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ASYMPTOTICS OF THE POISSON PROBLEM IN DOMAINS WITH
CURVED ROUGH BOUNDARIES∗
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Abstract. Effective boundary conditions (wall laws) are commonly employed to approximate
PDEs in domains with rough boundaries, but it is neither easy to design such laws nor to estimate the
related approximation error. A two-scale asymptotic expansion based on a domain decomposition
result is used here to mitigate such difficulties, and as an application we consider the Poisson equation.
The proposed scheme considers rough curved boundaries and allows a complete asymptotic expansion
for the solution, highlighting the influence of the boundary curvature. The derivation and estimation
of high order effective conditions is a corollary of such development. Sharp estimates for first and
second order wall law approximations are considered for different Sobolev norms and show superior
convergence rates in the interior of the domain. A numerical test illustrates several of the results
obtained here.
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1. Introduction. In several applications, it is necessary to solve PDEs in do-
mains with boundaries that are rough. Analytic solutions are rarely available, and
direct numerical computations are usually out of reach since the rapidly varying wrin-
kles and the domain have different length scales. The traditional remedy is to pose
special boundary conditions on a mollified domain to capture the geometrical influence
of the wrinkles. The development of such conditions is cumbersome in general, and
modeling error estimates can be out of reach. The aim of this paper is to investigate
and explicate such issues.

Problems posed on domains with rough boundary pervade many fields of research.
In aerodynamics, aircrafts and space shuttles are often covered with tiles, hence their
walls have an array of periodic gaps [22].

Similarly, small air injecting nozzles are periodically introduced over wings of
aircrafts to decrease the drag [6]. Another interesting example in the fluid mechanics
is the flow field around golf balls, in which the wrinkles associated to the curvature
decrease the gap between the air-pressure behind and in front of the ball. Finally,
in hemodynamics, the cell surfaces of the endothelium modifies the wall shear stress
produced by the blood flow, and realistic computer simulations must take this effect
into account [32].

To avoid discretizing such intricate boundaries, practitioners start resorting to
wall laws, which are effective boundary conditions that try to emulate the effect of
the wrinkles without actually resolving them. Ingenious methods were developed,
some in ad hoc fashion, but many of them based on firm mathematical ground.
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Nonetheless, even when mathematics played a significant role and error estimates
were found, some qualitative aspects of the resulting models that were observed nu-
merically were missed by the theory. For instance, close to the wrinkles, the exact
solution wiggles, where the model solution does not. Hence the approximation there is
precarious in the H1 norm, but fine in the L2 norm. However, far from the boundary,
where the solution is “smooth,” a better approximation occurs, even when deriva-
tives are considered. Previously, some authors considered some of these effects, but it
seems hard to generalize their results to other operators, or to second order, curvature
dependent approximations.

There are several papers devoted to finding good wall laws as well as the cor-
responding modeling errors estimates. Most of the articles fit in the framework of
two-scale asymptotic expansions [14, 23, 29, 30]. For fluids, [9, 11] deal with the
Stokes equations, and [5, 7, 13, 24] focus on the steady and unsteady incompressible
Navier–Stokes equations. An interesting alternative way to derive effective boundary
conditions is based on domain decomposition strategies as introduced in [3] for the
Laplace operator, and extended to other operators [4, 7]; see also [31] for a survey
and [10, 27, 28] for related techniques and problems.

The previous references considered the wrinkles to be laid upon a flat line or
surface, or considered first order approximations only. In [1] first and second order
models for diffraction of an electromagnetic wave by a cylindrical curved grating were
considered, and some H1 norm estimates were obtained. The references [2, 20, 21]
also developed wall laws for wave scattering problems.

We extend here the results of [25], where we considered first and second order wall
laws for general curved boundaries. We estimate the modeling errors in the L2 and
H1 norms, both on the whole domain and in its interior, confirming several numerical
predictions. Our mathematical framework mixes two-scale asymptotic expansions and
domain decomposition ideas. Using such procedure, wall laws of arbitrary order come
by naturally, and we derive first and second order effective boundary conditions. Local
boundary fitted coordinates expose how the exact solution depends on the curvature
of the boundary (in a sense that we make clear in what follows). This is crucial
to develop high order models, which depend on the curvature. We believe that our
approach is quite general and can handle more sophisticated operators.

We now outline the contents of this paper. In the next section, we introduce basic
definitions and highlight the main ingredients of the approach. Section 3 presents
wall laws of different orders, along with error estimates and a summary of effective
conditions. Section 4 contains the development of the asymptotic expansion, and
the details necessary to define the boundary layer terms are in section 5. The errors
associated with the asymptotic expansion are considered in section 6. Finally, in
section 7 we validate the models numerically.

We now briefly introduce and explain some basic notation that we use throughout
this paper. As usual, if D is an open set, then ∂D denotes its boundary, D its closure,
L2(D) is the set of square integrable functions in D, and Hs(D) is the corresponding
Sobolev space of order s, for a real number s. We denote the norms of those spaces by
‖ · ‖L2(D) and ‖ · ‖Hs(D). Also, the symbol ·|D denotes the restriction of a function to
the domain D. Without loss of generality, we have chosen to work in two dimensions.
Nonetheless, all that follows can be generalized to the three-dimensional case. Bold
fonts indicate two-dimensional vectors, and the symbol ∂n indicates the (outward)
normal derivative with respect to the domain Ωs. Similarly, ∂x denotes the derivative
with respect to the variable x, etc. We denote by c a generic constant (not necessarily
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the same in all occurrences) which is independent of ε, but may depend on Ωs and
Sobolev norms of f .

2. Definitions and main results. We denote the domain of interest by Ωε ⊂
R

2, which is open, bounded, and ε-dependent. Here, ε indicates the length scale of
the roughness element. It is convenient to consider Ωε = Ωs ∪Ωε

r ∪Γ, where the limit
domain Ωs is open and ε-independent, the open set Ωε

r depends on ε with Ωs∩Ωε
r = ∅,

and the interface Γ = ∂Ωs ∩ ∂Ωε
r. The precise definition of these subdomains follow.

We assume that Ωs has its boundary ∂Ωs constituted of two disjoint parts, a
smooth inner boundary Γ, and a Lipschitz-continuous outer boundary. We arc length
parameterize the smooth curve Γ by an ε-independent function ψ : R → R

2, which is
periodic with period L, and injective in (0, L). In other words, Γ is a simple closed
curve with length L, and it bounds a region of the plane, which we call its interior.
We orient Γ in such a way that it is positively oriented, i.e., going along the direction
of increasing parameter, the interior of the curve stays on the left. We assume that
ε = L/N , for some positive integer N .

