-LNCC 2016, CNMAC
2017, PROEX-LNCC 2017, CNMAC 2018 and PROEX-LNCC 2018.

1.5 Organization of work
This Thesis consists of a total of seven chapters that cover the multidisciplinary,

mathematical and computational aspects considered in the work. Chapter 2 presents the
concept of inverse problem, types of inverse problems and iterative regularization methods.

Chapter 3 describes the first paper. In this article, we tackle the inverse problem of
determining approximately, given voltage measurement, conductances with non-uniform
distribution in the simpler setting of a passive cable equation, both in a single branch and
in a tree. To do so, we consider the Landweber iteration.

Chapter 4 presents the second paper. In this work, we consider two different
inverse problems in Hodgkin and Huxley model. The first one is to estimate the maximum
conductances GNa, GK and GL. For the second problem, the goal is to obtain the exponents
of the activation and inactivation variables a, b and c. To obtain the unknown parameters
we apply the minimal error method.

Chapter 5 introduces the third paper. Here, we propose the minimal error method
to estimate parameters with a non-uniform distribution in the FitzHugh-Nagumo and
Hodgkin-Huxley models.

Chapter 6 describes the two articles presented at conferences. The three papers
mentioned previously comprise inverse problems in continuous models. In these two articles,
however, we determine parameters in discrete models. While the first work estimates
unknown data in the discrete Hodgkin and Huxley model, the goal of the second work is
to find approximate parameters in the discrete cable equation.

Finally, Chapter 7 presents the conclusions of this work, as well as some limitations
and suggestions for future work.
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2 About inverse problems

In this chapter, we describe the basic concepts of inverse problems. Also, we
introduce the iterative methods of regularization for solving inverse problems. In particular,
we have focused our attention on the methods of minimal error and Landweber, particular
cases of the gradient method.

2.1 Basic concepts of inverse problem
There are several definitions for inverse problems. One definition can be stressed

as: “Solving an inverse problem is to determine unknown causes from observed or desired
effects” (Engl, Hanke e Neubauer (1996)). Direct problems have been studied extensively
for some time, while inverse problems are more recent and not so well understood.

When studying Inverse Problems, there is an important definition which was
introduced by Hadamard (2014):

Definition 2.1. A problem is well-posed, in the Hadamard’s sense, if the three following
conditions are satisfied:

1. There exists a solution of the problem (existence)

2. There is at most one solution of the problem (uniqueness).

3. The solution depends continuously on the data (stability).

If a problem does not satisfy any of the three above conditions, then it is an
ill-posed problem. Inverse problems are typically ill-posed.

In this thesis, we admit the existence of a single solution to the problems. However,
stability is not guaranteed. Stability is necessary if we want to ensure that small variations
in the data lead to small changes in the solution. Then, our problems are ill-posed.

Let us give a mathematical description of the input, the output and the systems in
functional analytic terms.

X : space of input quantities;

Y : space of output quantities;

F : operator from X into Y .

The operator F from a set X to a set Y is defined by F (x) = y.
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• The direct problem. Given x ∈ X (and F ), find

y := F (x)

• The inverse problem. Given y ∈ Y (and F ), find

x ∈ X such that F (x) = y;

2.2 Iterative regularization methods
We consider the problem of determining some physical quantity x from data y,

which are functionally related by
F (x) = y, (2.1)

where F : D(F ) ⊂ X → Y is a nonlinear operator between Hilbert spaces X and Y . The
norms in X and Y will be denoted by ‖ · ‖X and ‖ · ‖Y , respectively.

We are specially interested in the situation where the data is not exactly known,
i.e., we have only an approximation yδ of the exact data y, satisfying

‖yδ − y‖Y ≤ δ, (2.2)

where δ > 0 is the noise level (assumed here to be known). Thus, the abstract formulation
of the inverse problems (See figure 9) under consideration is to find x such that

F (x) = yδ. (2.3)

Input OutputOperator

 Known,
but with
  errors

KnownUnknown

Inverse Problem 

Figure 9 – Inverse problem.

Standard methods for obtaining stable solutions of the operator equation in (2.3) can
be divided in two major groups, namely, Iterative type regularization methods and Tikhonov
type regularization methods (Leitão e Svaiter (2015)). Some of the iterative regularization
methods are the gradient type methods, Newton type methods and their variants. In this
thesis, we apply the gradient type methods, more specifically, the Landweber method and
the minimal error method.

Before writing the iterations of the methods, we will define the concept of the
Gateaux derivative.
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Definition 2.2.1. Let X and Y normed vector spaces (for example, Hilbert spaces),
D(F ) ⊂ X is open, x0 ∈ D(F ), and F : D(F ) ⊂ X −→ Y . The operator F ′(x0) : X −→ Y

defined by
F ′(x0)(θ) = lim

λ→0

F (x0 + λθ)− F (x0)
λ

; ∀ θ ∈ X

is the Gateaux derivative of F at x0.

Consider equation (2.3). The gradient type iteration is defined by

xk+1,δ = xk,δ + wk,δF ′(xk,δ)∗
(
yδ − F (xk,δ)

)
+ αk

(
x1,δ − xk,δ

)
, (2.4)

where F ′(xk,δ) is the Gateaux derivative of F computed at xk,δ, and F ′(xk,δ)∗ is its adjoint.
We denote an initial guess x1,δ = x1 ∈ D(F ). The coefficients wk,δ and αk are chosen as:

i) Classical Landweber method

wk,δ = 1 and αk = 0.

ii) Modified Landweber method

wk,δ = 1 and αk ∈ (0, 1/2).

iii) Steepest descent method

wk,δ =
‖F ′(xk,δ)∗

(
yδ − F (xk,δ)

)
‖

2

Y

‖F ′(xk,δ)F ′(xk,δ)∗ (yδ − F (xk,δ)) ‖2
X

and αk = 0.

iv) Minimal error method

wk,δ = ‖yδ − F (xk,δ)‖2
Y

‖F ′(xk,δ)∗(yδ − F (xk,δ))‖2
X

and αk = 0.

In addition to i), ii), iii) and iv) there are other gradient type methods, for example
the Landweber-Kaczmarz iteration. If the iteration (2.4) is applied to exact data, i.e.,
using y instead of yδ, then we write xk and wk instead of xk,δ and wk,δ, respectively.

In the case of noisy data, the iteration procedure has to be combined with a
stopping rule in order to act as a regularization method. We will employ the discrepancy
principle, i.e., the iteration is stopped after k∗ = k∗(δ, yδ) steps with

‖yδ − F (xk∗,δ)‖Y ≤ τδ < ‖yδ − F (xk,δ)‖Y , 0 ≤ k < k∗, (2.5)

where τ > 2 (Kaltenbacher, Neubauer e Scherzer (2008)).

It is possible to show that, under certain conditions (we assume that is the case),
xk∗,δ converges to a solution of F (x) = y as δ → 0; (Kaltenbacher, Neubauer e Scherzer
(2008), Baumeister e Leitao (2005), Engl, Hanke e Neubauer (1996), Neubauer (2000)).
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In this thesis, from equation (2.3), we used the classical Landweber method (i) or
the minimal error method (iv) to obtain an approximation of x, given yδ.

From equation (2.4), the operator F ′(xk,δ)∗ is unknown. One of the essential
contributions of this thesis is to calculate the unknown operator.



33

3 Inverse problem in cable equation

The cable equation is a mathematical equation derived from a circuit model of
the membrane and its intracellular and extracellular space to provide a quantitative
description of current flow and voltage change both within and between neurons, allowing
a quantitative and qualitative understanding of how neurons function (Jaeger e Jung
(2015)).

In this chapter, we investigate the inverse problem of recovering conductances in
the passive cable equation, both in a single branch and on a tree. To estimate the unknown
parameters, we apply the Landweber method with the membrane potential measurement
given.

Throughout the study on the estimation of conductances in the passive cable
equation, we presented some preliminary results in the following conferences:

• XXXVI Congresso Nacional de Matemática Aplicada e Computacional (CNMAC-
2016), complete work (Madureira e Mandujano (2017b)).

• X Encontro Acadêmico de Modelagem Computacional (EAMC-2017), complete work
(Madureira e Mandujano (2017a)).

• Programa de Excelência Acadêmica (PROEX-LNCC-2016), presentation of work.

• Programa de Excelência Acadêmica (PROEX-LNCC-2017), presentation of work.

Moreover, we submitted an article for publication (Valle, Madureira e Leitão (2018)).
The paper is shown in Appendix A, and here, we present a summary.

3.1 Inverse problem for a single branch
In this section, we consider that the spatial variable x is defined in a single branch,

represented by the interval [0, L]. Moreover, we generalize equation (6.39) as

CM
∂V

∂t
= 1
RI +RE

∂2V

∂x2 −
∑
i∈Ion

Gi(t,x)
(
V (t,x)− Ei

)
for 0 < t < T, 0 < x < L, (3.1)

where Ion = {1, 2, · · · , Nion} is the set of ions of the model, Gi is the conductance for the
ion i ∈ Ion, Ei is the equilibrium potential for the ion i ∈ Iion and Nion is the number of
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ions of the set Ion. Thus, from (6.40) and (3.1) we have the following passive cable model

c
∂V

∂t
(t,x) = ∂2V

∂x2 (t,x)−
∑
i∈Ion

gi(t,x)[V (t,x)− Ei] for t ∈ (0, T ),x ∈ (0, L),

V (0,x) = r(x) for 0 < x < L,

∂V

∂x
(t, 0) = p(t), ∂V

∂x
(t, L) = q(t) for 0 < t < T .

(3.2)

where c = CM(RI +RE) and gi(t,x) = Gi(t,x)(RI +RE). The new unknown parameters
gi are unitless, but still positive. We assume that the constants c, Ei, T , and L, and the
functions p, q and r are known parameters.

Let g = (g1, g2, · · · , gNion) be the conductance of the set Ion, and V |Γ = {V (t,x); (t,x) ∈
Γ} the membrane potential, where

Γ = [0, T ]× [0, L] = {(t,x), t ∈ [0, T ] and x ∈ [0, L]}, (3.3)

or
Γ = [0, T ]× {0, L} = {(t,x), t ∈ [0, T ] and x ∈ {0, L}}. (3.4)

We assume that the membrane potential V |Γ : Γ → R is unknown, but its
measurement V δ|Γ is known.

Consider the nonlinear operator

F :
(
L2 ([0, T ]× [0, L])

)Nion −→ L2(Γ), (3.5)

defined by F (g) = V |Γ, where V solves (3.2). We consider the inverse problem of finding
an approximation for g given the noisy data V δ|Γ.

From iteration (2.4), for x = g, wk,δ = 1 and αk = 0, we have

gk+1,δ = gk,δ + F ′(gk,δ)∗(V δ|Γ − F (gk,δ)). (3.6)

Computing the adjoint of the Gateaux derivative F ′(gk,δ)∗ (see Theorem 3.1.1),
from previous iteration, we have

gk+1,δ = gk,δ −
(
(V k,δ − E1)Uk, (V k,δ − E2)Uk, · · · , (V k,δ − ENion)Uk

)
, (3.7)

where V k,δ solves equation (3.2) replacing g by gk,δ, and Uk solves equation (3.8).

To obtain an approximation for g, given an initial guess g1,δ, we used the Landweber
iteration (3.7).

In the next Theorem, we compute the adjoint of the Gateaux derivative.

Theorem 3.1.1. Consider the nonlinear operator F defined in (3.5) and iteration (3.6).
Then,

F ′(gk,δ)∗(V δ|Γ − F (gk,δ)) = −
(
(V k,δ − E1)Uk, (V k,δ − E2)Uk, · · · , (V k,δ − ENion)Uk

)
,
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where V k,δ solves (3.2), given g = gk,δ. Finally, given gk,δ and V k,δ, the parameter Uk

solves 

−∂
2Uk

∂x2 (t,x)− c∂U
k

∂t
(t,x) +

∑
i∈Ion

gk,δi (t,x)Uk(t,x) =

α1
(
V δ(t,x)− V k,δ(t,x)

)
,

Uk(T,x) = 0, 0 < x < L,

∂Uk

∂x
(t, 0) = −α2

(
V δ(t, 0)− V k,δ(t, 0)

)
, 0 < t < T,

∂Uk

∂x
(t, L) = α2

(
V δ(t, L)− V k,δ(t, L)

)
, 0 < t < T.

(3.8)

The constants α1, α2 depend on the set Γ as follows:

(α1, α2) =

(1, 0) if Γ = [0, T ]× [0, L],

(0, 1) if Γ = [0, T ]× {0, L}.
(3.9)

Proof. See Section 3.4. �

We next describe the computational scheme.

Data: V δ|Γ, δ, τ .
Result: Compute an approximation for g using Landweber Iteration Scheme
Choose g1,δ as an initial approximation for g;
Compute V 1,δ from equation (3.2), replacing g by g1,δ;
k=1;
while τδ ≤ ‖V δ − V k,δ‖L2(Γ) do

Compute Uk from Eq. (3.8);
Compute gk+1,δ using Eq. (3.7);
Compute V k+1,δ from Eq. (3.2), replacing g by gk+1,δ;
k ← k + 1;

end
Algorithm 1: Landweber iteration to obtain conductances defined in a single branch.

3.2 Inverse problem for a tree
In this case, the spatial variable “x” is defined on a tree. We consider that the tree

has three edges(branches), the general case where the tree has more of three edges is in
Appendix A.

Let x ∈ Θ = E ∪ V , where E = {e1, e2, e3} is a set of edges, and V = {ν1, ν2, ν3, ν4}
is a set of vertices, and the edges are connected at the vertices νj. The points ν1, ν3 and
ν4 are boundary vertices, and ν2 is the bifurcation point, see Figure 10.
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Bifurcation point

Figure 10 – Tree with three branches.

We denote ∂Vej(t, ν2)/∂x as the derivative of V at the vertex ν2, taken along the
edge ej in the direction towards the vertex. Our cable equation model defined on a tree
with three branches is given by



c
∂V

∂t
(t,x) = ∂2V

∂x2 (t,x)−
∑
i∈Ion

gi(t,x) [V (t,x)− Ei] , in (0, T )× E ,

V (0,x) = r(x), in x ∈ Θ,
∂V

∂x
(t, ν1) = f1(t), ∂V

∂x
(t, ν3) = f3(t), ∂V

∂x
(t, ν4) = f4(t), t ∈ [0, T ],

∂Ve1

∂x
(t, ν2)− ∂Ve2

∂x
(t, ν2)− ∂Ve3

∂x
(t, ν2) = 0, t ∈ [0, T ].

(3.10)

Let
Ω = (0, T )×Θ, (3.11)

and define the nonlinear operator

F : (L2(Ω))Nion −→ L2(Ω)

such that F (g) = V (·, ·), where V solves Equation (3.10) and g = (g1, g2, · · · , gNion). From
(3.10), our goal is to estimate g, given V δ.

Here, we also compute the adjoint of the Gateaux derivative, from (3.6), and we
obtain the iteration (3.7), where V k,δ solves (3.10) replacing g by gk,δ, and Uk solves the
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following PDE



−∂
2Uk

∂x2 (t,x)− c∂U
k

∂t
(t,x) +

∑
i∈Ion

gk,δi (t,x)Uk(t,x)

= V δ(t,x)− V k,δ(t,x), (t,x) ∈ (0, T )× E ,

Uk(T,x) = 0, in x ∈ Θ,

∂Uk

∂x
(t, ν1) = 0, ∂Uk

∂x
(t, ν3) = 0, ∂Uk

∂x
(t, ν4) = 0, t ∈ [0, T ],

∂Ue1

∂x
(t, ν2)− ∂Ue2

∂x
(t, ν2)− ∂Ue3

∂x
(t, ν2) = 0, t ∈ [0, T ].

(3.12)

To estimate g, we apply the iteration (3.7), given g1,δ.

We next describe the computational scheme.

Data: V δ, δ, τ .
Result: Compute an approximation for g using Landweber Iteration Scheme
Choose g1,δ as an initial approximation for g;
Compute V 1,δ from equation (3.10),replacing g by g1,δ;
k=1;
while τδ ≤ ‖V δ − V k,δ‖L2(Ω) do

Compute Uk from Eq. (3.12);
Compute gk+1,δ using Eq. (3.7);
Compute V k+1,δ from Eq. (3.10), replacing g by gk+1,δ;
k ← k + 1;

end
Algorithm 2: Landweber iteration to obtain conductances defined on a tree.

3.3 Numerical simulations
To design our numerical experiments, we first choose g and compute V from

equation (3.2) or (3.10), then we calculate, given δ,

V δ(t,x) = V (t,x) + V (t,x)rand∆(t,x), (t,x) ∈ S, (3.13)

where S = Γ (see equation (3.3) or (3.4)) or S = Ω (see equation (3.11)). The uniformly
distributed random variable,

rand∆(t,x) ∈ [−∆,∆]

where ∆ = δ/‖V ‖L2(S). Next, given the initial guess g1,δ, the data V δ|S, and the noise
threshold δ, we approximate g using either the Algorithm 1 or Algorithm 2. Note that
V δ|S = {V (t,x); (t,x) ∈ S}.
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In practice, after discretizing the equations and the unknown functions, only nodal
values are known. Consider the space-time discretization tn = (n − 1)T/(N − 1) for
n = 1, 2 · · · , N and xj = (j − 1)L/(J − 1) for j = 1, 2 · · · , J . Thus, the relative error
introduced above relates to the the mean absolute percentage error

Errork = 1
Nion

T

N

L

J

∑
i∈Ion

J∑
n=1

N∑
j=1

∣∣∣∣∣gi(tn,xj)− g
k,δ
i (tn,xj)

gi(tn,xj)

∣∣∣∣∣× 100%. (3.14)

In this Section, we present two numerical tests. In the first example the geometry
is defined by a segment. In the second example, we consider the case where the geometry
is defined by a tree.

Example 3.1. Consider a particular instance from PDE (3.2), where c = 1 [ΩF/cm2],
Ion = {1} (Nion = 1), g1 = g, E1 = 1 [mV ], L = 1 [cm], T = 1 [ms], and

r(x) = x/2, p(t) = exp(t), q(t) = − exp(−t).

In this test, we consider Γ = [0, T ]× [0, L] and N = J = 50. The goal is to estimate

g(t,x) = 1
1 + exp(−15x + 4) + t+ 1,

given V δ|Γ, g1,δ(t,x) = 0 and τ = 2.01.

In Table 1 we present the results for various levels of noise. In Figures 11 and 12
we plot numerical results for ∆ = 0.01% ( see Table 1, line 6 )

∆ k∗ Errork∗ Time (s)
100% 1 100% 1× 10−2

10% 68 18% 5× 10−1

1% 532 7% 4× 100

0.1% 6485 2% 52× 100

0.01% 88340 0.7% 727× 100

Table 1 – Numerical results for Example 3.1. The first column describes the noise level
∆, as in equation(3.13). The second column contains the number of iterations
according to equation (2.5). The third column lists the error according to
equation (3.14). Finally, The last column is the running time of the algorithm,
in seconds.

Example 3.2. We consider the domain defined by a tree with three branches, see Figure
10. The length of the edges are |e1| = 1, |e2| = 1 and |e3| = 3, and the numerical values
of the vertices are ν1 = 0, ν2 = 1, ν3 = 2 and ν4 = 4. The values for equation (3.10) are:
c = 5 [ΩF/cm2], Ion = {1} (Nion = 1), g1(t,x) = g(x), E5 = 0 [mV ], T = 1 [ms], and
the boundary conditions f1(t) = exp(t), f2(t) = t and f3(t) = sin(t). For a point x ∈ Θ we
define the initial condition V (0,x) = r(x) = 0.
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Figure 11 – Plots for Example 3.1. Subplots A, B and C are the exact solution, the initial
guess, and the approximate solution for ∆ = 0.01%, respectively. Finally, in
D we display the difference between g and its approximation gk∗,δ.
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Figure 12 – Convergence results for Example 3.1. This figure shows the mean absolute
percentage error between g and gk,δ as a function of the iteration k according
to (3.14).

Given V δ(t,x), the goal of this example is to estimate

g(x) =


1

1 + exp(−3 dist(x, ν1) + 4) if x ∈ e1,

1
1 + exp(−3 dist(x, ν2) + 1) if x ∈ e2 ∪ e3,

where dist(a, b) is the distance between the points a and b. Note that the function g(·) is
continuous.

We consider the initial guess g1,δ(x) = 0 for x ∈ Θ and τ = 2.01. In this example,
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we discretize the edges e1, e2 and e3 using 16, 16 and 45 points. Then, for equation (3.14)
N = 500, J = 77 and L = 1.

∆ k∗ Errork∗ Time (s)
100% 1 100% 1× 10−4

10% 6 23% 8× 10−2

1% 16 6% 3× 10−1

0.1% 44 2% 7× 10−1

0.01% 478 0.5% 6× 100

Table 2 – Numerical results for Example 3.2. See Table 1 for a description of the contents .
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Figure 13 – For Example 3.2, in all the Subplots, the red line is the exact solution, the
blue line is the initial guess, and the green line is the approximate solution for
∆ = 0.1% of noise, these figures shows the conductances as functions of the
spatial variable. The subplots A, B, and C correspond to the edges e1, e2 and
e3, respectively.
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Figure 14 – Convergence results for Example 3.1. This figure shows the mean absolute
percentage error between g and gk,δ as a function of the iteration k according
to (3.14).

3.4 Detailed proof of Theorem 3.1.1
Before demonstrating the Theorem, we defined the following sets

Ω = {(t, x); 0 ≤ t ≤ T, 0 ≤ x ≤ L}

H(F ) =
(
L2(Ω)

)Nion =
{
f : Ω→ RNion ;

∫
Ω
|f(ξ)|2d ξ <∞

}
R(F ) = L2(Γ) =

{
f : Γ→ R;

∫
Γ
|f(ξ)|2d ξ <∞

}
.

It is well-known that H(F ) and R(F ) become Hilbert spaces under the inner
products

〈f, h〉H(F ) =
∫

Ω
f(ξ)h(ξ)dξ, 〈f, h〉R(F ) =

∫
Γ
f(ξ)h(ξ)dξ,.

and the associated norms ‖f‖H(F ) = 〈f, f〉1/2H(F ), ‖f‖R(F ) = 〈f, f〉1/2R(F ). Note that the inner
product on R(F ) depends on Γ (see Equation (3.3) or (3.4)) as follows:

〈f, h〉R(F ) = α1

∫ L

0

∫ T

0
f(t, x)h(t, x) dt dx+ α2

∫ T

0
f(t, 0)h(t, 0)dt

+ α2

∫ T

0
f(t, L)g(t, L) dt, (3.15)

where α1, α2 are as in Eq. (3.9).

Proof. Given gk,δ ∈ D(F ) and θ = (θ1, . . . , θNion) ∈
(
L∞(Ω)

)Nion , the Gâteux derivative
of F at gk,δ in the direction θ is given by

F ′(gk,δ)(θ) = lim
λ→0

F (gk,δ + λθ)− F (gk,δ)
λ

= W k|Γ, (3.16)
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where W k solves



W k
xx(t, x)− cW k

t (t, x)−
∑
i∈Ion

gk,δi (t, x)W k(t, x)

=
∑
i∈Ion

θi(V k,δ(t, x)− Ei) in Ω,

W k(0, x) = 0 for 0 < x < L,

W k
x (t, 0) = W k

x (t, L) = 0 for 0 < t < T,

(3.17)

and V k,δ solves Eq. (3.2) with gi replaced by gk,δi . To obtain Eq. (3.17) from Eq. (3.16), it
is enough to consider the difference between problem in Eq. (3.2) with coefficients gk,δ +λθ

and gk,δ, divide by λ and take the limit λ→ 0.

Let V k,δ|Γ = F (gk,δ). From the Landweber iteration in Eq. (3.6), we gather that

〈gk+1,δ − gk,δ,θ〉H(F ) = 〈F ′(gk,δ)∗(V δ|Γ − F (gk,δ)),θ〉H(F )

= 〈F ′(gk,δ)∗(V δ|Γ − V k,δ|Γ),θ〉H(F ).

By definition of adjoint operator,

〈gk+1,δ−gk,δ,θ〉H(F ) = 〈V δ|Γ−V k,δ|Γ, F ′(gk,δ)(θ)〉R(F ) = 〈V δ|Γ−V k,δ|Γ,W k|Γ〉R(F ), (3.18)

from Eq. (3.16).

Although Eq. (3.18) yields an interesting relation, it carries an impeding dependence
on θ through W k. It is possible to avoid that by performing some “trick” manipulations.

Multiplying the first equation of (3.8) by −W k, and integrating in the intervals
[0, T ] and [0, L] we gather that∫ L

0

∫ T

0
Uk
xx(t, x)W k(t, x) dt dx+

∫ L

0

∫ T

0
c Uk

t (t, x)W k(t, x) dt dx

−
∫ L

0

∫ T

0

∑
i∈ion

gk,δi (t, x) Uk(t, x)W k(t, x) dt dx =

− α1

∫ L

0

∫ T

0

(
V δ(t, x)− V k,δ(t, x)

)
W k(t, x) dt dx. (3.19)

Integrating by parts twice the first term from Eq. (3.19) with respect to the space
variable, and using the boundary conditions for W k we have∫ L

0

∫ T

0
Uk
xx(t, x)W k(t, x) dt dx =

∫ L

0

∫ T

0
Uk(t, x)W k

xx(t, x) dt dx

+
∫ T

0
Uk
x (t, x)W k(t, x)|L0 dt, (3.20)

where we denote Uk
x (t, x)W k(t, x)|L0 = Uk(t, L)W k(t, L)− Uk(t, 0)W k(t, 0). Similarly, inte-

grating by parts the second term of Eq. (3.19) with respect to time and using the initial
condition of W k and the final condition of Uk, we gather that∫ L

0

∫ T

0
c Uk

t (t, x)W k(t, x) dt dx = −
∫ L

0

∫ T

0
cUk(t, x)W k

t (t, x) dt dx. (3.21)
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Substituting Eqs. (3.20) and (3.21) in Eq. (3.19), it follows that

∫ L

0

∫ T

0

(
W k
xx(t, x)− cW k

t (t, x)−
∑
i∈ion

gk,δi (t, x)W k(t, x)
)
Uk(t, x) dtdx =

− α1

∫ L

0

∫ T

0

(
V δ(t, x)− V k,δ(t, x)

)
W k(t, x) dt dx−

∫ T

0
Uk
x (t, x)W k(t, x)|L0 dt.

Substituting the first equation from (3.17) in the previous equation, we obtain

∫ L

0

∫ T

0

∑
i∈ion

θi(V k,δ(t, x)− Ei)Uk(t, x) dt dx

= −α1

∫ L

0

∫ T

0

(
V δ(t, x)− V k,δ(t, x)

)
W k(t, x) dtdx−

∫ T

0
Uk
x (t, x)W k(t, x)|L0 dt.

From the boundary conditions from Eq. (3.8), the following expression holds:

∫ L

0

∫ T

0

∑
i∈ion

θi(V k,δ(t, x)− Ei)Uk(t, x) dtdx

= −α1

∫ L

0

∫ T

0

(
V δ(t, x)− V k,δ(t, x)

)
W k(t, x) dtdx

− α2

∫ T

0

(
V δ(t, 0)− V k,δ(t, 0)

)
W k(t, 0)− α2

∫ T

0

(
V δ(t, L)− V k,δ(t, L)

)
W k(t, L) dt.

From the previous equation and the definition of the inner product in Eq. (3.15),
we have∫ L

0

∫ T

0

∑
i∈ion

θi(V k,δ(t, x)− Ei)Uk(t, x) dtdx = −〈V δ|Γ − V k,δ|Γ,W k|Γ〉R(F ). (3.22)

From Eqs. (3.18) and (3.22) we have

∫ L

0

∫ T

0

∑
i∈Ion

θi
(
gk+1,δ
i (t, x)− gk,δi (t, x)

)
dtdx

= −
∫ L

0

∫ T

0

∑
i∈Ion

θi(V k,δ(t, x)− Ei)Uk(t, x) dtdx.

Since θ ∈
(
L∞(Ω)

)Nion is arbitrary and L∞(Ω) is dense in L2(Ω), we gather that the
following iteration holds:

gk+1,δ
i (t, x) = gk,δi (t, x)− (V k,δ(t, x)− Ei)Uk(t, x) for all i ∈ Ion.

�
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4 Inverse problem in Hodgkin-Huxley model

One of the most important models in computational neuroscience is the Hodgkin-
Huxley model for the squid giant axon. Using pioneering experimental techniques at that
time, Hodgkin e Huxley (1952d) determined that the squid axon carries three major
currents: a potassium current K+ with four activation gates (n4); a sodium current Na+
with three activation gates and one inactivation gate (m3h), and a leak current, Il, which
is carried mostly by Cl− ions (Izhikevich (2007)). The complete set of Hodgkin-Huxley
equations is shown in Equation (1.8).

In this chapter, we solve two inverse problems utilizing the minimal error method.
In the first problem, we obtain approximate maximum conductances, given the membrane
potential measurement. For the second problem, the goal is to estimate the inactivation
and activation gates, given the membrane potential measurement.

Throughout the study on the estimation of parameters in the Hodgkin-Huxley
model, we presented some preliminary results in the following conferences:

• XXXVII Congresso Nacional de Matemática Aplicada e Computacional (CNMAC-
2017), conference or lecture of work.

• Programa de Excelência Acadêmica (PROEX-LNCC-2017), presentation of work.

• Programa de Excelência Acadêmica (PROEX-LNCC-2018), presentation of work.

Moreover, we submitted an article for publication (Valle e Madureira (2019)). In
this chapter, we present a summary of this Paper, shown in Appendix B.

4.1 Inverse problem for determining conductances
In this section we consider that, in Equation (1.8), the vectorG = (GNa, GK , GL) ∈

R3 is unknown and the parameters CM , IM , ENa, EK , EL, V0, m0, n0 and h0 are known.
Also, the membrane potential V : [0, T ] → R is unknown, but its measurement V δ is
known.

Consider the set of functions L2[0, T ], and the nonlinear operator

F : R3 → L2[0, T ], (4.1)

defined by F (G) = V , where V solves (1.8). The goal of this Section is to obtain G, given
V δ. From iteration (2.4), for x = G and wk,δ ≥ 0, we have

Gk+1,δ = Gk,δ + wk,δF ′(Gk,δ)∗(V δ − F (Gk,δ)), (4.2)
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where

wk,δ =
‖V δ − V k,δ‖2

L2[0,T ]∥∥∥F ′(Gk,δ)∗(V δ − F (Gk,δ))
∥∥∥2

R3

.

From equation (4.2), we compute the adjoint of the Gateaux derivative F ′(Gk,δ)∗

(see Theorem 4.1.1), and we obtain the iteration

Gk+1,δ = Gk,δ + wk,δ
(
Xk,δ
Na, X

k,δ
K , Xk,δ

L

)
, (4.3)

where wk,δ, Xk,δ
Na, X

k,δ
K and Xk,δ

L satisfy equations (4.10), (4.5), (4.6) and (4.7), respectively.

To estimate G, given G1,δ, we used the minimal error iteration (4.3).

In the next theorem, we compute the adjoint of the Gateaux derivative F ′(Gk,δ)∗.

Theorem 4.1.1. It follows from (4.1) and (4.2) that

F ′(Gk,δ)∗(V δ − F (Gk,δ)) =
(
Xk,δ

Na , X
k,δ
K , Xk,δ

L

)
, (4.4)

where

Xk,δ
Na =

∫ T

0

(
mk,δ

)a(
hk,δ

)b
(V k,δ − ENa)Uk,δ dt, (4.5)

Xk,δ
K =

∫ T

0

(
nk,δ

)c
(V k,δ − EK)Uk,δ dt, (4.6)

Xk,δ
L =

∫ T

0

(
nk,δ

)c
(V k,δ − EK)Uk,δ dt. (4.7)

The functions mk,δ, nk,δ, hk,δ and V k,δ solve, given Gk,δ
Na, G

k,δ
K and Gk,δ

L ,

CM V̇
k,δ = Iext −Gk,δ

Na

(
mk,δ

)3(
hk,δ

)
(V k,δ − ENa)−Gk,δ

K

(
nk,δ

)4
(V k,δ − EK)

−Gk,δ
L (V k,δ − EL),

Ẋ = (1−X )αX (V k,δ)−XβX (V k,δ) for X = mk,δ, nk,δ, hk,δ,

V k,δ(0) = V0, mk,δ(0) = m0, nk,δ(0) = n0, hk,δ(0) = h0.

(4.8)

Finally, Uk,δ solves, given mk,δ, nk,δ, hk,δ and V k,δ,

CM U̇
k,δ −

(
Gk,δ

Na

(
mk,δ

)3 (
hk,δ

)
+Gk,δ

K

(
nk,δ

)c
+Gk,δ

L

)
Uk,δ

−[(1−mk,δ)α′mk,δ(V k,δ)−mk,δβ′mk,δ(V k,δ)]P k,δ

−[(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)]Qk,δ

−[(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)]Rk,δ = V δ − V k,δ,

Ṗ k,δ − [αmk,δ(V k,δ) + βmk,δ(V k,δ)]P k,δ = −3Gk,δ
Na

(
mk,δ

)2 (
hk,δ

)
(V k,δ − ENa)Uk,δ,

Q̇k,δ − [αnk,δ(V k,δ) + βnk,δ(V k,δ)]Qk,δ = −4Gk,δ
K

(
nk,δ

)3
(V k,δ − EK)Uk,δ,

Ṙk,δ − [αhk,δ(V k,δ) + βhk,δ(V k,δ)]Rk,δ = −Gk,δ
Na

(
mk,δ

)3
(V k,δ − ENa)Uk,δ,

Uk,δ(T ) = 0, P k,δ(T ) = 0, Qk,δ(T ) = 0, Rk,δ(T ) = 0.
(4.9)
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Note that,

wk,δ =
‖V δ − V k,δ‖2

L2[0,T ]∥∥∥(Xk,δ
Na , X

k,δ
K , Xk,δ

L

)∥∥∥2

R3

. (4.10)

Proof. See Subsection 4.4.1. �

We next describe the computational scheme.

Data: V δ, δ and τ
Result: Compute an approximation for G using Minimal Error Iteration Scheme
Choose G1,δ as an initial approximation for G;
Compute m1,δ, n1,δ, h1,δ and V 1,δ from (4.8), replacing Gk,δ by G1,δ;
k=1;
while τδ ≤ ‖V δ − V k,δ‖L2[0,T ] do

Compute Uk,δ from (4.9);
Compute Gk+1,δ using (4.3);
Compute mk+1,δ, nk+1,δ, hk+1,δ and V k+1,δ from (4.8), replacing Gk,δ by Gk+1,δ;
k ← k + 1;

end
Algorithm 3: Minimal error iteration to obtain maximal conductances

4.2 Inverse problem for determining exponents
Here, we consider that the inactivation and activation gates (a, b and c) are un-

known. Then, from (1.8) we have the following ODE

CM
∂V

∂t
= IM −GNam

ahb(V − ENa)−GKn
c(V − EK)−GL(V − EL);

∂m

∂t
= (1−m)αm(V )−mβm(V );

∂n

∂t
= (1− n)αn(V )− nβn(V );

∂h

∂t
= (1− h)αh(V )− hβh(V );

V (0) = V0, m(0) = m0, n(0) = n0, h(0) = h0.

(4.11)

The constants CM , IM , GNa, GK, GL ENa, EK, EL, V0, m0, n0 and h0 are known.
We denote a = (a, b, c), and we assume the operator F defined in (4.1) and the iteration
(4.2), where G = a. The goal of this Section is to estimate a, given V δ. Computing the
adjoint of the Gateaux derivative F ′(a)∗ (see Theorem 4.2.1), from (4.2), we have the
iteration

ak+1,δ = ak,δ + wk,δ
(
Xk,δ
a , Xk,δ

b , Xk,δ
c

)
, (4.12)



Chapter 4. Inverse problem in Hodgkin-Huxley model 47

where wk,δ, Xk,δ
a , Xk,δ

b and Xk,δ
c satisfy equations (4.19), (4.14), (4.15) and (4.16), respec-

tively.

Given an initial guess a1,δ, we obtain a regularizing approximation ak∗,δ for a, from
minimal error iteration (4.12).

In the next Theorem, we compute the adjoint of the Gateaux derivative F ′(ak,δ)∗

from (4.2).