The domain Ωε
r has Γ as its outer boundary and Γε

r as its inner boundary. The
curve Γε

r, which is also closed, is defined as a perturbation of Γ, and is parameterized
by

ψε(θ) = ψ(θ) + ε
[
d0 − ψr(ε

−1θ)
]
n(θ),

where n is the normal vector pointing towards the interior of Γ, and d0 > 1 is such that
d0ε is smaller than the minimum radius of curvature of Γ. The function ψr : R → R

is independent of ε, Lipschitz-continuous with ψr(0) = 0, and periodic with period 1.
Without loss of generality, we assume that ‖ψr‖L∞(R) = 1. Formally,

Ωε
r = {x = ψ(θ) + (ε d0 − ρ)n(θ) : θ ∈ [0, L), ρ ∈ (εψr(ε

−1θ), ε d0) }.

Hence, Ωε has its boundary constituted of two parts, a rough inner boundary
Γε
r, and a Lipschitz-continuous outer boundary that is independent of ε and does not

intersect Γ. Note that Γ splits the original domain Ωε into two regions Ωs and Ωε
r,

one ε-independent, and the other containing the wrinkles. The subdomain Ωε
r is the

set of points between Γ and Γε
r, and Ωs is the ε-independent domain comprehended

between Γ and the outer boundary of Ωε. This is the set of all points at least “slightly
away” from the wrinkles. See Figure 1. Finally, we denote a typical point in it by
x = (x1, x2).

We consider the problem

−Δuε = f in Ωε,

uε = 0 on ∂Ωε,
(1)

where f has support in Ωs.

It is clear that the solution uε depends in a nontrivial way on the small parameter
ε. It is our goal to unfold this dependence and show how to develop models for (1).
It is possible to expand uε in a formal power series with respect to ε. This expansion
is far from trivial since it has to take into account effects from the wrinkles as well
as from the curvature. To focus on the main steps of our approach, we start by
presenting the first few terms of this expansion, and only in Ωs. The details of the
asymptotics are considered in section 4.
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Fig. 1. The domain Ωε.

The asymptotic expansion of uε in Ωs is a formal combination of an ε-independent
part and a highly oscillatory part which decays exponentially to zero away from Γ,

uε ∼ u0 + ε u1 + εW 1,0 + . . . in Ωs.(2)

While u0, u1 are ε-independent, the oscillatory function W 1,0 depends on ε, but only
in a trivial manner.

It is natural to define the first term of the asymptotic such that

−Δu0 = f in Ωs,

u0 = 0 on ∂Ωs.
(3)

To continue the description of the expansion, it is necessary to introduce a cell
problem. This is no different from other singularly perturbed problems, perhaps el-
liptic PDEs with highly oscillatory coefficients being the most notorious. Such cell
problems are a essential part in up-scaling procedures and brings information related
to the small scale geometry into the large scale behavior of the solution.

In the present case, the cell problem is defined in the semi-infinite strip Ωr, which
“contains” the geometry of the wrinkles,

Ωr = { (θ̂, ρ̂) ∈ R
2 : θ̂ ∈ (0, 1), ρ̂ ∈ (ψr(θ̂),+∞) },

i.e., Ωr occupies the region delimited by straight lateral boundaries at θ̂ = 0 and
θ̂ = 1, and by the lower boundary Γr = { (θ̂, ψr(θ̂)) : θ̂ ∈ (0, 1) }; see Figure 2.

We define C∞
per(Ωr) by restricting to Ωr the functions in C∞(R2) which are one-

periodic with respect to θ̂. Let H1
per(Ωr) be the closure of C∞

per(Ωr) with respect to
the H1(Ωr) norm. We also introduce the space of exponentially decaying functions

S(Ωr) = {w ∈ H1
per(Ωr) : w eαρ̂ ∈ H1(Ωr) for some α > 0} .
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Fig. 2. The cell domain.

The following result guarantees that certain Poisson problems posed in Ωr are well
posed, and the solutions have nice properties. The reference [5] deals with related
questions for the Stokes operator.

Lemma 1. Let F ∈ S∗(Ωr), the dual space of S(Ωr). Then there is a unique

solution w ∈ H1
loc(Ωr) that is one-periodic with respect to θ̂, and such that ∇w ∈

L2(Ωr), and

(∂θ̂θ̂ + ∂ρ̂ρ̂)w = F in Ωr,

w = ρ̂ on Γr.
(4)

Moreover, there exists a unique constant z such that w − z ∈ S(Ωr), and, if F ≡ 0,

z ≤ ‖ψr‖L∞(R).

Proof. A simple modification of the beautiful arguments of [8, Lemma 4.4]
guarantees well posedness and yields a proof of the decaying behavior of the solution
towards a constant. Assume now that w is harmonic, and for t ≥ ‖ψr‖L∞(R), let
γt = (0, 1) × {t}. Then Green’s identity yields that

∫
γt
∂n w is constant with respect

to t. Letting t → ∞, we have that actually
∫
γt
∂n w = 0 for all t ≥ ‖ψr‖L∞(R). Using

again Green’s identity in St,t̃ = (0, 1) × (t, t̃), for t̃ > t ≥ ‖ψr‖L∞(R), we gather that∫
∂St,t̃

w ∂n ρ̂ =

∫
∂St,t̃

ρ̂ ∂n w = 0.

Thus
∫
γt
w =

∫
γt̃
w, and letting t̃ → ∞, we see that z =

∫
γt
w. Then z ≤ ‖w‖L∞(γt),

and we conclude from the maximum principle [17] that z ≤ ‖ψr‖L∞(R).
Remark 1. Note that S∗(Ωr) contains, for instance, functions that grow at most

algebraically with respect to ρ̂.
We define w0,0 ∈ S(Ωr), and the constant z0,0 as the solution of

(∂θ̂θ̂ + ∂ρ̂ρ̂)w
0,0 = 0 in Ωr,

w0,0 = ρ̂− z0,0 on Γr.
(5)
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It follows immediately from Lemma 1 that (5) is well defined. Both z0,0 and w0,0 are
related to the boundary layers that naturally appear in the original problem.

To incorporate the influence of the cell problem into the asymptotic expansion (2),
we introduce boundary fitted coordinates (θ, ρ) for points “close enough” to Γ; see [12].
Let ρ0 be a positive number smaller than the minimum radius of curvature of Γ. For
a given θ ∈ [0, L) and ρ ∈ (εψr(ε

−1θ), ε d0 + ρ0), we have

x(θ, ρ) = ψ(θ) + (ε d0 − ρ)n(θ) ∈ Ωε.

Note that |ρ− ε d0| = dist(x,Γ) is the distance between x and Γ and that the above
map defines a local diffeomorphism. The change of coordinates x → (ρ, θ) is not well
defined globally in Ωε, but only for points with distance from Γ smaller than the
minimum radius of curvature of Γ.

In such a new system of coordinates, we simply write the normal derivative of u0

at a point x ∈ Γ as ∂n u0(θ, ε d0), where θ is such that x = ψ(θ). We set

W 1,0(θ, ρ) = Υ(εd0 + ρ)w0,0(ε−1θ, ε−1ρ) ∂n u0(θ, ε d0)(6)

in the formal expansion (2), where Υ(·) is a smooth ε-independent cutoff function,
such that Υ(ρ) equals one if ρ is smaller than a fixed number smaller than ρ0, and
vanishes for ρ ≥ ρ0. For instance, we may set Υ identically equal to one in (−∞, ρ0/3]
and vanishing in [ρ0,+∞). The following estimates follow from standard regularity
results and scaling arguments (see also Lemma 3):

‖W 1,0‖L2(Ωε) ≤ c ε1/2, ‖W 1,0‖H1(Ωε) ≤ c ε−1/2.(7)

Finally, let

−Δu1 = 0 in Ωs,

u1 =
(
−d0 + z0,0

)
∂n u0 on Γ, u1 = 0 on ∂Ωs\Γ.

(8)

Albeit (2) is formal, we show below (Theorem 4) that if

e = uε − u0 − ε u1 − εW 1,0,

then there exists an ε-independent constant c such that

‖e‖H1(Ωs) ≤ c ε3/2.(9)

Several other estimates follow from a combination of (9), the triangle inequality,
and (7). For instance, we easily find that

‖uε − u0 − ε u1‖H1(Ωs) ≤ ‖e‖H1(Ωs) + ‖εW 1,0‖H1(Ωs) ≤ c ε1/2,(10)

‖uε − u0 − ε u1‖L2(Ωs) ≤ ‖e‖H1(Ωs) + ‖εW 1,0‖L2(Ωs) ≤ c ε3/2.(11)

The culprit for the low convergence rates in some of the estimates above are the
boundary layers. Hence, interior estimates, i.e., estimates that bound the errors in
domains that are away from the boundary ought to show better rates. It is possible to
obtain such estimates by adding a higher order boundary layer term similar to (6) to
the expansion. The new term, which we denote by W̌, behaves like W 1,0, i.e., decays
exponentially fast to zero with ρ/ε, and

‖W̌‖L2(Ωε) ≤ c ε1/2, ‖W̌‖H1(Ωε) ≤ c ε−1/2.
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Table 1

Relative error convergence rates for a zeroth order model.

quantity L2(Ωs) error L2(Ωint
s ) error

u O(ε) O(ε)

∇u O(ε1/2) O(ε)

For the sake of simplicity, we do not describe W̌ now. Such a function is defined after
two different cell problems are solved; see (19) and (20). It is now possible to derive
a better estimate in the H1 norm:

‖uε − u0 − ε u1 − εW 1,0 − ε2 W̌‖H1(Ωs) ≤ c ε2.(12)

Finally, let Ωint
s ⊂ Ωs be such that Ωint

s ∩ Γ = ∅. Then

(13) ‖uε − u0 − ε u1‖H1(Ωint
s )

≤ ‖uε−u0−ε u1−εW 1,0−ε2 W̌‖H1(Ωs)+‖εW 1,0‖H1(Ωint
s )+‖ε2 W̌‖H1(Ωint

s ) ≤ c ε2.

Note in (13) that the exponential decay of both W 1,0 and W̌ guarantees that their
H1(Ωint

s ) norms are also exponentially small and hence bounded by c ε2.

3. Derivation of wall laws.

3.1. Zeroth order wall law. A first attempt to approximate uε would use u0.
It immediately follows from (10), (11) and regularity estimates for u1 that

‖uε − u0‖H1(Ωs) ≤ ‖uε − u0 − ε u1‖H1(Ωs) + ‖ε u1‖H1(Ωs) ≤ c ε1/2,

‖uε − u0‖L2(Ωs) ≤ ‖uε − u0 − ε u1‖L2(Ωs) + ‖ε u1‖L2(Ωs) ≤ c ε.

‖uε − u0‖L2(Ωint
s ) ≤ ‖uε − u0 − ε u1‖H1(Ωint

s ) + ‖ε u1‖H1(Ωs) ≤ c ε.

The O(ε1/2) error in the H1(Ωs) norm is due to the inability of this approximation
to capture the oscillatory behavior of the solution close to the wrinkles. This explains
the better performance in the L2(Ωs) and interior norms. Table 1 presents various
relative error estimates with respect to ε, including interior estimates.

3.2. First order wall law. Inspired by (2), (10)–(13), we would like to approx-
imate uε by the first terms of its asymptotic expansion, but without solving the PDEs
that define these terms. A first step in this direction is to consider only the functions
that actually have influence in the interior of the domain, i.e., we assume

uε ≈ u0 + ε u1.(14)

Thus, over Γ, from (3), (8), and (14),

uε ≈ ε (−d0 + z0,0) ∂n u0, ∂n uε ≈ ∂n u0 + ε ∂n u1.(15)

So

uε + ε (d0 − z0,0) ∂n uε ≈ ε2 (d0 − z0,0) ∂n u1,
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Table 2

Relative error convergence rates for a first order model.

quantity L2(Ωs) error L2(Ωint
s ) norm error

u O(ε3/2) O(ε2)

∇u O(ε1/2) O(ε2)

on Γ, and this amount can be small enough for certain applications. We define then
ū ∈ H1(Ωs) approximating uε in Ωs by

−Δ ū = f in Ωs,

ū + ε (d0 − z0,0) ∂n ū = 0 on Γ, ū = 0 on ∂Ωs\Γ.
(16)

It follows from Lemma 1 that z0,0 ≤ ‖ψr‖L∞(R), and since ‖ψr‖L∞(R) = 1 < d0, the
difference d0 − z0,0 is positive. Thus (16) is well posed for all positive ε.

To estimate the modeling error, we first note that if ē = ū− u0 − ε u1, then

−Δ ē = 0 in Ωs,

ē + ε (d0 − z0,0) ∂n ē = −ε2 (d0 − z0,0) ∂n u1 on Γ, ē = 0 on ∂Ωs\Γ.
(17)

It follows from regularity estimates [16, Theorem 4.24] that there exists an ε-indepen-
dent constant c such that

‖ē‖H1(Ωs) ≤ c ε2.

The modeling error estimates are then as follows:

‖uε − ū‖H1(Ωs) ≤ ‖uε − u0 − ε u1‖H1(Ωs) + ‖ū− u0 − ε u1‖H1(Ωs) ≤ c ε1/2,

where we used the triangle inequality and (10).

Analogously, using (11), (13), we obtain L2 and interior estimates

‖uε − ū‖L2(Ωs) ≤ c ε3/2 ‖uε − ū‖H1(Ωint
s ) ≤ c ε2.

We summarize the convergence results in Table 2.