Theorem 4.2.1. Consider the nonlinear operator F defined in (4.1) and iteration (4.2),
replacing G by a. It follows then that

F ′(ak,δ)∗
(
V δ − F (ak,δ)

)
=
(
Xk,δ
a , Xk,δ

b , Xk,δ
c

)
, (4.13)

where

Xk,δ
a =

∫ T

0
GNa(V k,δ − ENa)

(
mk,δ

)ak,δ(
hk,δ

)bk,δ
Uk,δ ln(mk,δ) dt, (4.14)

Xk,δ
b =

∫ T

0
GNa(V k,δ − ENa)

(
mk,δ

)ak,δ(
hk,δ

)bk,δ
Uk,δ ln(hk,δ) dt, (4.15)

Xk,δ
c =

∫ T

0
GK(V k,δ − EK)

(
nk,δ

)ck,δ
Uk,δ ln(nk,δ) dt. (4.16)

The functions mk,δ, nk,δ, hk,δ and V k,δ solve

CM V̇
k,δ = Iext −GNa

(
mk,δ

)ak,δ(
hk,δ

)bk,δ
(V k,δ − ENa)

−GK
(
nk,δ

)ck,δ
(V k,δ − EK)−GL(V k,δ − EL),

Ẋ = (1−X )αX (V k,δ)−XβX (V k,δ); X = mk,δ, nk,δ, hk,δ,

V k,δ(0) = V0; mk,δ(0) = m0; nk,δ(0) = n0; hk,δ(0) = h0,

(4.17)

where ak,δ, bk,δ and ck,δ are given. Also, Uk,δ solves

CM U̇
k,δ −

(
GNa

(
mk,δ

)ak,δ(
hk,δ

)bk,δ
+GK

(
nk,δ

)ck,δ
+GL

)
Uk,δ

−[(1−mk,δ)α′mk,δ(V k,δ)−mk,δβ′mk,δ(V k,δ)]P k,δ

−[(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)]Qk,δ

−[(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)]Rk,δ = V δ − V k,δ,

Ṗ k,δ − [αmk,δ(V k,δ) + βmk,δ(V k,δ)]P k,δ =

−ak,δGNa
(
mk,δ

)ak,δ−1(
hk,δ

)bk,δ
(V k,δ − ENa)Uk,δ,

Q̇k,δ − [αnk,δ(V k,δ) + βnk,δ(V k,δ)]Qk,δ =

−ck,δGK
(
nk,δ

)ck,δ−1
(V k,δ − EK)Uk,δ,

Ṙk,δ − [αhk,δ(V k,δ) + βhk,δ(V k,δ)]Rk,δ =

−bk,δGNa
(
mk,δ

)ak,δ(
hk,δ

)bk,δ−1
(V k,δ − ENa)Uk,δ,

Uk,δ(T ) = 0; P k,δ(T ) = 0; Rk,δ(T ) = 0; Qk,δ(T ) = 0,

(4.18)
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given mk,δ, nk,δ, hk,δ and V k,δ.

Note that wk,δ satisfies

wk,δ =
‖V δ − V k,δ‖2

L2[0,T ]∥∥∥(Xk,δ
a , Xk,δ

b , Xk,δ
c

)∥∥∥2

R3

. (4.19)

Proof. See Subsection 4.4.2. �

We next describe the computational scheme.

Data: V δ, δ and τ
Result: Compute an approximation for a using Minimal Error Iteration Scheme
Choose a1,δ as an initial approximation for a;
Compute m1,δ, n1,δ, h1,δ and V 1,δ from (4.17), replacing ak,δ by a1,δ;
k=1;
while τδ ≤ ‖V δ − V k,δ‖L2[0,T ] do

Compute Uk,δ from (4.18);
Compute ak+1,δ using (4.12);
Compute mk+1,δ, nk+1,δ, hk+1,δ and V k+1,δ from (4.17), replacing ak,δ by ak+1,δ;
k ← k + 1;

end
Algorithm 4: Minimal error iteration to obtain inactivation and activation gates.

4.3 Numerical simulations
To design our numerical experiments, we first choose x (x = G or x = a) and

compute V from (1.8) or (4.11). In our examples, for a given δ, the noisy V δ is obtained
from

V δ(t) = V (t) + V (t)randε(t), for all t ∈ [0, T ] (4.20)

where randε(t) is a uniformly distributed random variable taking values in the range [−ε, ε],
and ε = δ/‖V ‖L2[0,T ].

Given the initial guess x1,δ, the data V δ and δ, we estimate x using either Algo-
rithm 3 (for x = G) or Algorithm 4 (for x = a). Note that the exact value for x is known,
and we use this to measure the algorithm performance.

The percent error of vector x ∈ R3 is defined by

Errork = ‖x− x
k,δ‖R3

‖x‖R3
× 100%, k = 1, 2, · · · , k∗. (4.21)

In this section we will present two numerical simulations. In Example 4.1 we
estimate the conductances ( GNa, GK and GL ), and in Example 4.2 we estimate the
inactivation and activation gates ( a, b and c ).
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Example 4.1. This example is a particular case from (1.8), with values: CM = 1 [µF/cm2],
ENa = 110 [mV ], EK = −12 [mV ], EL = 10 [mV ], GNa = 100 [mS/cm2], GK =
30 [mS/cm2], GL = 1 [mS/cm2], and Iext = 10 [µA/cm2]. Let the initial conditions V (0) =
−50 [mV ], m(0) = 0.5, n(0) = 0.2 and h(0) = 0.4. We consider T = 10 [ms] and ∆t = 0.01.
Given V δ, the goal of this example is to approximate G = (GNa, GK, GL) [mS/cm2].

First, given G = (100, 30, 1) [mS/cm2], we compute V from (1.8). Then, we
calculate V δ from (4.20) given ε (see table 3). Next, we consider V and G unknown.

In this test we consider the initial guess G1,δ = (0, 0, 0) [mS/cm2] and τ = 2.01.
Table 3 presents the results for various levels of noise. When ε decreases, the number of
iterations grows resulting in a better approximation for G = (GNa, GK, GL) [mS/cm2].

In Figures 15 and 16, we plot some results for ε = 0.1% (Table 2, line 5).

ε k∗ Gk∗,δ
Na Gk∗,δ

K Gk∗,δ
L Errork∗ Time (s)

100% 1 0 0 0 100 % 2× 10−2

10% 640 50 16 1.866 50 % 4× 100

1% 26804 91 27 1.080 9 % 179× 100

0.1% 97405 99 29 1.004 1 % 653× 100

0.01% 181526 100 30 1.000 0 % 1216× 100

Table 3 – Numerical results for Example 4.1 for various values of ε, as in (4.20). The second
column contains the number of iterations according to (1.10). The third, fourth
and fifth columns are the approximations for GNa, GK and GL respectively. The
sixth column is the relative error of G = (GNa, GK, GL) according to (4.21). The
last column is the running time of the algorithm, in seconds.
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Figure 15 – Figures for Example 4.1 (estimation of the conductances) with ε = 0.1%. The
x-axis gives the number of iterations (k) and the y-axis gives the conductance.
The red lines are the exact solutions, and blue lines are the approximations.
The figures 15-A, 15-B and 15-C display the estimates of the maximum
conductances of sodium, potassium and leakage, respectively.
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Figure 16 – Convergence results for Example 4.1. This figure displays the percentage error
between x = G and xk,δ = Gk,δ as a function of the iteration k according to
(4.21).

Example 4.2. This example is another particular case from (4.11) with values: CM =
1 [µF/cm2], ENa = 115 [mV ], EK = −12 [mV ], EL = 10 [mV ], GNa = 120 [mS/cm2],
GK = 36 [mS/cm2], GL = 0.3 [mS/cm2] and Iext = 10 [µA/cm2]. Let the initial conditions
V (0) = −10 [mV ], m(0) = 0.5, n(0) = 0.6 and h(0) = 0.8. We consider the time
T = 10 [ms] with ∆t = 0.01. Given V δ, our goal is to approximate a = (a, b, c) = (2, 2, 2).

First we calculate V from (4.11) given a. Then, we calculate V δ from (4.20) given
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ε (see table 4). We then consider V and a unknown.

In this example we consider the initial guess a1,δ = (0, 0, 0) and τ = 2.01. Table 4
presents the results for various levels of noise. In figures 17, and 18, we plot some results
for a level of noise ε = 1% (Table 4, line 4).

ε k∗ ak∗,δ bk∗,δ ck∗,δ Errork∗ Time (s)
100 % 76 0.02 0.58 −0.02 92 % 0.6
10 % 306 1.24 1.65 0.38 53 % 2.4
1 % 533 1.92 1.96 1.84 5 % 4.1
0.1 % 762 1.99 1.99 1.99 0.5 % 6.0
0.01 % 991 2.00 2.00 2.00 0 % 7.8

Table 4 – Numerical results for Example 4.2. See Table 3 for a description of the contents.
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Figure 17 – Figures for Example 4.2 (estimation of the inactivation and activation gates)
with ε = 1%. The x-axis is the number of iterations (k). In y-axis, the red lines
are the exact solutions, and blue lines are the approximations. The figures
17-A, 17-B and 17-C are the estimates of a, b and c, respectively.
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Figure 18 – Convergence results for Example 4.2 with 1 %. This figure shows the percentage
error between x = a and xk,δ = ak,δ as a function of the iteration k according
to (4.21).

4.4 Detailed proofs of Theorems 4.1.1 and 4.2.1

4.4.1 Proof of Theorem 4.1.1

Proof. Consider the operator F defined in (4.1). Evaluating Gk,δ in F , we have F (Gk,δ) =
V k,δ, where V k,δ, mk,δ, nk,δ and hk,δ solve the ODE (4.17).

Let vector θ = (θNa, θK, θL) ∈ R3 and λ ∈ R, then evaluating Gk,δ + λθ in the
operator F , we have F (Gk,δ + λθ) = V k,δ

λ , where V k,δ
λ , mk,δ

λ , nk,δλ and hk,δλ solve

CM V̇
k,δ
λ = Iext −

(
Gk,δ

Na + λθNa
) (
mk,δ
λ

)a(
hk,δλ

)b (
V k,δ
λ − ENa

)
−
(
Gk,δ

K + λθK
) (
nk,δλ

)c (
V k,δ
λ − EK

)
−
(
Gk,δ
L + λθL

) (
V k,δ
λ − EL

)
,

Ẋ = (1−X )αX (V k,δ)−XβX (V k,δ); X = mk,δ
λ , nk,δλ , hk,δλ ,

V k,δ
λ (0) = V0; mk,δ

λ (0) = m0; nk,δλ (0) = n0; nk,δλ (0) = n0.

(4.22)

The Gateaux derivative of F at Gk,δ in the direction θ is given by

W k,δ = F ′(Gk,δ)(θ) = lim
λ→0

F (Gk,δ + λθ)− F (Gk,δ)
λ

. (4.23)

Also, we denote the following limits

Mk,δ = lim
λ→0

mk,δ
λ −mk,δ

λ
, Nk,δ = lim

λ→0

nk,δλ − nk,δ

λ
, Hk,δ = lim

λ→0

hk,δλ − hk,δ

λ
, (4.24)

where Mk,δ, Nk,δ and Hk,δ are the Gateaux derivatives of mk,δ, nk,δ and hk,δ, respectively.
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Considering the difference between ODEs (4.22) and (4.17), dividing by λ and
taking the limit λ→ 0, we have the following ODE

CMẆ
k,δ +

(
Gk,δ

Na

(
mk,δ

)a(
hk,δ

)b
+Gk,δ

K

(
nk,δ

)c
+Gk,δ

L

)
W k,δ =

−aGk,δ
Na

(
mk,δ

)a−1
Mk,δ

(
hk,δ

)b
(V k,δ − ENa)

−bGk,δ
Na

(
mk,δ

)a(
hk,δ

)b−1
Hk,δ(V k,δ − ENa)− cGk,δ

K

(
nk,δ

)c−1
Nk,δ(V k,δ − EK)

−θNa
(
mk,δ

)a(
hk,δ

)b
(V k,δ − ENa)− θK

(
nk,δ

)c
(V k,δ − EK)− θL(V k,δ − EL),

Ẋ + [αY(V k,δ) + βY(V k,δ)]X = [(1− Y)α′Y(V k,δ)− Yβ′Y(V k,δ)]W k,δ;

(X ,Y) = (Mk,δ,mk,δ), (Nk,δ, nk,δ), (Hk,δ, hk,δ),

W k,δ(0) = 0; Mk,δ(0) = 0; Nk,δ(0) = 0; Hk,δ(0) = 0.

(4.25)

This last equation is yet another system of coupled nonlinear differential equations,
depending on the parameter θ = (θNa, θK , θL), representing an arbitrary point in R3.

From minimal error iteration (4.2) and θ ∈ R3 arbitrary, we have

〈Gk+1,δ −Gk,δ,θ 〉R3 = wk,δ〈F ′(Gk,δ)∗(V δ − F (Gk,δ)),θ 〉R3 ,

= wk,δ〈F ′(Gk,δ)∗(V δ − V k,δ),θ 〉R3 .

By definition of adjoint operator

〈Gk+1,δ −Gk,δ,θ 〉R3 = wk,δ〈V δ − V k,δ, F ′(xk)(θ) 〉L2[0,T ],

where the internal product in L2[0, T ] is given by Φ =
∫ T

0
(V δ − V k,δ)W k,δ dt, and

from (4.23) and the previous equation,

〈Gk+1,δ −Gk,δ,θ 〉R3 = wk,δ〈V δ − V k,δ,W k,δ〉L2[0,T ].

Denoting the last equality by Φ, we gather that

Φ = 〈G
k+1,δ −Gk,δ,θ 〉R3

wk,δ
= 〈V δ − V k,δ,W k,δ〉L2[0,T ]. (4.26)

From the previous equation and the first equality from ODE (5.10), we obtain

Φ =
∫ T

0

(
CM U̇

k,δW k,δ −
(
Gk,δ

Na

(
mk,δ

)a(
hk,δ

)b
+Gk,δ

K

(
nk,δ

)c
+Gk,δ

L

)
Uk,δW k,δ

)
dt

−
∫ T

0

[
(1−mk,δ)α′mk,δ(V k,δ)−mk,δβ′mk,δ(V k,δ)

]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
Rk,δW k,δ dt. (4.27)
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Integrating the first term from (4.27) by parts, and from the initial (W k,δ(0) = 0)
and final (Uk,δ(T ) = 0) conditions, we obtain∫ T

0
CM U̇

k,δW k,δ = −
∫ T

0
CMU

k,δẆ k,δ. (4.28)

Replacing equation (4.28) in (4.27), we have

Φ = −
∫ T

0

(
CMẆ

k,δ +
(
Gk,δ

Na

(
mk,δ

)a(
hk,δ

)b
+Gk,δ

K

(
nk,δ

)c
+Gk,δ

L

)
W k,δ

)
Uk,δ dt

−
∫ T

0

[
(1−mk,δ)α′mk,δ(V k,δ)−mk,δβ′mk,δ(V k,δ)

]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
Rk,δW k,δ dt.

Replacing, the first equality from the ODE (4.25), in the first integral from the
previous equation, we gather

Φ =
∫ T

0
aGk,δ

Na(mk,δ)a−1
Mk,δ

(
hk,δ

)b
(V k,δ − ENa)Uk,δ dt

+
∫ T

0
bGk,δ

Na

(
mk,δ

)a
(hk,δ)b−1

Hk,δ(V k,δ − ENa)Uk,δ dt

+
∫ T

0
cGk,δ

K (nk,δ)c−1
Nk,δ(V k,δ − EK)Uk,δ dt

+
∫ T

0

(
mk,δ

)a(
hk,δ

)b
(V k,δ − ENa)αUk,δ dt

+
∫ T

0

(
nk,δ

)c
(V k,δ − EK)βUk,δ dt+

∫ T

0
(V k,δ − EL)γUk,δ dt

−
∫ T

0

[
(1−mk,δ)α′mk,δ(V k,δ)−mk,δβ′mk,δ(V k,δ)

]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
Rk,δW k,δ dt. (4.29)

Multiplying the second equation from (4.18) byMk,δ, and integrating in the interval
[0, T ] it follows that∫ T

0
P k,δ
t Mk,δ −

[
αmk,δ(V k,δ) + βmk,δ(V k,δ)

]
P k,δMk,δ dt =

−
∫ T

0
aGk,δ

Na

(
mk,δ

)a−1(
hk,δ

)b
(V k,δ − ENa)Uk,δMk,δ dt.

Integrating by parts the first term from the previous equation, and using the initial
(Mk,δ(0) = 0) and final (P k,δ(T ) = 0) conditions, we have∫ T

0

(
Ṁk,δ +

[
αmk,δ(V k,δ) + βmk,δ(V k,δ)

]
Mk,δ

)
P k,δ dt =∫ T

0
aGk,δ

Na

(
mk,δ

)a−1(
hk,δ

)b
(V k,δ − ENa)Uk,δMk,δ dt.
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Then, from the previous equation and the second equation from ODE (4.25), for
(X ,Y) = (Mk,δ,mk,δ),

∫ T

0
aGk,δ

K

(
mk,δ

)a−1(
hk,δ

)b
(V k,δ − ENa)Uk,δMk,δ dt =∫ T

0

[
(1−mk,δ)α′mk,δ(V k,δ)−mk,δβ′mk,δ(V k,δ)

]
W k,δP k,δ dt. (4.30)

Multiplying the third equation from (4.18) by Nk,δ, and integrating in the interval
[0, T ] we gather that

∫ T

0
Q̇k,δNk,δ −

[
αnk,δ(V k,δ) + βnk,δ(V k,δ)

]
Qk,δNk,δ dt =

−
∫ T

0
cGk,δ

K

(
nk,δ

)c−1
(V k,δ − EK)Uk,δ dt.

Integrating by parts the first term from previous equation, and using the initial
(Nk,δ(0) = 0) and final (Qk,δ(T ) = 0) conditions, we have

∫ T

0

(
Ṅk,δ +

[
αnk,δ(V k,δ) + βnk,δ(V k,δ)

]
Nk,δ

)
Qk,δ dt =∫ T

0
cGk,δ

K

(
nk,δ

)c−1
(V k,δ − EK)Uk,δ dt.

Then, from the previous equation and the second equation from ODE (4.25), for
(X ,Y) = (Nk,δ, nk,δ), we have

∫ T

0
cGk,δ

K

(
nk,δ

)c−1
(V k,δ − EK)Uk,δ dt =∫ T

0

[
(1− nk,δ)αa′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
WQk,δ dt. (4.31)

Multiplying the fourth equation from (4.18) by Hk,δ, and integrating in the interval
[0, T ] we gather that

∫ T

0
Ṙk,δHk,δ −

[
αhk,δ(V k,δ) + βhk,δ(V k,δ)

]
Rk,δHk,δ dt =

−
∫ T

0
bGk,δ

Na

(
mk,δ

)a(
hk,δ

)b−1
(V k,δ − ENa)Uk,δ dt.

Integrating by parts the first term from the previous equation, and using the initial
(Hk,δ(0) = 0) and final (Rk,δ(T ) = 0) conditions, we have

∫ T

0

(
Ḣk,δ +

[
αhk,δ(V k,δ) + βhk,δ(V k,δ)

]
Hk,δ

)
Rk,δ dt =∫ T

0
bGk,δ

Na

(
mk,δ

)a(
hk,δ

)b−1
(V k,δ − ENa)Uk,δ dt.
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Then, from the previous equation and the second equation from ODE (4.25), for
(X ,Y) = (Hk,δ, hk,δ), we have

∫ T

0
bGk,δ

Na

(
mk,δ

)a(
hk,δ

)b−1
(V k,δ − ENa)Uk,δ dt =∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
W k,δRk,δ dt. (4.32)

Substituting equations (4.30), (4.31), and (4.32) in (4.29), we have

Φ =
∫ T

0

(
mk,δ

)a(
hk,δ

)b
(V k,δ − ENa)θNaU

k,δ dt+
∫ T

0

(
nk,δ

)c
(V k,δ − EK)θKU

k,δ dt

+
∫ T

0
(V k,δ − EL)θLUk,δ dt. (4.33)

Substituting equations (4.5), (4.6) and (4.7) in equation (4.33) we gather that

Φ = Xk,δ
Na θNa +Xk,δ

K θK +Xk,δ
L θL =

〈(
Xk,δ

Na , X
k,δ
K , Xk,δ

L

)
, (θNa, θK, θL)

〉
R3
. (4.34)

From (4.26) and (4.34)

〈Gk+1,δ −Gk,δ,θ 〉R3

wk,δ
=
〈(
Xk,δ

Na , X
k,δ
K , Xk,δ

L

)
,θ
〉
R3
.

Since θ ∈ R3 is arbitrary, we obtain (4.4). �

4.4.2 Proof of Theorem 4.2.1

Proof. Consider the operator F defined in (4.3). Evaluating ak,δ in F , we have F (ak,δ) =
V k,δ, where V k,δ, mk,δ, nk,δ and hk,δ solve ODE (4.17). Let θ = (θa, θb, θc) ∈ R3 and λ ∈ R,
then F (ak,δ + λθ) = V k,δ

λ , where V k,δ
λ , mk,δ

λ , nk,δλ and hk,δλ solve

CM V̇
k,δ
λ = Iext −GNa

(
mk,δ
λ

)ak,δ+λθa(
hk,δλ

)bk,δ+λθb (
V k,δ
λ − ENa

)
−Gk,δ

K

(
nk,δλ

)ck,δ+λθc (
V k,δ
λ − EK

)
−GL

(
V k,δ
λ − EL

)
,

Ẋ = (1−X )αX (V k,δ)−XβX (V k,δ), for X = mk,δ
λ , nk,δλ , hk,δλ ,

V k,δ
λ (0) = V0, mk,δ

λ (0) = m0, nk,δλ (0) = n0, nk,δλ (0) = n0.

(4.35)

Considering the difference between the ODEs (4.35) and (4.17), dividing by λ and
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taking the limit λ→ 0, we have the ODE

CMẆ
k,δ +

(
GNa

(
mk,δ

)ak,δ(
hk,δ

)bk,δ
+GK

(
nk,δ

)ck,δ
+GL

)
W k,δ =

−ak,δGNa
(
mk,δ

)ak,δ−1
Mk,δ

(
hk,δ

)bk,δ
(V k,δ − ENa)

−bGNa
(
mk,δ

)ak,δ(
hk,δ

)bk,δ−1
Hk,δ(V k,δ − ENa)

−ck,δGK
(
nk,δ

)ck,δ−1
Nk,δ(V k,δ − EK)

−GNa
(
mk,δ

)ak,δ
ln(mk,δ)

(
hk,δ

)bk,δ
(V k,δ − ENa)θa

−GNa
(
mk,δ

)ak,δ(
hk,δ

)bk,δ
ln(hk,δ)(V k,δ − ENa)θb

−Gk

(
nk,δ

)c
ln(nk,δ)(V k,δ − EK)θc,

Ẋ + [αY(V k,δ) + βY(V k,δ)]X = [(1− Y)α′Y(V k,δ)− Yβ′Y(V k,δ)]W k,δ,

(X ,Y) = (Mk,δ,mk,δ), (Nk,δ, nk,δ), (Hk,δ, hk,δ),

W k,δ(0) = 0, Mk,δ(0) = 0, Nk,δ(0) = 0, Hk,δ(0) = 0.

(4.36)

where W k,δ is defined in equation (4.23) by replacing Gk,δ by ak,δ. Also, Mk,δ, Nk,δ and
Hk,δ are defined in equation (4.24).

This last equation is again a system of coupled nonlinear differential equations,
parametrized by θ = (θa, θb, θc), where θ ∈ R3 is arbitrary. Considering (4.18), and
proceeding as in Theorem 4.1.1, we gather (4.13). �
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5 Inverse problem of distributed parameters

The model (1.8) was originally used to explain the action potential in the long
giant axon of a squid nerve cell, but the ideas have since been extended and applied to
a wide variety of excitable cells. Hodgkin–Huxley theory is remarkable, not only for its
influence on electrophysiology, but also for its influence, after some filtering, on applied
mathematics. FitzHugh (in particular) showed how the essentials of the excitable process
could be distilled into a simpler model on which mathematical analysis could make some
progress. Because this simplified model turned out to be of such great theoretical interest,
it contributed enormously to the formation of a new field of applied mathematics, the
study of excitable systems, a field that continues to stimulate a vast amount of research
Keener e Sneyd (2009).

In this chapter, we obtain approximate parameters with non-uniform distribution
in the Hodgkin-Huxley and FitzHugh–Nagumo models.

Throughout the study on the estimation of parameters in Hodgkin-Huxley and
FitzHugh–Nagumo models, we presented some preliminary results in the following confer-
ence:

• XXXVIII Congresso Nacional de Matemática Aplicada e Computacional (CNMAC-
2018), conference or lecture of work.

In this chapter, we present a summary of Appendix C (Paper 3), this article has
not yet been submitted.

5.1 Inverse problem in Hodgkin-Huxley model
In this section, we work with the Hodgkin-Huxley model, and rewriting the system

of equations we have

CM
∂V

∂t
= IM −GNam

3h(V − ENa)−GKn
4(V − EK)−GL(V − EL);

∂m

∂t
= (1−m)αm(V )−mβm(V );

∂n

∂t
= (1− n)αn(V )− nβn(V );

∂h

∂t
= (1− h)αh(V )− hβh(V );

V (0) = V0, m(0) = m0, n(0) = n0, h(0) = h0,

(5.1)
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where the parameters CM , Iext,GNa,GK ,GL, ENa, EK, EL,m0, n0 and h0 are assumed to be
known. Let α = (αm ◦ V, βm ◦ V, αn ◦ V, βn ◦ V, αh ◦ V, βh ◦ V ), where (α◦V )(t) = α(V (t)).

Here, our goal is to estimate α, given the membrane potential measurement, such
that

F (α) = V, (5.2)

where F : (L2[0, T ])6 → L2[0, T ] is the nonlinear operator. Note that V solves equation
(5.1).

From equation (2.4), for x = α and wk,δ ≥ 0, we have

αk+1,δ = αk,δ + wk,δF ′(αk,δ)∗(V δ − F (αk,δ)), (5.3)

where

wk,δ =
‖V δ − V k,δ‖2

L2[0,T ]

‖F ′(αk,δ)∗(V δ − F (αk,δ))‖2
(L[0,T ])6

.

Here, we also compute the adjoint of the Gateaux derivative. Then, from iteration
(5.3) and Theorem (5.1.1), we gather that

αk+1,δ = αk,δ + wk,δ
(
Xk,δ
αm , X

k,δ
βm
, Xk,δ

αn , X
k,δ
βn
, Xk,δ

αh
, Xk,δ

βh

)
, (5.4)

where Xk,δ
αm , X

k,δ
βm

, Xk,δ
αn , X

k,δ
βn

, Xk,δ
αh

and Xk,δ
βh

satisfy equations (5.6), (5.7) and (5.8).

To estimate α, given α1,δ, we consider the minimal error iteration (5.4).

In the next theorem, we compute the adjoint of the Gateaux derivative from
iteration (5.3).

Theorem 5.1.1. Consider the iteration (5.3). It follows then that

F ′(αk,δ)∗(V δ − F (αk,δ)) =
(
Xk,δ
αm , X

k,δ
βm
, Xk,δ

αn , X
k,δ
βn
, Xk,δ

αh
, Xk,δ

βh

)
, (5.5)

where

Xk,δ
αm =

(
1−mk,δ

)
P k,δ ; Xk,δ

βm
= −mk,δP k,δ; (5.6)

Xk,δ
αn =

(
1− nk,δ

)
Qk,δ ; Xk,δ

βn
= −nk,δQk,δ; (5.7)

Xk,δ
αh

=
(
1− hk,δ

)
Rk,δ ; Xk,δ

βh
= −hk,δRk,δ. (5.8)

Given αX (V k,δ) and βX (V k,δ) for X = mk,δ, nk,δ, hk,δ, the functions mk,δ, nk,δ and
hk,δ solve

CM V̇
k,δ = Iext −GNa

(
mk,δ

)3(
hk,δ

)
(V k,δ − ENa)−GK

(
nk,δ

)4
(V k,δ − EK)

−GL(V k,δ − EL),

Ẋ = (1−X )αX (V k,δ)−XβX (V k,δ) for X = mk,δ, nk,δ, hk,δ,

V k,δ(0) = V0, mk,δ(0) = m0, nk,δ(0) = n0, hk,δ(0) = h0.

(5.9)
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Finally, the functions P k,δ, Qk,δ and Rk,δ solve, given mk,δ, nk,δ, hk,δ and V k,δ,

CM U̇
k,δ −

(
GNa

(
mk,δ

)3(
hk,δ

)
+GK

(
nk,δ

)4
+GL

)
Uk,δ

−[(1−mk,δ)α′mk,δ(V k,δ)−mk,δβ′mk,δ(V k,δ)]P k,δ

−[(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)]Qk,δ

−[(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)]Rk,δ = V δ − V k,δ,

Ṗ k,δ − [αmk,δ(V k,δ) + βmk,δ(V k,δ)]P k,δ = −3GNa
(
mk,δ

)2(
hk,δ

)
(V k,δ − ENa)Uk,δ,

Q̇k,δ − [αnk,δ(V k,δ) + βnk,δ(V k,δ)]Qk,δ = −4GK
(
nk,δ

)3
(V k,δ − EK)Uk,δ,

Ṙk,δ − [αhk,δ(V k,δ) + βhk,δ(V k,δ)]Rk,δ = −GNa
(
mk,δ

)3
(V k,δ − ENa)Uk,δ,

Uk,δ(T ) = 0, P k,δ(T ) = 0, Qk,δ(T ) = 0, Rk,δ(T ) = 0.

(5.10)

As previously mentioned, we assume that the constants CM , Iext, m0, n0, h0, GNa,
GK, GL, ENa ,EK and EL are known data. Note that α′m(V ) is the derivative of αm with
respect to voltage V .

Proof. See Subsection 5.4.1. �

We next describe the computational scheme.

Data: V δ, δ and τ
Result: Compute an approximation for α using Iteration Scheme (5.4)
Choose α1,δ as an initial approximation for α;
Compute m1,δ, n1,δ, h1,δ and V 1,δ from (5.9), replacing αk,δ by α1,δ;
k=1;
while τδ ≤ ‖V δ − V k,δ‖L2[0,T ] do

Compute P k,δ, Qk,δ and Rk,δ from (5.10);
Compute αk+1,δ using (5.4);
Compute mk+1,δ, nk+1,δ, hk+1,δ and V k+1,δ from (5.9), replacing αk,δ by αk+1,δ;
k ← k + 1;

end
Algorithm 5: Minimal error iteration to obtain functions in the H-H model
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5.2 Inverse problem in FitzHugh–Nagumo model
In this Section, we consider FitzHugh–Nagumo equation (1.10). Then, rewriting

this model we obtain 

∂V

∂t
= I + g(V )− υ,

∂υ

∂t
= bV − cυ,

V (0) = V0; υ(0) = υ0,

(5.11)

where the constants I, b, c, V0 and υ0 are known, and the function g = g(V ) is unknown.
Consider the nonlinear operator F : L2[0, T ]→ L2[0, T ] defined by

F (g) = V, (5.12)

where V solves (5.11). The current goal is to estimate g, given V δ. From iteration (2.4),
for x = g and wk,δ ≥ 0, we have

gk+1,δ = gk,δ + wk,δF ′(gk,δ)∗(V δ − F (gk,δ)), (5.13)

where

wk,δ =
‖V δ − V k,δ‖2

L2[0,T ]

‖F ′(gk,δ)∗(V δ − F (gk,δ))‖2
(L[0,T ])6

.

From equation (5.13) and Theorem 5.2.1, we have the following iteration

gk+1,δ = gk,δ + wk,δUk,δ, (5.14)

where Uk,δ solves equation (5.17).

To obtain an approximation for g, given g1,δ, we used the minimal error method
(5.14).

In the next theorem, we compute the adjoint of the Gateaux derivative from
algorithm (5.13).

Theorem 5.2.1. Consider the iteration (5.13). It follows then that

F ′(gk,δ)∗(V δ − F (gk,δ)) = Uk,δ. (5.15)

Given gk,δ, the functions V k,δ and υk,δ solve
V̇ k,δ = I + gk,δ − υk,δ;

υ̇k,δ = bV k,δ − cυk,δ;

V (0) = V0, υ(0) = υ0.

(5.16)
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Finally, Uk,δ solves, given V k,δ and gk,δ,
U̇k,δ + gk,δ ′Uk,δ − bP k,δ = V δ − V k,δ,

Ṗ k,δ − cP k,δ = −Uk,δ,

Uk,δ(T ) = 0; P k,δ(T ) = 0,
(5.17)

where gk,δ ′ is the derivative of gk,δ with respect to V k,δ. .

As previously mentioned, we assume that the constants b, c, V0, υ0 and I are known
data.

Proof. See Subsection 5.4.2. �

We next describe the computational scheme.

Data: V δ, δ and τ
Result: Compute an approximation for g using Iteration Scheme (5.14)
Choose g1,δ as an initial approximation for g;
Compute r1,δ and V 1,δ from (5.16), replacing gk,δ by g1,δ;
k=1;
while τδ ≤ ‖V δ − V k,δ‖L2[0,T ] do

Compute Uk,δ from (5.17);
Compute gk+1,δ using (5.14);
Compute rk+1,δ and V k+1,δ from (5.16), replacing gk,δ by gk+1,δ;
k ← k + 1;

end
Algorithm 6: Minimal error iteration to obtain one function in the F-N model

5.3 Numerical simulations
In Section 5.1, we consider and obtain analytical results for six unknown functions.

In computational experiments, we estimate only one function α = αn(V ), from equation
(5.1).

In this section, we consider two examples. The first one is to estimate x = α from
(5.1), given V δ. For the second example, the goal is to estimate x = g from (5.11), given
V δ.

To design our numerical experiments, we first choose x (x = α or x = g) and
compute V from (5.1) or (5.11), obtaining then V . In our examples, for a given δ, the
noisy V δ is obtained by

V δ(t) = V (t) + V (t)randε(t), for all t ∈ [0, T ] (5.18)

where randε is a uniformly distributed random variable in the interval [−ε, ε], and ε =
δ/‖V ‖L2[0,T ]. Now, we consider V and x unknown.



Chapter 5. Inverse problem of distributed parameters 63

Next, given the initial guess x1,δ, V δ and δ, we start to recover x using either
Algorithm 5 ( for x = α ) or Algorithm 6 (for x = g).

In practice, after discretizing the equations and the unknown functions, only
nodal values are know. Consider the space-time discretization tn = (n− 1)T/(N − 1) for
n = 1, 2, · · · , N . Thus, the relative error introduced above relates to the the mean absolute
percentage error

Errork = T

N

N∑
n=1

∣∣∣∣∣x(tn)− xk,δ(tn)
x(tn)

∣∣∣∣∣× 100%, k = 1, 2 · · · , k∗. (5.19)

Example 5.1. This example is a particular case from (5.1), where the fixed parameters
are: T = 4 [ms], C = 1 [µF/cm2], Iext = 5 [µA/cm2], ENa = 115 [mV ], EK = −12 [mV ],
EL = 10.6 [mV ], GNa = 120 [mS/cm2], GK = 36 [mS/cm2], GL = 0.3 [mS/cm2] and
N = 100. The initial conditions are: V (0) = −20 [mV ], m(0) = 0.1, n(0) = 0.2 and
h(0) = 0.5. Given V δ, the goal of this example is to estimate

βn(V ) = 0.125 exp(V/80).

In this test, we consider the initial guess β1,δ
n = 0 and τ = 2.01. Table 5 presents

the results for various levels of noise. In Figures 19 and 20 we show the convergence of the
method (ε = 0.0001% of noise ).

ε k∗ Errork∗ Time (s)
100% 1 100 % 4× 10−5

10% 11 35 % 1× 10−2

1% 43 31 % 3× 10−2

0.1% 1030 15 % 8× 10−1

0.01% 11498 6.6 % 9× 100

0.001% 84045 1.8 % 66× 100

0.0001% 412201 0.7 % 323× 100

Table 5 – Numerical results for Example 5.1, for various values of ε, as in (4.20). The
second column contains the number of iterations according to (2.5). The third
column is the mean absolute percentage error of x = βn according to (5.19).
The last column is the running time of the algorithm, in seconds.

Example 5.2. This example is a particular case from (5.11), where the fixed parameters
are: T = 10, N = 1000, Iext = 5, b = 0.05 and c = 0.01. The initial conditions are:
V (0) = −5 and υ(0) = 10. Given V δ, the goal of this example is to find g = V (a−V )(V −1)
for a = 0.5.