3.3. Second order wall law. The derivation of higher order approximations to
uε follows the same modus operandi as in the previous subsection. We first consider
only the terms that have influence away from Γε

r and assume that

uε ≈ u0 + ε u1 + ε2 u2.(18)

To define the term u2 above we introduce two new cell problems, seeking w1,0

and w1,1 in S(Ωr), and the constants z1,0 and z1,1 satisfying

−(∂θ̂θ̂ + ∂ρ̂ρ̂)w
1,0 = χ− ∂ρ̂ w

0,0 + 2 ρ̂ ∂θ̂θ̂ w
0,0 in Ωr, w1,0 = −z1,0 on Γr,

(19)

−(∂θ̂θ̂ + ∂ρ̂ρ̂)w
1,1 = 2 ∂θ̂ w

0,0 in Ωr, w1,1 = z1,1 on Γr,(20)
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where χ(ρ̂) = 1 if ρ̂ < d0, and χ(ρ̂) = 0 if ρ̂ ≥ d0. The previous cell problems are well
posed, as Lemma 1 guarantees. The expression of W̌ mentioned on page 1455 is as
follows:

W̌ (θ, ρ) = Υ(εd0 + ρ)
[
w1,0(ε−1θ, ε−1ρ)κ(θ) ∂n u0(θ, ε d0)

+ w1,1(ε−1θ, ε−1ρ)∂θ ∂n u0(θ, ε d0) + w0,0(ε−1θ, ε−1ρ) ∂n u1(θ, ε d0)
]
,

where κ(θ) is the curvature of Γ at the point ψ(θ).
Next, we define u2 by

−Δu2 = 0 in Ωs,

u2 = (−d0 + z0,0) ∂n u1 + z1,0κ ∂n u0 + z1,1∂θ ∂n u0 on Γ, u2 = 0 on ∂Ωs\Γ,

and the estimates below follow:

‖uε − u0 − ε u1 − ε2 u2‖H1(Ωs) ≤ c ε1/2,(21)

‖uε − u0 − ε u1 − ε2 u2‖L2(Ωs) ≤ c ε3/2,(22)

‖uε − u0 − ε u1 − ε2 u2‖H1(Ωint
s ) ≤ c ε3.(23)

If (18) holds, then

uε ≈ ε (−d0 + z0,0 + ε z1,0κ) ∂n u0 + ε2 (−d0 + z0,0) ∂n u1 + ε2 z1,1∂θ ∂n u0

= ε (−d0 + z0,0 + ε z1,0κ) ∂n u0 + ε2 (−d0 + z0,0) ∂n u1 + ε2 z1,1

−d0 + z0,0
∂θu

1

over Γ, where we used from (8) that ∂θu
1 = (−d0 + z0,0)∂θ ∂n u0 to obtain the last

equality. We also have

∂n uε ≈ ∂n u0 + ε ∂n u1 + ε2 ∂n u2, ∂θu
ε ≈ ∂θu

0 + ε ∂θu
1 + ε2 ∂θu

2,

over Γ. Hence,

uε + (ε d0 − ε z0,0 − ε2 z1,0 κ) ∂n uε − ε2 z1,1

−d0 + z0,0
∂θu

ε ≈ −ε3 z1,0 κ ∂n u1

− ε3(−d0 + z0,0 + ε z1,0 κ) ∂n u2 − ε3 z1,1

−d0 + z0,0
∂θu

1 − ε4 z1,1

−d0 + z0,0
∂θu

2.

So we define ¯̄u ∈ H1(Ωs) approximating uε in Ωs by

−Δ ¯̄u = f in Ωs,

¯̄u + (ε d0 − ε z0,0 − ε2 z1,0 κ) ∂n ¯̄u− ε2 z1,1

−d0 + z0,0
∂θ ¯̄u = 0 on Γ,

¯̄u = 0 on ∂Ωs\Γ.

(24)

Since Γ is a closed curve, ∫
Γ

¯̄u∂θ ¯̄u dθ = 0,
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Table 3

Relative error convergence rates for a second order model.

quantity L2(Ωs) error L2(Ωint
s ) norm error

u O(ε3/2) O(ε3)

∇u O(ε1/2) O(ε3)

and for ε small enough the well posedness of (24) follows from Lemma 1 and the
Lax–Milgram’s lemma. To estimate the modeling error we first define ¯̄e = ¯̄u − u0 −
ε u1 − ε2 u2. Thus

−Δ¯̄e = 0 in Ωs,

¯̄e + (ε d0 − ε z0,0 − ε2 z1,0κ) ∂n ¯̄e− ε2 z1,1

−d0 + z0,0
∂θ¯̄e = −ε3z1,0 κ ∂n u1

− ε3 (−d0 + z0,0 + ε z1,0 κ) ∂n u2 − ε3 z1,1

−d0 + z0,0
∂θu

1 − ε4 z1,1

−d0 + z0,0
∂θu

2 on Γ,

¯̄e = 0 on ∂Ωs\Γ.

Regularity estimates [16, Theorem 4.24] guarantee the existence of an ε-independent
constant c such that

‖¯̄e‖H1(Ωs) ≤ c ε3.

Using the triangle inequality and (21), it is possible to estimate the H1(Ωs) norm
modeling error,

‖uε − ¯̄u‖H1(Ωs) ≤ ‖uε − u0 − ε u1 − ε2 u2‖H1(Ωs) + ‖¯̄u− u0 − ε u1 − ε2 u2‖H1(Ωs) ≤ c ε1/2.

Analogously, using (22), (23), we obtain L2 and interior estimates,

‖uε − ¯̄u‖L2(Ωs) ≤ c ε3/2 ‖uε − ¯̄u‖H1(Ωint
s ) ≤ c ε3.

These results are displayed in Table 3.

3.4. Summary: The proposed effective problems. The first order bound-
ary value problem in Ωs is the following: find ū ∈ H1(Ωs) such that

−Δ ū = f in Ωs,

∂n ū = − 1

ε (d0 − z0,0)
ū on Γ, ū = 0 on ∂Ωs\Γ,

(25)

where z0,0 is obtained from (5). For error estimates, see Table 2.
The second order boundary value problem in Ωs is: find ¯̄u ∈ H1(Ωs) such that

−Δ ¯̄u = f in Ωs,

∂n ¯̄u = −Cε
1

¯̄u + Cε
2 ∂θ ¯̄u on Γ, ¯̄u = 0 on ∂Ωs\Γ,

(26)

with

Cε
1 =

1

ε (d0 − z0,0 − ε z1,0 κ)
, Cε

2 =
ε z1,1

(d0 − z0,0 − ε z1,0 κ)(z0,0 − d0)
,

and where z0,0 is computed from (5), and z1,0, z1,1 from (19), (20). For error estimates,
see Table 3.
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4. Asymptotic expansion definition. We now find and justify the terms pre-
sented previously. Consider a formal asymptotic expansion in the general form

uε ∼ u0 + ε u1 + ε2 u2 + · · · + WBL(ε) in Ωs.(27)

Here, WBL(ε) corresponds to the oscillatory part of the solution, which dies away
exponentially fast with the distance to the boundary. Our procedure to find out the
terms in the expansion uses a domain decomposition result that we state below.

It is convenient to introduce the jump function [[·]] that assigns the absolute value
of the jump over the interface Γ.

Lemma 2. Let Ωε, Ωs, Ωε
r, and Γ be as above. Then there exists an ε-independent

constant c such that

(28) ‖e‖H1(Ωε
r) + ‖e‖H1(Ωs)

≤ c
(
‖Δ e‖L2(Ωε

r) + ‖Δ e‖L2(Ωs) + ‖[[e]]‖H1/2(Γ) + ‖[[∂n e]]‖H−1/2(Γ)

)
whenever e|Ωε

r
∈ H1(Ωε

r), Δ e|Ωε
r
∈ L2(Ωε

r), and e|Ωs ∈ H1(Ωs), Δ e|Ωs ∈ L2(Ωs),
with e = 0 on ∂Ωε

r\Γ ∪ ∂Ωs\Γ.
Proof. We first define

e− = e|Ωε
r
, e+ = e|Ωs

.

It follows from Green’s identity that∫
Ωε

r

| ∇ e−|2 dx = −
∫

Ωε
r

e− Δ e− dx− < e−, ∂n e− >H1/2(Γ)×H−1/2(Γ),∫
Ωs

| ∇ e+|2 dx = −
∫

Ωs

e+ Δ e+ dx+ < e+, ∂n e+ >H1/2(Γ)×H−1/2(Γ),

where < ·, · >H1/2(Γ)×H−1/2(Γ) indicates the duality pairing between H1/2(Γ) and

H−1/2(Γ). Combining both identities and then adding and subtracting the quantity
< e−, ∂n e+ >H1/2(Γ)×H−1/2(Γ), we gather that

|e−|2H1(Ωε
r) + |e+|2H1(Ωs)

= −
∫

Ωε
r

e− Δ e− dx −
∫

Ωs

e+ Δ e+ dx

+ < e−, ∂n e+ − ∂n e− >H1/2(Γ)×H−1/2(Γ) + < e+ − e−, ∂n e+ >H1/2(Γ)×H−1/2(Γ).

When estimating the above quantities, a delicate question is how the constants depend
on the domains. For u ∈ H1/2(Γ) and v ∈ H−1/2(Γ), the inequality

< u, v >H1/2(Γ)×H−1/2(Γ)≤ ‖u‖H1/2(Γ)‖v‖H−1/2(Γ)

comes by naturally by inducing the operator norm in H−1/2(Γ). Thus, with the aid
of the Cauchy–Schwarz inequality it follows that

|e−|2H1(Ωε
r) + |e+|2H1(Ωs)

≤ ‖e−‖L2(Ωε
r)‖Δ e−‖L2(Ωε

r) + ‖e+‖L2(Ωs)‖Δ e+‖L2(Ωs)

+ ‖e−‖H1/2(Γ)‖[[∂n e]]‖H−1/2(Γ) + ‖[[e]]‖H1/2(Γ)‖ ∂n e+‖H−1/2(Γ).

Next, let Ω′ be the interior of Γ, i.e., the open domain circumvented by Γ. Hence
Ωε

r ⊂ Ω′, and since the trace of e vanishes on Γε
r, the extension (by zero) operator

P : {v ∈ H1(Ωε
r) : v = 0 on Γε

r} → H1(Ω′)
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given by Pv = v in Ωε
r and Pv = 0, otherwise, is an isometry [26, 19]. By construction,

P preserves L2 norms as well and we gather the trace and Poincaré inequalities,

‖v‖H1/2(Γ) ≤ c‖Pv‖H1(Ω′) = c‖v‖H1(Ωε
r)(29)

‖v‖L2(Ωε
r) = ‖Pv‖L2(Ω′) ≤ c|Pv|H1(Ω′) = c|v|H1(Ωε

r)(30)

for all v ∈ H1(Ωε
r), where the constant c is independent of ε.

Using now the trace inequality ‖v‖H1/2(Γ) ≤ c‖v‖H1(Ωs) for all v ∈ H1(Ωs)
and (29), it follows that

(31) |e−|2H1(Ωε
r) + |e+|2H1(Ωs)

≤ (‖Δ e−‖L2(Ωε
r) + ‖Δ e+‖L2(Ωs))‖e‖L2(Ωε)

+ ‖e−‖H1(Ωε
r)‖[[∂n e]]‖H−1/2(Γ) + c‖[[e]]‖H1/2(Γ)‖e+‖H1(Ωs).

To conclude the proof, it is enough to use in (31) the Poincaré inequality in Ωε
r given

by (30) and also in Ωs.
We shall apply Lemma 2 repeatedly with e being the difference between uε and

a truncated asymptotic expansion. Hence, to make such a difference as small as
possible, we ought to minimize the L2 norm of Δ e in Ωε

r and Ωs and control the
jumps of both e and ∂n e over Γ.

A natural choice for the first term of the asymptotic of uε is u0 given by (3), plus
the condition u0 = 0 in Ωε

r. Applying Lemma 2 with e = uε − u0, we see that the
source of error is the normal derivative jump [[∂n u0]]. We remedy this by adding ε ζ1

to the asymptotic, where

ζ1(x) =

{
−ε−1ρ ∂n u0(θ, d0 ε) in Ωε

r,

0 in Ωs.

The function ζ1 defined as above satisfies the following properties:
1. ζ1 ≡ 0 outside Ωε

r,
2. [[ε ∂n ζ1]] ≡ | ∂n u0| on Γ,
3. ζ1 = ψr(ε

−1θ) ∂n u0(θ, d0 ε) on Γε
r.

So, in general, the correction of the jump of the normal derivative on Γ violates the
zero Dirichlet condition at Γε

r.
Proceeding with the computations, we have to add a boundary corrector to com-

pensate for the value of ζ1 on Γε
r. This is nontrivial since a “typical” boundary

corrector does not decay to zero; see Lemma 1 and (5). A similar, but actually sim-
pler situation occurs for the asymptotics of plates [18]. Thus, we add a boundary
corrector that is the sum of two functions and is given by ε

[
W 1(ε) + χε

rZ
1(ε)

]
. One

part, corresponding to W 1(ε), decays exponentially fast to zero with ε−1ρ and undu-
lates with ε−1θ. The other part, corresponding to Z1(ε), depends only on θ and is
nonzero only in Ωε

r. Hence,

−ΔW 1(ε) = χε
r Δ

[
ζ1 + Z1(ε)

]
in Ωε,(32)

W 1(ε) = −ζ1 − Z1(ε) on Γε
r,(33)

and the characteristic function of Ωε
r is given by χε

r, where

χε
r(ρ) =

{
1 if ρ < εd0,

0 otherwise.
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At first sight, finding W 1(ε) and Z1(ε) satisfying (32), (33) seems (at least!) as
hard as solving the original problem (1). Nevertheless, it is possible to make use
of the periodicity of the wrinkles, and formally recast (32), (33) as a sequence of
ε-independent problems which are easier to solve. We write

W 1(ε) ∼ W 1,0 + εW 1,1 + ε2 W 1,2 + · · · ,(34)

Z1(ε) ∼ Z1,0 + εZ1,1 + ε2 Z1,2 + · · · .(35)

We shall impose on Γε
r that W 1,0 = −ζ1 −Z1,0 and that W 1,j = −Z1,j for j �= 0. We

postpone the precise definition of these terms for now, but add, formally, the term
ε χε

r(x)Z1,0(θ) + εW 1,0(θ, ε−1θ, ε−1ρ) to the asymptotic. The remaining terms of the
expansion for W 1(ε), Z1(ε) shall be added as we continue to develop the expansion.