In this test, we consider the initial guess g1,δ = 0 and τ = 2.01. Table 6 presents
the results for various levels of noise. In Figures (21) and (22), we plot results to show the
convergence of the method (ε = 0.01% of noise).
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Figure 19 – Example 5.1. For the Subplots A and B, the red lines are the exact solution,
the blue lines are the initial guesses and the green lines are the approximation
for ε = 0.0001%. In Subplot A, we present the parameters βn, β1,δ

n and βk∗,δ
n

as a function of time. In Subplot B, we show the parameters βn, β1,δ
n and βk∗,δ

n

as a function of V , V 1,δ and V k∗,δ, respectively.
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Figure 20 – Convergence results for Example 5.1. This figure displays the mean absolute
percentage error between βn and βk,δn as a function of the natural logarithm
of the iteration k.

ε k∗ Errork∗ Time (s)
100% 4 20 % 3× 10−3

10% 212 6 % 2× 10−1

1% 12224 3 % 9× 100

0.1% 133134 1 % 94× 100

0.01% 658496 0.02 % 464× 100

Table 6 – Numerical results for Example 5.2. See Table 5 for a description of the contents.
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Figure 21 – Example 5.2. For the Subplots A and B, the red lines are the exact solution,
the blue lines are the initial guesses and the green lines are the approximation
for ε = 0.01%. In Subplot A, we present the parameters g, g1,δ and gk∗,δ as a
function of time. In Subplot B, we show the parameters g, g1,δ and gk∗,δ as a
function of V , V 1,δ and V k∗,δ, respectively.
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Figure 22 – Convergence results for Example 5.2. This figure displays the mean absolute
percentage error between g and gk,δ as a function of the natural logarithm of
the iteration k.

5.4 Detailed proofs of Theorems 5.1.1 and 5.2.1

5.4.1 Proof of Theorem 5.1.1

Proof. Consider the operator F defined in (5.2). Evaluating αk,δ in F , we have F (αk,δ) =
V k,δ, where V k,δ, mk,δ, nk,δ and hk,δ solve the ODE (5.9).

Let the vector θ = (θαm , θβm , θαn , θβn , θαh , θβh) ∈ (L2[0, T ])6 and λ ∈ R, then
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evaluating α+ λθ in the operator F , we have F (α+ λθ) = V k,δ
λ , where V k,δ

λ solves

CV̇ k,δ
λ = Iext −GNa

(
mk,δ
λ

)3(
hk,δλ

)
(V k,δ

λ − ENa)
−GK

(
nk,δλ

)4
(V k,δ

λ − EK)−GL(V k,δ
λ − EL),

ṁk,δ
λ = (1−mk,δ

λ )
[
αmk,δ

λ
(V k,δ

λ ) + λθαm
]
−
[
mk,δ
λ βmk,δ

λ
(V k,δ

λ ) + λθβm
]
,

ṅk,δλ = (1− nk,δλ )
[
αnk,δ

λ
(V k,δ

λ ) + λθαn
]
−
[
nk,δλ βnk,δ

λ
(V k,δ

λ ) + λθβn
]
,

ḣk,δλ = (1− hk,δλ )
[
αhk,δ

λ
(V k,δ

λ ) + λθαh
]
−
[
hk,δλ βhk,δ

λ
(V k,δ

λ ) + λθβh
]
,

V k,δ
λ (0) = V0; mk,δ

λ (0) = m0; nk,δλ (0) = n0; hk,δλ (0) = h0.

(5.20)

The Gateaux derivative of F at αk,δ in the direction θ is given by

F ′(αk,δ)(θ) = lim
λ→0

F (αk,δ + λθ)− F (αk,δ)
λ

= W k,δ. (5.21)

Also, we denote the following limits

Mk,δ = lim
λ→0

mk,δ
λ −mk,δ

λ
, Nk,δ = lim

λ→0

nk,δλ − nk,δ

λ
, Hk,δ = lim

λ→0

hk,δλ − hk,δ

λ
, (5.22)

where Mk,δ, Nk,δ and Hk,δ are the Gateaux derivatives of mk,δ, nk,δ and hk,δ, respectively.

Considering the difference between the ODEs (5.20) and (5.9), dividing by λ and
taking the limit λ→ 0, we have the following ODE

CẆ k,δ +
(
GNa

(
mk,δ

)3 (
hk,δ

)
+GK

(
nk,δ

)4
+GL

)
W k,δ =

−3GNa

(
mk,δ

)2
Mk,δhk,δ(V k,δ − ENa)

−GNa

(
mk,δ

)3
Hk,δ(V k,δ − ENa)

−4GK

(
nk,δ

)3
Nk,δ(V k,δ − EK),

Ṁk,δ + [αmk,δ(V k,δ) + βmk,δ(V k,δ)]Mk,δ =[
(1−mk,δ)α′mk,δ(V k,δ)−mk,δβ′mk,δ(V k,δ)

]
W k,δ + (1−mk,δ)θαm −mk,δθβm ,

Ṅk,δ + [αnk,δ(V k,δ) + βnk,δ(V k,δ)]Nk,δ =[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
W k,δ + (1− nk,δ)θαn − nk,δθβn ,

Ḣk,δ + [αhk,δ(V k,δ) + βhk,δ(V k,δ)]Hk,δ =[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
W k,δ + (1− hk,δ)θαh − hk,δθβh ,

W k,δ(0) = 0; Mk,δ(0) = 0; Nk,δ(0) = 0; Hk,δ(0) = 0.

(5.23)

This last equation is yet another system of coupled nonlinear differential equations,
depending on the parameter θ. Note that the variable θ represent any point in space
(L2[0, T ])6.
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From Landweber iteration (5.3) and θ ∈ (L2[0, T ])6 arbitrary, we have

〈αk+1,δ −αk,δ,θ 〉(L2[0,T ])6 = wk,δ〈F ′(αk,δ)∗(V δ − F (αk,δ)),θ 〉(L2[0,T ])6 ,

= wk,δ〈F ′(αk,δ)∗(V δ − V k,δ),θ 〉(L2[0,T ])6 .

By the definition of adjunct operator

〈αk+1,δ −αk,δ,θ 〉(L2[0,T ])6 = wk,δ〈V δ − V k,δ, F ′(αk,δ).(θ) 〉L2[0,T ].

From (5.21) and the previous equation,

〈αk+1,δ −αk,δ,θ 〉(L2[0,T ])6 = wk,δ〈V δ − V k,δ,W k,δ〉L2[0,T ].

We denote the last equality by Φ, then

Φ =
〈αk+1,δ −αk,δ,θ 〉(L2[0,T ])6

wk,δ
= 〈V δ − V k,δ,W k,δ〉L2[0,T ]. (5.24)

By the definition of inner product in L2[0, T ]

Φ =
∫ T

0
(V δ − V k,δ)W k,δ dt.

From the previous equation and the first equality from ODE (5.10), we obtain the
following expression

Φ =
∫ T

0

(
CM U̇

k,δW k,δ −
(
GNa

(
mk,δ

)3 (
hk,δ

)
+GK

(
nk,δ

)4
+GL

)
Uk,δW k,δ

)
dt

−
∫ T

0

[
(1−mk,δ)α′mk,δ(V k,δ)−mk,δβ′mk,δ(V k,δ)

]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
Rk,δW k,δ dt. (5.25)

Integrating by parts the first term from equation (5.25), and initial (see (5.23),
W k,δ(0) = 0) and final (see (5.10), Uk,δ(T ) = 0) conditions, we obtain∫ T

0
CM U̇

k,δW k,δdt = −
∫ T

0
CMU

k,δẆ k,δdt. (5.26)

Replacing equation (5.26) in (5.25), we have the following equality

Φ = −
∫ T

0

(
CẆ k,δ +

(
GNa

(
mk,δ

)3 (
hk,δ

)
+GK

(
nk,δ

)4
+GL

)
W k,δ

)
Uk,δ dt

−
∫ T

0

[
(1−mk,δ)α′mk,δ(V k,δ)−mk,δβ′mk,δ(V k,δ)

]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
Rk,δW k,δ dt.
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Replacing the first equality from ODE (5.23) in the first integral from the previous
equation, we obtain

Φ =
∫ T

0
3GNa

(
mk,δ

)2
Mk,δ

(
hk,δ

)
(V k,δ − ENa)Uk,δ dt (5.27)

+
∫ T

0
GNa

(
mk,δ

)3
Hk,δ(V k,δ − ENa)Uk,δ dt

+
∫ T

0
4GK

(
nk,δ

)3
Nk,δ(V k,δ − EK)Uk,δ dt

−
∫ T

0

[
(1−mk,δ)α′mk,δ(V k,δ)−mk,δβ′mk,δ(V k,δ)

]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
Rk,δW k,δ dt.

Multiplying the second equation from (5.10) byMk,δ, and integrating in the interval
[0, T ] we gather that
∫ T

0

(
Ṗ k,δMk,δ −

[
αmk,δ(V k,δ) + βmk,δ(V k,δ)

]
P k,δMk,δ

)
dt =

−
∫ T

0

(
3GNa

(
mk,δ

)2 (
hk,δ

)
(V k,δ − ENa)Uk,δMk,δ

)
dt.

Integrating by parts the first term from the previous equation, and initial (see
(5.23), Mk,δ(0) = 0) and final (see (5.10), P k,δ(T ) = 0) conditions, we have
∫ T

0

(
Ṁk,δ +

[
αmk,δ(V k,δ) + βmk,δ(V k,δ)

]
Mk,δ

)
P k,δ dt =∫ T

0
3GNa

(
mk,δ

)2 (
hk,δ

)
(V k,δ − ENa)Uk,δMk,δ dt,

Then, from the previous equation and the second equation from ODE (5.23), we
have∫ T

0
3GNa

(
mk,δ

)2 (
hk,δ

)
(V k,δ − ENa)Uk,δMk,δ dt =∫ T

0

[
(1−mk,δ)α′mk,δ(V k,δ)−mk,δβ′mk,δ(V k,δ)

]
W k,δP k,δ dt

+
∫ T

0
(1−mk,δ)θαmP k,δdt−

∫ T

0
mk,δθβmP

k,δdt. (5.28)

Multiplying the third equation from (5.10) by Nk,δ, and integrating in the interval
[0, T ] we gather that
∫ T

0
Q̇k,δNk,δ −

[
αnk,δ(V k,δ) + βnk,δ(V k,δ)

]
Qk,δNk,δ dt =

−
∫ T

0
4GK

(
nk,δ

)3
(V k,δ − EK)Uk,δNk,δ dt.



Chapter 5. Inverse problem of distributed parameters 69

Integrating for parts the first term of the previous equation, and initial (see (5.23),
Nk,δ(0) = 0) and final (see (5.10), Qk,δ(T ) = 0) conditions, we have∫ T

0

(
Ṅk,δ +

[
αnk,δ(V k,δ) + βnk,δ(V k,δ)

]
Nk,δ

)
Qk,δ dt =∫ T

0
4GK

(
nk,δ

)3
(V k,δ − EK)Uk,δ dt

Then, from the previous equation and the third equation from ODE (5.23), we
gather∫ T

0
4GK

(
nk,δ

)3
(V k,δ − EK)Uk,δ dt =∫ T

0

[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
WQk,δ dt.

+
∫ T

0
(1− nk,δ)θαnQk,δdt−

∫ T

0
nk,δθβnQ

k,δdt. (5.29)

Multiplying the fourth equation from (5.10) by Hk,δ, and integrating in the interval
[0, T ] we gather that∫ T

0
Ṙk,δHk,δ −

[
αhk,δ(V k,δ) + βhk,δ(V k,δ)

]
Rk,δHk,δ dt =

−
∫ T

0
Gk,δ
Na

(
mk,δ

)3
(V k,δ − ENa)Uk,δ dt

Integrating for parts the first term of the previous equation, and using the initial
conditions Hk,δ(0) = 0 and Rk,δ(0) = 0 we have,∫ T

0

(
Ḣk,δ +

[
αhk,δ(V k,δ) + βhk,δ(V k,δ)

]
Hk,δ

)
Rk,δ dt =∫ T

0
GNa

(
mk,δ

)3
(V k,δ − ENa)Uk,δ dt,

Then, from the previous equation and the fourth equation from ODE (5.23), we
have∫ T

0
GNa

(
mk,δ

)3
(V k,δ − ENa)Uk,δ dt =∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
W k,δRk,δ dt.

+
∫ T

0
(1− hk,δ)θαhRk,δdt−

∫ T

0
hk,δθβhR

k,δdt. (5.30)

Substituting the equations (5.28), (5.29), and (5.30) in the equation (5.27), leads
to

Φ =
∫ T

0
(1−mk,δ)θαmP k,δdt−

∫ T

0
mk,δθβmP

k,δdt

+
∫ T

0
(1− nk,δ)θαnQk,δdt−

∫ T

0
nk,δθβnQ

k,δdt

+
∫ T

0
(1− hk,δ)θαhRk,δdt−

∫ T

0
hk,δθβhR

k,δdt. (5.31)
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Replacing equations (5.6), (5.7) and (5.8) into (5.31) we gather that

Φ =
∫ T

0
Xk,δ
αmθαmdt+

∫ T

0
Xk,δ
βm
θβmdt+

∫ T

0
Xk,δ
αn θαndt+

∫ T

0
Xk,δ
βn
θβndt

+
∫ T

0
Xk,δ
αh
θαhdt+

∫ T

0
Xk,δ
βh
θβhdt.

Then from previous equation, we have

Φ =
〈(

Xk,δ
αm , X

k,δ
βm
, Xk,δ

αn , X
k,δ
βn
, Xk,δ

αh
, Xk,δ

βh

)
,θ

〉
(L2[0,T ])6

. (5.32)

From (5.24) and (5.32)

〈αk+1,δ −αk,δ,θ 〉(L2[0,T ])6

wk,δ
=
〈(

Xk,δ
αm , X

k,δ
βm
, Xk,δ

αn , X
k,δ
βn
, Xk,δ

αh
, Xk,δ

βh

)
,θ

〉
(L2[0,T ])6

.

Since θ ∈ (L2[0, T ])6 is arbitrary, we have (5.5) �

5.4.2 Proof of Theorem 5.2.1

Proof. As in Subsection 5.4.2, the operator F is defined in (5.12). Evaluating gk,δ in F , we
have F (gk,δ) = V k,δ, where V k,δ and υk,δ solve ODE (5.16). Let θ ∈ L2[0, T ] and λ ∈ R,
then F (gk,δ + λθ) = V k,δ

λ , where V k,δ
λ and υk,δλ solve

V̇ k,δ
λ = Iext + gk,δ(V k,δ

λ ) + λθ − υk,δλ ,

υ̇k,δλ = bV k,δ
λ − cυk,δλ ,

V k,δ
λ (0) = V0; υk,δλ (0) = υ0.

(5.33)

The Gateaux derivative of F at gk,δ in the direction θ is given by

W k,δ = F ′(gk,δ)(θ) = lim
λ→0

F (gk,δ + λθ)− F (gk,δ)
λ

. (5.34)

Also, we denote the following limit

Rk,δ = lim
λ→0

υk,δλ − υk,δ

λ
, (5.35)

where Rk,δ is the Gateaux derivative of υk,δ.

Considering the difference between ODEs (5.33) and (5.16), dividing by λ and
taking the limit λ→ 0, we have the following ODE

Ẇ k,δ − gk,δ ′(V k,δ)W k,δ = θ −Rk,δ,

Ṙk,δ + cRk,δ = bW k,δ,

W k,δ(0) = 0; Rk,δ(0) = 0.
(5.36)
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This last equation is yet another system of coupled nonlinear differential equations,
depending on the parameter θ, representing an arbitrary function in L2[0, T ].

From Landweber iteration (5.13) and θ ∈ L2[0, T ] arbitrary, we have

〈gk+1,δ − gk,δ,θ 〉L2[0,T ] = wk,δ〈F ′(gk,δ)∗(V δ − F (gk,δ)),θ 〉L2[0,T ],

= wk,δ〈F ′(gk,δ)∗(V δ − V k,δ),θ 〉L2[0,T ].

By the definition of adjoint operator

〈gk+1,δ − gk,δ,θ 〉L2[0,T ] = wk,δ〈V δ − V k,δ, F ′(xk)(θ) 〉L2[0,T ],

Combining the previous equation and (5.34) gives

〈gk+1,δ − gk,δ,θ 〉L2[0,T ] = wk,δ〈V δ − V k,δ,W k,δ〉L2[0,T ].

We denote the last equality by Φ, then

Φ =
〈gk+1,δ − gk,δ,θ 〉L2[0,T ]

wk,δ
= 〈V δ − V k,δ,W k,δ〉L2[0,T ]. (5.37)

By the definition of internal product in L2[0, T ]

Φ =
∫ T

0
(V δ − V k,δ)W k,δdt.

From the previous equation and the first equality from ODE (5.17), we obtain

Φ =
∫ T

0

(
U̇k,δW k,δ + g′(V k,δ)Uk,δW k,δ − bP k,δW k,δ

)
dt. (5.38)

Integrating by parts the first term from equation (5.38), and from initial (see (5.36),
W k,δ(0) = 0) and final (see (5.17), Uk,δ(T ) = 0) conditions, we obtain∫ T

0
U̇k,δW k,δdt = −

∫ T

0
Ẇ k,δUk,δdt. (5.39)

Replacing equation (5.39) into (5.38), we have

Φ = −
∫ T

0

(
Ẇ k,δ − g′(V k,δ)W k,δ

)
Uk,δdt−

∫ T

0
bP k,δW k,δdt.

Replacing, the first equality from ODE (5.36), in the first integral from the previous
equation, we gather

Φ = −
∫ T

0
θUk,δdt+

∫ T

0
Rk,δUk,δdt−

∫ T

0
bP k,δW k,δdt. (5.40)

Multiplying the second equation from (5.17) by Rk,δ, and integrating in the interval
[0, T ] we gather that∫ T

0
Ṗ k,δRk,δdt−

∫ T

0
cP k,δRk,δdt = −

∫ T

0
Uk,δRk,δdt.
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Integrating by parts the first term from the previous equation, and from initial (see
(5.36), Mk,δ(0) = 0) and final (see (5.17), P k,δ(T ) = 0) conditions, we obtain∫ T

0

(
Ṙk,δ + cRk,δ

)
P k,δdt =

∫ T

0
Uk,δRk,δdt.

Then, from the previous equation and the second equation from ODE (5.36)∫ T

0
bP k,δW k,δdt =

∫ T

0
Uk,δRk,δdt. (5.41)

Substituting equation (5.41) into (5.40), we gather

Φ = −
∫ T

0
θUk,δdt = −

〈
Uk,δ,θ

〉
L2[0,T ]

.

Combining the previous equation and (5.37), we obtain〈
gk+1,δ − gk,δ,θ

〉
L2[0,T ]

wk,δ
= −

〈
Uk,δ,θ

〉
L2[0,T ]

.

Since θ ∈ L2[0, T ] is arbitrary, we have (5.15). �
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6 Discrete inverse problems

The main difference between the discrete inverse problem and the continuous inverse
problem is whether x and y data, from (2.1), are treated as continuous functions or discrete
parameters (Menke (2018), Hansen (2010)). Particularly, in numerical implementations,
the x and y parameters are necessarily discrete. In this context, we study the discrete
inverse problem in cable equation and in Hodgkin-Huxley model.

Throughout the study on the estimation of parameters in discrete models, we
presented two complete work in the following conferences:

• XII Encontro Acadêmico de Modelagem Computacional (EAMC-2019).

• V International Symposium on Inverse Problems, Design and Optimization (IPDO-
2019).

In the first work, Section 6.1, we estimate conductances in the discrete cable model.
For our second work, in Section 6.2, we also obtain approximate conductances, but in
discrete Hodgkin-Huxley model. In Sections 6.1 and 6.2 we present a summary of works,
and in Appendix D we present the articles.

6.1 Discrete inverse problem in cable equation
In this Section, we consider the Subsection 1.3.4. Let the space-time discretization

tn = (n − 1)∆t for n = 1, 2, · · · , N and xj = (j − 1)∆x for j = 1, 2, · · · , nx, where
∆t = T/(nt− 1) and ∆x = L/(nx− 1). The points V n

j and Gj represent the numerical
approximation of V (tn, xj) and G(xj), respectively.

For simplicity we denote

a = ∆t
(RI +RE)∆x2CM

, b = −2a+ 1, c = ∆t
CM

.

Then, applying finite differences in equation (6.41), we have the following discrete
cable model

V n+1
j = aV n

j−1 + bV n
j + aV n

j+1 − cGj

(
V n
j − E

)
,

V 1
j = rj; j = 1, 2, · · · , nx,

V n
0 = V n

1 −∆xpn, V n
nx+1 = ∆xqn + V n

nx; n = 1, 2, · · · , nt.

(6.1)
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We denote

G = (G1, · · · , Gnx) ∈ Rnx and V =


V 1

1 V 1
nx

... ...
V nt

1 V nt
nx

 ∈ Rnt×2

Let F : Rnx → Rnt×2 be a non-linear operator defined by

F (G) = V (6.2)

The discrete inverse problem is to determinate G approximately, given the noisy
data V δ. Considering minimal error iteration (2.4), for x = G and wk,δ ≥ 0, we have

Gk+1,δ = Gk,δ + wk,δF ′(Gk,δ)∗
(
V δ − F (Gk,δ)

)
, (6.3)

where

wk,δ = ‖V δ − V k,δ‖2
Rnt×2∥∥∥F ′(Gk,δ)∗(V δ − F (Gk,δ))

∥∥∥2

Rnx

.

From equation (6.3), we compute the adjoint of the Gateaux derivative F ′(Gk,δ)∗

(see Theorem 6.1.1), and we obtain the iteration

Gk+1,δ = Gk,δ − wk,δ
(
Xk,δ

1 , Xk,δ
2 , · · · , Xk,δ

nx

)
, (6.4)

where Xk,δ
i , for i = 1, 2, · · · , nx, satisfies equation (6.5).

We used the minimal error method (6.4) to estimate G, given G1,δ.

In the next theorem, we calculate, from (6.3), the adjoint of the directional deriva-
tive.

Theorem 6.1.1. Consider the nonlinear operator F defined in (6.2) and the iteration
(4.2). Then

F ′(Gk,δ)∗
(
V δ − F (Gk,δ)

)
= −

(
Xk,δ

1 , Xk,δ
2 , · · · , Xk,δ

nx

)
,

where

Xk,δ
j = 1

a∆x

nt∑
n=1

(
(V n

j )k,δ − E
)

(Un
j )k,δ; for i = 1, 2, · · · , nx. (6.5)

The parameter (V n
j )k,δ solves, given Gk,δ,

(V n+1
j )k,δ = a(V n

j−1)k,δ + b(V n
j )k,δ + a(V n

j+1)k,δ − cGk,δ
j

(
(V n

j )k,δ − E
)
,

(V 1
j )k,δ = rj; j = 1, 2, · · · , nx,

(V n
0 )k,δ = (V n

1 )k,δ −∆xpn, (V n
nx+1)k,δ = ∆xqn + (V n

nx)
k,δ; n = 1, 2, · · · , nt.

(6.6)
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Given (V n
j )k,δ and Gk,δ, (Un

j )k,δ solves


(Un
j )k,δ = a(Un+1

j−1 )k,δ + b(Un+1
j )k,δ + a(Un+1

j+1 )k,δ − cGk,δ
j (Un+1

j )k,δ;

(Unt
j )k,δ = 0;

(Un+1
0 )k,δ = (U1

1 )k,δ + ∆x
(
(V n+1

1 )δ − (V n+1
nx )k,δ

)
;

(Un+1
nx+1)k,δ = (Un+1

nx )k,δ + ∆x
(
(V n+1

nx )δ − (V n+1
nx )k,δ

)
.

(6.7)

Proof. See Appendix D. �

We next describe the computational scheme.

Data: V δ, δ and τ
Result: Compute an approximation for G using Iteration Scheme (6.4)
Choose G1,δ as an initial approximation for G;
Compute (V n

j )1,δ from (6.6), replacing Gk,δ by G1,δ;
k=1;
while τδ ≤ ‖V δ − V k,δ‖Rnt×2 do

Compute (Un
j )k,δ from (6.7);

Compute Gk+1,δ using (6.4);
Compute (V n

j )k+1,δ from (6.6), replacing Gk,δ by Gk+1,δ;
k ← k + 1;

end
Algorithm 7: Minimal error iteration in the discrete cable model

6.2 Discrete inverse problem in Hodgkin-Huxley model
We partition the domain in time ([0, T ]) using a mesh t1, t2, · · · , tnt. The point Vi

represents the numerical approximation of V (ti). Here ti = (i− 1)∆t, for i = 1, 2, · · · , nt,
where ∆t = T/(nt− 1). Applying finite differences in equation (1.8), we have the following
discrete Hodgkin-Huxley model,

C
Vi+1 − Vi

∆t = Iext −GNami
3hi(Vi − ENa)−GKn

4
i (Vi − EK)−GL(Vi − EL);

Xi+1 −Xi
∆t = (1−Xi)αXi(Vi)−XiβXi(Vi); X = m,n, h;

V1 = V0, m1 = m0, n1 = n0, h1 = h0.

(6.8)

Functions αXi and βXi satisfy the following equations:

αmi = (25−Vi)/10
exp((25−Vi)/10)−1 ; αhi = 0.07 exp(−Vi/20); αni = (10−Vi)/100

exp((10−Vi)/10)−1 ;

βmi = 4 exp(−Vi/18); βhi = 1
exp((30−Vi)/10)+1 ; βni = 0.125 exp(−Vi/80).
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We denote V = (V1, · · · , Vnt), m = (m1, · · · ,mnt), n = (n1, · · · , nnt), h =
(h1, · · · , hnt) and G = (GNa, GK , GL).

Consider the nonlinear operator F : R3 → Rnt, defined by

F (G) = V , (6.9)

where V solves (6.8). The goal of this Section is to estimate G, from (6.8), given V δ.

From iteration (2.4), for x = G and wk,δ = 1, we have

Gk+1,δ = Gk,δ + F ′(Gk,δ)∗(V δ − F (Gk,δ)). (6.10)

From previous equation and theorem 6.2.1, we have the following iteration

Gk+1,δ = Gk,δ +
(
Xk,δ

Na , X
k,δ
K , Xk,δ

L

)
, (6.11)

where Xk,δ
Na , X

k,δ
K and Xk,δ

L satisfy equations (6.12), (6.13) and (6.14), respectively.

To obtain an approximation for G, we used Landweber iteration (6.11).

In the next theorem, we calculate the adjoint of the directional derivative.

Theorem 6.2.1. Consider the nonlinear operator F defined in (6.9) and iteration (2.4).
Then

F ′(Gk,δ)∗(V δ − F (Gk,δ)) =
(
Xk,δ

Na , X
k,δ
K , Xk,δ

L

)
,

where

Xk,δ
Na = ∆t3

nt∑
i=1

(
mk,δ
i

)3 (
hk,δi

)
(V k,δ

i − ENa)Uk,δ
i , (6.12)

Xk,δ
K = ∆t3

nt∑
i=1

(
nk,δi

)4
(V k,δ

i − EK)Uk,δ
i , (6.13)

Xk,δ
L = ∆t3

nt∑
i=1

(V k,δ
i − EL)Uk,δ

i . (6.14)

The parameters V k,δ, mk,δ, nk,δ and hk,δ solve, given Gk,δ,

C
V k,δ
i+1 − V

k,δ
i

∆t = Iext −Gk,δ
Na

(
mk,δ
i

)3 (
hk,δi

)
(V k,δ

i − ENa)

−Gk,δ
K

(
nk,δi

)4
(V k,δ

i − EK)−Gk,δ
L (V k,δ

i − EL),

Xi+1 −Xi
∆t = (1−Xi)αXi(V

k,δ
i )−XiβXi(V

k,δ
i ); X = mk,δ, nk,δ, hk,δ,

V1 = V0; m1 = m0; n1 = n0; h1 = h0.

(6.15)
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Finally, Uk,δ
i solves the following ODE

C
Uk,δ
i − U

k,δ
i−1

∆t −
(
Gk,δ
Na

(
mk,δ
i

)3(
hk,δi

)
+Gk,δ

K

(
nk,δi

)4
+Gk,δ

L

)
Uk,δ
i

−
[(

1−mk,δ
i

)
α′
mk,δi

(V k,δ
i )−

(
mk,δ
i

)
β′
mk,δi

(V k,δ
i )

]
P k,δ
i

−
[(

1− nk,δi
)
α′
nk,δi

(V k,δ
i )−

(
nk,δi

)
β′
nk,δi

(V k,δ
i )

]
Qk,δ
i

−
[(

1− hk,δi
)
α′
hk,δi

(V k,δ
i )−

(
hk,δi

)
β′hi(V

k,δ
i )

]
Rk,δ
i = V δ

i − V
k,δ
i ,

P k,δ
i − P

k,δ
i−1

∆t − [αmk,δi (V k,δ
i ) + βmk,δi

(V k,δ
i )]P k,δ

i =

−3Gk,δ
Na

(
mk,δ
i

)2 (
hk,δi

)
(V k,δ

i − ENa)Uk,δ
i ,

Qk,δ
i −Q

k,δ
i−1

∆t − [αnk,δi (V k,δ
i ) + βnk,δi

(V k,δ
i )]Qk,δ

i =

−4Gk,δ
K

(
nk,δi

)3
(V k,δ

i − EK)Uk,δ
i ,

Rk,δ
i −R

k,δ
i−1

∆t − [αhk,δi (V k,δ
i ) + βhk,δi

(V k,δ
i )]Rk,δ

i =

−Gk,δ
Na

(
mk,δ
i

)3
(V k,δ

i − ENa)Uk,δ
i ,

Uk,δ
nt = 0; P k,δ

nt = 0; Qk,δ
nt = 0; Rnt = 0.

(6.16)

Proof. See Appendix D. �

We next describe the computational scheme.

Data: V δ, δ and τ
Result: Compute an approximation for G using Iteration Scheme (6.11)
Choose G1,δ as an initial approximation for G;
Compute V 1,δ from (6.15), replacing Gk,δ by G1,δ;
k=1;
while τδ ≤ ‖V δ − V k,δ‖Rnt do

Compute Uk,δ
i from (6.16);

Compute Gk+1,δ using (6.11);
Compute V k+1,δ from (6.15), replacing Gk,δ by Gk+1,δ;
k ← k + 1;

end
Algorithm 8: Landweber iteration in the discrete Hodgkin-Huxley model

6.3 Numerical simulations
To compare the results obtained, first we calculate V from (6.1), given G =

(G1, G2, · · · , Gnt), or from (6.8), given G = (GNa, GK , GL). We obtain V δ, given δ, from
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the following equation
V δ = V + randεV , (6.17)

where randε ∈ HV (HV = Rnt×2 for G = (G1, G2, · · · , Gnt) or HV = Rnt for G =
(G1, G2, G3)) is a uniformly distributed random variable in the interval [−ε, ε], and ε =
δ/‖V ‖HV

. The matrix randδ ∈ S generates uniformly distributed numbers in the interval
[−δ, δ]. The relative error of x is defined as

Errork = ‖x− x
k,δ‖Hx

‖x‖Hx
× 100%, k = 1, 2, · · · , k∗, (6.18)

where Hx = Rnx or Hx = R3.

We present two numerical tests. In the first example, we determine conductances
in cable equation. In the second example, we also estimate conductances, but in Hodgkin-
Huxley model.

Example 6.1. This example is a particular case from (6.1), with values: ∆t = 5.0025×
10−4 [ms], ∆x = 0.0339 [cm], RI + RE = 1 [Ω], CM = 5 [F/cm2], E = 10 [mV ].
The boundary conditions are pn = exp((n − 1)∆t) [mV/cm] and qn = 0 [mV/cm] for
n = 1, 2, · · · , 2000, and the initial condition is rj = 0 [mV ] for j = 1, 2, · · · 60. Given V δ,
G1,δ = (0, 0, · · · , 0) and τ = 2.01, the goal of this example is to estimate

Gj = 1 j ∈ {1, 2, · · · , 10} ∪ {21, 22, · · · , 40} ∪ {51, 22, · · · , 60},

Gj = 2 j ∈ {11, 12, · · · , 20} ∪ {41, 22, · · · , 60}.

Table 7 presents the results for various levels of noise. In figure 23, we plot results
for ε = 0.001% of noise.

ε k∗ Errork∗ Time (s)
100% 1 100 % 0.03
10% 3 73 % 0.08
1% 23 33 % 0.6
0.1% 78 21 % 2
0.01% 1057 16 % 28
0.001% 11799 14 % 312

Table 7 – Numerical results for Example 6.1 for various values of ε, as in (4.20). The
second column contains the number of iterations according to (2.5). The third
column is the relative error of G according to (6.18). The last column is the
running time of the algorithm, in seconds.

Example 6.2. The parameters for the discrete H-H model (6.8) are: C = 1 [µF/cm2],
Iext = 10 [µA/cm2], ENa = 50 [mV ], EK = −77 [mV ], EL = −54 [mV ], V0 = −15 [mV ],
m0 = 0.6, n0 = 0.4, h0 = 0.4, ∆t = 0.01 and nt = 500. The goal of this section is to find
approximate values for GNa = 90 mS/cm2, GK = 25 mS/cm2 and GL = 0.5 mS/cm3.
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Figure 23 – Example 6.1. The plot on the left represents the exact solution (red line), the
approximated solution (green line), and the initial guess (blue line). The plot
to the right displays the relative error between G and Gk,δ as a function of
the iteration k.

To estimate G we use (6.11), given V δ, G1,δ = (0, 0, 0) and τ = 2.01. In Table 8
we present the results for various levels of noise. In figure 24, we plot results for ε = 0.1%
of noise.

ε k∗ Gk∗,δ
Na Gk∗,δ

K Gk∗,δ
L Errork∗ Time (s)

100% 1 0 0 0 100 % 1.2× 60−1

10% 172 0.02 0.01 1.11 99.98 % 0.6× 600

1% 1163726 81.09 21.20 0.56 10.37 % 1.1× 602

0.1% 1985621 89.14 24.63 0.51 1.01 % 1.9× 602

0.01% 2764712 89.91 24.96 0.50 0.10 % 2.6× 602

Table 8 – Numerical results for Example 6.2 for various values of ε, as in (4.20). The second
column contains the number of iterations according to (1.10). The third, fourth
and fifth columns are the approximations for GNa, GK and GL respectively. The
sixth column is the relative error of G = (GNa, GK, GL) according to (4.21). The
last column is the running time of the algorithm, in seconds.
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Figure 24 – Estimation of the conductances GNa (Subplot-A), GK (Subplot-B) and GL

(Subplot-C), for Example 6.2 with ε = 0.1% .
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Na, G

k,δ
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L )
as a function of the iteration k according to (6.18), for Example 6.2 with
ε = 0.1%.
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6.4 Detailed proofs of Theorems 6.1.1 and 6.2.1

6.4.1 Proof of Theorem 6.1.1

Proof. Consider the operator F defined in (6.2). Evaluating Gk,δ in the operator F , we
have F (Gk,δ) = V k,δ, where

(
V n
j

)k,δ
= Vnj solves Equation (6.6).

Let the vector θ = (θ1, θ1, · · · , θnx) ∈ Rnx and λ ∈ R, then evaluating Gk,δ + λθ in
the operator F , we have F (Gk,δ + λθ) = V k,δ + λW k,δ, where

(
V n
j

)k,δ
+ λ

(
W n
j

)k,δ
= Vλnj

solves 

Vλn+1
j = aVλnj−1 + bVλnj + aVλnj+1 −

(
cGk,δ

j + λθj
) (
Vλnj − E

)
,

Vλ1
j = rj; j = 1, 2, · · · , nx,

Vλn0 = Vλn1 −∆x pn; n = 1, 2, · · · , nt.

Vλnnx+1 = ∆xqn + Vλnnx; n = 1, 2, · · · , nt.

(6.19)

The directional derivative of F at Gk,δ in the direction θ is given by

W k,δ = F ′(Gk,δ).(θ) = lim
λ→0

F (Gk,δ + λθ)− F (Gk,δ)
λ

. (6.20)

Considering the difference between (6.6) and (6.19), dividing by λ and taking limit
λ→ 0, we have the equation (6.21), where

(
W n
j

)k,δ
=Wn

j .

Wn+1
j = aWn

j−1 + bWn
j + aWn

j+1 − cG
k,δ
j Wj

n − θj
(
Vnj − E

)
,

W1
j = 0,

W1
n =Wn

0 ; Wn
nx+1 =Wn

nx.