So far the asymptotic reads as{
ε ζ1 + εW 1,0 + εZ1,0 in Ωε

r,

u0 + εW 1,0 in Ωs.
(36)

Note that now the normal derivative of the difference between uε and the expression
in (36) has zero jump on Γ, but the difference itself has nontrivial jump equal to
−d0 ε ∂n u0 + εZ1,0 on Γ. Such error no longer depends on the fast variable and it
can be corrected adding to the asymptotic expansion a new term that depends only
on the slow variable.

We continue to define the terms of the expansion, this time trying to cancel out
the error due to the jump of the expression in (36) on Γ. Consider u1 the solution of

−Δu1 = 0 in Ωs,

u1 = −d0 ∂n u0 + Z1,0 on Γ, u1 = 0 on ∂Ωs\Γ, u1 = 0 on Ωε
r.

(37)

Remark 2. Although (37) looks different from (8), it is not. In fact, Z1,0 =
z0,0 ∂n u0, but that will become clear later.

Adding ε u1 to the expansion corrects the previous error, but results in a jump in
the normal derivative across Γ. Mimicking what we did before, we add ε2 ζ2 to the
expansion, where

ζ2(x) = −ε−1ρχε
r(ρ) ∂n u1(θ, d0ε).

Ideally the next contribution would be ε2
[
W 2(ε) + χε

rZ
2(ε)

]
, where

−ΔW 2(ε) = χε
r Δ

[
ζ2 + Z2(ε)

]
in Ωε,(38)

W 2(ε) = −ζ2 − Z2(ε) on Γε
r.(39)

As in (34), (35),

W 2(ε) ∼ W 2,0 + εW 2,1 + ε2 W 2,2 + · · · ,(40)

Z2(ε) ∼ Z2,0 + εZ2,1 + ε2 Z2,2 + · · · .(41)

On Γε
r we shall have W 2,0 = −ζ2 − Z2,0, and W 2,j = −Z2,j for j �= 0. Then, we

simply add ε2
[
W 1,1 + W 2,0 + χε

r

(
Z1,1 + Z2,0

)]
to our asymptotic expansion. Note

that terms in ε2 corresponding to the expansions for W 1(ε), Z1(ε) are included now.
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At this point, the asymptotic reads as{
ε ζ1 + ε2 ζ2 + εW 1,0 + εZ1,0 + ε2

(
W 1,1 + W 2,0

)
+ ε2

(
Z1,1 + Z2,0

)
in Ωε

r,

u0 + ε u1 + εW 1,0 + ε2
(
W 1,1 + W 2,0

)
in Ωs.

(42)

The expansion pattern should be clear by now, and the successive terms are
defined in similar manner. In general, after the kth step, the asymptotic expansion
reads as {

ζk,ε + WBL
k,ε + Zk,ε in Ωε

r,

usmooth
k−1,ε + WBL

k,ε in Ωs,
(43)

where ζk,ε(θ, ρ) = ε ζ1 + · · · + εk ζk, and ζi = −ε−1ρχε
r ∂n ui−1(θ, d0ε). Also,

WBL
k,ε = εW 1,0 + ε2

(
W 1,1 + W 2,0

)
+ · · · + εk

(
W 1,k−1 + W 2,k−2 + · · · + W k,0

)
,

Zk,ε = χε
r

[
εZ1,0 + ε2

(
Z1,1 + Z2,0

)
+ · · · + εk

(
Z1,k−1 + Z2,k−2 + · · · + Zk,0

)]
.

Here, although we did not fully define these functions yet, W i,j , Zi,j depend only on
ui−1, W i,j−1, · · · ,W i,0 and Zi,j−1, · · · , Zi,0. Also, we shall have on Γε

r that

W i,0 = −ζi − Zi,0, W i,j = −Zi,j for j �= 0.

Finally, usmooth
k−1,ε = u0 + ε u1 + · · ·+ εk−1 uk−1, where u0 is as in (3), and for i positive,

−Δui = 0 in Ωs,

ui = −d0 ∂n ui−1 + Z1,i−1 + Z2,i−2 + · · · + Zi,0 on Γ, ui = 0 on ∂Ωs\Γ,
ui = 0 in Ωε

r.

5. The boundary corrector problem. We now analyze the boundary correc-
tor problem, as (32), (33) and (38), (39), in more detail. The presence of the curvature
makes this problem cumbersome and a lot of insight can be gained by studying the
zero curvature case first; see [5] and references therein.

Consider the problem

−Δw(ε) = χε
r Δ

[
−ε−1ρφ(θ) + z(ε)

]
in Ωε,(44)

w(ε) = ε−1ρφ(θ) − z(ε) on Γε
r.(45)

Here, φ is a given function of θ only. The function z(ε) is unknown a priori, but it is
introduced to guarantee that w(ε) decays exponentially to zero with ρ. It is desirable
to have z(ε) as simple as possible, and it suffices to assume z(ε) independent of ρ.

Although φ is not necessarily periodic, we try to make use of the periodicity of
the wrinkles, and recast the corrector problem as a sequence of problems in periodic
domains. Using the stretched coordinates (θ̂, ρ̂) = (ε−1θ, ε−1ρ), we seek solutions that
are product of functions in the stretched coordinates with functions of θ only. With
this in mind, we write the Laplacian of a function in the form v(x) = h(θ̂, ρ̂) g(θ) as

−Δ v = − ε−2
(
∂θ̂θ̂h + ∂ρ̂ρ̂h

)
g + ε−1

(
κ ∂ρ̂ h− 2κ ρ̂ ∂θ̂θ̂ h

)
g − ε−12 ∂θ̂ h g

′(46)

−
∞∑
j=0

εj ρ̂j
[(

ρ̂ aj+1
1 ∂ρ̂ h + aj+1

3 ρ̂ ∂θ̂ h + aj+2
2 ρ̂2 ∂θ̂θ̂ h

)
g +

(
aj3 h + 2 aj+1

2 ρ̂ ∂θ̂ h
)
g′

+ aj2 h g
′′],
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where

aj1 = −[κ(θ)]j+1, aj2 = (j + 1) [κ(θ)]j , aj3 =
j(j + 1)

2
[κ(θ)]j−1 κ′(θ),

and we recall that κ is the curvature of Γ.
From (46), and using that z(ε) is independent of ρ,

−Δ[ε−1ρφ(θ)] = ε−1κφ−
∞∑
j=0

εj ρ̂j
[
ρ̂ aj+1

1 φ + ρ̂(aj3 φ
′ + aj2 φ

′′)
]
,

Δ z(ε) =

∞∑
j=0

εj ρ̂j
[
aj3 ∂θz(ε) + aj2 ∂θθ z(ε)

]
.

(47)

Assuming the expansion

z(ε) ∼ z0 + ε z1 + ε2 z2 + · · ·(48)

and using the formal identity

∞∑
j=0

∞∑
i=0

εi+j cj di =

∞∑
j=0

j∑
k=0

εj ck dj−k,(49)

we gather from (47), (48), (49) the identity

(50) Δ
[
−ε−1ρφ + z(ε)

]
= ε−1 κφ +

∞∑
j=0

εj
{
−ρ̂j

[
ρ̂ aj+1

1 φ + ρ̂ (aj3 φ
′ + aj2 φ

′′)
]

+

j∑
k=0

ρ̂k
(
ak3 ∂θz

j−k + ak2 ∂θθ z
j−k

)}
.

Assuming the expansion

w(ε) ∼ w0 + εw1 + ε2 w2 + · · ·(51)

and that w0(θ, ρ) = w0,0(θ̂, ρ̂)φ(θ) and z0(θ) = z0,0 φ(θ), where z0,0 is a constant, we
gather that (44), (45), (46), and (50) lead to (5).

It is clear that w0, z0 do not satisfy (44) exactly, but only the highest order (with
power ε−2) term. In fact, if φ is smooth, it follows from usual regularity estimates
and a scaling argument that∥∥Δ

(
Υw0

)
− ε−1χε

r Δ
(
ρφ− z0

)∥∥
L2(Ωε)

≤ c ε−1/2.

Here, as in page 1455, we need the cutoff function Υ, since w0 is not well defined all
over Ωε.

The remainder shall be corrected by the equations defining w1, w2, etc. Note also
that defining w0 as a product between w0,0 and φ allows us to impose periodic bound-
ary conditions in the PDE defining w0,0. This trick reduces the original boundary
corrector problem (44), (45) to a much easier to solve sequence of cell problems.

Continuing the procedure with the aid of (46), we set

w1(θ, ρ) = w1,0(θ̂, ρ̂)κ(θ)φ(θ) + w1,1(θ̂, ρ̂)φ′(θ),
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and z1(θ) = z1,0 κ(θ)φ(θ)+z1,1 φ′(θ), where w1,0 and w1,1 ∈ S(Ωr), and z1,0 and z1,1

are constants such that (19), (20) holds.
Now, w0 + εw1 is a better approximate solution to (44) since,∥∥Δ

[
Υ
(
w0 + εw1

)]
− ε−1χε

r Δ
(
ρφ− z0

)∥∥
L2(Ωε)

≤ c ε1/2.

It is easy to see that the right-hand sides of the equations become more involved
as we proceed. The crucial point is to note that in the above cases, the equations do
not involve the nonperiodic terms φ, κ or their derivatives.

Proceeding in a similar manner, we define w2, w3, etc., and∥∥Δ
[
Υ
(
w0 + εw1 + · · · + εk wk

)]
− ε−1χε

r Δ
(
ρφ− z0

)∥∥
L2(Ωε)

≤ c εk−1/2.(52)

Finally, it follows from our computations that

w ∼ w0,0 φ + ε (w1,0 κφ + w1,1 φ′) + ε2 · · · ,(53)

z ∼ z0,0 φ + ε (z1,0 κφ + z1,1 φ′) + ε2 · · · .(54)

In terms of the expansions for the boundary corrector for our original problem,
see (32)–(35), we define

W 1,0(x) = Υ(ρ)w0,0(θ̂, ρ̂) ∂n u0(θ, d0 ε),

W 1,1(x) = Υ(ρ) [w1,0(θ̂, ρ̂)κ(θ) ∂n u0(θ, d0 ε) + w1,1 (θ̂, ρ̂) ∂θ ∂n u0(θ, d0 ε)],

Z1,0(θ) = z0,0 ∂n u0(θ, d0 ε),

Z1,1(θ) = z1,0 κ(θ) ∂n u0(θ, d0 ε) + z1,1 ∂θ ∂n u0(θ, d0 ε),

(55)

etc. Similarly, from (38)–(41), we define

W 2,0(x) = Υ(ρ)w0,0(ρ̂, θ̂) ∂n u1(θ, d0 ε),

W 2,1(x) = Υ(ρ) [w1,0(θ̂, ρ̂)κ(θ) ∂n u1(θ, d0 ε) + w1,1 (θ̂, ρ̂) ∂θ ∂n u1(θ, d0 ε)],

Z2,0(θ) = z0,0 ∂n u1(θ, d0 ε),

Z2,1(θ) = z1,0 κ(θ) ∂n u1(θ, d0 ε) + z1,1 ∂θ ∂n u1(θ, d0 ε),

and so on.

6. Convergence estimate. In this section we estimate the difference between
a truncated asymptotic expansion and the exact solution. To bound such difference,
some a priori estimates are necessary, thus the regularity of the terms in the expan-
sion is worthy of consideration. The results below are based on standard regularity
estimates [15].

The boundary layer terms wi,j solve Poisson problems of the form (4), and we
assume first that Ωr is a convex polygon. Then w0,0 ∈ H2(Ωr). For i > 1, it follows
from (46) that the right-hand side of the Poisson problem for wi,j depends on a linear
combination of wk,l, ∂ρ̂w

k,l, ∂θ̂w
k,l, ∂θ̂θ̂w

k,l, where k < i. Thus, wi,j ∈ H2(Ωr).
Similarly, if Ωr is a nonconvex polygon with largest angle equal to ω, then wi,j ∈
Hs(Ωr) for all s < 1 + π/ω. Note that the regularity results above depend only on
the geometry of Ωr and not on f . On the other hand, the regularity of W i,j depends
on f , since it also depends on the ui; see, e.g., (55).

Concerning the regularity of ui, we rely on smoothness of Ωs to conclude from (3)
that ‖u0‖Hm+2(Ωs) ≤ c‖f‖Hm(Ωs) for all real m, where c depends only on Ωs. Since
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ui is harmonic for i positive, its regularity is determined by its Dirichlet boundary
condition on Γ. Using (46), (50), we gather that the boundary condition for ui

depends, among other more regular terms, on ∂j
θ ∂n ui−j−1, for j = 0, . . . , i−1. Thus,

an induction argument leads to the existence of a constant c depending only on Ωs

and m such that ‖ui‖Hm+2−i(Ωs) ≤ c‖f‖Hm(Ωs), for all real m.
Standard scaling arguments lead to the result below.
Lemma 3. Assume that f is a smooth function with support in Ωs. Then, for

every integers i, j, there exists a constant c such that

‖W i,j‖L2(Ωε) ≤ c ε1/2, ‖W i,j‖H1(Ωε) ≤ c ε−1/2,

‖Zi,j‖H1(Ωε
r) + ‖ζi‖H1(Ωε

r) ≤ c ε1/2, ‖ui‖H1(Ωs) ≤ c.