(6.21)

Note that the variable θj, from (6.21), represents any point in R.

By definition of adjoint operator, we have〈
F ′(Gk,δ)∗.

(
V δ − F (Gk,δ)

)
,θ
〉
Rnx

=
〈
V δ − F (Gk,δ) , F ′(Gk,δ). (θ)

〉
Rnt×2

.

From the previous equation and from (6.20), we obtain〈
F ′(Gk,δ)∗.

(
V δ − F (Gk,δ)

)
,θ
〉
Rnx

=
〈
V δ − V k,δ ,W k,δ

〉
Rnt×2

.

From the previous equation and by definition of inner product, we have

〈
F ′(Gk,δ)∗.

(
V δ − F (Gk,δ)

)
,θ
〉
Rnx

=
nt∑
n=1

(
V n

1
δ − V n

1
k,δ
)
Wn

1

+
nt∑
n=1

(
V n
nx
δ − V n

nx
k,δ
)
Wn

nx. (6.22)
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We denote
(
Un
j

)k,δ
= Unj for differential equation (6.7). Multiplying the first

equation from (6.7) by Wn+1
j , and summing at points n = 0, 1, · · · , nt − 1 and j =

1, 2, · · · , nx we gather

nt−1∑
n=0

nx∑
j=1
UnjWn+1

j =
nt−1∑
n=0

nx∑
j=1

(
aUn+1

j−1 + aUn+1
j+1

)
Wn+1

j

nt−1∑
n=0

nx∑
j=1

(
bUn+1

j − cGk,δ
j Un+1

j

)
Wn+1

j . (6.23)

From equation (6.7), Untj = 0, and from equation (6.21), W1
j = 0, then we gather

nt−1∑
n=0

nx∑
j=1
UnjWn+1

j =
nt∑
n=1

nx∑
j=1
UnjWn+1

j . (6.24)

Substituting equation (6.24) into (6.23), we have

nt−1∑
n=0

nx∑
j=1
UnjWn+1

j =
nt−1∑
n=0

nx∑
j=1

(
aUn+1

j−1 + aUn+1
j+1

)
Wn+1

j

nt−1∑
n=0

nx∑
j=1

(
bUn+1

j − cGk,δ
j Un+1

j

)
Wn+1

j . (6.25)

From the second double summation from equation (6.25), leads to

nx∑
j=1

(
aUn+1

j−1 + aUn+1
j+1

)
Wn+1

j = aUn+1
0 Wn+1

1 + aUn+1
1 Wn+1

2

+
nx−1∑
j=2

(
aWn+1

j−1 + aWn+1
j+1

)
Un+1
j aUn+1

nx Wn+1
nx−1 + aUn+1

nx+1Wn+1
nx . (6.26)

From equation (6.7)

Un+1
0 = Un+1

1 + ∆x
(
V n+1

1
δ − Vn+1

nx

)
and Un+1

nx+1 = Un+1
nx + ∆x

(
V n+1
nx

δ − Vn+1
nx

)
. (6.27)

From equation (6.21)

Wn+1
1 =Wn+1

0 and Wn+1
nx+1 =Wn+1

nx . (6.28)

Replacing equations (6.27) and (6.28) in equation (6.26), we obtain

nx∑
j=1

(
aUn+1

j−1 + aUn+1
j+1

)
Wn+1

j =
nx∑
j=1

(
aWn+1

j−1 + aWn+1
j+1

)
Un+1
j +

a∆x
(
V n+1

1
δ − V n+1

1
k,δ
)
Wn+1

1 + a∆x
(
V n+1
nx

δ − V n+1
nx

k,δ
)
Wn+1

nx .
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Summing the previous equation at point n = 1, 2, · · · , nt− 1, it follows that
nt−1∑
n=0

nx∑
j=1

(
aUn+1

j−1 + aUn+1
j+1

)
Wn+1

j =
nt−1∑
n=0

nx∑
j=1

(
aWn+1

j−1 + aWn+1
j+1

)
Un+1
j +

a∆x
nt−1∑
n=0

(
V n+1

1
δ − V n+1

1
k,δ
)
Wn+1

1 + a∆x
nt−1∑
n=0

(
V n+1
nx

δ − V n+1
nx

k,δ
)
Wn+1

nx . (6.29)

We consider
nt−1∑
n=0

αn+1 =
nt∑
n=1

αn,

and from equation (6.29), we obtain
nt−1∑
n=0

nx∑
j=1

(
aUn+1

j−1 + aUn+1
j+1

)
Wn+1

j =
nt∑
n=1

nx∑
j=1

(
aWn

j−1 + aWn
j+1

)
Unj +

a∆x
nt∑
n=1

(
V n

1
δ − aV n

1
k,δ
)
Wn

1 + a∆x
nt∑
n=1

(
V n
nx
δ − aV n

nx
k,δ
)
Wn

nx. (6.30)

From the third double summation from equation (6.25), leads to
nt−1∑
n=0

nx∑
j=1

(
bUn+1

j − cGk,δ
j Un+1

j

)
W n+1
j =

nt∑
n=1

nx∑
j=1

(
bWn

j − cG
k,δ
j Wn

j

)
Unj . (6.31)

Replacing (6.30) and (6.31) into (6.25), we have
nt∑
n=1

nx∑
j=1
UnjWn+1

j =
nt∑
n=1

nx∑
j=1

(
aWn

j−1 + aWn
j+1

)
Unj +

a∆x
nt∑
n=1

(
V n

1
δ − aV n

1
k,δ
)
Wn

1 + a∆x
nt∑
n=1

(
V n
nx
δ − V n

nx
k,δ
)
Wn

nx+

nt∑
n=1

nx∑
j=1

(
bWn

j − cG
k,δ
j Wn

j

)
Unj . (6.32)

Multiplying the first equation from (6.21) by Unj , and summing at points n =
1, 2, · · · , nt and j = 1, 2, · · · , nx, we gather

nt∑
n=1

nx∑
j=1
UnjWn+1

j =
nt∑
n=1

nx∑
j=1

(
aWn

j−1 + aWn
j+1

)
Unj +

nt∑
n=1

nx∑
j=1

(
bWn

j − cG
k,δ
j Wn

j

)
Unj +−

nt∑
n=1

nx∑
j=1

θj (Vjn − E)Unj . (6.33)

Replacing the equation (6.32) into (6.33), we obtain

nt∑
n=1

(
V n

1
δ − V n

1
k,δ
)
Wn

1 +
nt∑
n=1

(
V n
nx
δ − V n

nx
k,δ
)
Wn

nx =

− 1
a∆x

nx∑
j=1

nt∑
n=1

θj(Vnj − E)Unj . (6.34)
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From equations (6.34) and (6.22), we gather

〈
F ′(Gk,δ)∗.

(
Vδ − F (Gk,δ)

)
,θ
〉
Rnx

= − 1
a∆x

nx∑
j=1

nt∑
n=1

θj(Vnj − E)Unj .

From the previous equation

〈
F ′(Gk,δ)∗.

(
Vδ − F (Gk,δ)

)
,θ
〉
Rnx

=

− 1
a∆x

〈
nt∑
n=1

((Vn1 − E)Un1 , · · · , (Vnnx − E)Unnx) ,θ
〉

Rnx
.

Since θ ∈ Rnx is arbitrary, we gather that the following equation holds:

F ′(Gk,δ)∗.
(
Vδ − F (Gk,δ)

)
= − 1

a∆x

nt∑
n=1

((Vn1 − E)Un1 , · · · , (Vnnx − E)Unnx) .

�

6.4.2 Proof of Theorem 6.2.1

Proof. Evaluating G in the operator F and from (1.2) we have V , m, n and h.

Let the vector θ = (θNa, θK , θL) ∈ R3 and λ ∈ R, then evaluating G+ λθ in the
operator F , we have F (G+ λθ) = V λ, where V λ, mλ, nλ and hλ solve

C
V λ
i+1 − V λ

i

∆t = Iext − (GNa + λθNa)
(
mλ
i

)3(
hλi
) (
V λ
i − ENa

)
− (GK + λθK)

(
nλi
)4 (

V λ
i − EK

)
− (GL + λθL)

(
V λ
i − EL

)
,

Xi+1 −Xi
∆t = (1−Xi)αXi(Vi)−XiβXi(Vi); X = mλ, nλ, hλ,

V λ
1 (0) = V0; mλ

1(0) = m0; nλ1(0) = n0; nλ1(0) = n0.

(6.35)

We denote W = (W1, · · · ,Wnt), M = (M1, · · · ,Mnt), N = (N1, · · · , Nnt) and
H = (H1, · · · , Hnt). The directional derivative of F at G in the direction θ is given by

W = F ′(G).(θ) = lim
λ→0

F (G+ λθ)− F (G)
λ

= 〈∇F,θ〉 . (6.36)

Also, we denote the following limits

M = lim
λ→0

mλ −m
λ

, N = lim
λ→0

nλ − n
λ

, H = lim
λ→0

hλ − h
λ

, (6.37)

where M , N and H are the directional derivatives of m, n and h, respectively.
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Considering the difference between (1.2) and (6.35), dividing by λ and taking the
limit λ→ 0, we have the following equation

C
Wi+1 −Wi

∆t +
(
GNam

3
ihi +GKn

4
i +GL

)
Wi = −3GNam

2
iMihi(Vi − ENa)

−GNam
3
iHi(Vi − ENa)− 4GKn

3
iNi(Vi − EK)

−θNam3
ihi(Vi − ENa)− θKn4

i (Vi − EK)− θL(Vi − EL),

Yi+1 − Yi
∆t + [αXi(Vi) + βXi(Vi)]Yi = [(1−Xi)α′Xi(Vi)−Xiβ

′
Xi(Vi)]Wi;

(X ,Y) = (m,M), (n,N), (h,H),

W1 = 0; M1 = 0; ; N1 = 0; H1 = 0.

(6.38)

This last equation is another system of coupled nonlinear differential equations,
depending on the parameter θ = (θNa, θK , θL). Note that the variable θ represents any
point in space R3.

We define the following system of equations

C
Ui − Ui−1

∆t −
(
GNam

3
ihi +GKn

4
i +GL

)
Ui

−[(1−mi)α′mi(Vi)−miβ
′
mi

(Vi)]Pi

−[(1− ni)α′ni(Vi)− niβ
′
ni

(Vi)]Qi

−[(1− hi)α′hi(Vi)− hiβ
′
hi

(Vi)]Ri = V δ
i − Vi

Pi − Pi−1

∆t − [αmi(Vi) + βmi(Vi)]Pi = −3GNam
2
ihi(Vi − ENa)Ui

Qi −Qi−1

∆t − [αni(Vi) + βni(Vi)]Qi = −4GKn
3
i (Vi − EK)Ui

Ri −Ri−1

∆t − [αhi(Vi) + βhi(Vi)]Ri = −GNam
3
i (Vi − ENa)Ui

Unt = 0; Pnt = 0; Qnt = 0; Rnt = 0.

(6.39)

We denote U = (U1, · · · , Unt), P = (P1, · · · , Pnt), Q = (Q1, · · · , Qnt) and R =
(R1, · · · , Rnt).

By the definition of adjoint operator, we have〈
F ′(G)∗

(
V δ − F (G)

)
,θ
〉
R3

=
〈
V δ − F (G) , F ′(G). (θ)

〉
Rnt

.

Combining the previous equation and (6.36) gives〈
F ′(G)∗

(
V δ − F (G)

)
,θ
〉
R3

=
〈
V δ − F (G) , W

〉
Rnt

.



Chapter 6. Discrete inverse problems 86

By the definition of inner product (??), we have
〈
F ′(G)∗

(
V δ − F (G)

)
,θ
〉
R3

= ∆t3
nt∑
i=1

(
V δ
i − Vi

)
Wi.

We denote the last equality by Φ, then

Φ = 1
∆t3

〈
F ′(G)∗

(
V δ − F (G)

)
,θ
〉
R3

=
nt∑
i=1

(
V δ
i − Vi

)
Wi. (6.40)

From the previous equation and the first equality from (6.39), we obtain the
following expression

Φ =
nt∑
i=1

C
Ui − Ui−1

∆t Wi −
nt∑
i

(
GNam

3
ihi +GKn

4
i +GL

)
UiWi

−
nt∑
i=1

[(1−mi)α′mi(Vi)−miβmi(Vi)]Pi −
nt∑
i=1

[(1− ni)α′ni(Vi)− niβ
′
ni

(Vi)]Qi

−
nt∑
i=1

[(1− h)α′hi(Vi)− hβ
′
hi

(Vi)]Ri. (6.41)

From equations (6.38) and (6.39), the vector (W1, Unt) is equal to (0, 0). Then, we
obtain

nt∑
i=1

C
Ui − Ui−1

∆t Wi = −
nt∑
i=1

C
Wi+1 −Wi

∆t Ui. (6.42)

Substituting (6.42) into (6.41), we have the following equality

Φ = −
nt∑
i=1

(
C
Wi+1 −Wi

∆t +
(
GNam

3
ihi +GKn

4
i +GL

)
Wi

)
Ui

−
nt∑
i=1

[(1−mi)α′mi(Vi)−miβmi(Vi)]PiWi −
nt∑
i=1

[(1− ni)α′ni(Vi)− niβ
′
ni

(Vi)]QiWi

−
nt∑
i=1

[(1− h)α′hi(Vi)− hβ
′
hi

(Vi)]RiWi.

Replacing the first equality from (6.38) in the previous equation, leads to

Φ =
nt∑
i=1

3GNam
2
iMihi(Vi − ENa)Ui +

nt∑
i=1

GNam
3
iHi(Vi − ENa)Ui

+
nt∑
i=1

4GKn
3
iNi(Vi − EK)Ui +

nt∑
i=1

θNam
3
ihi(Vi − ENa)Ui

+
nt∑
i=1

θKn
4
i (Vi − EK)Ui +

nt∑
i=1

θL(Vi − EL)Ui

−
nt∑
i=1

[(1−mi)α′mi(Vi)−miβmi(Vi)]PiWi −
nt∑
i=1

[(1− ni)α′ni(Vi)− niβ
′
ni

(Vi)]QiWi

−
nt∑
i=1

[(1− h)α′hi(Vi)− hβ
′
hi

(Vi)]RiWi. (6.43)
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Let (Xi,Yi,Zi) ∈ {(mi,Mi, Pi), (ni, Ni, Qi), (hi, Hi, Ri)}. Then, multiplying the
second equation from (6.38) by Zi,

nt∑
i=1

(Yi+1 − Yi
∆t + [αXi(Vi) + βXi(Vi)]Yi

)
Zi

=
nt∑
i=1

[(1−Xi)α′Xi(Vi)−Xiβ
′
Xi(Vi)]WiZi. (6.44)

From equations (6.38) and (6.39), the vector (Y1,Znt) ∈ {(M1, Pnt), (N1, Qnt), (H1, Rnt)}
equals (0, 0). Then, we have

nt∑
i=1

Yi+1 − Yi
∆t Zi = −

nt∑
i=1

Zi −Zi−1

∆t Yi. (6.45)

Replacing equation (6.45) in (6.44), we obtain

−
nt∑
i=1

(Zi −Zi−1

∆t − [αXi(Vi) + βXi(Vi)]Zi
)
Xi =

nt∑
i=1

[(1−Xi)α′Xi(Vi)−Xiβ
′
Xi(Vi)]WiZi. (6.46)

For (Xi,Yi,Zi) = (mi,Mi, Pi) into (6.46), leads to

−
nt∑
i=1

(
Pi − Pi−1

∆t − [αmi(Vi) + βmi(Vi)]Pi
)
Mi =

nt∑
i=1

[(1−mi)α′mi(Vi)−miβ
′
mi

(Vi)]WiPi. (6.47)

Substituting the second equation from (6.39) into (6.47),

nt∑
i=1

3GNam
2
ihi(Vi − ENa)UiMi =

nt∑
i=1

[(1−mi)α′mi(Vi)−miβ
′
mi

(Vi)]WiPi. (6.48)

For (Xi,Yi,Zi) = (ni, Ni, Qi) into (6.46), we have

−
nt∑
i=1

(
Qi −Qi−1

∆t − [αni(Vi) + βni(Vi)]Qi

)
Ni =

nt∑
i=1

[(1− ni)α′ni(Vi)− niβ
′
ni

(Vi)]WiQi. (6.49)

Substituting the third equation from (6.39) into (6.49),

nt∑
i=1

4GKn
3
i (Vi − EK)UiNi =

nt∑
i=1

[(1− ni)α′ni(Vi)− niβ
′
ni

(Vi)]WiQi. (6.50)
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For (Xi,Yi,Zi) = (hi, Hi, Ri) into (6.46), we obtain

−
nt∑
i=1

(
Ri −Ri−1

∆t − [αhi(Vi) + βhi(Vi)]Ri

)
Hi =

nt∑
i=1

[(1− hi)α′hi(Vi)− hiβ
′
hi

(Vi)]WiRi. (6.51)

Substituting the fourth equation from (6.39) into (6.51),

nt∑
i=1

GNam
3
i (Vi − ENa)UiHi =

nt∑
i=1

[(1− hi)α′hi(Vi)− hiβ
′
hi

(Vi)]WiRi. (6.52)

Substituting equations (6.48), (6.50) and (6.52) in (6.43), we have

Φ =
nt∑
i=1

θNam
3
ihi(Vi − ENa)Ui +

nt∑
i=1

θKn
4
i (Vi − EK)Ui +

nt∑
i=1

θL(Vi − EL)Ui.

By the definition of inner product

Φ =
〈(

nt∑
i=1

m3
ihi(Vi − ENa)Ui,

nt∑
i=1

n4
i (Vi − EK)Ui,

nt∑
i=1

(Vi − EL)Ui
)
,θ

〉
R3

. (6.53)

From equations (6.40) and (6.53), since θ ∈ R3 is arbitrary, we obtain

F ′(G)∗
(
V δ − F (G)

)
=

∆t3
(
nt∑
i=1

m3
ihi(Vi − ENa)Ui,

nt∑
i=1

n4
i (Vi − EK)Ui,

nt∑
i=1

(Vi − EL)Ui
)
.

�
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7 Conclusions

In this thesis, we studied models based on conductances of single neurons, in
particular, the Hodgkin-Huxley, FitzHung-Nagumo, and cable models. These differential
equations depend on parameters that are difficult to estimate. Thus, our main goal was to
calculate the unknown parameters in the models previously mentioned. In this chapter,
we will review the main contributions of our thesis and a list of future works.

7.1 Thesis contributions
In Chapter 3, we estimated conductances in the passive cable equation, both in

a single branch and in a tree. To determine the unknown parameters we applied the
Landweber method. The adjoint of the Gateaux derivative of this iteration is unknown,
and in that chapter, we calculated it. The performance of the iterative method depends on
i) the amount of unknown data, ii) the difficulty of the problem, iii) the initial guess and
iv) the measurements on the data. For instance, determining two conductances is harder
than determining one, finding conductances that depend on time and space is harder than
finding conductances that depend only on space. If the initial guess is far from the solution,
the algorithm will need many iterations to get an approximation or, in the worst cases,
the algorithm may diverge. Having data at all points is better than if the data is available
at isolated points only. Also, if the noise level in the measurements increases, the method
provides reasonable approximations, but these approximations cannot be qualitatively
better than those available.

In Chapter 4, we propose the minimal error method to estimate parameters in
the Hodgkin-Huxley model. This iterative method is more efficient than the Landweber
method. Furthermore, in many numerical tests, such as examples 5.1 and 5.2, the Landweber
iteration diverges from the exact solution. Here, we also calculate the adjoint of the Gateaux
derivative.

In Chapter 5, we estimated parameters with non-uniform distribution in the
Hodgkin-Huxley model. To find approximate values for the unknown parameters we
applied the minimal error method. The analytical results for the six unknown functions,
such as calculating the adjoint of the Gateaux derivative, are satisfactory, but in the
numerical results the method was only able to estimate one unknown function. Here we
also test the Landweber iteration and note that the iterative method diverges for almost
every example. To show that the method works for simplified models, we applied the
proposed iteration in the FitzHugh-Nagumo model and obtained satisfactory analytical and
numerical results. The work presents an essential contribution because we determine the
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unknown adjoint operator. Perhaps, using another iterative method in which the adjoint
operator is defined, such as the Landweber-Kaczmarz and steepest descent methods, we
will be able to obtain more than one unknown function.

Finally, in chapter 6, we worked with two discrete inverse problems. For the first
problem, in the discrete cable equation, we estimated the conductance with nonuniform
distribution. To determine these parameters, we used the minimal error method. In the
second problem, in the Hodgkin-Huxley model, we applied the Landweber method to
determine approximate values for the maximal conductances. In this chapter, we showed
that it is possible to calculate the adjoint of the Gateaux derivative in discrete models.

7.2 Future Work
Although the iterative regularization methods proposed in this thesis provide

reasonable estimates for the unknown parameters, some improvements can still be made.

In this context, we will survey some of the provided results which can be improved
or extended further. Here are these points:

• We used the finite difference method to solve the differential equations. In this sense,
we can apply more efficient computational methods to solve these equations.

• To estimate more than one function with non-uniform distribution, in the Hodgkin-
Huxley equation, we can apply another iterative regularization method, for example,
the Landweber-Kaczmarz iteration.

• We can show the convergence conditions of the proposed iterative methods for each
inverse problem.

• We can apply other regularization methods to estimate parameters in the proposed
problems.

• We can apply the proposed iterative methods in neuron population models, for
example the Wilson-Cowan model.
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A COMPUTATIONAL APPROACH FOR THE INVERSE PROBLEM OF
NEURONAL CONDUCTANCES DETERMINATION

JEMY A. MANDUJANO VALLE, ALEXANDRE L. MADUREIRA, ANTONIO LEITÃO

Abstract. The derivation by Alan Hodgkin and Andrew Huxley of their famous neuronal

conductance model relied on experimental data gathered using the squid giant axon. It

becomes clear that determining experimentally the conductances of neurons is difficult,

in particular under the presence of spatial and temporal heterogeneities. Moreover, it is

reasonable to expect variations between species or even between different types of neurons

of the same species. Determining conductances from one type of neuron is no guarantee

that it would work for all types.

We tackle the inverse problem of determining, given voltage data, conductances with non-

uniform distribution in the simpler setting of a passive cable equation, both in a single branch

or in a tree. To do so, we consider the Landweber iteration, a computational technique used

to solve inverse problems. We provide several numerical results showing that the method is

able to provide reasonable approximations for the conductances, given enough information

on the voltages, even for noisy data.

1. Introduction.

The seminal model of Hodgkin and Huxley [22] of neuronal voltage conductance describes

how action potential occurs and propagate. It is a landmark model and presents an outstand-

ing combination of modeling based on physical arguments and experimental data, needed

to determine the behavior of ion channels. As a part of their work, they modeled the

conductances by designing several mathematical functions (the α’s and β’s) that make the

computed voltage to behave as the data. In this paper we propose a numerical procedure to

approximate the conductances of the ion channels. To obtain the unknown parameters we

use an iterative method.

Finding the conductances is crucial if one wants to emulate the neuronal voltage propaga-

tion using computational models, since the conductances are part of the data required by the

models. Mimicking the work of Hodgkin and Huxley for every single neuron and or experi-

mental condition is very demanding. Using other, simpler models might be an alternative,

but it is always necessary to find out what are the physiological parameters. What we would

Date: April 16, 2019.

1



2 MANDUJANO VALLE, LEITÃO, MADUREIRA

like to offer is a computational way to determine the conductances based on experimental

data, and we consider our method a step towards that final goal. The method can also be ex-

tended to accommodate excitatory and inhibitory synapses, and could be used, in principle,

in several nonlinear models, such as the FitzHugh-Nagumo, Morris-Lecar, Hodgkin-Huxley,

etc, with varying degrees of difficulty.

We use a simplified neuronal model, the passive cable equation [4, 19, 40], given by a

parabolic partial differential equation (PDE). We consider first the case of a single branch

of length L, represented by the interval [0, L]. The more general case of a branched tree

is described in the Section 2.1. In the cable model the membrane electrical potential V :

[0, T ]× [0, L]→ R solves

(1) CM
∂V

∂t
=

1

RI +RE

∂2V

∂x2
− Iion(t, x) for 0 < t < T, 0 < x < L,

where the potential V is in millivolt (mV ); the internal and external neuronal resistance

RI , RE are in ohm (Ω) ; CM represents membrane specific capacitance in farad per square

centimeter (F/cm2); the specific ionic current Iion is in milliampere per square centimeter

(mA/cm2). For the passive cable models, the ionic current is given by

Iion(t, x) =
∑

i∈Ion

Gi(t, x)
(
V (t, x)− Ei

)
,

where Ion is the set of ions of the model, e.g., Ion = {K,Na,Leak}. Also, the membrane

specific conductance Gi for the ion i ∈ Ion is in siemen per square centimeter (S/cm2), and it

might depend on spatial and temporal variables, as indicated in the notation. In this paper,

these functions are not known. Finally, the Nerst potential Ei for each ion i ∈ Ion is given

in millivolt (mV ).

To Eq. (1) we add boundary and initial conditions given by

(2)
∂V

∂x
(t, 0) = p(t),

∂V

∂x
(t, L) = q(t), V (0, x) = r(x), for 0 < t < T, 0 < x < L.

We assume that the constants CM , RI , RE and Ei, and the functions p, q and r are given

data.

We next rewrite Eqs. (1) and (2) in a slightly more convenient form. Consider the positive

quantities c = CM(RI +RE) and gi(t, x) = Gi(t, x)(RI +RE), and then

(3)





cVt(t, x) = Vxx(t, x)−
∑

i∈Ion
gi(t, x)[V (t, x)− Ei] for 0 < t < T, 0 < x < L,

V (0, x) = r(x) for 0 < x < L,

Vx(t, 0) = p(t), Vx(t, L) = q(t) for 0 < t < T .

Note that the new unknowns gi are unitless but still positive.
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Let Nion be the number of ions of the set Ion, and g(t, x) = (g1(t, x), . . . , gNion
(t, x)).

The inverse problem of finding the “correct” g given measurements of the voltage is highly

nontrivial, in the sense that it leads to ill-posed problems [45], and that it becomes even

harder in the presence of spatially dependent parameters . There are different approaches to

deal with the problem in hand, but certainly no panacea.

Hodgkin and Huxley [22] tackled such problem by a highly nontrivial data fitting, in a

wonderful achievement made possible only due to an ingenious combination of experiments

and biophysical insight. Wilfrid Rall and co-authors considered several related questions for

the cable equation [34, 35, 36, 37, 38, 23]. See also [41, 24, 7, 17, 16, 39, 26]. In [46] there is

an interesting attempt to introduce heterogeneity into the Hodgkin and Huxley model.

In terms of biologically inclined references, in [48] the authors consider the branched

cable equation with the chemical synapses, and convert somatic conductances into dendritic

conductances. There are several other articles [3, 28, 43, 44, 47] dealing with the issue of

determining conductances and pre-synaptic inputs with different techniques, ranging from

deterministic to statistical and stochastic. However, it is far from clear if their approach

can be mathematically justified and if it is possible at all to extend those ideas for spatially

distributed conductances.

We consider next references with a stronger mathematical flavor. Uniqueness of solutions

for finding constant parameters in the cable equation, and related methods, are considered

in [10, 13, 15], and [12] for a nonlinear model; see also [1, 33] for further considerations related

to existence and uniqueness. In [14] a related problem was tackled based on the FitzHugh–

Nagumo and Morris–Lecar models, where nonlinear functions modeling the conductances are

sought. The method is based on fixed point arguments, and despite its ingenuity, it is not

clear how to extend it to more involved models or to accommodate for spatially distributed

ions channels.

In [5, 42, 11, 1, 2], the question of determining spatially distributed conductances is in-

vestigated through different techniques and algorithms. They differ considerably from our

method, and seem harder to generalize for other situations, as, for instance, when the domain

is given by trees (with the obvious exception of [1, 2]), for time dependent conductances,

and for general nonlinear equations, our ultimate goal.

We would like to stress that although neuroscience models based on ordinary differential

equations are, and will always be, of paramount importance, it is our belief that spatially

distributed equations will grow in importance. And spatially distributed data will become

easier to gather, in particular due to techniques as voltage-sensitive dye imaging (VSDI) [8,

20].
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CASE I Γ = [0, T ]× [0, L]= {(t, x); 0 ≤ t ≤ T, 0 ≤ x ≤ L}
CASE II Γ = [0, T ]× {0, L}= {(t, x); 0 ≤ t ≤ T, x ∈ {0, L}}

Table 1. Summary of the two different cases considered in this paper. We

seek the unknowns gi assuming that Eq. (3) holds and that a perturbation of

the voltage V is known at the space-time domain Γ defined above. In case I,

the data is known at all points and at all times; in case II, the data is known

at two end-points and at all times.

Inverse problems like the present one are ill-posed, and, under certain conditions, the

Landweber method [30] provides convergent iterative scheme. The main goal of the present

paper is to develop the Nonlinear Landweber method [21, 6, 32, 9] to solve the inverse problem

of recovering the conductances in the cable equation. We also test the scheme under different

scenarios.

The Landweber method is one among several iterative regularization methods for obtaining

stable solutions for ill-posed problems. It has the advantage of each iteration being “cheap”

(it avoids inversions of Newton-like methods) at the possible price of taking more iterations

to converge. See [31] for a nice review and comparison among the methods.

We next outline the contents of the paper. In Section 2 we present the method, detailing

how it should be applied in the cases of a non-branched and branched cable, where the

geometry is given by a tree. Section 3 presents the related numerical results. In Section 4 we

draw some concluding remarks, and the Appendix provide some technical details regarding

the method and the mathematics behind it.

2. Method: The Landweber scheme applied to the conductance

determination

Here we consider an application of the Landweber method to the problem at hand. Know-

ing the voltage V at the time-space domain Γ, we want to determine g assuming that Eq. (3)

holds. We consider two different cases, depending on where the voltage is measured. In the

first case, we assume that V is known at all time-space points, i.e., Γ = [0, T ]×[0, L] (Table 1,

Case I). In the second case, we assume that the voltage is known at all end points and all

the time. Thus Γ = [0, T ]× {0, L} (Table 1, Case II).

Let

V |Γ = {V (t, x), (t, x) ∈ Γ},
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and consider the nonlinear operator

(4) F : D(F )→ R(F )

that associates for a given g ∈ D(F ) the resulting voltage, i.e., F (g) = V |Γ, where V solves

Eq. (3). The domain D(F ) and the image R(F ) = L2(Γ) (the space of square integrable

functions) are properly defined in the Appendix A. Given a smooth enough function f , we

define its L2 norm ‖ · ‖L2(Γ) such that

‖f‖2
L2(Γ) =

∫

Γ

|f(ξ)|2d ξ.

We consider the inverse problem of finding an approximation for g given the noisy data V δ|Γ,

where

(5) ‖V − V δ‖L2(Γ) ≤ δ,

for some known noise threshold δ > 0. That makes sense since, in practice, the data V |Γ are

never known exactly. In section 3 we detail the type of noise introduced.

Given an initial guess g1,δ, the Landweber approximation for g is defined by the sequence

(6) gk+1,δ = gk,δ + F ′(gk,δ)∗(V δ|Γ − F (gk,δ)),

for k = 1, 2, . . . , where F ′(·)∗ is adjoint of the Gâteux derivative. The Landweber iteration is

a gradient method, as is the steepest descent method. Although the steps of both methods

follow the same direction (the gradient), they differ on their step size [25].

As a stopping criteria we use the discrepancy principle [25] with τ > 2, i.e., we define the

stopping iteration step k∗ such that

(7) ‖V δ − F (gk∗,δ)‖L2(Γ) ≤ τδ ≤ ‖V δ − F (gk,δ)‖L2(Γ),

for all 1 ≤ k < k∗. In practice, stopping criteria are needed for all iterative methods,

otherwise the scheme might stop before it is accurate enough, or might diverge, or might

waste computing time without significantly improving the solution. For inverse problems

with noisy data this is even more crucial since running regularization iterative methods

beyond certain threshold forces the method to “fit the noise”. It is possible to show that,

under certain conditions (we assume that is the case), gk∗,δ converges to a solution of F (g) =

V as δ → 0; see [25], Theorem 2.6.
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From Eqs. (6) and (7) we obtain an approximation gk∗,δ for g. Although the adjoint

F ′(gk,δ)∗ is not known, it is possible to show that Eq. (6) is actually

(8) gk+1,δ
i (t, x) = gk,δi (t, x)− (V k,δ(t, x)− Ei)Uk(t, x) for all i ∈ Ion,

where V k,δ solves Eq. (3) replacing g by gk,δ, and Uk solves the following PDE with final

condition:

(9)





−Uk
xx(t, x)− cUk

t (t, x) +
∑

i∈Ion

gk,δi (t, x)Uk(t, x) = α1

(
V δ(t, x)− V k,δ(t, x)

)
,

Uk(T, x) = 0, 0 < x < L,

Uk
x (t, 0) = −α2

(
V δ(t, 0)− V k,δ(t, 0)

)
, 0 < t < T,

Uk
x (t, L) = α2

(
V δ(t, L)− V k,δ(t, L)

)
, 0 < t < T.

The constants α1, α2 depend on the set Γ as follows:

(10) (α1, α2) =





(1, 0) if Γ = [0, T ]× [0, L],

(0, 1) if Γ = [0, T ]× {0, L}.

In Theorem A.1 of the Appendix, we show how we obtain Eq. (8) from Eq. (6).

Remark 1. Note from Eq. (8) that gk+1,δ
i (T, x) = gk,δi (T, x) for all x ∈ [0, 1] and every

k ∈ N, since, from Eq. (9), Uk(T, x) = 0. Thus, gk,δi is never corrected at the final time T .

To recover gi at time T , one could perform the computations up to T + δt, for some given

δt > 0, and then consider only the values up to T .

The numerical scheme of our method is as follows. Check Table 1 for notation. Note from

Algorithm 1 that solutions of two PDEs are needed for each iteration.

Data: V δ|Γ, r, p, q, δ, τ

Result: Compute an approximation for g using Landweber Iteration Scheme

Choose g1,δ as an initial approximation for g;

Compute V 1,δ from Eq. (3), replacing g by g1,δ;

k=1;

while τδ ≤ ‖V δ − V k,δ‖L2(Γ) do

Compute Uk from Eq. (9);

Compute gk+1,δ using Eq. (8);

Compute V k+1,δ from Eq. (3), replacing g by gk+1,δ;

k ← k + 1;

end
Algorithm 1: Nonlinear Landweber Iteration
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ν1 = γ1 ν2

ν3 = γ2

ν4 = γ3

e1

e2

e3

•

•

••

Figure 1. Example of a tree with one bifurcation point.

Remark 2. A modification to Algorithm 1 would be to consider the Landweber-Kaczmarcz

method [25], where multiple experiments are performed sequentially or in parallel, and used

to update g.

Remark 3. Whenever g is time independent, and in this case we write g(t, x) = g(x), the

interaction is defined by

(11) gk+1,δ
i = gk,δi −

1

T

∫ T

0

(V k,δ − Ei)Uk dt for i ∈ Ion.

2.1. The Landweber Method applied to the conductance determination defined

on a tree. Following the notation of [1, 2], we let Θ = E ∪ V be a tree, where E =

{e1, e2, · · · , eN} is a set of edges, V = {ν1, ν2, · · · , νM} is a set of vertices, and the edges

are connected at the vertices νj. Let {γ1, γ2, · · · , γm} = ∂Θ ⊂ V , i.e. if the index of a

vertex, id(ν), is the number of edges incident to it, then ∂Θ = {ν ∈ V : id(ν) = 1}. Hence

V \ ∂Θ = {ν ∈ V : id(ν) > 2}. In Figure 1 we depict a simple example of a tree with one

bifurcation point.

Our cable equation model defined on a tree is given by

(12)





Vxx(t, x) = cVt(t, x) +
∑

i∈Ion
gi(t, x) [V (t, x)− Ei] , in (0, T )× E ,

V (0, x) = r(x), in x ∈ Θ,

Vx(t, γk) = fk(t), at each vertex γk ∈ ∂Θ and t ∈ [0, T ],
∑
ej∼ν

V ′j (t, ν) = 0, at each vertex ν ∈ V \ ∂Θ and t ∈ [0, T ],

where c, r, fk and g = (g1, . . . , gNion
) are the given data; cf. Eq. (3).

In the last equation of the PDE (12), V ′j (ν) denotes the derivative of V at the vertex ν

taken along the edge ej in the direction towards the vertex. Also, ej ∼ ν means edge ej is
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incident to vertex ν, and the sum is taken over all edges incident to ν. Since ∂Θ consists of

m vertices, fk can be naturally identified with a function acting from [0, T ] to Rm.

Let Ω = (0, T )×Θ and define the operator

F :
(
L2(Ω)

)Nion → L2(Ω)

such that F (g) = V (·, ·), where V solves Eq. (12). The objective of this section is to,

given V δ, obtain an approximation to g, using the method Eq. (6). To compute the adjoint

operator F
′
(·)∗, we define the following PDE:

(13)



−Uk
xx(t, x)− cUk

t (t, x) +
∑

i∈Ion
gi(t, x)Uk(t, x) = V δ(t, x)− V k,δ(t, x), in (0, T )× E ,

Uk(T, x) = 0, in x ∈ Θ,

Uk
x (t, γk) = 0, at each vertex γk ∈ ∂Θ and t ∈ [0, T ],
∑
ej∼ν

U ′j(t, ν) = 0, at each vertex ν ∈ V \ ∂Θ and t ∈ [0, T ].

We then compute gk+1,δ
i according to (8). Remarks 1–3 also hold for this problem.

3. Results: Numerical Simulation

In this section we test the method under different scenarios. Of course, the solutions are

obtained numerically, and for that we use finite difference scheme in space coupled with

backward Euler in time. To compute the integral in Eq. (11) we use the trapezoidal rule.

In what follows we assume that the numerical approximations are accurate enough. All

the experiments were performed using Matlab R©, and the codes are available at https:

//github.com/MandujanoValle/Inverse-Problem-in-the-Cable-Equation

To design our in silico experiments, we first choose g and compute V from Eq. (3), obtain-

ing then V |Γ. Of course, in practice, only the values of V δ|Γ are given by some experimental

measures, and thus subject to experimental/measurement errors. In our examples, V δ|Γ is

obtained by considering linear-multiplicative noise

(14) V δ(t, x) = V (t, x) + (aV + b)rand∆(t, x) for all (t, x) ∈ Γ,

for scalars a, b, and rand∆ is a uniformly distributed random variable taking values in the

range [−∆,∆]. The threshold δ is such that (cf. Eq. (5)) ‖(aV + b)rand∆‖L2(Γ) ≤ δ, and we

impose then

(15) ‖(aV + b)‖L2(Γ)∆ = δ.
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In our numerical examples, we use multiplicative error, i.e., a = 1 and b = 0 at Eq. (14).

Thus, δ and ∆ are related by ‖V ‖L2(Γ)∆ = δ.

Remark 4. In general it is not possible to predict how the added noise will affect the conduc-

tances since the operator F defined in Eq. (4) is not bounded, meaning that small perturbation

of the data might lead to large perturbation of the conductances. That is why inverse problems

are so hard to approximate.

Next, given the initial guess g1,δ, the data V δ|Γ, and the noise threshold δ, we approximate

g using the Algorithm 1. Unlike in “direct” PDE problems where the exact solution usually

has to be computed by numerical over-kill, here we have the exact g and we use that to

gauge the algorithm performance. We introduce for k = 1, 2, . . . ,

(16) Resk = ‖V δ − F (gk,δ)‖L2(Γ), Errork =
1

Nion

∑

i∈Ion

∫

D(g)

|gi − gk,δi |
|gi|

× 100%.

where D(g) denotes the domain where g is defined. In applications, only the residual Resk

is available, and that is all that the Algorithm 1 uses.

Remark 5. In practice, after discretizing the equations and the unknown functions, only

nodal values are known. Consider the space-time discretization tn = (n − 1)T/(N − 1) for

n = 1, 2 · · · , N and xj = (j − 1)L/(J − 1) for j = 1, 2 · · · , J . Thus, the relative error

introduced above relates to the the mean absolute percentage error

(17) Errork =
1

Nion

T

N

L

J

∑

i∈Ion

J∑

n=1

N∑

j=1

∣∣∣∣∣
gi(tn, xj)− gk,δi (tn, xj)

gi(tn, xj)

∣∣∣∣∣× 100%.

Whenever g is time independent, and in this case we write g(tn, xj) = g(xj), the mean

absolute percentage error is defined by

(18) Errork =
1

Nion

L

J

∑

i∈Ion

J∑

n=1

∣∣∣∣∣
gi(xj)− gk,δi (xj)

gi(xj)

∣∣∣∣∣× 100%.

Similar remark holds for other norms, e.g., ‖f‖L2(Γ) is to be replaced by ‖f‖l2(Γ), where

(19) ‖f‖2
l2(Γ) =

T

N

L

J

∑

(tn,xj)∈Γ

|V (tn, xj)|2.

We present four numerical tests. In the first three examples the geometry is defined by a

segment, and in the fourth example is given by a tree. The first example considers only one

ion (Ion = {K}), with g(x) = gK(x) dependent only the spatial variable, and the voltage

is known at Γ = [0, T ] × {0, L}, i.e., at all times but only at the end-points. In the second
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example, still with one ion (Ion = {K}), the conductance depends on the temporal and

spatial variables (t, x) and measured voltage is known at Γ = [0, T ] × [0, L], i.e., all the

time and at all points. In the third example, we consider two ions (Ion = {K,Na}), where

g(x) = (gK(x), gNa(x)) depends only on the spatial variable and the data is again known

at Γ = [0, T ] × [0, L], i.e., all the time for all points. Finally, in the fourth example we

consider the case where the geometry is defined by a tree, with the conductance being time

independent under the presence of one ion, and the voltage data being known at all the time

and all the points.

Example 3.1. Consider a particular instance from Eq. (3), where Nion = 1 (Ion = {K}),

c = 1 [ΩF/cm2], EK = 0 [mV ], L = 1 [cm], T = 1 [ms], gi(t, x) = gK(x) and

r(x) = 2.5× tan(x), p(t) = exp(−t), q(t) = 2 exp(−t).

In this test, we consider Γ = [0, T ] × {0, L} and N = J = 50. The goal is to find

gK(x) = sec(x) given V δ|Γ, g1,δ
K (x) = 0 and τ = 2.01.

In Table 2 we present the results for various levels of noise. Note that for smaller amount

of noise, more steps are required. That is due to the discrepancy principle (7) and the

relation (15). At each line of the table the noise is reduced by a factor of five, and that leads

to a similar reduction of the residual. The same cannot be stated about the approximation

error, exposing the instability of the problem.

In Figures 2, 3 and 4, we plot results for ∆ = 5% of noise (see Table 2, line 4). In Figure 2

we display the exact and noisy voltages on the left, and the exact and approximate solutions

and the initial guess on the right. In Figure 3 we show the error and residual functions.

Finally, Figure 4 displays the error and residual as function of the iteration number.

Example 3.2. In this example, we consider g(t, x) as depending on time and space. The

values for equation (3) are: Nion = 1 (Ion = {K}), c = 1 [ΩF/cm2], EK = 1 [mV ],

L = 1 [cm], T = 1 [ms], gi(t, x) = gK(t, x) and

r(x) = sin(x), p(t) = exp(t), q(t) = 0.

Let Γ = [0, T ]× [0, L] and N = J = 50. The goal is to find

gK(t, x) =
1

2
× exp(8x− 4)− 1

exp(8x− 4) + 1
+ t+ 1,

given V δ|Γ, g1,δ
K (t, x) = 0 and τ = 2.01.

This example is harder than the previous one since now the conductance depends on two

variables. In Table 3 we present the results for various levels of noise, and the same comments
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∆ k∗ Errork∗ Resk∗

125% 1 100 % 2× 100

25% 2 46 % 5× 10−1

5% 5 17 % 2× 10−1

1% 9 5.3% 3× 10−2

0.2% 18 4.3 % 8× 10−3

0.04% 70 2.5 % 1× 10−3

0.008% 1297 1.8 % 3× 10−4

Table 2. Numerical results for Example 3.1. The first column describes the noise level

∆, as in Eq. (14). The second column contains the number of iterations according to Eq. (7).

The third column lists the error according to Eq. (18). Finally, the fourth column presents

the residual as in Eq. (16) in the sense of Eq. (19). Note that the residual decreases roughly

as the noise. However, the error does not decrease at the same rate, a behavior that is

typical of inverse problems.
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Figure 2. Result for Example 3.1 with ∆ = 5% noise. The plot on the left shows the

exact membrane potential V |Γ and its measurement V |δΓ, where the dark blue and green

lines are the exact and noisy data at x = 0. The red and light blue curves are the exact

and noisy voltage at x = L. The plot to the right presents the exact solution (red line), the

approximated solution (green line), and the initial guess (blue line).

of Example 3.1 apply. In Figures 5, 6 and 7, we plot numerical results for ∆ = 1% (see

Table 3, line 5). Observe that the data for both V δ|Γ and g, gK depend on time and space.

Example 3.3. Consider now two different ions, Na and K, where Nion = 2 (Ion = {K,Na}),

c = 1 [ΩF/cm2], EK = 0 [mV ], ENa = 1 [mV ], L = 1 [cm], T = 1 [ms], and

r(x) = 4× cos(x), p(t) = exp(−t)/2, q(t) = 0.
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Figure 3. Result for Example 3.1. Subplot A presents the difference between gK and

its approximation, and subplot B shows the difference between V |Γ and its approximation,

for ∆ = 5% of noise.
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Figure 4. Convergence results for Example 3.1 with ∆ = 5%. The plot on the left

displays the mean absolute percentage error between g and gk,δ as a function of the iteration

k. The plot on the right displays the residual, i.e., the difference between V and V K again

as a function of k.

∆ k∗ Errork∗ Resk∗

125% 1 100 % 6× 10−1

25% 2 54 % 1× 10−1

5% 26 35 % 4× 10−2

1% 433 10% 7× 10−3

0.2% 1618 5 % 1× 10−3

0.04% 8499 2% 3× 10−4

0.008% 37274 1% 6× 10−5

Table 3. Numerical results for Example 3.2. See Table 2 for a description of the contents.
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Figure 5. For Example 3.2 with ∆ = 1%. The plot on the left shows the membrane

potential. The plot on the right presents the difference between the membrane potential V

and its perturbation V δ.
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Figure 6. Plots for Example 3.2. The Subplots A and B are the exact solution gK and

its approximation for ∆ = 1% of noise. In Subplot C presents the difference between gK and

its approximation. Finally, in D we display the difference between the membrane potential

and its approximation.
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Figure 7. Convergence results for Example 3.2 with ∆ = 1%. The Subplot A, displays

the mean absolute percentage error between g and gk,δ as a function of the iteration k. The

Subplot B, displays the residual, i.e., the difference between V and V k again as a function

of k.

∆ k∗ Errork∗ Resk∗

10% 1 349 % 3× 10−1

1% 157 28 % 3× 10−2

0.1% 1013 14 % 3× 10−3

0.01% 6720 4 % 3× 10−4

0.001% 69462 0.6 % 3× 10−5

0.0001% 275124 0.2 % 3× 10−6

Table 4. Numerical results for Example 3.3. See Table 2 for a description of the contents.

Let Γ = [0, T ]× [0, L] and N = J = 50. The goal is to approximate

gK(x) = 2× exp(8x− 4)− 1

exp(8x− 4) + 1
+ 2 and gNa(x) =

exp(6x− 3)− 1

exp(6x− 3) + 1
+ 1,

given V δ|Γ, g1,δ
K (x) = 2, g1,δ

Na(x) = 2 and τ = 2.01.

The extra difficulty in this lies on the fact that there are two conductance functions to be

discovered. In Table 4 we present the results for various levels of noise. In Figures 8, 9, 10

and 11, we plot results for ∆ = 1% of noise (see Table 3, line 3). Note that now there are

two conductances,one related to Na and the other to K.

Example 3.4. As our final example, we consider the domain defined by a tree, as discussed

in Section 2.1, in particular Eq. (12). The geometry of the tree is as depicted in Figure 1.

Let E = {e1, e2, e3} be the set of edges, V = {ν1, ν2, ν3, ν4} be the set of vertices with ∂Θ =

{γ1 = ν1, γ2 = ν3, γ3 = ν4} as the border points and with the bifurcation node ν2. The edge

e1 has vertices ν1 and ν2, the edge e2 has vertices ν2 and ν3, finally the edge e3 has vertices
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Figure 8. For Example 3.3 with ∆ = 1%. See Figure 5 for the subplots description.

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

Space [cm]

g K
, g

K1,
δ
, g

Kk *,δ

Subplot A:  Function g
K

 

 

Exact solution: g
K

Initial data: g
K

1,δ

Approximate solution: g
K

k
*
,δ

0 0.2 0.4 0.6 0.8 1
0

1

2

3

Space [cm]

g N
a, g

N
a

1,
δ
, g

N
a

k *,δ

Subplot B:  Function g
Na

 

 

Exact solution: g
Na

Initial data: g
Na

1,δ

Approximate solution: g
Na

k
*
,δ

Figure 9. Results for Example 3.3. The Subplot A is related to gK , and the Subplot B

to gNa. The red lines are the exact solutions, the blue lines are the initial guesses and the

green lines are the approximations for ∆ = 1% of noise.

ν2 and ν4. The length of the edges are: |e1| = 1, |e2| = 1 e |e3| = 2. We consider, Nion = 1

(Ion = {K}), EK = 2 [mV ], c = 2 [ΩF/cm2], T = 1 [ms], N = 300, gi(t, x) = gK(x).

The initial condition V (0, x) = r(x) = 0 at all points x ∈ Θ. The boundary conditions are:

Vx(t, γ1) = 2t, Vx(t, γ2) = cos(t) and Vx(t, γ3) = 0. The condition at the bifurcation point

x = ν2 (see the fourth equation from (12)) is

V ′1(t, ν2)− V ′2(t, ν2)− V ′3(t, ν2) = 0.
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Figure 10. Results for Example 3.3 with ∆ = 1% of noise. See Figure 3 for the subplots description.
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Figure 11. Convergence results for Example 3.3. For a description see Figure 7.

The goal of this example, given V δ(t, x) in all (t, x) ∈ (0, T )×Θ, is to estimate

g(x) =





exp
(
dist(x, ν1)

)
if x ∈ e1,

exp
(
1 + dist(x, ν2)

)
if x ∈ e2 ∪ e3,

where dist(a, b) denotes the distance between the points a and b. We consider the initial guess

g1,δ(t, x) = 0 and τ = 2.01. In this example, we discretize the edges e1, e2 and e3 using 16,

16 and 32 points (J = 64). In Table 5 we present the results for various levels of noise. In

figures 12–13, we plot numerical result for ∆ = 1%.

4. Conclusions

The inverse problem of finding conductances from voltage data for a given neuron model

is important and difficult, and in this paper we present and test a way to approximate them,

the Landweber iterative method, applied to a passive cable model. Although the scheme has

a somewhat straightforward description, it is not practical in its original formulation since
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Figure 12. Exact potentials V and their noisy versions with noise at ∆ = 1%, for

Example 3.4. The subplots A on the left show the membrane electrical potential V for the

three edges, and the subplots B display the difference between the membrane potential V

an its perturbation V δ.
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∆ k∗ Errork∗ Resk∗

125% 1 100 % 3× 100

25% 6 54 % 1× 100

5% 128 17 % 2× 10−1

1% 1291 5% 5× 10−2

0.2% 5827 2 % 1× 10−2

0.04% 22088 0.8% 2× 10−3

0.008% 99326 0.3% 4× 10−4

Table 5. Numerical results for Example 3.4. See Table 2 for a description of the contents.
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Figure 13. For Example 3.4, in all the Subplots, the red line is the exact solution, the

blue line is the initial guess, and the green line is the approximate solution for ∆ = 1% of

noise, these figures shows the conductances as functions of the spatial variable. The subplots

A, B, and C correspond to the edges e1, e2 and e3.

computing the adjoint of the Gâteux derivative seems unfeasible in general. The development

of auxiliary equations to overcome such hurdle is more art than science, and is done in a

case-by-case basis.

Certainly, the method has limitations, and is no panacea. How well the method performs

depend on the noise, on how close to the solution is the initial guess, the amount of data, and
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Figure 14. For Example 3.4 with noise at ∆ = 1%, we plot on the left (subplots A)

the differences between gK and the approximations gk∗,δK , for the various edges. On the left

(subplots B), we plot the difference between V and the resulting approximations.
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Figure 15. For Example 3.4, with noise at ∆ = 1%. For a description see Figure 7.

on how hard the problem is. There is a nontrivial interplay between all those conditions. For

instance, determining two conductances is harder than determining one, finding conductances

that depend on time and space is harder than finding conductances that depend on space only.

Also, having data at all points is better than if the data is available at isolated points only.

Our examples display some of these features. For some of them the method performs

nicely, capturing the correct conductances. If the level of noise increases, the method delivers

reasonable approximations, but these approximations cannot be qualitatively better than the

available data, specially for inverse problems. Inverse problems are unstable, and thus not

well posed, and difficult to solve in general. Even when the method does not do a good job in

capturing the correct conductance, the computed residual is small. Whenever the residual is

of the same order as the noise, there is no point in iterating further.

Under reasonable conditions, the method yields good results even in the presence of noise,

as shown here. It is also general enough to accommodate for different geometries (straight

cables and trees), and different measured data (end point, whole cable). The scheme showed

promising results, and the even harder problem of determining the conductances of “real”

(i.e., nonlinear) neurons is currently under investigation.

We believe that methods that are capable of inferring spatial properties of neurons are in

demand and will grow in importance, in particular due to new imagining techniques such as

VSDI. Regularizing methods for inverse problems are applied in several research fields and

we think that they can also contribute in Neuroscience.

Appendix A. Abstract Formulation

In practice, V |Γ is the data, and given such information and under the assumption that

Eq. (3) holds, the inverse problem under consideration is to recover or approximate the
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conductances. The lack of stability, characteristic of ill-posed problems can be tamed by

regularization methods [18, 25, 27], in particular by the Landweber method.

Consider for simplicity T > 0. Let Ω = {(t, x); 0 ≤ t ≤ T, 0 ≤ x ≤ L}, and

H(F ) =
(
L2(Ω)

)Nion =

{
f : Ω→ RNion ;

∫

Ω

|f(ξ)|2d ξ <∞
}
,

R(F ) = L2(Γ) =

{
f : Γ→ R;

∫

Γ

|f(ξ)|2d ξ <∞
}

It is well-known that H(F ) and R(F ) become Hilbert spaces under the inner products

〈f, h〉H(F ) =

∫

Ω

f(ξ)h(ξ)dξ, 〈f, h〉R(F ) =

∫

Γ

f(ξ)h(ξ)dξ,.

and the associated norms ‖f‖H(F ) = 〈f, f〉1/2H(F ), ‖f‖R(F ) = 〈f, f〉1/2R(F ). Note that the inner

product on R(F ) depends on Γ (see Table 1) as follows:

(20)

〈f, h〉R(F ) = α1

∫ L

0

∫ T

0

f(t, x)h(t, x) dt dx+ α2

∫ T

0

f(t, 0)h(t, 0)dt+ α2

∫ T

0

f(t, L)g(t, L) dt,

where α1, α2 are as in Eq. (10).

The set D(F ) = L∞(Ω) ⊂ H(F ) is the Banach space of “essentially” bounded functions

(see [29] for precise definitions). Consider the operator F : D(F ) ⊂ H(F ) → R(F ) defined

by F (g) = V |Γ. Our goal is to find an approximation for g using the Landweber iteration

defined by Eq. (6).

In the next Theorem we show how to obtain Eq. (8) from Eq. (6).

Theorem A.1. Consider the iteration in Eq. (6). Then Eq. (8) holds

Proof. Given gk,δ ∈ D(F ) and θ = (θ1, . . . , θNion
) ∈

(
L∞(Ω)

)Nion , the Gâteux derivative of

F at gk,δ in the direction θ is given by

(21) F ′(gk,δ)(θ) = lim
λ→0

F (gk,δ + λθ)− F (gk,δ)

λ
= W k|Γ,

where W k solves

(22)

W k
xx(t, x)− cW k

t (t, x)−
∑

i∈Ion

gk,δi (t, x)W k(t, x) =
∑

i∈Ion

θi(V
k,δ(t, x)− Ei) in Ω,

W k(0, x) = 0 for 0 < x < L, W k
x (t, 0) = W k

x (t, L) = 0 for 0 < t < T,

and V k,δ solves Eq. (3) with gi replaced by gk,δi . To obtain Eq. (22) from Eq. (21), it is

enough to consider the difference between problem in Eq. (3) with coefficients gk,δ + λθ and

gk,δ, divide by λ and take the limit λ→ 0.
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Let V k,δ|Γ = F (gk,δ). From the Landweber iteration in Eq. (6), we gather that

〈gk+1,δ − gk,δ,θ〉H(F ) = 〈F ′(gk,δ)∗(V δ|Γ − F (gk,δ)),θ〉H(F )

= 〈F ′(gk,δ)∗(V δ|Γ − V k,δ|Γ),θ〉H(F ).

By definition of adjoint operator,

(23) 〈gk+1,δ − gk,δ,θ〉H(F ) = 〈V δ|Γ − V k,δ|Γ, F ′(gk,δ)(θ)〉R(F ) = 〈V δ|Γ − V k,δ|Γ,W k|Γ〉R(F ),

from Eq. (21).

Although Eq. (23) yields an interesting relation, it carries an impeding dependence on θ

through W k. It is possible to avoid that by performing some “trick” manipulations.

Multiplying the first equation of (9) by −W k, and integrating in the intervals [0, T ] and

[0, L] we gather that

(24)

∫ L

0

∫ T

0

Uk
xx(t, x)W k(t, x) dt dx+

∫ L

0

∫ T

0

c Uk
t (t, x)W k(t, x) dt dx

−
∫ L

0

∫ T

0

∑

i∈ion
gk,δi (t, x) Uk(t, x)W k(t, x) dt dx =

− α1

∫ L

0

∫ T

0

(
V δ(t, x)− V k,δ(t, x)

)
W k(t, x) dt dx.

Integrating by parts twice the first term from Eq. (24) with respect to the space variable,

and using the boundary conditions for W k we have

(25)∫ L

0

∫ T

0

Uk
xx(t, x)W k(t, x) dt dx =

∫ L

0

∫ T

0

Uk(t, x)W k
xx(t, x) dt dx+

∫ T

0

Uk
x (t, x)W k(t, x)|L0 dt,

where we denote Uk
x (t, x)W k(t, x)|L0 = Uk(t, L)W k(t, L) − Uk(t, 0)W k(t, 0). Similarly, in-

tegrating by parts the second term of Eq. (24) with respect to time and using the initial

condition of W k and the final condition of Uk, we gather that

(26)

∫ L

0

∫ T

0

c Uk
t (t, x)W k(t, x) dt dx = −

∫ L

0

∫ T

0

cUk(t, x)W k
t (t, x) dt dx.

Substituting Eqs. (25) and (26) in Eq. (24), it follows that

∫ L

0

∫ T

0

(
W k
xx(t, x)− cW k

t (t, x)−
∑

i∈ion
gk,δi (t, x)W k(t, x)

)
Uk(t, x) dtdx =

− α1

∫ L

0

∫ T

0

(
V δ(t, x)− V k,δ(t, x)

)
W k(t, x) dt dx−

∫ T

0

Uk
x (t, x)W k(t, x)|L0 dt.
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Substituting the first equation of (22) in the previous equation, we obtain

∫ L

0

∫ T

0

∑

i∈ion
θi(V

k,δ(t, x)− Ei)Uk(t, x) dt dx

= −α1

∫ L

0

∫ T

0

(
V δ(t, x)− V k,δ(t, x)

)
W k(t, x) dtdx−

∫ T

0

Uk
x (t, x)W k(t, x)|L0 dt.

From the boundary conditions of Eq. (9), the following expression holds:

∫ L

0

∫ T

0

∑

i∈ion
θi(V

k,δ(t, x)− Ei)Uk(t, x) dtdx

= −α1

∫ L

0

∫ T

0

(
V δ(t, x)− V k,δ(t, x)

)
W k(t, x) dtdx

− α2

∫ T

0

(
V δ(t, 0)− V k,δ(t, 0)

)
W k(t, 0)− α2

∫ T

0

(
V δ(t, L)− V k,δ(t, L)

)
W k(t, L) dt.

From the previous equation and the definition of the inner product in Eq. (20), we have

(27)

∫ L

0

∫ T

0

∑

i∈ion
θi(V

k,δ(t, x)− Ei)Uk(t, x) dtdx = −〈V δ|Γ − V k,δ|Γ,W k|Γ〉R(F ).

From Eqs. (23) and (27) we have

∫ L

0

∫ T

0

∑

i∈Ion

θi

(
gk+1,δ
i (t, x)− gk,δi (t, x)

)
dtdx

= −
∫ L

0

∫ T

0

∑

i∈Ion

θi(V
k,δ(t, x)− Ei)Uk(t, x) dtdx.

Since θ ∈
(
L∞(Ω)

)Nion is arbitrary and L∞(Ω) is dense in L2(Ω), we gather that the following

iteration holds:

gk+1,δ
i (t, x) = gk,δi (t, x)− (V k,δ(t, x)− Ei)Uk(t, x) for all i ∈ Ion.

�
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[4] Bell, J. Introduction to theoretical neurobiology. volume 1: Linear cable theory and dendritic structure.

volume 2: Nonlinear and stochastic theories (henry c. tuckwell). SIAM Review 32, 1 (1990), 158–160.

[5] Bell, J., and Craciun, G. A distributed parameter identification problem in neuronal cable theory

models. Mathematical biosciences 194, 1 (2005), 1–19.

[6] Binder, A., Hanke, M., and Scherzer, O. On the landweber iteration for nonlinear ill-posed

problems. Journal of Inverse and Ill-posed Problems 4, 5 (1996), 381–390.

[7] Brown, T. H., Fricke, R. A., and Perkel, D. H. Passive electrical constants in three classes of

hippocampal neurons. Journal of Neurophysiology 46, 4 (1981), 812–827.

[8] Casale, A. E., Foust, A. J., Bal, T., and McCormick, D. A. Cortical interneuron subtypes vary

in their axonal action potential properties. Journal of Neuroscience 35, 47 (2015), 15555–15567.
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PARAMETER IDENTIFICATION PROBLEM IN THE
HODGKIN-HUXLEY MODEL

JEMY A. MANDUJANO VALLE, ALEXANDRE L. MADUREIRA

Abstract. The Hodgkin-Huxley (H-H) model is a nonlinear system of four equations that

describes how action potentials in neurons are initiated and propagated. This model rep-

resents a significant advance in the understanding of nerve cells. However, some of the

parameters are obtained through a tedious combination of experiments and data tuning.

In this paper, we propose the use of an iterative method (Minimal error iteration) to esti-

mate some of the parameters in the H-H model, given the membrane potential. We provide

numerical results showing that the approach can capture the correct parameters using the

measured voltage as data, even in the presence of noise.

1. Introduction.

In 1952 Hodgkin and Huxley [15] used voltage-clamp technique to extract the parameters

of the ionic channel model of the squid giant axon. In the space-clamped version of the H-H

model, the membrane electrical potential V : [0, T ]→ R solves

(1) CM V̇ (t) = Iext + Iion(t) in (0, T ],

where CM is the specific membrane capacitance, V is the membrane potential, V̇ = dV/dt is

the rate of voltage change (dots denote time derivatives), Iext is the specific external current

applied on the membrane. The specific ionic current Iion(t) is the sum of three currents

(Iion(t) = INa(t) + IK(t) + IL(t)), potassium, sodium and leak currents, satisfying:

INa(t) = GNa m
a(V, t) hb(V, t) (V (t)− ENa);(2)

IK(t) = GK n
c(V, t) (V (t)− EK);(3)

IL(t) = GL (V (t)− EL).(4)

The constants GNa, GK and GL are the maximal specific conductance for Na+, K+ and

leakage channels, and ENa, EK, EL are the Nernst equilibrium potentials. The functions m

and h are the activation and inactivation variables for Na+, and n is the activation function

for K+. These functions are unitless gating variables that take values between 0 and 1. Also,

Date: October 18, 2018.

The second author acknowledges the financial support of the Brazilian funding agency CNPq.
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the exponents a, b and c are positive numbers. The units of the other parameters are in

Table 1.

Parameters Units Units name

CM µF/cm2 microfarad per square centimeter

V mV millivolt

V̇ V/s volts per second

Iext, Iion µA/cm2 microampere per square centimeter

GNa, GK, GL mS/cm2 millisiemens per square centimeter

ENa, EK, EL mV millivolt

t ms milliseconds

Table 1. Units of the parameters; see [15], Table 3.

The experiments performed by Hodgkin and Huxley [15] suggest that m, h and n are

functions that depend on time and the membrane potential. The exponent c models the

number of gating particles on the channel. In the case of active Na currents, experiments

suggest that two types of independent gating particles are involved, a activation gates m,

and b inactivation gates h [12]. In addition, m n and h satisfy the differential equations:

(5) Ẋ (V, t) = αX (V )(1−X (V, t))− βX (V )X (V, t) where X = m,n, h.

The functions αX and βX depend on the membrane potential and are given by

(6)

αm(V ) =
(25− V )/10

exp((25− V )/10)− 1
, βm(V ) = 4 exp(−V/18),

αn(V ) =
(10− V )/100

exp((10− V )/10)− 1
, βn(V ) = 0.125 exp(−V/80),

αh(V ) = 0.07 exp(−V/20), βh(V ) =
1

exp((30− V )/10) + 1
.

To equation (1) we add the initial conditions

(7) V (0) = V0, m(0) = m0, n(0) = n0, h(0) = h0.

Thus, (1-7) yield the following system of ordinary differential equation (ODE):Lima, Sbado

18 de mayo del 2019 Edificio Empresarial Narciso Calle Narciso de la Colina 421, Miraflores,

Sala 403 Esquina Colina con Paseo de la Repblica (Cda. 53). Estacin Ricardo Palma del
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Metropolitano.

(8)





CM V̇ = Iext −GNam
ahb(V − ENa)−GKn

c(V − EK)−GL(V − EL) for t ∈ (0, T ]

Ẋ = (1−X )αX (V )−XβX (V ) where X = m,n, h and t ∈ (0, T ]

V (0) = V0, m(0) = m0, n(0) = n0, h(0) = h0,

and CM , Iext, ENa, EK, EL, m0, n0 and h0 are known.

Given all the parameters, it is possible to find a (theoretical or numerical) solution for (8).

That is the direct problem. In inverse problems, one is given the voltage V and has to compute

one or more parameters. In this work, we consider two different inverse problems. The first

one is to obtain the maximum conductances GNa, GK and GL given the measurement of the

membrane potential. For the second problem, the goal is to obtain the exponents a, b and

c, again given the measurement of the membrane potential.

Using experimental data from the squid neuron, Hodgkin and Huxley obtained the pa-

rameters a = 3, b = 4 and c = 1. Note, however, that other neurons may produce different

parameters.

Besides the Hodgkin and Huxley model, there are simplified models such as the cable

equation, FitzHugh-Nagumo, and Morris-Lecar models. Wilfrid Rall [21, 22] developed the

use of cable theory in computational neuroscience, as well as passive and active compartmen-

tal modeling of the neuron. In a previous paper [26], the authors determine conductances

with nonuniform distribution in the equation of the cable with and without branches, using

the minimal error iterative method. See also [24, 3, 1, 2], for identification of parameters

in the cable equation, and [11, 10, 19, 8, 18, 25] for investigations on inverse problems in

FitzHugh-Nagumo and Morris-Lecar models. In [20, 23, 27] the authors obtained approxi-

mately time-dependent but voltage-independent conductances, given the membrane poten-

tial, in a system of three ordinary differential equations (passive membrane equation). For

the Hodgkin and Huxley model, the parameters of ionic channels are estimated in [5, 6] using

evolutionary algorithms.

Inverse problems are said to be ill-posed. A problem is ill-posed in the sense of Hadamard [13]

if any of the following conditions are not satisfied: there is a solution; the solution is unique;

the solution has a continuous dependence on the input data (stability). Here we admit the

existence of a single solution to the problem. However, stability is not guaranteed. Stability

is necessary if we want to ensure that small variations in the data lead to small changes in the

solution. Problems of instability can be controlled by regularization methods, in particular

the minimal error iterative scheme [4, 7, 14, 17].
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We now describe the contents of the present paper briefly. Section 2 presents our inverse

problems for the H-H model along with some theoretical results, and in Section 3 we show

numerical results to describe the effectiveness of our strategy. Finally, we include in the

Appendices some more technical arguments.

2. Inverse Problem in the H-H model

In what follows, we describe an abstract formulation of the minimal error method or

minimal error iteration [16].

Consider (8) and let x = (GNa, GK, GL) ∈ R3 or x = (a, b, c) ∈ R3. Consider also the set

of function L2[0, T ], and the nonlinear operator

(9) F : R3 → L2[0, T ],

defined by F (x) = V , where V solves (8). In practical terms, the data V are obtained by

measurements. Therefore, we denote the measurements by V δ, of the which we assume to

know the noise level δ, satisfying

(10) ‖V − V δ‖2L2[0,T ] =

∫ T

0

|V (t)− V δ(t)|2 dt ≤ δ.

To obtain an approximation of x, given V δ, we used the minimal error iteration

(11) xk+1,δ = xk,δ + wk,δF ′(xk,δ)∗(V δ − F (xk,δ)),

where F ′(xk,δ) is the Gateaux-derivative of F computed at xk,δ, and F ′(xk,δ)∗ is its adjoint.

We also define

wk,δ =
‖V δ − F (xk,δ)‖2L2[0,T ]

‖F ′(xk,δ)∗(V δ − F (xk,δ))‖2R3

.

The iteration (11) begins with a guess x1,δ and stops at the minimum k∗ = k(δ, V δ), such

that, for a given τ > 2 (see [16], equation (2.14) ),

(12) ‖V δ − F (xk∗,δ)‖L2[0,T ] ≤ τδ.

It is possible to show that, under certain conditions (we assume that is the case), xk∗,δ

converges to a solution of F (x) = V as δ → 0; see [16] Theorem 3.22.
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2.1. Inverse Problem to obtain conductances in the H-H model. The present goal

is to estimate the maximum conductances GNa, GK and GL while assuming that (8) holds.

We assume that the exponents are a = 3, b = 1, and c = 4.

We denote our unknown parameters such as x = G = (GNa, GK, GL), then from iteration

(11) we have

(13) Gk+1,δ = Gk,δ + wk,δF ′(Gk,δ)∗(V δ − F (Gk,δ)).

Given an initial approximation G1,δ and V δ, we obtain a regularizing approximation Gk∗,δ

for G, from minimal error iteration (13). We denote Gk,δ = (Gk,δ
Na, G

k,δ
K , Gk,δ

L ).

In the next theorem, we compute the adjoint of the Gateaux derivative F ′(Gk,δ)∗ to

optimize from (13).