The constant c might depend on f , Ωs, and Ωr, but it is independent of ε.
Considering now the truncated expansion as in (43), we define the error

ek =

{
uε − ζk,ε −WBL

k,ε − Zk,ε in Ωε
r,

uε − usmooth
k−1,ε −WBL

k,ε in Ωs.
(56)

Aiming to use Lemma 2, we first note that ek vanishes on ∂Ωε. Also, the jumps across
Γ are such that

[[ek]] = 0, [[∂n ek]] = εk| ∂n uk|.(57)

Estimating Δ ek is nontrivial since ek is not harmonic in general. Indeed,

−Δ ek =

{
Δ
[
ζk,ε + WBL

k,ε + Zk,ε

]
in Ωε

r,

ΔWBL
k,ε in Ωs.

It follows from the construction of WBL
k,ε in section 5, (52), and Lemma 3, that

‖Δ ek‖L2(Ωε) ≤ c εk−1/2.(58)

With the above estimates it is not hard to prove the following result, which shows the
rate of convergence in ε of the asymptotic expansion.

Theorem 4. For any positive integer k there exists a constant c such that the dif-
ference between the truncated asymptotic expansion and the original solution measured
in the original domain is bounded as follows:

‖ek‖H1(Ωs) + ‖ek‖H1(Ωε
r) ≤ c εk+1/2.(59)

Proof. From Lemmas 2 and 3 and estimates (57), (58), we have that

‖ek‖H1(Ωs) + ‖ek‖H1(Ωε
r) ≤ c εk−1/2.(60)

Although the above estimate is not sharp, it is not hard to improve it. In fact,

‖ek‖H1(Ωs) + ‖ek‖H1(Ωε
r) ≤ ‖ek+1‖H1(Ωs) + ‖ek+1‖H1(Ωε

r)

+ ‖ek+1 − ek‖H1(Ωs) + ‖ek+1 − ek‖H1(Ωε
r) ≤ c εk+1/2,

where we used (60) and Lemma 3 to obtain the last inequality.
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MESH

Fig. 3. Mesh of rough domain.

7. Numerical validation: Rough cylinder. We consider Ωs ⊂ R
2 as the two-

dimensional region having as outer boundary a square of size 4 and as inner boundary
a circle of radius 1.15. Formally we have

Ωs = {x = (x1, x2) ∈ R
2 : |x| > 1.15, |xi| < 2, i = 1, 2}.

We define the rough domain as having the same square as outer boundary and a
“perturbed” circle as the inner boundary. We lay upon a circle of unitary radius 20
periodic wrinkles of height 0.1. Thus d0ε = 0.15. The test considered is a variation
of (1), where f = 0, and u = 1 at the outer boundary. We obtain an “exact” solution
by fully discretizing the rough domain with a refined mesh shown in Figures 3 and 4.
We remark that the polygonal appearance of the boundary in Figure 4 is deceiving and
results from approximation a smooth domain using polygonal meshes. Equations (25)
yield the first order solution, and (26) yield the second order solution. Figures 5
and 6 show the isolines and profiles of the solutions for the first and second order cell
problems (5) and (19). Note that we plot only w1,0, since z1,1 = 1.0 × 10−5 and can
be disregarded in the computations. The computed effective constants are z0,0 = 0.77
and z1,0 = 0.27. In Figure 7 we plot the level curves for the exact solution and the
second order approximation. In Figures 8, 9, and 10 we compare the profiles of the
exact solution with the first and second order approximations, at different heights
above the wrinkles. It is possible to see that the second order approximation yields
the best results, as predicted by the theory.
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ZOOM

Fig. 4. Zoom of the wrinkles.

FIRST  CORRECTOR SECOND  CORRECTOR

Fig. 5. Isovalues of corrector ρ̂ − (w0,0 + z0,0) (left) and w1,0 + z1,0 (right) corresponding to
the first and second order cell problems.
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FIRST  CORRECTOR (1)

(1)

(2)

0.0 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
SECOND  CORRECTOR (2)

0.25 0.5 0.75 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 6. Profiles at θ̂ = 0.78 of ρ̂− (w0,0 + z0,0) and w1,0 + z1,0.

DIRECT  COMPUTATION SECOND  ORDER

Fig. 7. Second order approximation solves accurately the original problem.
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DIRECT  COMPUTATION (1)
(2)
(3)
(4)

(1)

(2)

(3)

(4)

-0.4 -0.2 0 0.2 0.4
0.09

0.13

0.17

0.21

0.25

ZEROTH ORDER

-0.4 -0.2 0 0.2 0.4
0.09

0.13

0.17

0.21

0.25

FIRST  ORDER

-0.4 -0.2 0 0.2 0.4
0.09

0.13

0.17

0.21

0.25

SECOND  ORDER

-0.4 -0.2 0 0.2 0.4
0.09

0.13

0.17

0.21
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Fig. 8. Profile of solutions at x1 = 1.15.



PDES IN DOMAINS WITH CURVED ROUGH BOUNDARIES 1471

DIRECT  COMPUTATION (1)

(1)

(2)

(3)
(4)

0.15

0.18

0.21

0.24

0.27

0.3

ZEROTH  ORDER (2)

0.15

0.18

0.21

0.24

0.27

0.3

FIRST  ORDER (3)

0.15

0.18

0.21

0.24

0.27

0.3
SECOND  ORDER (4)

-0.4 -0.2 0 0.2 0.4
0.15

0.18

0.21

0.24

0.27

0.3

Fig. 9. Profile of solutions at x1 = 1.2.

DIRECT  COMPUTATION (1)

(1)

(2)

(3)

-0.35 -0.175 0.0 0.175 0.35
0.22

0.24

0.26

0.28

FIRST  ORDER (2)

0.22

0.24

0.26

0.28

SECOND  ORDER (3)

0.22

0.24

0.26

0.28

Fig. 10. Profile of solutions at x1 = 1.25.

8. Conclusions. We investigated in this paper the problem of developing and
estimating wall laws for problems defined in domains with rough and curved bound-
aries. For the sake of simplicity, the Poisson problem was considered. We developed
a general methodology consisting of a two-scale expansion technique based on a do-
main decomposition result and obtained high order effective boundary conditions.
Numerical tests accompanied the several sharp error estimates presented for first and
second order approximations. In particular, this work proves that to obtain accurate
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numerical results, the curvature must be considered.

Our approach can be carried over to more sophisticated operators and to higher
dimensions, yielding then a general procedure to develop and estimate effective bound-
ary conditions.

Acknowledgments. The authors thank the anonymous referees for several cor-
rections and suggestions.
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Équations aux Dérivées Partielles et Applications - Articles Dédiés à Jacques-Louis Lions,
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[24] W. Jäger and A. Mikelić, On the roughness-induced effective boundary conditions for an
incopmpressible viscous flow, J. Differential Equations, 170 (2001), pp. 96–102.

[25] A. Madureira and F. Valentin, Analysis of curvature influence on effective boundary con-
ditions, C.R. Math. Acad. Sci. Paris, 335 (2002), pp. 499–504.
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