Theorem 2.1. It follows from (13) that

(14)
(
Gk+1,δ

Na , Gk+1,δ
K , Gk+1,δ

L

)
=
(
Gk,δ

Na, G
k,δ
K , Gk,δ

L

)
+ wk,δ

(
Xk,δ

Na , X
k,δ
K , Xk,δ

L

)
,

where

wk,δ =
‖V δ − V k,δ‖2L2[0,T ]∥∥∥
(
Xk,δ

Na , X
k,δ
K , Xk,δ

L

)∥∥∥
2

R3

,

and

Xk,δ
Na =

∫ T

0

(
mk,δ

)a(
hk,δ
)b

(V k,δ − ENa)U
k,δ dt,(15)

Xk,δ
K =

∫ T

0

(
nk,δ
)c

(V k,δ − EK)Uk,δ dt,(16)

Xk,δ
L =

∫ T

0

(
nk,δ
)c

(V k,δ − EK)Uk,δ dt.(17)

The functions mk,δ, nk,δ, hk,δ and V k,δ solve, given Gk,δ
Na, Gk,δ

K and Gk,δ
L ,

(18)





CM V̇
k,δ = Iext −Gk,δ

Na

(
mk,δ

)a(
hk,δ
)b

(V k,δ − ENa)−Gk,δ
K

(
nk,δ
)c

(V k,δ − EK)

−Gk,δ
L (V k,δ − EL),

Ẋ = (1−X )αX (V k,δ)−XβX (V k,δ) for X = mk,δ, nk,δ, hk,δ,

V k,δ(0) = V0, mk,δ(0) = m0, nk,δ(0) = n0, hk,δ(0) = h0,



6 MANDUJANO VALLE, MADUREIRA

and αX , βX are defined by (6). Finally, Uk,δ solve, given mk,δ, nk,δ, hk,δ and V k,δ,

(19)





CM U̇
k,δ −

(
Gk,δ

Na

(
mk,δ

)a(
hk,δ
)b

+Gk,δ
K

(
nk,δ
)c

+Gk,δ
L

)
Uk,δ

−[(1−mk,δ)α′
mk,δ

(V k,δ)−mk,δβ′
mk,δ

(V k,δ)]P k,δ

−[(1− nk,δ)α′
nk,δ

(V k,δ)− nk,δβ′
nk,δ

(V k,δ)]Qk,δ

−[(1− hk,δ)α′
hk,δ

(V k,δ)− hk,δβ′
hk,δ

(V k,δ)]Rk,δ = V δ − V k,δ,

Ṗ k,δ − [αmk,δ(V
k,δ) + βmk,δ(V

k,δ)]P k,δ = −aGk,δ
Na

(
mk,δ

)a−1(
hk,δ
)b

(V k,δ − ENa)U
k,δ,

Q̇k,δ − [αnk,δ(V
k,δ) + βnk,δ(V

k,δ)]Qk,δ = −cGk,δ
K

(
nk,δ
)c−1

(V k,δ − EK)Uk,δ,

Ṙk,δ − [αhk,δ(V
k,δ) + βhk,δ(V

k,δ)]Rk,δ = −bGk,δ
Na

(
mk,δ

)a(
hk,δ
)b−1

(V k,δ − ENa)U
k,δ,

Uk,δ(T ) = 0, P k,δ(T ) = 0, Qk,δ(T ) = 0, Rk,δ(T ) = 0.

As previously mentioned, we assume that the constants a, b, c, ENa ,EK, EL, CM , Iext,

m0, n0 and h0 are known data.

Proof. See Appendix A. �

We next describe the computational scheme.

Data: V δ, δ and τ

Result: Compute an approximation for G using minimal error iteration Scheme

Choose G1,δ as an initial approximation for G;

Compute m1,δ, n1,δ, h1,δ and V 1,δ from (18), replacing Gk,δ by G1,δ;

k=1;

while τδ ≤ ‖V δ − V k,δ‖L2[0,T ] do

Compute Uk,δ from (19);

Compute Gk+1,δ using (14);

Compute mk+1,δ, nk+1,δ, hk+1,δ and V k+1,δ from (18), replacing Gk,δ by Gk+1,δ;

k ← k + 1;

end
Algorithm 1: Minimal error iteration to obtain maximal conductances

2.2. Inverse Problem to obtain exponents in the H-H model. Assume again that (8)

holds and that GNa, GK and GL are known. The goal of this subsection is to estimate the

exponents a, b and c. Denoting the unknown parameters by x = a = (a, b, c) it follows from

iteration (11) that

(20) ak+1,δ = ak,δ + wk,δF ′(ak,δ)∗(V δ − F (ak,δ)).
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Given an initial approximation a1,δ and the data V δ, we obtain a regularizing approxima-

tion ak∗,δ for a, from the minimal error iteration (20). Denote ak,δ = (ak,δ, bk,δ, ck,δ).

In the next Theorem, we compute the adjoint of the Gateaux derivative F ′(ak,δ)∗ from (20).

Theorem 2.2. Consider the iteration (20). It follows then that

(21)
(
ak+1,δ, bk+1,δ, ck+1,δ

)
=
(
ak,δ, bk,δ, ck,δ

)
+ wk,δ

(
Xk,δ
a , Xk,δ

b , Xk,δ
c

)
,

where wk,δ satisfies

wk,δ =
‖V δ − V k,δ‖2L2[0,T ]∥∥∥
(
Xk,δ
a , Xk,δ

b , Xk,δ
c

)∥∥∥
2

R3

,

and

Xk,δ
a =

∫ T

0

GNa(V
k,δ − ENa)

(
mk,δ

)ak,δ(
hk,δ
)bk,δ

Uk,δ ln(mk,δ) dt,

Xk,δ
b =

∫ T

0

GNa(V
k,δ − ENa)

(
mk,δ

)ak,δ(
hk,δ
)bk,δ

Uk,δ ln(hk,δ) dt,

Xk,δ
c =

∫ T

0

GK(V k,δ − EK)
(
nk,δ
)ck,δ

Uk,δ ln(nk,δ) dt.

The functions mk,δ, nk,δ, hk,δ and V k,δ solve

(22)





CM V̇
k,δ = Iext −GNa

(
mk,δ

)ak,δ(
hk,δ
)bk,δ

(V k,δ − ENa)−GK

(
nk,δ
)ck,δ

(V k,δ − EK)

−GL(V k,δ − EL),

Ẋ = (1−X )αX (V k,δ)−XβX (V k,δ); X = mk,δ, nk,δ, hk,δ,

V k,δ(0) = V0; mk,δ(0) = m0; nk,δ(0) = n0; hk,δ(0) = h0,
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where ak,δ, bk,δ and ck,δ are given. Also, Uk,δ solve

(23)





CM U̇
k,δ −

(
GNa

(
mk,δ

)ak,δ(
hk,δ
)bk,δ

+GK

(
nk,δ
)ck,δ

+GL

)
Uk,δ

−[(1−mk,δ)α′
mk,δ

(V k,δ)−mk,δβ′
mk,δ

(V k,δ)]P k,δ

−[(1− nk,δ)α′
nk,δ

(V k,δ)− nk,δβ′
nk,δ

(V k,δ)]Qk,δ

−[(1− hk,δ)α′
hk,δ

(V k,δ)− hk,δβ′
hk,δ

(V k,δ)]Rk,δ = V δ − V k,δ,

Ṗ k,δ − [αmk,δ(V
k,δ) + βmk,δ(V

k,δ)]P k,δ =

−ak,δGNa

(
mk,δ

)ak,δ−1(
hk,δ
)bk,δ

(V k,δ − ENa)U
k,δ,

Q̇k,δ − [αnk,δ(V
k,δ) + βnk,δ(V

k,δ)]Qk,δ =

−ck,δGK

(
nk,δ
)ck,δ−1

(V k,δ − EK)Uk,δ,

Ṙk,δ − [αhk,δ(V
k,δ) + βhk,δ(V

k,δ)]Rk,δ =

−bk,δGNa

(
mk,δ

)ak,δ(
hk,δ
)bk,δ−1

(V k,δ − ENa)U
k,δ,

Uk,δ(T ) = 0; P k,δ(T ) = 0; Rk,δ(T ) = 0; Qk,δ(T ) = 0,

given mk,δ, nk,δ, hk,δ and V k,δ. The constants GNa, GK, ENa ,EK, EL, CM , Iext, m0, n0 and

h0 are given data.

Proof. See Appendix (B). �

We next describe the computational scheme.

Data: V δ, δ and τ

Result: Compute an approximation for a using minimal error iteration Scheme

Choose a1,δ as an initial approximation for a;

Compute m1,δ, n1,δ, h1,δ and V 1,δ from (22), replacing ak,δ by a1,δ;

k=1;

while τδ ≤ ‖V δ − V k,δ‖L2[0,T ] do

Compute Uk,δ from (23);

Compute ak+1,δ using (21);

Compute mk+1,δ, nk+1,δ, hk+1,δ and V k+1,δ from (22), replacing ak,δ by ak+1,δ;

k ← k + 1;

end
Algorithm 2: Minimal error iteration to obtain exponents.
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3. Numerical simulation

To design our numerical experiments, we first choose x (x = G or x = a) and compute V

from (8). Of course, in practice, the values of V are given by some experimental measure-

ments, and thus subject to experimental/measurement errors. In our examples, for a given

δ, the noisy V δ is obtained from

(24) V δ(t) = V (t) + V (t)randε(t), for all t ∈ [0, T ]

where randε(t) is a uniformly distributed random variable taking values in the range [−ε, ε],
and ε = δ/‖V ‖L2[0,T ].

Next, given the initial guess x1,δ and the data V δ and δ, we start to recover x using

Algorithm 1 (for x = G) or Algorithm 2 (for x = a). Note that we have the exact x, and

we use that to gauge the algorithm performance.

The absolute error of V δ and its approximation V k,δ defines the residual from

(25) Resk = ‖V δ − V k,δ‖L2[0,T ] =

√∫ T

0

(V δ(t)− V k,δ(t))2 dt, k = 1, 2, · · · , k∗.

The percent error of vector x ∈ R3 is defined by

(26) Errorxk =
‖x− xk,δ‖R3

‖x‖R3

× 100%, k = 1, 2, · · · , k∗.

Each step of Algorithm 1 and Algorithm 2 involves solving two ODEs. Of course, there

is no analytical solution for those equations, and the use of numerical methods is necessary.

We use explicit Euler with a fixed time step ∆t.

In this section we will present two numerical simulations. In Example 3.1 we estimate the

conductances GNa, GK and GL, and in Example 3.2 we estimate the exponents a, b and c.

Our simulation were computed with Matlab R2012b on a Dell PC, running on a Intel(R)

Core(TM) i7-4790 CPU @ 3.60GHz with 32 GB of RAM.

See the code in the URL:https://github.com/MandujanoValle/Conductances-HH, to

estimate the conductancesGNa, GK andGL, and URL:https://github.com/MandujanoValle/

Exponents-HH, to estimate the exponents a, b and c.

Example 3.1. This example is a particular case from (8), with values (see [9], page 586):

CM = 1 [µF/cm2], ENa = 115 [mV ], EK = −12 [mV ], EL = 10.598 [mV ], GNa =

120 [mS/cm2], GK = 36 [mS/cm2], GL = 0.3 [mS/cm2], Iext = 0 [µA/cm2], a = 3, b = 1

and c = 4. Let the initial conditions V (0) = −25 [mV ], m(0) = 0.5, n(0) = 0.4 and

h(0) = 0.4. We consider T = 10 [ms] and ∆t = 0.02. Given V δ, the goal of this example is

to approximate G = (GNa, GK, GL) [mS/cm2].
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First, given G = (120, 36, 0.3) [mS/cm2], we compute V from (8). Then, we calculate V δ

from (24) given ε (see table 2). Next, we consider V and G as unknowns.

In this test we consider the initial guess G1,δ = (0, 0, 0) [mS/cm2] and τ = 2.01. Table 2

presents the results for various levels of noise. When ε decreases, the number of iterations

grow resulting in a better approximation for G = (GNa, GK, GL) [mS/cm2] and smaller

residuals. As expected, the result of the last column is close to τδ, related to the stopping

criteria (12).

In Figures 1, 2 and 3, we plot some results for ε = 5% (Table 2, line 4).

ε k∗ Gk∗,δNa Gk∗,δK Gk∗,δL Errorxk∗ Resk∗

125% 1 0 0 0 100 % 161

25% 19303 114.08 28.49 8.1727 9.9 % 49

5% 25012 115.07 30.59 0.7938 5.8 % 10

1% 33419 119.10 34.16 0.3221 1.6 % 2

0.2% 48642 119.82 35.62 0.3043 0.3 % 0.4

Table 2. Numerical results for Example 3.1 for various values of ε, as in

(24). The second column contains the number of iterations according to (12).

The third, fourth and fifth columns are the approximations for GNa, GK and

GL respectively. The sixth column is the percent error between x = G and

xk,δ = Gk,δ according to (26). The last column is the residue, see (25).

0 2 4 6 8 10

−20
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100
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Vδ

Figure 1. For Example 3.1. The red line (V ) is the exact membrane potential

and blue line (V δ) is the membrane potential measurement; in this case ε = 5%.
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Figure 2. Figures for Example 3.1 (estimation of the conductances) with

ε = 5%. The x-axis gives the number of iterations (k) and the y-axis gives

the conductance. The red lines are the exact solutions, and blue lines are the

approximations. The figures 2-A, 2-B and 2-C display the estimates of the

maximum conductances of sodium, potassium and leakage, respectively.

Example 3.2. This example is another particular case from (8) with values (see [9], page

586): CM = 1 [µF/cm2], ENa = 115 [mV ], EK = −12 [mV ], EL = 10.598 [mV ], GNa =

120 [mS/cm2], GK = 36 [mS/cm2], GL = 0.3 [mS/cm2] , Iext = 0 [µA/cm2], a = 3, b = 1

and c = 4. Let the initial conditions V (0) = −25 [mV ], m(0) = 0.5, n(0) = 0.4 and

h(0) = 0.4. We consider the time T = 5 [ms] with ∆t = 0.02. Given V δ, our goal is to

approximate a = (a, b, c) = (3, 1, 4).

First we calculate V from (8) given a = (3, 1, 4). Then, we calculate V δ from (24) given

ε (see table 2). We then consider V and a unknown.

In this example we consider the initial guess a1,δ = (0, 0, 0) and τ = 2.01. Table 3 presents

the results for various levels of noise. In figures 4, 5 and 6, we plot some results for a level

of noise ε = 1% (Table 3, line 5).
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Figure 3. Example 3.1 with ε = 5%. The x-axis indicates the number of

iterations (k). The y-axis, in the figures A and B are the residual (25) and

error (26), respectively.

ε k∗ ak∗,δ bk∗,δ ck∗,δ Errorxk∗ Resk∗

125 % 1 0 0 0 100 % 170

25 % 11681 1.572 0.496 −0.300 89 % 48

5 % 95605 2.970 0.807 2.626 27 % 9.7

1 % 188827 3.008 0.954 3.674 6 % 1.9

0.2 % 283487 3.002 0.990 3.930 1.4 % 0.4

Table 3. Numerical results for Example 3.2. See Table 2 for a description of

the contents.

.
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Figure 4. For Example 3.2 and ε = 1%. The red line (V ) is the exact

membrane potential and blue line (V δ) is the membrane potential measure-

ment.
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Figure 5. For Example 3.2 and ε = 1%. The x-axis is the number of iter-

ations (k). In y-axis, the red lines are the exact solutions, and blue lines are

the approximations. The figures 5-A, 5-B and 5-C are the estimates of a, b

and c, respectively.

.
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Figure 6. For Example 3.2 and ε = 1%. The x-axis is the number of itera-

tions (k). The y-axis, in the figures A and B are the residual (25) and error

(26), respectively.

Appendix A. Proof of Theorem 2.1

In this Appendix, we show Theorem 2.1.

Proof. Consider the operator F defined in (9). EvaluatingGk,δ in F , we have F (Gk,δ) = V k,δ,

where V k,δ, mk,δ, nk,δ and hk,δ solve the ODE (18).

Let vector θ = (θNa, θK, θL) ∈ R3 and λ ∈ R, then evaluating Gk,δ + λθ in the operator

F , we have F (Gk,δ + λθ) = V k,δ
λ , where V k,δ

λ , mk,δ
λ , nk,δλ and hk,δλ solve

(27)





CM V̇
k,δ
λ = Iext −

(
Gk,δ

Na + λθNa

)(
mk,δ
λ

)a(
hk,δλ

)b (
V k,δ
λ − ENa

)

−
(
Gk,δ

K + λθK

)(
nk,δλ

)c (
V k,δ
λ − EK

)
−
(
Gk,δ
L + λθL

)(
V k,δ
λ − EL

)
,

Ẋ = (1−X )αX (V k,δ)−XβX (V k,δ); X = mk,δ
λ , nk,δλ , hk,δλ ,

V k,δ
λ (0) = V0; mk,δ

λ (0) = m0; nk,δλ (0) = n0; nk,δλ (0) = n0.

The Gateaux derivative of F at Gk,δ in the direction θ is given by

(28) W k,δ = F ′(Gk,δ)(θ) = lim
λ→0

F (Gk,δ + λθ)− F (Gk,δ)

λ
.

Also, we denote the following limits

(29) Mk,δ = lim
λ→0

mk,δ
λ −mk,δ

λ
, Nk,δ = lim

λ→0

nk,δλ − nk,δ
λ

, Hk,δ = lim
λ→0

hk,δλ − hk,δ
λ

,
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where Mk,δ, Nk,δ and Hk,δ are the Gateaux derivatives of mk,δ, nk,δ and hk,δ, respectively.

Considering the difference between ODEs (27) and (18), dividing by λ and taking the limit

λ→ 0, we have the following ODE

(30)





CMẆ
k,δ +

(
Gk,δ

Na

(
mk,δ

)a(
hk,δ
)b

+Gk,δ
K

(
nk,δ
)c

+Gk,δ
L

)
W k,δ =

−aGk,δ
Na

(
mk,δ

)a−1
Mk,δ

(
hk,δ
)b

(V k,δ − ENa)

−bGk,δ
Na

(
mk,δ

)a(
hk,δ
)b−1

Hk,δ(V k,δ − ENa)− cGk,δ
K

(
nk,δ
)c−1

Nk,δ(V k,δ − EK)

−θNa

(
mk,δ

)a(
hk,δ
)b

(V k,δ − ENa)− θK
(
nk,δ
)c

(V k,δ − EK)− θL(V k,δ − EL),

Ẋ + [αY(V k,δ) + βY(V k,δ)]X = [(1− Y)α′Y(V k,δ)− Yβ′Y(V k,δ)]W k,δ;

(X ,Y) = (Mk,δ,mk,δ), (Nk,δ, nk,δ), (Hk,δ, hk,δ),

W k,δ(0) = 0; Mk,δ(0) = 0; Nk,δ(0) = 0; Hk,δ(0) = 0.

This last equation is yet another system of coupled nonlinear differential equations, de-

pending on the parameter θ = (θNa, θK , θL), representing an arbitrary point in R3.

From minimal error iteration (13) and θ ∈ R3 arbitrary, we have

〈Gk+1,δ −Gk,δ,θ 〉R3 = wk,δ〈F ′(Gk,δ)∗(V δ − F (Gk,δ)),θ 〉R3 ,

= wk,δ〈F ′(Gk,δ)∗(V δ − V k,δ),θ 〉R3 .

By definition of adjoint operator

〈Gk+1,δ −Gk,δ,θ 〉R3 = wk,δ〈V δ − V k,δ, F ′(xk)(θ) 〉L2[0,T ],

where the internal product in L2[0, T ] is given by Φ =
∫ T
0

(V δ − V k,δ)W k,δ dt, and from (28)

and the previous equation,

〈Gk+1,δ −Gk,δ,θ 〉R3 = wk,δ〈V δ − V k,δ,W k,δ〉L2[0,T ].

Denoting the last equality by Φ, we gather that

(31) Φ =
〈Gk+1,δ −Gk,δ,θ 〉R3

wk,δ
= 〈V δ − V k,δ,W k,δ〉L2[0,T ].
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From the previous equation and the first equality from ODE (19), we obtain

(32) Φ =

∫ T

0

(
CM U̇

k,δW k,δ −
(
Gk,δ

Na

(
mk,δ

)a(
hk,δ
)b

+Gk,δ
K

(
nk,δ
)c

+Gk,δ
L

)
Uk,δW k,δ

)
dt

−
∫ T

0

[
(1−mk,δ)α′mk,δ(V

k,δ)−mk,δβ′mk,δ(V
k,δ)
]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
Rk,δW k,δ dt.

Integrating the first term from (32) by parts, and from the initial (W k,δ(0) = 0) and final

(Uk,δ(T ) = 0) conditions, we obtain

(33)

∫ T

0

CM U̇
k,δW k,δ = −

∫ T

0

CMU
k,δẆ k,δ.

Replacing equation (33) in (32), we have

Φ = −
∫ T

0

(
CMẆ

k,δ +
(
Gk,δ

Na

(
mk,δ

)a(
hk,δ
)b

+Gk,δ
K

(
nk,δ
)c

+Gk,δ
L

)
W k,δ

)
Uk,δ dt

−
∫ T

0

[
(1−mk,δ)α′mk,δ(V

k,δ)−mk,δβ′mk,δ(V
k,δ)
]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
Rk,δW k,δ dt.
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Replacing, the first equality from the ODE (30), in the first integral from the previous

equation, we gather

(34) Φ =

∫ T

0

aGk,δ
Na(mk,δ)

a−1
Mk,δ

(
hk,δ
)b

(V k,δ − ENa)U
k,δ dt

+

∫ T

0

bGk,δ
Na

(
mk,δ

)a
(hk,δ)

b−1
Hk,δ(V k,δ − ENa)U

k,δ dt

+

∫ T

0

cGk,δ
K (nk,δ)

c−1
Nk,δ(V k,δ − EK)Uk,δ dt

+

∫ T

0

(
mk,δ

)a(
hk,δ
)b

(V k,δ − ENa)αU
k,δ dt

+

∫ T

0

(
nk,δ
)c

(V k,δ − EK)βUk,δ dt+

∫ T

0

(V k,δ − EL)γUk,δ dt

−
∫ T

0

[
(1−mk,δ)α′mk,δ(V

k,δ)−mk,δβ′mk,δ(V
k,δ)
]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
Rk,δW k,δ dt.

Multiplying the second equation from (19) by Mk,δ, and integrating in the interval [0, T ]

it follows that

∫ T

0

P k,δ
t Mk,δ −

[
αmk,δ(V

k,δ) + βmk,δ(V
k,δ)
]
P k,δMk,δ dt =

−
∫ T

0

aGk,δ
Na

(
mk,δ

)a−1(
hk,δ
)b

(V k,δ − ENa)U
k,δMk,δ dt.

Integrating by parts the first term from the previous equation, and using the initial

(Mk,δ(0) = 0) and final (P k,δ(T ) = 0) conditions, we have

∫ T

0

(
Ṁk,δ +

[
αmk,δ(V

k,δ) + βmk,δ(V
k,δ)
]
Mk,δ

)
P k,δ dt =

∫ T

0

aGk,δ
Na

(
mk,δ

)a−1(
hk,δ
)b

(V k,δ − ENa)U
k,δMk,δ dt.
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Then, from the previous equation and the second equation from ODE (30), for (X ,Y) =

(Mk,δ,mk,δ),

(35)

∫ T

0

aGk,δ
K

(
mk,δ

)a−1(
hk,δ
)b

(V k,δ − ENa)U
k,δMk,δ dt =

∫ T

0

[
(1−mk,δ)α′mk,δ(V

k,δ)−mk,δβ′mk,δ(V
k,δ)
]
W k,δP k,δ dt.

Multiplying the third equation from (19) by Nk,δ, and integrating in the interval [0, T ] we

gather that

∫ T

0

Q̇k,δNk,δ −
[
αnk,δ(V

k,δ) + βnk,δ(V
k,δ)
]
Qk,δNk,δ dt =

−
∫ T

0

cGk,δ
K

(
nk,δ
)c−1

(V k,δ − EK)Uk,δ dt.

Integrating by parts the first term from previous equation, and using the initial (Nk,δ(0) =

0) and final (Qk,δ(T ) = 0) conditions, we have

∫ T

0

(
Ṅk,δ +

[
αnk,δ(V

k,δ) + βnk,δ(V
k,δ)
]
Nk,δ

)
Qk,δ dt =

∫ T

0

cGk,δ
K

(
nk,δ
)c−1

(V k,δ − EK)Uk,δ dt.

Then, from the previous equation and the second equation from ODE (30), for (X ,Y) =

(Nk,δ, nk,δ), we have

(36)

∫ T

0

cGk,δ
K

(
nk,δ
)c−1

(V k,δ − EK)Uk,δ dt =

∫ T

0

[
(1− nk,δ)αa′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
WQk,δ dt.

Multiplying the fourth equation from (19) by Hk,δ, and integrating in the interval [0, T ]

we gather that

∫ T

0

Ṙk,δHk,δ −
[
αhk,δ(V

k,δ) + βhk,δ(V
k,δ)
]
Rk,δHk,δ dt =

−
∫ T

0

bGk,δ
Na

(
mk,δ

)a(
hk,δ
)b−1

(V k,δ − ENa)U
k,δ dt.
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Integrating by parts the first term from the previous equation, and using the initial

(Hk,δ(0) = 0) and final (Rk,δ(T ) = 0) conditions, we have

∫ T

0

(
Ḣk,δ +

[
αhk,δ(V

k,δ) + βhk,δ(V
k,δ)
]
Hk,δ

)
Rk,δ dt =

∫ T

0

bGk,δ
Na

(
mk,δ

)a(
hk,δ
)b−1

(V k,δ − ENa)U
k,δ dt.

Then, from the previous equation and the second equation from ODE (30), for (X ,Y) =

(Hk,δ, hk,δ), we have

(37)

∫ T

0

bGk,δ
Na

(
mk,δ

)a(
hk,δ
)b−1

(V k,δ − ENa)U
k,δ dt =

∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
W k,δRk,δ dt.

Substituting equations (35), (36), and (37) in (34), we have

(38) Φ =

∫ T

0

(
mk,δ

)a(
hk,δ
)b

(V k,δ − ENa)θNaU
k,δ dt+

∫ T

0

(
nk,δ
)c

(V k,δ − EK)θKU
k,δ dt

+

∫ T

0

(V k,δ − EL)θLU
k,δ dt.

Substituting equations (15), (16) and (17) in equation (38) we gather that

(39) Φ = Xk,δ
Na θNa +Xk,δ

K θK +Xk,δ
L θL =

〈(
Xk,δ

Na , X
k,δ
K , Xk,δ

L

)
, (θNa, θK, θL)

〉
R3
.

From (31) and (39)

〈Gk+1,δ −Gk,δ,θ 〉R3

wk,δ
=
〈(
Xk,δ

Na , X
k,δ
K , Xk,δ

L

)
,θ
〉
R3
.

Since θ ∈ R3 is arbitrary, we obtain (14). �

Appendix B. Proof of Theorem 2.2

In what follows we prove Theorem 2.2.

Proof. Consider the operator F defined in (9). Evaluating ak,δ in F , we have F (ak,δ) = V k,δ,

where V k,δ, mk,δ, nk,δ and hk,δ solve ODE (22). Let θ = (θa, θb, θc) ∈ R3 and λ ∈ R, then
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F (ak,δ + λθ) = V k,δ
λ , where V k,δ

λ , mk,δ
λ , nk,δλ and hk,δλ solve

(40)





CM V̇
k,δ
λ = Iext −GNa

(
mk,δ
λ

)ak,δ+λθa(
hk,δλ

)bk,δ+λθb (
V k,δ
λ − ENa

)

−Gk,δ
K

(
nk,δλ

)ck,δ+λθc (
V k,δ
λ − EK

)
−GL

(
V k,δ
λ − EL

)
,

Ẋ = (1−X )αX (V k,δ)−XβX (V k,δ), for X = mk,δ
λ , nk,δλ , hk,δλ ,

V k,δ
λ (0) = V0, mk,δ

λ (0) = m0, nk,δλ (0) = n0, nk,δλ (0) = n0.

Considering the difference between the ODEs (40) and (22), dividing by λ and taking the

limit λ→ 0, we have the ODE

(41)





CMẆ
k,δ +

(
GNa

(
mk,δ

)ak,δ(
hk,δ
)bk,δ

+GK

(
nk,δ
)ck,δ

+GL

)
W k,δ =

−ak,δGNa

(
mk,δ

)ak,δ−1
Mk,δ

(
hk,δ
)bk,δ

(V k,δ − ENa)

−bGNa

(
mk,δ

)ak,δ(
hk,δ
)bk,δ−1

Hk,δ(V k,δ − ENa)

−ck,δGK

(
nk,δ
)ck,δ−1

Nk,δ(V k,δ − EK)

−GNa

(
mk,δ

)ak,δ
ln(mk,δ)

(
hk,δ
)bk,δ

(V k,δ − ENa)θa

−GNa

(
mk,δ

)ak,δ(
hk,δ
)bk,δ

ln(hk,δ)(V k,δ − ENa)θb

−Gk

(
nk,δ
)c

ln(nk,δ)(V k,δ − EK)θc,

Ẋ + [αY(V k,δ) + βY(V k,δ)]X = [(1− Y)α′Y(V k,δ)− Yβ′Y(V k,δ)]W k,δ,

(X ,Y) = (Mk,δ,mk,δ), (Nk,δ, nk,δ), (Hk,δ, hk,δ),

W k,δ(0) = 0, Mk,δ(0) = 0, Nk,δ(0) = 0, Hk,δ(0) = 0.

where W k,δ is defined in equation (28) by replacing Gk,δ by ak,δ. Also, Mk,δ, Nk,δ and Hk,δ

are defined in equation (29).

This last equation is again a system of coupled nonlinear differential equations, parametrized

by θ = (θa, θb, θc), where θ ∈ R3 is arbitrary. Considering (23), and proceeding as in Ap-

pendix A, we gather (21). �
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ESTIMATION OF DISTRIBUTED PARAMETERS FROM MEMBRANE
POTENTIAL MEASUREMENT

JEMY A. MANDUJANO VALLE, ALEXANDRE L. MADUREIRA

Abstract. Alan Hodgkin and Andrew Huxley formed one of the most productive and

influential collaborations in the history of physiology. Based on a series of voltage-clamp

experiments, they developed a detailed mathematical model, which describes how action

potentials are initiated and propagated. To obtain this model the authors used the squid

giant neuron of the genus Loligo. The FitzHugh-Nagumo model is a simpler version of the

Hodgkin-Huxley model. Here, we propose the minimal error method to estimate parameters

with a non-uniform distribution in the models. Our approach estimates the unknown data

given the measurement of membrane potential.

1. Introduction.

Hodgkin and Huxley (H-H) performed experiments on the squid giant axon and created

a model of four mathematical equations that describes how action potentials in neurons are

initiated and propagated [11]. In the H-H model, the membrane potential V : [0, T ] → R
solves

(1) CM V̇ (t) = Iext + INa(t) + IK(t) + IL(t), t ∈ (0, T ],

where the membrane capacitance CM is in microfarad per square centimeter [µF/cm2], the

membrane potential V in millivolt [mV ], the external membrane current Iext is in microam-

pere per square centimeter [µA/cm2]. The parameters INa, IK and IL, in microampere per

square centimeter [µA/cm2], are the sodium, potassium and leakage ionic currents, respec-

tively. The time t in milliseconds [ms]. Also, V̇ = dV/dt is the derivative of the voltage

variable V with respect to time t.

In the paper [10], Hodgking and Huxley showed that the ionic currents can be expressed

in terms of ionic conductances (gNa, gK and gL)

(2) INa(t) = gNa(V (t), t)(V (t)− ENa); IK(t) = gK(V (t), t)(V (t)− EK); IL(t) = GL;

where gNa, gK and gL, in millisiemens per square centimeter [mS/cm2], are the sodium,

potassium and leak current conductances, respectively. The equilibrium potential of sodium,

Date: October 10, 2018.
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potassium and leak current, in millivolt [mV ], is represented by ENa, EK and EL, respec-

tively.

Using voltage-clamp data, Hodgkin and Huxley derived expressions for K+ and Na+

conductances. They proposed that

(3) gNa(V (t), t) = GNan(V (t), t)4 and gK(V (t), t) = gKm(V (t), t)3h(V (t), t),

where GNa, GK and GL, in millisiemens per square centimeter [mS/cm2], are the maximal

sodium, potassium and leak current conductances, respectively. The parameters m, n and

h are unitless gating variables that take values between 0 and 1. Hence, n4 represents the

probability that a potassium channel is open: the potassium channel has 4 independent, and

identical, components. The probability that the sodium activation gate is open is m3 and the

probability that the sodium inactivation gate is open is 1− h. Each of the gating variables

satisfies a first-order differential equation, that is, they satisfy equations of the form [9].

(4) Ẋ = (1−X )αX (V k,δ)−XβX (V k,δ); X = m,n, h.

The experiments performed by Hodgkin and Huxley suggest that:

αm(V ) =
(25− V )/10

exp((25− V )/10)− 1
, βm(V ) = 4 exp(−V/18),

αn(V ) =
(10− V )/100

exp((10− V )/10)− 1
, βn(V ) = 0.125 exp(−V/80),

αh(V ) = 0.07 exp(−V/20), βh(V ) =
1

exp((30− V )/10) + 1
.

To equation (1) we add the initial conditions

(5) V (0) = V0, m(0) = m0, , n(0) = n0, h(0) = h0.

Thus, from (1-5) we have the following ordinary differential equation (ODE):

(6)





CM V̇ = Iext −GNam
3h(V − ENa)−GKn

4(V − EK)−GL(V − EL);

ṁ = (1−m)αm(V )−mβm(V );

ṅ = (1− n)αn(V )− nβn(V );

ḣ = (1− h)αh(V )− hβh(V );

V (0) = V0, m(0) = m0, , n(0) = n0, h(0) = h0,

where the parameters CM , Iext, GNa, GK , GL, ENa, EK , EL, m0, n0 and h0 are assumed to

be known.
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We denoteα = (αm ◦ V, βm ◦ V, αn ◦ V, βn ◦ V, αh ◦ V, βh ◦ V ), where (α ◦ V ) (t) = α(V (t)).

Hodgkin and Huxley obtained α using experimental data from the squid neuron. However,

other neurons may produce different parameters. In this context, our goal, from (6), is to

obtain approximately α, given the measurement membrane potential.

The analysis of the Hodgkin-Huxley equation (6) is extremely difficult because of the

nonlinearities and the large number of variables. The FitzHugh-Nagumo (F-N) model is a

simplified version of the Hodgkin-Huxley model which models in a detailed manner activation

and deactivation dynamics of a spiking neuron [21]. The FitzHugh-Nagumo equation have

the form

(7)





V̇ = Iext + g − υ;

υ̇ = bV − cυ;

V (0) = V0, υ(0) = υ0,

where g = g ◦ V , b > 0 and c ≥ 0. For equation (7), V is the membrane potential, υ is

the recovery variable, and I is the stimulus current. In this paper b and c are known, as

in equation (6) the parameters I, V0 and υ0 also are known. Note that υ plays the role

of all three variables m, n and h in (6). According to FitzHugh and Nagumo the function

g = V (V − a)V for a ∈ (0, 1) [9]. In this paper, we consider g unknown. From (7), our goal

is to estimate g, given the measurement membrane potential.

After the Hodgkin-Huxley model, some other simplified models emerged, such as the

cable equation, FitzHugh-Nagumo model, Morris-Lecar model, etc. Wilfrid Rall [17, 18]

developed the use of cable theory in computational neuroscience, as well as passive and

active compartmental modeling of the neuron. In [13], the authors determine conductances

with nonuniform distribution in the cable equation with and without branches, using the

non-linear Landweber iteration method to obtain the unknown parameters. Studies [20,

3, 1, 2], also address the identification of parameters in the cable equation. Works [8, 7,

15, 6, 14, 22] study the inverse problem in FitzHugh-Nagumo and Morris-Lecar models.

In [19, 16] it obtains synaptic conductances, given the potential of the membrane, on the

passive membrane equation. In [4, 5], authors estimate the constant parameters of an ion

channel(Hodgkin and Huxley model), using a differential evolution algorithm to obtain the

parameters.

2. Minimal Error Method

Consider x = α (from equation (6)) or x = g (from equation (7)). In this paper, we use

the minimal error method. We consider the problem of determining the physical quantity
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x ∈ H from V ∈ L2[0, T ], where H and L2[0, T ] are Hilbert spaces with inner products

< ·, · > and norms || · ||. We define the following operators

(8) 〈V,W 〉L2[0,T ] =

∫ T

0

V (t)W (t)dt ; ‖V ‖L2[0,T ] =
√
〈V, V 〉L2[0,T ] V,W ∈ L2[0, T ].

In practical situations, we do not know the exact value. Instead, we have only approximate

measured value V δ ∈ L2[0, T ] satisfying

(9) ||V δ − V ||L2[0,T ] ≤ δ, i = 1, · · · ,m

with noise level δ > 0. The inverse problem is to estimate x ∈ H, given V δ, such that

(10) F (x) = V,

where F : H → L2[0, T ] is ill-posed operator. Note that V solves (6) or (7).

The minimal error iteration is defined by

(11) xk+1,δ = xk,δ + wk,δF ′(xk,δ)∗
(
V δ − F (xk,δ)

)
, k ∈ N.

where F ′(xk,δ) is the Gateaux derivative of F in xk,δ and F ′(xk,δ)∗ is its adjoint, and

(12) wk,δ =
‖V δ − F (xk,δ)‖2L2[0,T ]

‖F ′(xk,δ)∗ (V δ − F (xk,δ)) ‖2H
.

Note that the choice yk,δ = 1 corresponds to the Landweber iteration.

In the case of noisy data, the iteration procedure has to be combined with a stopping rule

in order to act as a regularization method. We will employ the discrepancy principle, i.e.,

the iteration is stopped after k∗ = k(δ, V δ) steps with

(13) ‖V δ − F (xk∗,δ)‖L2[0,T ] ≤ τδ < ‖V δ − F (xk,δ)‖L2[0,T ], 0 ≤ k < k∗,

where τ > 2 is an appropriately chosen positive number.

It is possible to show that, under certain conditions (we assume that is the case), xk∗,δ

converges to a solution of F (x) = V δ as δ → 0 (see [12], Theorem 3.22).

In the next example, we compare the methods of minimal error and Landweber.

Example 2.1. Let F : L2(0, π/2] → L2(0, π/2] be an operator defined by the following

equation F (x) = V , where it satisfies the following ODE dV (t)/dt = x(t), with initial

condition V (0) = 1.

The goal of this example is to find approximately x given V . To compare results, we first

calculate V given x(t) = − sin(t). Now, we consider x unknown.
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We consider δ = 0 in equation (11). Computing the adjoint of the Gateaux derivative

from (11), we have

(14) F ′(xk)∗
(
V − F (xk)

)
= Uk,

where Uk solves the following ODE dUk(t)/dt = V (t)−V k(t), with final condition U(π/2) =

0. Note that V k = F (xk) and solves the following ODE dV k(t)/dt = xk(t).

Thus, from (11) and (14), we obtain the following iteration

(15) xk+1 = xk + wkUk,

where wk = ‖V − F (xk)‖2/‖Uk‖2 for the minimal error method, and for the Landweber

method wk = 1.

In this example, we compare the Landweber method and the minimal error method. Then,

to obtain an approximation of x we use (15), given x1(t) = cos(5t) and V .

Remark 1. Note from (15) that xk+1 is never corrected at final time t = π/2, for every

k ∈ N, since Uk(π/2) = 0. To estimate x at time t = π/2, we perform the computations up

to π/2 + ∆t, for some given ∆t > 0, and we consider, from iteration (15), only the values

up to π/2.

In figure 1, we plot some results to estimate x in t ∈ [0, π/2]. In this example, we consider

0.01972 as the minimum relative error, to get this value, the minimal error method required

316 iterations, and the Landweber iteration needed 11829 iterations. Thus, the minimal

error method is considered more efficient of the two methods. In figure 2, we analyze the

behavior of yk from (15), for the two methods.

In this work, we use the minimal error iteration. Also, we consider Remark 1.

2.1. Inverse Problem to obtain functions in the H-H model. In this subsection, for

the operator F defined in (10), the space H = (L2[0, T ])
6

and x = α. The present goal is to

estimate α from (6), given V δ. From equation (11), we obtain

(16) αk+1,δ = αk,δ + wk,δF ′(αk,δ)∗
(
V δ − F (αk,δ)

)
,

where α1,k is know and wk,δ is defined in (12). We denote αk,δ = (αmk,δ ◦ V k,δ, βmk,δ ◦
V k,δ, αnk,δ ◦ V k,δ, βnk,δ ◦ V k,δ, αhk,δ ◦ V k,δ, βhk,δ ◦ V k,δ).

For a = (a1, a2, a3, a4, a5, a6) and b = (b1, b2, b3, b4, b5, b6) ∈ H, we define the following

operators,

(17) 〈a, b〉H =
6∑

i=1

∫ T

0

ai(t)bi(t)dt ; ‖α‖H =
√
〈a,a〉H.
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Figure 1. For Example 2.1. The plot on the left, the blue and red lines

represent the relative errors using the minimal error and Landweber method.

The figure on the right, the functions x, x1, x316 and x11830 depending on

the variable t. The green, pink, red and blue lines are the exact solution,

the initial guess, the x approach using the minimal error method and the x

approach using the Landweber method, respectively.
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Figure 2. For Example 2.1. The blue line is the parameter wk for the

minimal error method. The line red is the parameter wk = 1 for the Landweber

iteration.

In the next theorem, from (16), we compute the adjoint of the Gateaux derivative F ′(αk,δ)∗.
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Given V δ, τ and an initial approximation α1,δ, we obtain a regularizing approximation

αk∗,δ for α, through iteration (18).

Theorem 2.1. Consider the iteration (16). It follows then that

(18) αk+1,δ = αk,δ + wk,δ
(
Xk,δ
αm , X

k,δ
βm
, Xk,δ

αn , X
k,δ
βn
, Xk,δ

αh
, Xk,δ

βh

)

where wk,δ satisfies

wk,δ =
‖V δ − V k,δ‖2L2[0,T ]∥∥∥

(
Xk,δ
αm , X

k,δ
βm
, Xk,δ

αn , X
k,δ
βn
, Xk,δ

αh , X
k,δ
βh

)∥∥∥
2

H

,

and

Xk,δ
αm =

(
1−mk,δ

)
P k,δ ; Xk,δ

βm
= −mk,δP k,δ;(19)

Xk,δ
αn =

(
1− nk,δ

)
Qk,δ ; Xk,δ

βn
= −nk,δQk,δ;(20)

Xk,δ
αh

=
(
1− hk,δ

)
Rk,δ ; Xk,δ

βh
= −hk,δRk,δ.(21)

Given αX (V k,δ) and βX (V k,δ) for X = mk,δ, nk,δ, hk,δ, the functions mk,δ, nk,δ and hk,δ

solve

(22)





CM V̇
k,δ = Iext −GNa

(
mk,δ

)3(
hk,δ
)
(V k,δ − ENa)−GK

(
nk,δ
)4

(V k,δ − EK)

−GL(V k,δ − EL),

Ẋ = (1−X )αX (V k,δ)−XβX (V k,δ) for X = mk,δ, nk,δ, hk,δ,

V k,δ(0) = V0, mk,δ(0) = m0, nk,δ(0) = n0, hk,δ(0) = h0.

Finally, the functions P k,δ, Qk,δ and Rk,δ solve, given mk,δ, nk,δ, hk,δ and V k,δ,

(23)





CM U̇
k,δ −

(
GNa

(
mk,δ

)3(
hk,δ
)

+GK

(
nk,δ
)4

+GL

)
Uk,δ

−[(1−mk,δ)α′
mk,δ

(V k,δ)−mk,δβ′
mk,δ

(V k,δ)]P k,δ

−[(1− nk,δ)α′
nk,δ

(V k,δ)− nk,δβ′
nk,δ

(V k,δ)]Qk,δ

−[(1− hk,δ)α′
hk,δ

(V k,δ)− hk,δβ′
hk,δ

(V k,δ)]Rk,δ = V δ − V k,δ,

Ṗ k,δ − [αmk,δ(V
k,δ) + βmk,δ(V

k,δ)]P k,δ = −3GNa

(
mk,δ

)2(
hk,δ
)
(V k,δ − ENa)U

k,δ,

Q̇k,δ − [αnk,δ(V
k,δ) + βnk,δ(V

k,δ)]Qk,δ = −4GK

(
nk,δ
)3

(V k,δ − EK)Uk,δ,

Ṙk,δ − [αhk,δ(V
k,δ) + βhk,δ(V

k,δ)]Rk,δ = −GNa

(
mk,δ

)3
(V k,δ − ENa)U

k,δ,

Uk,δ(T ) = 0, P k,δ(T ) = 0, Qk,δ(T ) = 0, Rk,δ(T ) = 0.
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As previously mentioned, we assume that the constants CM , Iext, m0, n0, h0, GNa, GK,

GL, ENa ,EK and EL are known data. Note that α′m(V ) is the derivative of αm with respect

to voltage V .

Proof. See Appendix A. �

We next describe the computational scheme.

Data: V δ, δ and τ

Result: Compute an approximation for α using Iteration Scheme (18)

Choose α1,δ as an initial approximation for α;

Compute m1,δ, n1,δ, h1,δ and V 1,δ from (22), replacing αk,δ by α1,δ;

k=1;

while τδ ≤ ‖V δ − V k,δ‖L2[0,T ] do

Compute P k,δ, Qk,δ and Rk,δ from (23);

Compute αk+1,δ using (18);

Compute mk+1,δ, nk+1,δ, hk+1,δ and V k+1,δ from (22), replacing αk,δ by αk+1,δ;

k ← k + 1;

end
Algorithm 1: Minimal error iteration to obtain functions in the H-H model

2.2. Inverse Problem to obtain one function in the F-N model. In this subsection,

for the operator F is defined in (10), the space H = L2[0, T ] and x = g. The present goal is

to estimate g from (7), given V δ. From equation (11), we obtain

(24) gk+1,δ = gk,δ + wk,δF ′(gk,δ)∗
(
V δ − F (gk,δ)

)
,

where g1,k is know and wk,δ is defined in (12). Note that gk,δ = gk,δ(V k,δ).

For a, b ∈ L2[0, T ], we define

(25) 〈a, b〉L2[0,T ] =

∫ T

0

a(t)b(t)dt ; ‖a‖L2[0,T ] =
√
〈a,a〉L2[0,T ].

In the next theorem, from (24), we compute the adjoint of the Gateaux derivative F ′(gk,δ)∗.

Given V δ, τ and an initial approximation g1,δ, we obtain a regularizing approximation

gk∗,δ for g, through iteration (26).

Theorem 2.2. Consider the iteration (24). It follows then that

(26) gk+1,δ = gk,δ − wk,δUk,δ,

where wk,δ = ‖V δ − V k,δ‖2L2[0,T ]/‖Uk,δ‖2L2[0,T ].
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Given gk,δ(V k,δ), the functions V k,δ and υk,δ solve

(27)





V̇ k,δ = I + gk,δ(V k,δ)− υk,δ;
υ̇k,δ = bV k,δ − cυk,δ;

V (0) = V0, υ(0) = υ0.

Finally, Uk,δ solve, given V k,δ and gk,δ(V k,δ),

(28)





U̇k,δ + gk,δ
′
(V k,δ)Uk,δ − bP k,δ = V δ − V k,δ,

Ṗ k,δ − cP k,δ = −Uk,δ,

Uk,δ(T ) = 0; P k,δ(T ) = 0,

where gk,δ
′
(V k,δ) is the derivative of gk,δ with respect to V k,δ. .

As previously mentioned, we assume that the constants b, c, V0, υ0 and I are known data.

Proof. See Appendix B. �

We next describe the computational scheme.

Data: V δ, δ and τ

Result: Compute an approximation for g using Iteration Scheme (26)

Choose g1,δ as an initial approximation for g;

Compute r1,δ and V 1,δ from (27), replacing gk,δ by g1,δ;

k=1;

while τδ ≤ ‖V δ − V k,δ‖L2[0,T ] do

Compute Uk,δ from (28);

Compute gk+1,δ using (26);

Compute rk+1,δ and V k+1,δ from (27), replacing gk,δ by gk+1,δ;

k ← k + 1;

end
Algorithm 2: Minimal error iteration to obtain one function in the F-N model

3. Numerical simulation

In Subsection 2.1, we consider and obtain analytical results for six unknown functions. In

computational experiments, we estimate only one function α = αn(V ) (from equation (6)).

In this subsection, we consider two examples. The first one is to estimate x = α from (6),

given V δ. For the second example, the goal is to estimate x = g from (7), given V δ.

To design our numerical experiments, we first choose x (x = α or x = g) and compute V

from (6) or (7), obtaining then V . Of course, in practice, the values of V are given by some
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experimental measurements, and thus subject to experimental/measurement errors. In our

examples, for a given δ, the noisy V δ is obtained by

(29) V δ(t) = V (t) + V (t)randε(t), for all t ∈ [0, T ]

where randε(t) is a uniformly distributed random variable in the interval [−ε, ε], and ε =

δ/‖V ‖L2[0,T ]. Now, we consider V and x unknown.

Next, given the initial guess x1,δ, V δ and δ, we start to recover x using Algorithm 1 (for

x = α) or Algorithm 2 (for x = g).

The absolute error of V δ and its approximation V k,δ is called the residual. We define this

term by the following equation,

(30) Resk = ‖V δ − V k,δ‖L2[0,T ] =

√∫ T

0

(V δ(t)− V k,δ(t))2 dt, k = 1, 2, · · · , k∗.

In practice, after discretizing the equations and the unknown functions, only nodal values

are know. Consider the space-time discretization tn = (n− 1)T/(N − 1) for n = 1, 2, · · · , N .

Thus, the relative error introduced above relates to the the mean absolute percentage error

(31) Errork =
1

N − 1

N∑

n=1

∣∣∣∣
x(tn)− xk,δ(tn)

x(tn)

∣∣∣∣× 100%, k = 1, 2 · · · , k∗.

For the discrete case, we define the residual (30) as

(32) Resk =

√√√√ T

N − 1

N∑

n=1

(V δ(tn)− V k,δ(tn))2dt, k = 1, 2, · · · , k∗.

In this section, we will present two numerical simulations. In Example 3.1 we estimate

one function in the H-H model, and in Example 3.2 also we find approximately one function

in F-N model.

Our simulation was computed with Matlab R2012b on a Dell PC, running on an Intel(R)

Core(TM) i7-4790 CPU @ 3.60GHz with 32 GB of RAM.

Example 3.1. This example is a particular case from (6), where the fixed parameters are:

T = 4 [ms], C = 1 [µF/cm2], Iext = 5 [µA/cm2], ENa = 115 [mV ], EK = −12 [mV ],

EL = 10.6 [mV ], GNa = 120 [mS/cm2], GK = 36 [mS/cm2], GL = 0.3 [mS/cm2] and

N = 100. The initial conditions are: V (0) = −20 [mV ], m(0) = 0.1, n(0) = 0.3 and

h(0) = 0.5. Given V δ, the goal of this example is to estimate

αn(V ) =
(10− V )/100

exp((10− V )/10)− 1
.
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In this test, we consider the initial guess α1,δ
n (V ) = 0 and τ = 2.01. Table 1 presents

the results for various levels of noise. In Figures (3), (4), (5) and (6), we plot results for

ε = 0.001% level of noise (Table 2, line 7).

ε k∗ Errorxk∗ Resk∗

100% 2 55 % 11.5× 100

10% 4 41 % 1.4× 100

1% 17 33 % 2.9× 10−1

0.1% 107 13 % 2.9× 10−2

0.01% 497 5.2 % 2.9× 10−3

0.001% 2532 1.8 % 2.9× 10−4

0.0001% 30916 0.4 % 2.9× 10−5

Table 1. For Example 3.1. Numerical results for various values of ε, as in

(29). The second column contains the number of iterations according to (13).

The third column is the mean absolute percentage error of x = α according

to (31). The last column is the residue, see (32).

0 1 2 3 4
−20

−15

−10

−5

0

5

Time: t [ms]

V
 [

m
V

]

Subplot A

0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

Time: t [ms]

V
−

V
δ
 [

m
V

]

Subplot B

Figure 3. For Example 3.1. In Subplot A we present the membrane potential (V ), and

in B displays the difference between V and its perturbation V δ.

Example 3.2. This example is a particular case from (7), where the fixed parameters are:

T = 10, N = 100, Iext = 0.01, b = 0.01 and c = 0.02. The initial conditions are: V (0) =

−0.5 and υ(0) = 0.02. Given V δ, the goal of this example is to find g = V (a − V )(V − 1)

for a = 0.01.
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Figure 4. Figures for Example 3.1. For the Subplots A and B, the red lines are the exact

solution, the blue lines are the initial guesses and the green lines are the approximation for

ε = 0.001%. In Subplot A, we present the parameters αn, α1,δ
n and αk∗,δn as a function of

time. In Subplot B, we show the parameters αn, α1,δ
n and αk∗,δn as a function of V , V 1,δ

and V k∗,δ, respectively.
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Figure 5. For Example 3.1. The green line is the absolute error of V ans its approxi-

mation V k∗,δ, for ε = 0.001%. The blue line is absolute error of the true value αn(V ) and

its approximation, for ε = 0.001%.

In this test, we consider the initial guess g1,δ = 0 and τ = 2.01. Table 2 presents the results

for various levels of noise. In Figures (7), (8), (9) and (10), we plot results for ε = 1% of

noise (Table 2, line 5).

4. Conclusions

In this work, we estimate parameters in Hodgkin-Huxley and FitzHugh-Nagumo models

from membrane potential measurement. To obtain approximately the unknown parameters,
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Figure 6. Convergence results for Example 3.1. The Subplot A, displays the mean

absolute percentage error between α and αk as a function of the iteration k. The Subplot

B, displays the residual, i.e., the difference between V and V k again as a function of k.

ε k∗ Errorxk∗ Resk∗

125% 1 100 % 1.1437

25% 4 75 % 0.1595

5% 12 18 % 0.0387

1% 33 6.3 % 0.0082

0.2% 84 2.4 % 0.0018

0.04% 151 0.9 % 0.0003

Table 2. Numerical results for Example 3.2. See Table 1 for a description of

the contents.

we apply the minimal error method. This iteration is more efficient than the Landweber

method (see Example 2.1).

In the whole iterative process, the iteration of Landweber considers yk = 1, and this makes

the method does not converge when yk << 1. In this work, in most numerical tests yk << 1,

then the Landweber iteration diverges, as particular cases are Examples 3.1 and 3.2. In

contrast, the minimal error method considers that this term (0 < yk) vary in each iteration;

this makes the technique converge for the solution when the noise level goes to zero. The

minimal error method applied in this article is more efficient than the Landweber method by

the same observation mentioned above.

Indeed, the methods (Landweber and minimal error) has limitations; in this work, they

do not computationally estimate more than one function. For the H-H model, we obtain

analytical results for six unknown functions, but in the numerical tests, we consider only
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Figure 7. For Example 3.2. In Subplot A, we present the membrane potential (V ), and

in B displays the difference between V and its perturbation V δ.
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Figure 8. Figures for Example 3.2. For the Subplots A and B, the red lines are the exact

solution, the blue lines are the initial guesses and the green lines are the approximation for

ε = 1%. In Subplot A, we present the parameters g, g1,δ and gk∗,δ as a function of time.

In Subplot B, we show the parameters g, g1,δ and gk∗,δ as a function of V , V 1,δ and V k∗,δ,

respectively.

one unknown function. The analytical results, obtained in this work, are significant contri-

butions for future works where other iterative methods of regularization are applied. One of

these methods is the Landweber-Kaczmarz iteration, and possibly this approach obtains ap-

proximately more than one unknown function. However, our method numerically estimates

problems where it has one unknown function as in the case of the F-N model.
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Figure 9. For Example 3.2. The green line is the absolute error of V ans its approxi-

mation V k∗,δ, for ε = 0.001%. The blue line is absolute error of the true value g(V ) and its

approximation, for ε = 0.001%.
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Figure 10. Convergence results for Example 3.2. The Subplot A, displays the mean

absolute percentage error between g and gk as a function of the iteration k. The Subplot

B, displays the residual, i.e., the difference between V and V k again as a function of k

Appendix A. Proof of Theorem 2.1

This Appendix, we show Theorem 2.1.

Proof. Consider the operator F defined in (10), H = (L2[0, T ])6 and x = α. Evaluating αk,δ

in F , we have F (αk,δ) = V k,δ, where V k,δ, mk,δ, nk,δ and hk,δ solve the ODE (22).
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Let the vector θ = (θαm , θβm , θαn , θβn , θαh , θβh) ∈ (L2[0, T ])
6

and λ ∈ R, then evaluating

α+ λθ in the operator F , we have F (α+ λθ) = V k,δ
λ , where V k,δ

λ solves

(33)





CV̇ k,δ
λ = Iext −GNa

(
mk,δ
λ

)3(
hk,δλ

)
(V k,δ

λ − ENa)

−GK

(
nk,δλ

)4
(V k,δ

λ − EK)−GL(V k,δ
λ − EL),

ṁk,δ
λ = (1−mk,δ

λ )
[
αmk,δλ

(V k,δ
λ ) + λθαm

]
−
[
mk,δ
λ βmk,δλ

(V k,δ
λ ) + λθβm

]
,

ṅk,δλ = (1− nk,δλ )
[
αnk,δλ

(V k,δ
λ ) + λθαn

]
−
[
nk,δλ βnk,δλ

(V k,δ
λ ) + λθβn

]
,

ḣk,δλ = (1− hk,δλ )
[
αhk,δλ

(V k,δ
λ ) + λθαh

]
−
[
hk,δλ βhk,δλ

(V k,δ
λ ) + λθβh

]
,

V k,δ
λ (0) = V0; mk,δ

λ (0) = m0; nk,δλ (0) = n0; hk,δλ (0) = h0.

The Gateaux derivative of F at αk,δ in the direction θ is given by

(34) F ′(αk,δ)(θ) = lim
λ→0

F (αk,δ + λθ)− F (αk,δ)

λ
= W k,δ.

Also, we denote the following limits

(35) Mk,δ = lim
λ→0

mk,δ
λ −mk,δ

λ
, Nk,δ = lim

λ→0

nk,δλ − nk,δ
λ

, Hk,δ = lim
λ→0

hk,δλ − hk,δ
λ

,

where Mk,δ, Nk,δ and Hk,δ are the Gateaux derivatives of mk,δ, nk,δ and hk,δ, respectively.

Considering the difference between the ODEs (33) and (22), dividing by λ and taking the

limit λ→ 0, we have the following ODE

(36)





CẆ k,δ +
(
GNa

(
mk,δ

)3 (
hk,δ
)

+GK

(
nk,δ
)4

+GL

)
W k,δ =

−3GNa

(
mk,δ

)2
Mk,δhk,δ(V k,δ − ENa)

−GNa

(
mk,δ

)3
Hk,δ(V k,δ − ENa)

−4GK

(
nk,δ
)3
Nk,δ(V k,δ − EK),

Ṁk,δ + [αmk,δ(V
k,δ) + βmk,δ(V

k,δ)]Mk,δ =[
(1−mk,δ)α′

mk,δ
(V k,δ)−mk,δβ′

mk,δ
(V k,δ)

]
W k,δ + (1−mk,δ)θαm −mk,δθβm ,

Ṅk,δ + [αnk,δ(V
k,δ) + βnk,δ(V

k,δ)]Nk,δ =[
(1− nk,δ)α′

nk,δ
(V k,δ)− nk,δβ′

nk,δ
(V k,δ)

]
W k,δ + (1− nk,δ)θαn − nk,δθβn ,

Ḣk,δ + [αhk,δ(V
k,δ) + βhk,δ(V

k,δ)]Hk,δ =[
(1− hk,δ)α′

hk,δ
(V k,δ)− hk,δβ′

hk,δ
(V k,δ)

]
W k,δ + (1− hk,δ)θαh − hk,δθβh ,

W k,δ(0) = 0; Mk,δ(0) = 0; Nk,δ(0) = 0; Hk,δ(0) = 0.
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This last equation is yet another system of coupled nonlinear differential equations, de-

pending on the parameter θ. Note that the variable θ represent any point in space (L2[0, T ])
6
.

From Landweber iteration (16) and θ ∈ (L2[0, T ])
6

arbitrary, we have

〈αk+1,δ −αk,δ,θ 〉(L2[0,T ])6 = wk,δ〈F ′(αk,δ)∗(V δ − F (αk,δ)),θ 〉(L2[0,T ])6 ,

= wk,δ〈F ′(αk,δ)∗(V δ − V k,δ),θ 〉(L2[0,T ])6 .

By the definition of adjunct operator

〈αk+1,δ −αk,δ,θ 〉(L2[0,T ])6 = wk,δ〈V δ − V k,δ, F ′(αk,δ).(θ) 〉L2[0,T ].

From (34) and the previous equation,

〈αk+1,δ −αk,δ,θ 〉(L2[0,T ])6 = wk,δ〈V δ − V k,δ,W k,δ〉L2[0,T ].

We denote the last equality by Φ, then

(37) Φ =
〈αk+1,δ −αk,δ,θ 〉(L2[0,T ])6

wk,δ
= 〈V δ − V k,δ,W k,δ〉L2[0,T ].

By the definition of inner product in L2[0, T ]

Φ =

∫ T

0

(V δ − V k,δ)W k,δ dt.

From the previous equation and the first equality from ODE (23), we obtain the following

expression

Φ =

∫ T

0

(
CM U̇

k,δW k,δ −
(
GNa

(
mk,δ

)3 (
hk,δ
)

+GK

(
nk,δ
)4

+GL

)
Uk,δW k,δ

)
dt(38)

−
∫ T

0

[
(1−mk,δ)α′mk,δ(V

k,δ)−mk,δβ′mk,δ(V
k,δ)
]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
Rk,δW k,δ dt.

Integrating by parts the first term from equation (38), and initial (see (36), W k,δ(0) = 0)

and final (see (23), Uk,δ(T ) = 0) conditions, we obtain

(39)

∫ T

0

CM U̇
k,δW k,δdt = −

∫ T

0

CMU
k,δẆ k,δdt.
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Replacing equation (39) in (38), we have the following equality

Φ = −
∫ T

0

(
CẆ k,δ +

(
GNa

(
mk,δ

)3 (
hk,δ
)

+GK

(
nk,δ
)4

+GL

)
W k,δ

)
Uk,δ dt

−
∫ T

0

[
(1−mk,δ)α′mk,δ(V

k,δ)−mk,δβ′mk,δ(V
k,δ)
]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
Rk,δW k,δ dt.

Replacing the first equality from ODE (36) in the first integral from the previous equation,

we obtain

Φ =

∫ T

0

3GNa

(
mk,δ

)2
Mk,δ

(
hk,δ
)

(V k,δ − ENa)Uk,δ dt(40)

+

∫ T

0

GNa

(
mk,δ

)3
Hk,δ(V k,δ − ENa)Uk,δ dt

+

∫ T

0

4GK

(
nk,δ
)3
Nk,δ(V k,δ − EK)Uk,δ dt

−
∫ T

0

[
(1−mk,δ)α′mk,δ(V

k,δ)−mk,δβ′mk,δ(V
k,δ)
]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
Rk,δW k,δ dt.

Multiplying the second equation from (23) by Mk,δ, and integrating in the interval [0, T ]

we gather that

∫ T

0

(
Ṗ k,δMk,δ −

[
αmk,δ(V

k,δ) + βmk,δ(V
k,δ)
]
P k,δMk,δ

)
dt =

−
∫ T

0

(
3GNa

(
mk,δ

)2 (
hk,δ
)

(V k,δ − ENa)Uk,δMk,δ
)
dt.

Integrating by parts the first term from the previous equation, and initial (see (36),

Mk,δ(0) = 0) and final (see (23), P k,δ(T ) = 0) conditions, we have

∫ T

0

(
Ṁk,δ +

[
αmk,δ(V

k,δ) + βmk,δ(V
k,δ)
]
Mk,δ

)
P k,δ dt =

∫ T

0

3GNa

(
mk,δ

)2 (
hk,δ
)

(V k,δ − ENa)Uk,δMk,δ dt,
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Then, from the previous equation and the second equation from ODE (36), we have

(41)

∫ T

0

3GNa

(
mk,δ

)2 (
hk,δ
)

(V k,δ − ENa)Uk,δMk,δ dt =

∫ T

0

[
(1−mk,δ)α′mk,δ(V

k,δ)−mk,δβ′mk,δ(V
k,δ)
]
W k,δP k,δ dt

+

∫ T

0

(1−mk,δ)θαmP
k,δdt−

∫ T

0

mk,δθβmP
k,δdt.

Multiplying the third equation from (23) by Nk,δ, and integrating in the interval [0, T ] we

gather that

∫ T

0

Q̇k,δNk,δ −
[
αnk,δ(V

k,δ) + βnk,δ(V
k,δ)
]
Qk,δNk,δ dt =

−
∫ T

0

4GK

(
nk,δ
)3

(V k,δ − EK)Uk,δNk,δ dt.

Integrating for parts the first term of the previous equation, and initial (see (36), Nk,δ(0) =

0) and final (see (23), Qk,δ(T ) = 0) conditions, we have

∫ T

0

(
Ṅk,δ +

[
αnk,δ(V

k,δ) + βnk,δ(V
k,δ)
]
Nk,δ

)
Qk,δ dt =

∫ T

0

4GK

(
nk,δ
)3

(V k,δ − EK)Uk,δ dt

Then, from the previous equation and the third equation from ODE (36), we gather

(42)

∫ T

0

4GK

(
nk,δ
)3

(V k,δ − EK)Uk,δ dt =

∫ T

0

[
(1− nk,δ)α′nk,δ(V k,δ)− nk,δβ′nk,δ(V k,δ)

]
WQk,δ dt.

+

∫ T

0

(1− nk,δ)θαnQk,δdt−
∫ T

0

nk,δθβnQ
k,δdt.

Multiplying the fourth equation from (23) by Hk,δ, and integrating in the interval [0, T ]

we gather that

∫ T

0

Ṙk,δHk,δ −
[
αhk,δ(V

k,δ) + βhk,δ(V
k,δ)
]
Rk,δHk,δ dt =

−
∫ T

0

Gk,δ
Na

(
mk,δ

)3
(V k,δ − ENa)Uk,δ dt
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Integrating for parts the first term of the previous equation, and using the initial conditions

Hk,δ(0) = 0 and Rk,δ(0) = 0 we have,

∫ T

0

(
Ḣk,δ +

[
αhk,δ(V

k,δ) + βhk,δ(V
k,δ)
]
Hk,δ

)
Rk,δ dt =

∫ T

0

GNa

(
mk,δ

)3
(V k,δ − ENa)Uk,δ dt,

Then, from the previous equation and the fourth equation from ODE (36), we have

(43)

∫ T

0

GNa

(
mk,δ

)3
(V k,δ − ENa)Uk,δ dt =

∫ T

0

[
(1− hk,δ)α′hk,δ(V k,δ)− hk,δβ′hk,δ(V k,δ)

]
W k,δRk,δ dt.

+

∫ T

0

(1− hk,δ)θαhRk,δdt−
∫ T

0

hk,δθβhR
k,δdt.

Substituting the equations (41), (42), and (43) in the equation (40), leads to

(44) Φ =

∫ T

0

(1−mk,δ)θαmP
k,δdt−

∫ T

0

mk,δθβmP
k,δdt

+

∫ T

0

(1− nk,δ)θαnQk,δdt−
∫ T

0

nk,δθβnQ
k,δdt

+

∫ T

0

(1− hk,δ)θαhRk,δdt−
∫ T

0

hk,δθβhR
k,δdt.

Replacing equations (19), (20) and (21) into (44) we gather that

Φ =

∫ T

0

Xk,δ
αmθαmdt+

∫ T

0

Xk,δ
βm
θβmdt+

∫ T

0

Xk,δ
αn θαndt+

∫ T

0

Xk,δ
βn
θβndt

+

∫ T

0

Xk,δ
αh
θαhdt+

∫ T

0

Xk,δ
βh
θβhdt.

Then from previous equation, we have

(45) Φ =

〈(
Xk,δ
αm , X

k,δ
βm
, Xk,δ

αn , X
k,δ
βn
, Xk,δ

αh
, Xk,δ

βh

)
,θ

〉

(L2[0,T ])6
.

From (37) and (45)

〈αk+1,δ −αk,δ,θ 〉(L2[0,T ])6

wk,δ
=

〈(
Xk,δ
αm , X

k,δ
βm
, Xk,δ

αn , X
k,δ
βn
, Xk,δ

αh
, Xk,δ

βh

)
,θ

〉

(L2[0,T ])6
.
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Since θ ∈ (L2[0, T ])
6

is arbitrary, we have (18) �

Appendix B. Proof of Theorem 2.2

In what follows we prove Theorem 2.2.

Proof. As in Subsection 2.2, the operator F is defined in (10), H = L2[0, T ] and x = g.

Evaluating gk,δ in F , we have F (gk,δ) = V k,δ, where V k,δ and υk,δ solve ODE (27). Let

θ ∈ L2[0, T ] and λ ∈ R, then F (gk,δ + λθ) = V k,δ
λ , where V k,δ

λ and υk,δλ solve

(46)





V̇ k,δ
λ = Iext + gk,δ(V k,δ

λ ) + λθ − υk,δλ ,

υ̇k,δλ = bV k,δ
λ − cυk,δλ ,

V k,δ
λ (0) = V0; υk,δλ (0) = υ0.

The Gateaux derivative of F at gk,δ in the direction θ is given by

(47) W k,δ = F ′(gk,δ)(θ) = lim
λ→0

F (gk,δ + λθ)− F (gk,δ)

λ
.

Also, we denote the following limit

(48) Rk,δ = lim
λ→0

υk,δλ − υk,δ
λ

,

where Rk,δ is the Gateaux derivative of υk,δ.

Considering the difference between ODEs (46) and (27), dividing by λ and taking the limit

λ→ 0, we have the following ODE

(49)





Ẇ k,δ − gk,δ ′(V k,δ)W k,δ = θ −Rk,δ,

Ṙk,δ + cRk,δ = bW k,δ,

W k,δ(0) = 0; Rk,δ(0) = 0.

This last equation is yet another system of coupled nonlinear differential equations, depend-

ing on the parameter θ, representing an arbitrary function in L2[0, T ].

From Landweber iteration (24) and θ ∈ L2[0, T ] arbitrary, we have

〈gk+1,δ − gk,δ,θ 〉L2[0,T ] = wk,δ〈F ′(gk,δ)∗(V δ − F (gk,δ)),θ 〉L2[0,T ],

= wk,δ〈F ′(gk,δ)∗(V δ − V k,δ),θ 〉L2[0,T ].

By the definition of adjoint operator

〈gk+1,δ − gk,δ,θ 〉L2[0,T ] = wk,δ〈V δ − V k,δ, F ′(xk)(θ) 〉L2[0,T ],

Combining the previous equation and (47) gives

〈gk+1,δ − gk,δ,θ 〉L2[0,T ] = wk,δ〈V δ − V k,δ,W k,δ〉L2[0,T ].
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We denote the last equality by Φ, then

(50) Φ =
〈gk+1,δ − gk,δ,θ 〉L2[0,T ]

wk,δ
= 〈V δ − V k,δ,W k,δ〉L2[0,T ].

By the definition of internal product in L2[0, T ]

Φ =

∫ T

0

(V δ − V k,δ)W k,δdt.

From the previous equation and the first equality from ODE (28), we obtain

(51) Φ =

∫ T

0

(
U̇k,δW k,δ + g′(V k,δ)Uk,δW k,δ − bP k,δW k,δ

)
dt.

Integrating by parts the first term from equation (51), and from initial (see (49), W k,δ(0) =

0) and final (see (28), Uk,δ(T ) = 0) conditions, we obtain

(52)

∫ T

0

U̇k,δW k,δdt = −
∫ T

0

Ẇ k,δUk,δdt.

Replacing equation (52) into (51), we have

Φ = −
∫ T

0

(
Ẇ k,δ − g′(V k,δ)W k,δ

)
Uk,δdt−

∫ T

0

bP k,δW k,δdt.

Replacing, the first equality from ODE (49), in the first integral from the previous equa-

tion, we gather

(53) Φ = −
∫ T

0

θUk,δdt+

∫ T

0

Rk,δUk,δdt−
∫ T

0

bP k,δW k,δdt.

Multiplying the second equation from (28) by Rk,δ, and integrating in the interval [0, T ]

we gather that ∫ T

0

Ṗ k,δRk,δdt−
∫ T

0

cP k,δRk,δdt = −
∫ T

0

Uk,δRk,δdt.

Integrating by parts the first term from the previous equation, and from initial (see (49),

Mk,δ(0) = 0) and final (see (28), P k,δ(T ) = 0) conditions, we obtain
∫ T

0

(
Ṙk,δ + cRk,δ

)
P k,δdt =

∫ T

0

Uk,δRk,δdt.

Then, from the previous equation and the second equation from ODE (49)

(54)

∫ T

0

bP k,δW k,δdt =

∫ T

0

Uk,δRk,δdt.

Substituting equation (54) into (53), we gather

Φ = −
∫ T

0

θUk,δdt = −
〈
Uk,δ,θ

〉
L2[0,T ]

.
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Combining the previous equation and (50), we obtain
〈
gk+1,δ − gk,δ,θ

〉
L2[0,T ]

wk,δ
= −

〈
Uk,δ,θ

〉
L2[0,T ]

.

Since θ ∈ L2[0, T ] is arbitrary, we have (26). �
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DISCRETE INVERSE PROBLEM IN THE HODGKIN AND HUXLEY MODEL

Jemy Alex Mandujano Valle - jhimyunac@gmail.com
National Laboratory of Scientific Computation (LNCC), Brazil.

Abstract. The Hodgkin–Huxley (H-H) model is a system of ordinary differential equations
(ODE) that describes the action potential behavior in the squid neuron. In this work, we pro-
pose the Landweber iteration to solve the inverse problem, that is, the estimation of maximum
conductances in the discrete H-H model. To obtain the discrete model, we apply the finite
differences method in the continuous H-H model.

Keywords: Hodgkin and Huxley model, Finite differences method, Inverse problems, Landwe-
ber Iteration.

1. INTRODUCTION

In 1952, a mathematical model was developed to describe the initiation and propagation of
an action potential in a neuron. Thenceforth, the then called Hodgkin-Huxley model, named
after its creators, has been used vastly in the world of physiology. To obtain this model, the
authors used two experimental techniques known as space clamp and voltage clamp, achieving
significant progress in the understanding of nerve cells. However, while some variables, such as
the membrane potential, are easily measured by voltage-clamp experiments, many parameters
are obtained through a tedious combination of experiments and data tuning.

Some recent works (Sun et al. 2011 and Fang et al. 2016) estimate maximum conductances
in the H-H model. Both proposed an adaptive observer to determine unknown parameters.
However, the observer proposed by Fang et al. (2016) is less conservative than the observer
proposed by Sun et al. (2011). Buhry at al. (2011) and (2012) estimate the constant parameters
of an ion channel (H-H model) using the differential evolution algorithm. Finally, Roudolph et
al. (2004) and Pospischil et al. (2007), estimate synaptic conductances, given the potential of
the membrane, on the passive membrane equation.

Thereby, the goal of the present paper is to apply the Nonlinear Landweber method to solve
the inverse problem of recovering the maximum conductances in the H-H model. Madureira et
al. (2017), Valle et al. (2017) and Valle et al. (2018), also used the same method but applied to
a different problem (passive cable equation).

We give a brief overview of the paper. In Section 2, we describe the continuous and discrete
H-H models. In Section 3, we present the inverse problem for the discrete case and compute the
adjoint operator of the Landweber iteration. Section 4, we provide the related numerical results.
Finally, we discuss our findings and show some conclusions in Section 5.
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2. THE HODGKIN-HUXLEY MATHEMATICAL MODEL

The H-H model with initial conditions consists of the following ODE




C
dV

dt
= Iext −GNam

3h(V − ENa)−GKn
4(V − EK)−GL(V − EL); t ∈ (0, T ]

dX
dt

= (1−X )αX (V )−XβX (V ); X = m,n, h; t ∈ (0, T ]

V (0) = V0, m(0) = m0, n(0) = n0, h(0) = h0,

(1)

where C is the membrane capacitance, V is the membrane potential, dV/dt is the rate of change
in membrane potential, Iext is the membrane external current. The constants GNa, GK and GL

are the maximal conductances for Na+, K+ and leakage channels respectively; ENa, EK ,
EL are the Nernst equilibrium potentials. The functions n, m and h represent the so-called
activation term of the potassium channel and the activation and inactivation terms of the sodium
channel, respectively. The terms V0, m0, n0 and h0 are the initial conditions for V , m, n and h,
respectively. Also, the functions αX and βX (X = m,n, h) are written as:

αm = (25−V )/10
exp((25−V )/10)−1 ; αh = 0.07 exp(−V/20); αn = (10−V )/100

exp((10−V )/10)−1 ;

βm = 4 exp(−V/18); βh = 1
exp((30−V )/10)+1

; βn = 0.125 exp(−V/80).

We partition the domain in time ([0, T ]) using a mesh t1, t2, · · · , tnt. We assume a uniform
partition, so the difference between two consecutive points in time will be ∆t. The point Ui
represents the numerical approximation of U(ti). Here ti = (i − 1)∆t for i = 1, · · · , nt and
∆t = T/(nt − 1). Applying finite differences (Forward Euler Method) in equation (1), for
i = 1, · · · , nt− 1, we have the following Hodgkin and Huxley discrete model,





C
Vi+1 − Vi

∆t
= Iext −GNami

3hi(Vi − ENa)−GKn
4
i (Vi − EK)−GL(Vi − EL);

Xi+1 −Xi
∆t

= (1−Xi)αXi
(Vi)−XiβXi

(Vi); X = m,n, h;

V1 = V0, m1 = m0, n1 = n0, h1 = h0.

(2)

Functions αXi
and βXi

satisfy the following equations:

αmi
= (25−Vi)/10

exp((25−Vi)/10)−1 ; αhi = 0.07 exp(−Vi/20); αni
= (10−Vi)/100

exp((10−Vi)/10)−1 ;

βmi
= 4 exp(−Vi/18); βhi = 1

exp((30−Vi)/10)+1
; βni

= 0.125 exp(−Vi/80).

We denoteV = (V1, · · · , Vnt),m = (m1, · · · ,mnt),n = (n1, · · · , nnt), h = (h1, · · · , hnt)
andG = (GNa, GK , GL).

The objective of this work is to estimate G, from (2), given the potential membrane mea-
surement.

3. DISCRETE INVERSE PROBLEM

Consider the nonlinear operator F : R3 → Rnt, defined by

F (G) = V , (3)

EAMC 2019
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where V solves (2). In practical terms, the data V are obtained by measurements. We denote
such measurements by V δ, where the noise level δ is assumed to be known and satisfies

‖V − V δ‖Rnt ≤ δ. (4)

In this paper, we admit the existence of the inverse operator F−1, but not its stability. To
control instability, we use an iterative method of regularization (Landweber iteration).

Here, for x = (x1, · · · , xnt) and y = (y1, · · · , ynt), the inner product and the norm are
defined by the following equations,

〈x, y〉 = ∆t3
nt∑

i=1

xiyi and ‖x‖ =

√√√√∆t3
nt∑

i=1

|xi|2. (5)

From the system of equations (2), we consider the inverse problem of finding an approxi-
mation forG, given the noisy data V δ.

Given the initial guessG1,δ, the Landweber approximation (Hanke et al. 1995, Bende et al.
1996 and Neubauer 2000), to estimateG, is defined as following:

Gk+1,δ = Gk,δ + F ′(Gk,δ)∗.(V δ − F (Gk,δ)), (6)

whereGk,δ = (Gk,δ
Na, G

k,δ
K , Gk,δ

L ) and F ′(·)∗(·) is adjoint of the directional derivative.
The iteration (6) stops at the minimum k∗ = k(δ,V δ), such that, for a given τ > 2,

‖V δ − F (Gk∗,δ)‖Rnt ≤ τδ. (7)

It is possible to show that, under certain conditions,Gk∗,δ converges to a solution to F (G) =
V as δ → 0 (see [7], Theorem 2.6).

In the next subsection, we calculate, from (6), the adjoint of the directional derivative.

3.1 The adjoint operator

In Theorem 3.1.1, we calculate the operator F ′(·)∗.(·) from Landweber iteration (6). Then,
from Theorem 3.1.1 and algorithm (6), we have the following iteration





Gk+1,δ
Na = Gk,δ

Na + ∆t3
nt∑

i=1

(
mk,δ
i

)3
hk,δi (V k,δ

i − ENa)Uk,δ
i ,

Gk+1,δ
K = Gk,δ

K + ∆t3
nt∑

i=1

(
nk,δi

)4
(V k,δ

i − EK)Uk,δ
i ,

Gk+1,δ
L = Gk,δ

L + ∆t3
nt∑

i=1

(V k,δ
i − EL)Uk,δ

i ,

(8)

where V k,δ, mk,δ, nk,δ, hk,δ solve (2), replacing G by Gk,δ. Also, Uk,δ
i solves (13), replacing

G byGk,δ and V by V k,δ.
In this work, to obtain an approximation ofG, we used iteration (8).

EAMC 2019
Anais do XII Encontro Acadêmico de Modelagem Computacional.



Discrete Inverse Problem in the Hodgkin and Huxley Model.

Theorem 3.1.1. Consider the nonlinear operator F defined in (3), then

F ′ (G)∗ .
(
V δ − F (G)

)
=

∆t3

(
nt∑

i=1

m3
ihi(Vi − ENa)Ui,

nt∑

i=1

n4
i (Vi − EK)Ui,

nt∑

i=1

(Vi − EL)Ui

)
.

Proof. EvaluatingG in the operator F and from (2) we have V ,m, n and h.
Let the vector θ = (θNa, θK , θL) ∈ R3 and λ ∈ R, then evaluating G + λθ in the operator

F , we have F (G+ λθ) = V λ, where V λ,mλ, nλ and hλ solve




C
V λ
i+1 − V λ

i

∆t
= Iext − (GNa + λθNa)

(
mλ
i

)3(
hλi
) (
V λ
i − ENa

)

− (GK + λθK)
(
nλi
)4 (

V λ
i − EK

)
− (GL + λθL)

(
V λ
i − EL

)
,

Xi+1 −Xi
∆t

= (1−Xi)αXi
(Vi)−XiβXi

(Vi); X = mλ, nλ, hλ,

V λ
1 (0) = V0; mλ

1(0) = m0; nλ1(0) = n0; nλ1(0) = n0.

(9)

We denote W = (W1, · · · ,Wnt), M = (M1, · · · ,Mnt), N = (N1, · · · , Nnt) and H =
(H1, · · · , Hnt). The directional derivative of F atG in the direction θ is given by

W = F ′(G).(θ) = lim
λ→0

F (G+ λθ)− F (G)

λ
= 〈∇F,θ〉 . (10)

Also, we denote the following limits

M = lim
λ→0

mλ −m
λ

, N = lim
λ→0

nλ − n
λ

, H = lim
λ→0

hλ − h
λ

, (11)

whereM ,N andH are the directional derivatives ofm, n and h, respectively.
Considering the difference between (2) and (9), dividing by λ and taking the limit λ → 0,

we have the following equation




C
Wi+1 −Wi

∆t
+
(
GNam

3
ihi +GKn

4
i +GL

)
Wi = −3GNam

2
iMihi(Vi − ENa)

−GNam
3
iHi(Vi − ENa)− 4GKn

3
iNi(Vi − EK)

−θNam3
ihi(Vi − ENa)− θKn4

i (Vi − EK)− θL(Vi − EL),

Yi+1 − Yi
∆t

+ [αXi
(Vi) + βXi

(Vi)]Yi = [(1−Xi)α′Xi
(Vi)−Xiβ′Xi

(Vi)]Wi;

(X ,Y) = (m,M), (n,N), (h,H),

W1 = 0; M1 = 0; ; N1 = 0; H1 = 0.

(12)

This last equation is another system of coupled nonlinear differential equations, depending
on the parameter θ = (θNa, θK , θL). Note that the variable θ represents any point in space R3.
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We define the following system of equations




C
Ui − Ui−1

∆t
−
(
GNam

3
ihi +GKn

4
i +GL

)
Ui

−[(1−mi)α
′
mi

(Vi)−miβ
′
mi

(Vi)]Pi

−[(1− ni)α′ni
(Vi)− niβ′ni

(Vi)]Qi

−[(1− hi)α′hi(Vi)− hiβ′hi(Vi)]Ri = V δ
i − Vi

Pi − Pi−1
∆t

− [αmi
(Vi) + βmi

(Vi)]Pi = −3GNam
2
ihi(Vi − ENa)Ui

Qi −Qi−1
∆t

− [αni
(Vi) + βni

(Vi)]Qi = −4GKn
3
i (Vi − EK)Ui

Ri −Ri−1
∆t

− [αhi(Vi) + βhi(Vi)]Ri = −GNam
3
i (Vi − ENa)Ui

Unt = 0; Pnt = 0; Qnt = 0; Rnt = 0.

(13)

We denote U = (U1, · · · , Unt), P = (P1, · · · , Pnt), Q = (Q1, · · · , Qnt) and R =
(R1, · · · , Rnt).

By the definition of adjoint operator, we have
〈
F ′(G)∗

(
V δ − F (G)

)
,θ
〉
R3 =

〈
V δ − F (G) , F ′(G). (θ)

〉
Rnt .

Combining the previous equation and (10) gives
〈
F ′(G)∗

(
V δ − F (G)

)
,θ
〉
R3 =

〈
V δ − F (G) , W

〉
Rnt .

By the definition of inner product (5), we have

〈
F ′(G)∗

(
V δ − F (G)

)
,θ
〉
R3 = ∆t3

nt∑

i=1

(
V δ
i − Vi

)
Wi.

We denote the last equality by Φ, then

Φ =
1

∆t3
〈
F ′(G)∗

(
V δ − F (G)

)
,θ
〉
R3 =

nt∑

i=1

(
V δ
i − Vi

)
Wi. (14)

From the previous equation and the first equality from (13), we obtain the following expres-
sion

Φ =
nt∑

i=1

C
Ui − Ui−1

∆t
Wi −

nt∑

i

(
GNam

3
ihi +GKn

4
i +GL

)
UiWi

−
nt∑

i=1

[(1−mi)α
′
mi

(Vi)−miβmi
(Vi)]Pi −

nt∑

i=1

[(1− ni)α′ni
(Vi)− niβ′ni

(Vi)]Qi

−
nt∑

i=1

[(1 − h)α′hi(Vi) − hβ′hi(Vi)]Ri. (15)
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From equations (12) and (13), the vector (W1, Unt) is equal to (0, 0). Then, we obtain

nt∑

i=1

C
Ui − Ui−1

∆t
Wi = −

nt∑

i=1

C
Wi+1 −Wi

∆t
Ui. (16)

Substituting (16) into (15), we have the following equality

Φ = −
nt∑

i=1

(
C
Wi+1 −Wi

∆t
+
(
GNam

3
ihi +GKn

4
i +GL

)
Wi

)
Ui

−
nt∑

i=1

[(1−mi)α
′
mi

(Vi)−miβmi
(Vi)]PiWi−

nt∑

i=1

[(1−ni)α′ni
(Vi)−niβ′ni

(Vi)]QiWi

−
nt∑

i=1

[(1 − h)α′hi(Vi) − hβ′hi(Vi)]RiWi.

Replacing the first equality from (12) in the previous equation, leads to

Φ =
nt∑

i=1

3GNam
2
iMihi(Vi − ENa)Ui +

nt∑

i=1

GNam
3
iHi(Vi − ENa)Ui

+
nt∑

i=1

4GKn
3
iNi(Vi − EK)Ui +

nt∑

i=1

θNam
3
ihi(Vi − ENa)Ui

+
nt∑

i=1

θKn
4
i (Vi − EK)Ui +

nt∑

i=1

θL(Vi − EL)Ui

−
nt∑

i=1

[(1−mi)α
′
mi

(Vi)−miβmi
(Vi)]PiWi −

nt∑

i=1

[(1− ni)α′ni
(Vi)− niβ′ni

(Vi)]QiWi

−
nt∑

i=1

[(1 − h)α′hi(Vi) − hβ′hi(Vi)]RiWi. (17)

Let (Xi,Yi,Zi) ∈ {(mi,Mi, Pi), (ni, Ni, Qi), (hi, Hi, Ri)}. Then, multiplying the second
equation from (12) by Zi,

nt∑

i=1

(Yi+1 − Yi
∆t

+ [αXi
(Vi) + βXi

(Vi)]Yi
)
Zi

=
nt∑

i=1

[(1 − Xi)α′Xi
(Vi) − Xiβ′Xi

(Vi)]WiZi. (18)

From equations (12) and (13), the vector (Y1,Znt) ∈ {(M1, Pnt), (N1, Qnt), (H1, Rnt)}
equals (0, 0). Then, we have

nt∑

i=1

Yi+1 − Yi
∆t

Zi = −
nt∑

i=1

Zi −Zi−1
∆t

Yi. (19)
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Replacing equation (19) in (18), we obtain

−
nt∑

i=1

(Zi −Zi−1
∆t

− [αXi
(Vi) + βXi

(Vi)]Zi
)
Xi =

nt∑

i=1

[(1 − Xi)α′Xi
(Vi) − Xiβ′Xi

(Vi)]WiZi. (20)

For (Xi,Yi,Zi) = (mi,Mi, Pi) into (20), leads to

−
nt∑

i=1

(
Pi − Pi−1

∆t
− [αmi

(Vi) + βmi
(Vi)]Pi

)
Mi =

nt∑

i=1

[(1 −mi)α
′
mi

(Vi) −miβ
′
mi

(Vi)]WiPi. (21)

Substituting the second equation from (13) into (21),

nt∑

i=1

3GNam
2
ihi(Vi − ENa)UiMi =

nt∑

i=1

[(1−mi)α
′
mi

(Vi)−miβ
′
mi

(Vi)]WiPi. (22)

For (Xi,Yi,Zi) = (ni, Ni, Qi) into (20), we have

−
nt∑

i=1

(
Qi −Qi−1

∆t
− [αni

(Vi) + βni
(Vi)]Qi

)
Ni =

nt∑

i=1

[(1 − ni)α′ni
(Vi) − niβ′ni

(Vi)]WiQi. (23)

Substituting the third equation from (13) into (23),

nt∑

i=1

4GKn
3
i (Vi − EK)UiNi =

nt∑

i=1

[(1− ni)α′ni
(Vi)− niβ′ni

(Vi)]WiQi. (24)

For (Xi,Yi,Zi) = (hi, Hi, Ri) into (20), we obtain

−
nt∑

i=1

(
Ri −Ri−1

∆t
− [αhi(Vi) + βhi(Vi)]Ri

)
Hi =

nt∑

i=1

[(1 − hi)α′hi(Vi) − hiβ′hi(Vi)]WiRi. (25)

Substituting the fourth equation from (13) into (25),

nt∑

i=1

GNam
3
i (Vi − ENa)UiHi =

nt∑

i=1

[(1− hi)α′hi(Vi)− hiβ′hi(Vi)]WiRi. (26)
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Substituting equations (22), (24) and (26) in (17), we have

Φ =
nt∑

i=1

θNam
3
ihi(Vi − ENa)Ui +

nt∑

i=1

θKn
4
i (Vi − EK)Ui +

nt∑

i=1

θL(Vi − EL)Ui.

By the definition of inner product

Φ =

〈(
nt∑

i=1

m3
ihi(Vi − ENa)Ui,

nt∑

i=1

n4
i (Vi − EK)Ui,

nt∑

i=1

(Vi − EL)Ui

)
,θ

〉

R3

. (27)

From equations (14) and (27), since θ ∈ R3 is arbitrary, we obtain

F ′(G)∗
(
V δ − F (G)

)
=

∆t3

(
nt∑

i=1

m3
ihi(Vi − ENa)Ui,

nt∑

i=1

n4
i (Vi − EK)Ui,

nt∑

i=1

(Vi − EL)Ui

)
.

4. NUMERICAL RESULTS

In this section, we show numerical results for the discrete inverse problem using the Landwe-
ber iteration. The parameters for the H-H model (2) are: ∆t = 0.01, nt = 1000, C =
1 [µF/cm2], Iext = 10 [µA/cm2], ENa = 50 [mV ], EK = −77 [mV ], EL = −54.387 [mV ]
V0 = −15 [mV ], m0 = 0.6, n0 = 0.4 and h0 = 0.4. The goal of this example is to find
GNa = 120 mS/cm2, GK = 36 mS/cm2 and GL = 0.3 mS/cm3.

To compare the results obtained, first we calculate V from (2) givenG = (120, 36, 0.3). We
obtain V δ, for δ = 10−3, from the following equation

V δ = V + randδV ,

where randδ generates uniformly distributed numbers in the interval [−δ, δ]. Now, we consider
V andG unknown.

To obtain G we use (8), given the initial guess G1,δ = (0, 0, 0). For τ = 4 in the stopping
criterion (7), the algorithm stops when k∗ = 853799.

Figures 1-A, 1-B and 1-C show estimates for the maximum sodium, potassium, and leakage
conductances, respectively.

Figure 2 shows the relative error between the actual and estimated values for the algorithm
iterations. The relative error ofG is defined as

ErrorGk =
‖G−Gk,δ‖R3

‖G‖R3

× 100%, k = 1, · · · , 853799. (28)
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Figure 1- Estimation of the conductances GNa (Subplot-A), GK (Subplot-B) and GL (Subplot-C).
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Figure 2- The relative error defined in (28).

5. CONCLUSIONS

In this work, we discretized the H-H model using the explicit Euler method. We considered
the inverse problem of determining maximal conductances in the discrete model. To obtain the
unknown parameters, we used the Landweber iteration. An essential contribution of the present
work is the calculation of the adjoint operator of the Landweber iteration.

Compared to works Sun et al. (2011) and Fang et al. 2016., our approach has the advantage
of allowing recovering the unknown parameters from noisy data. The computational results
show that the method obtains a reasonable estimate for the parameters. It is important to
notice that this work considers only computational data. In future studies, we plan to consider
biological data as well.
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Abstract. The neural cable model is a second order, parabolic, partial differential equation
(PDE) that describes the evolution of voltage in the dendrite of a neuron. In this paper, we
solve the inverse problem of recovering a single spatially distributed conductance parameter
in a discrete passive cable equation through an iterative regularization method. To obtain
the discrete model, we apply finite differences to the continuous model. We provide several
numerical results showing that the iteration can estimate the correct parameter.

1. Introduction
The cable equation is a mathematical model derived from a circuit model of the membrane
and its intracellular and extracellular space to provide a quantitative description of current flow
and voltage change both within and between neurons, allowing a quantitative and qualitative
understanding of how neurons function [1].

In this paper, we work with the passive cable equation; that is, the conductance is independent
of the membrane potential.

From neuronal cable theory [2, 3], the membrane potential V (t, x) satisfies

1

RI +Re
Vxx(t, x) = CMVt(t, x) +G(x)(V (t, x)− E), (1)

where the potential V is in millivolt [mV ]; the internal and external neuronal resistance RI , RE
are in ohm [Ω]; CM represents membrane specific capacitance in farad per square centimeter
[F/cm2]; the membrane specif conductance G is in siemen per square centimeter [S/cm2]; the
Nerst potential E is in millivolt [mV ]. We assume that the constants RI , RE , CM and E are
known constants.

Consider the domain for (1) being 0 < t < T and 0 < x < L, where t is in millisecond (ms)
and x is in centimeters (cm). To equation (1), the boundary and initial conditions of interest
are

Vx(t, 0) = p(t) , Vx(t, L) = q(t), and V (0, x) = r(x). (2)

This work, we assume that the functions p, q and r are known.
Many of the works that estimate the conductance consider that this unknown parameter is

a constant. There is not much work on spatially distributed conductance estimation.
The following papers estimate the conductance with spatial distribution: Tadi et al. [4] used

an iterative method, the authors Bell and Craciun [5] presented a non-optimization approach,



Cox [6] applied the adjoint method, and Avdonin and Bell [7] used the boundary control
approach. They differ considerably from our procedure.

2. Statement of the discrete inverse problem
The discretization of the temporal domain [0, T] is represented by a finite number of mesh points

0 = t1 < t2 < · · · < tnt−1 < tnt = T.

Similarly, the discretization of the spatial domain [0, L] is replaced by a set of mesh points

0 = x1 < x2 < · · · < xnx−1 < tnx = L.

For uniformly distributed mesh points we can introduce the constant mesh spacings ∆t and
∆x. We have that

tn = (n− 1)∆t, n = 1, 2, · · · , nt, xj = (j − 1)∆x, j = 1, 2, · · · , nx.

We also have that ∆t = T/(nt − 1) and ∆x = L/(nx − 1) [8]. Applying finite differences
(Forward Euler method ) in equations (1) and (2), for n = 1, · · ·nt − 1 and j = 1, · · · , nx, we
have the following discrete cable model





1

RI +RE

V n
j−1 − 2V n

j + V n
j+1

∆x2
= CM

V n+1
j − V n

j

∆t
+Gj

(
V n
j − E

)
;

V 1
j = rj ; j = 1, 2, · · · , nx,
V n
1 − V n

0

∆x
= pn,

V n
nx+1 − V n

nx

∆x
= qn; n = 1, 2, · · · , nt.

(3)

The goal of this work is to estimate Gj , from (3), given the measurement at the boundary of
the membrane potential.

For simplicity we denote

a =
∆t

(RI +RE)∆x2CM
, b = −2a+ 1 and gj =

Gj∆t

CM
. (4)

Then, from (3) and (4) we have





V n+1
j = aV n

j−1 + bV n
j + aV n

j+1 − gj
(
V n
j − E

)
;

V 1
j = rj ; j = 1, 2, · · · , nx,

V n
0 = V n

1 −∆xpn, V n
nx+1 = ∆xqn + V n

nx; n = 1, 2, · · · , nt.

(5)

Here

g = (g1, · · · , gnx) ∈ Rnx , V =



V 1
1 V 1

nx
...

...
V nt
1 V nt

nx



Rnt×2

and W =



W 1

1 W 1
nx

...
...

Wnt
1 Wnt

nx



Rnt×2

,

the inner product and the norm are defined by the following equations

〈V ,W 〉Rnt×2 =
nt∑

n=1

V n
1 W

n
1 +

nt∑

n=1

V n
nxW

n
nx and ‖V ‖Rnt×2 =

√
〈V ,V 〉Rnt×2



Let F : Rnt → Rnt×2 be a non-linear operator defined by

F (g) = V . (6)

The inverse problem is to determinate g given V . We are specially interested in the situation
where the data is not exactly known, i.e., we have only an approximation V δ of the exact data,
satisfying

‖V − V δ‖Rnt×2 ≤ δ,
of the which we assume to know the noise level δ > 0.

Then, our goal is to estimate g, given the noisy data V δ. In this work, we assume that for
the given exact data V there exists a unique solution g∗ ∈ Rnx to (6).

To solve the problem, we use an iterative regularization method (minimal error iteration).
Given the initial guess g1,δ, the minimal error iteration for g is defined by the sequence

gk+1,δ = gk,δ + wk,δF ′(gk,δ)∗
(
V δ − F (gk,δ)

)
(7)

where F ′(gk,δ) is the directional-derivative of F in gk,δ and F ′(gk,δ)∗ is its adjoint, and

wk,δ =
‖V δ − F (gk,δ)‖2Rnt×2

‖F ′(gk,δ)∗
(
V δ − F (gk,δ)

)
‖2Rnx

.

In the case of noisy data, the iteration procedure has to be combined with a stopping rule
in order to act as a regularization method. We will employ the discrepancy principle, i.e., the
iteration is stopped after k∗ = k(δ,V δ) steps with

‖V δ − F (gk∗,δ)‖Rnt×2 ≤ τδ < ‖V δ − F (gk,δ)‖Rnt×2 , 0 ≤ k < k∗, (8)

where τ > 1 is an appropriately chosen positive number ([9], [10]).
It is possible to show that, under certain conditions (we assume that is the case), gk∗,δ

converges to a solution of F (g) = V δ as δ → 0 (see [9], Theorem 3.22).
In the next subsection, we calculate, from (7), the adjoint of the directional derivative.

2.1. Compute of the operator adjoint of the directional derivative
From Theorem 2.1 and algorithm (7), we obtain the following iteration

gk+1,δ = gk,δ − wk,δ 1

a∆x

nt∑

n=1

((Vn1 − E)Un1 , (Vn2 − E)Un2 , · · · , (Vnnx − E)Unnx) . (9)

where Vnj solves (11), given gk,δ. Also, Unj solves (14), given gk,δ and Vnj . For iteration (9)

wk,δ =
‖V δ − F (gk,δ)‖2Rnt×2∥∥∥∥∥

1
a∆x

nt∑

n=1

((Vn1 − E)Un1 , (Vn2 − E)Un2 , · · · , (Vnnx − E)Unnx)

∥∥∥∥∥

2

Rnt×2

.

In this work, to obtain an approximation of g we used the iteration (9).
In the next theorem, we show how we calculate the directional derivative adjoint.



Theorem 2.1. Consider the nonlinear operator F defined in (6), then

F ′(gk,δ)∗.
(
V δ − F (gk,δ)

)
= − 1

a∆x

nt∑

n=1

((Vn1 − E)Un1 , (Vn2 − E)Un2 , · · · , (Vnnx − E)Unnx) .

Proof. Evaluating gk,δ in the operator F , we have F (gk,δ) = V k,δ, where
(
V n
j

)k,δ
= Vnj solves





Vn+1
j = aVnj−1 + bVnj + aVnj+1 − gk,δj

(
Vnj − E

)
;

V1j = rj ; j = 1, 2, · · · , nx,

Vn0 = Vn1 −∆xpn, Vnnx+1 = ∆xqn + Vnnx; n = 1, 2, · · · , nt.

(10)

We denote

W =



W 1

1 W 1
nx

...
...

Wnt
1 Wnt

nx



Rnt×2

.

Let the vector θ = (θ1, θ1, · · · , θnx) ∈ Rnx and λ ∈ R, then evaluating gk,δ + λθ in the

operator F , we have F (gk,δ + λθ) = V k,δ + λW k,δ, where
(
V n
j

)k,δ
+ λ
(
Wn
j

)k,δ
= Vλnj solves





Vλn+1
j = aVλnj−1 + bVλnj + aVλnj+1 −

(
gk,δj + λθj

)(
Vλnj − E

)
;

Vλ1j = rj ; j = 1, 2, · · · , nx,

Vλn0 = Vλn1 −∆x pn, Vλnnx+1 = ∆xqn + Vλnnx; n = 1, 2, · · · , nt.

(11)

The directional derivative of F at gk,δ in the direction θ is given by

W k,δ = F ′(gk,δ).(θ) = lim
λ→0

F (gk,δ + λθ)− F (gk,δ)

λ
. (12)

Considering the difference between (10) and (11), dividing by λ and taking limit λ → 0, we

have the equation (13), where
(
Wn
j

)k,δ
=Wn

j .





Wn+1
j = aWn

j−1 + bWn
j + aWn

j+1 − gk,δj Wj
n − θj

(
Vnj − E

)
;

W1
j = 0;

W1
n =Wn

0 , Wn
nx+1 =Wn

nx.

(13)

Note that the variable θj , from (13), represents any point in R.

We denote
(
Unj

)k,δ
= Unj . We define the following system of equations





Unj = aUn+1
j−1 + bUn+1

j + aUn+1
j+1 − g

k,δ
j Un+1

j ;

Untj = 0;

Un+1
0 = U1

1 + ∆x
(
V n+1
1

δ − Vn+1
nx

)
, Un+1

nx+1 = Un+1
nx + ∆x

(
V n+1
nx

δ − Vn+1
nx

)
.

(14)



By definition of adjoint operator, we have
〈
F ′(gk,δ)∗.

(
V δ − F (gk,δ)

)
,θ
〉
Rnx

=
〈
V δ − F (gk,δ) , F ′(gk,δ). (θ)

〉
Rnx

.

From the previous equation and from (12), we obtain
〈
F ′(gk,δ)∗.

(
V δ − F (gk,δ)

)
,θ
〉
Rnx

=
〈
V δ − V k,δ ,W k,δ

〉
Rnt×2

.

By definition of inner product, we have

〈
F ′(gk,δ)∗.

(
V δ − F (gk,δ)

)
,θ
〉
Rnx

=
nt∑

n=1

(
V n
1
δ − V n

1
k,δ
)
Wn

1 +
nt∑

n=1

(
V n
nx
δ − V n

nx
k,δ
)
Wn
nx. (15)

Multiplying the first equation from (14) byWn+1
j , and summing at points n = 0, 1, · · · , nt−1

and j = 1, 2, · · · , nx we gather

nt−1∑

n=0

nx∑

j=1

Unj Wn+1
j =

nt−1∑

n=0

nx∑

j=1

(
aUn+1

j−1 + bUn+1
j + aUn+1

j+1 − g
k,δ
j Un+1

j

)
Wn+1
j . (16)

nt−1∑

n=0

nx∑

j=1

Unj Wn+1
j =

nt∑

n=1

nx∑

j=1

Unj Wn+1
j . (17)

nt−1∑

n=0

nx∑

j=1

(
aUn+1

j−1 + aUn+1
j+1

)
Wn+1
j =

nt∑

n=1

nx∑

j=1

(
aWn

j−1 + aWn
j+1

)
Unj +

a∆x
nt∑

n=1

(
V n
1
δ − aV n

1
k,δ
)
Wn

1 + a∆x
nt∑

n=1

(
V n
nx
δ − aV n

nx
k,δ
)
Wn
nx. (18)

nt−1∑

n=0

nx∑

j=1

(
bUn+1

j − gk,δj Un+1
j

)
Wn+1
j =

nt∑

n=1

nx∑

j=1

(
bWn

j − gk,δj Wn
j

)
Unj . (19)

Replacing (17), (18) and (19) in (16), we have

nt∑

n=1

nx∑

j=1

Unj Wn+1
j =

nt∑

n=1

nx∑

j=1

(
aWn

j−1 + bWn
j + aWn

j+1 − gk,δj Wn
j

)
Un+1
j +

a∆x
nt∑

n=1

(
V n
1
δ − aV n

1
k,δ
)
Wn

1 + a∆x
nt∑

n=1

(
V n
nx
δ − V n

nx
k,δ
)
Wn
nx. (20)

Multiplying the first equation from (13) by Unj , and summing at points n = 1, 2, · · · , nt and
j = 1, 2, · · · , nx we gather

nt∑

n=1

nx∑

j=1

Wn+1
j Unj =

nt∑

n=1

nx∑

j=1

(
aWj−1n + bWj

n + aWj+1
n − gk,δj Wj

n
)
Unj

−
nt∑

n=1

nx∑

j=1

θj (Vjn − E)Unj . (21)



Replacing equation (21) in (20), we obtain

nt∑

n=1

(
V n
1
δ − aV n

1
k,δ
)
Wn

1 +
nt∑

n=1

(
V n
nx
δ − V n

nx
k,δ
)
Wn
nx = − 1

a∆x

nx∑

j=1

nt∑

n=1

θj(Vnj − E)Unj . (22)

Replacing the equation (22) in (15), we have

〈
F ′(gk,δ)∗.

(
Vδ − F (gk,δ)

)
,θ
〉
Rnx

= − 1

a∆x

nx∑

j=1

nt∑

n=1

θj(Vnj − E)Unj .

From the previous equation
〈
F ′(gk,δ)∗.

(
Vδ − F (gk,δ)

)
,θ
〉
Rnx

=
〈
− 1

a∆x

nt∑

n=1

((Vn1 − E)Un1 , (Vn2 − E)Un2 , · · · , (Vnnx − E)Unnx) ,θ

〉

Rnx

.

Since θ ∈ Rnx is arbitrary, we gather that the following equation holds:

F ′(gk,δ)∗.
(
Vδ − F (gk,δ)

)
= − 1

a∆x

nt∑

n=1

((Vn1 − E)Un1 , (Vn2 − E)Un2 , · · · , (Vnnx − E)Unnx) .

3. Numerical Results
In this section, we show numerical results for the inverse problem, in the discrete cable model,
using the minimal error iteration (9).

Consider equation (3), the parameters for discrete model are: ∆t = 5.0025 × 10−4 [ms],
∆x = 0.0345 [cm], RI + RE = 1 [Ω], CM = 1 [F/cm2], E = 0 [mV ], rj = 0 [mV ] for
j = 1, 2, · · · 30, pn = − exp(−(n − 1)∆t) [mV/cm] and qn = exp(−(n − 1)∆t) [mV/cm] for
n = 1, 2, · · · , 2000. The goal of this section is to estimate the discontinuous conductance

Gj = 1 j ∈ {1, 2, · · · , 10} ∪ {21, 22, · · · , 30},
Gj = 2 j ∈ {11, 12, · · · , 20}.

To compare the results, first we calculate V from (3) given G = (G1, G2, · · · , Gnx). We
obtain V δ, for δ = 3.8× 10−6, from the following equation

V δ = V +
randδ
‖V ‖Rnt×2

V ,

where

randδ =




(randδ)
1
1 (randδ)

1
nx

...
...

(randδ)
nt
1 (randδ)

nt
nx



Rnt×2

.

For j = 1, nx and n = 1, 2, · · · , nt, the uniformly distributed random variable (randδ)
n
j taking

values in the range [−δ, δ]. Now, we consider V and G unknown.
To estimate G we use (9), given G1,δ = (0, 0, · · · , 0) and V δ. We consider τ = 2.01, for the

stopping criterion (8).
In figure 1 shows the conductance estimation. The red line is the exact solution, and the blue

line is the approximation obtained at the iteration k∗ = 119374. The green line is the initial
guess of our iterative procedure.
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Figure 1. Estimation of the conductance G.

4. Conclusion
We have presented the minimal error method to estimate the conductance G in the discrete
cable model. An important contribution of the work is to calculate the adjoint operator of the
method. We computed this operator to optimize computational cost. The simulation results
demonstrate the effectiveness of our estimation method when the noise level is minimal.

In [5], approximate G when all points of the initial condition are nonzero, i.e. when V 1
j 6= 0

for all j = 1, 2, · · · , nx. In this work we obtain approximately G for any initial condition.
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