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ABSTRACT

We consider the derivation and rigorous justification of models for thin linearly elastic plates

using mixed variational principles.

We consider an isotropic, homogeneous, linearly elastic plate occupying the region Pt =
Ω × (−t/2, t/2), with Ω a smoothly bounded domain in R2 and t ∈ (0, 1]. We denote the
union of the top and bottom surfaces of the plate by ∂P±t = Ω× {−t/2, t/2} and the lateral
boundary by ∂PL

t = ∂Ω× (−t/2, t/2). We suppose that the plate is loaded by a surface force
density g : ∂P±t → R3 and a volume force density f : Pt → R3, and is clamped along its
lateral boundary. The resulting stress σ∗ : Pt → R3×3

sym and displacement u∗ : Pt → R3 then
satisfy the boundary-value problem

Aσ∗ = ε(u∗), −div σ∗ = f in Pt, σ∗n = g on ∂P±t , u∗ = 0 on ∂PL
t , (1)

where ε(u∗) denotes the infinitesimal strain tensor and A is the usual isotropic compliance
tensor.

We discuss systematic procedures of dimensional reduction of the three-dimensional prob-
lem to two-dimensional plate models which proceed from variational formulations of the three-
dimensional problem (1). Besides the derivation of models, we also consider their rigorous
justification. Namely, we study the convergence to zero of the relative error in energy norm on
the three-dimensional plate domain Pt of an approximation of the three-dimensional solution
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determined from the solution of the dimensionally reduced model. For some of the models we
show that this error tends to zero, and establish the rate of convergence. A fuller development
of the ideas discussed here may be found in [2].

The variational approach to dimensional reduction is systematic and is tied naturally to
rigorous convergence theory. These characteristics are shared with another important ap-
proach to dimensional reduction of shells, the asymptotic approach developed, for example,
in the book [4] of Ciarlet. However the variational approach also differs from this asymp-
totic analysis in a number of significant ways. The asymptotic approach essentially identifies
one particular canonical plate model, the limiting solution of the three-dimensional elastic
problem. This is the Kirchhoff–Love model, the superposition of the generalized plane stess
model of plate stretching and the biharmonic model of plate bending. By contrast, the varia-
tional approach naturally generates a hierarchical family of plate models by using polynomial
approximations of increasing degree. In fact, we consider two different mixed variational prin-
ciples, and each leads to several different hierarchical families of models. It is interesting to
note that the simplest plate stretching model arising from a variational approach to dimen-
sional reduction is again generalized plane stress, but the biharmonic plate bending model
does not arise naturally from this approach. Instead, the simplest bending model arising is
(a form of) the Reissner–Mindlin model.

Before proceeding, we summarize some notational conventions. We write first-order ten-
sors (or 3-vectors) with one underbar, second-order tensors (or 3 × 3 matrices) with two
underbars, etc. For tensors in two variables we use undertildes in the same way. Any 3-vector
may be expressed in terms of a 2-vector giving its in-plane components and a scalar giving
its transverse component, and any 3 × 3 symmetric matrix may be expressed in terms of a
2× 2 symmetric matrix, a 2-vector, and a scalar thus:

v =
(

v
∼
v3

)

, τ =

(

τ
∼∼

τ
∼

τ
∼
T τ33

)

.

The starting point for the variational approach to dimensional reduction is the Hellinger–
Reissner variational principle. We consider two variant forms of this principle. The first,
which we refer to as HR, characterizes (σ∗, u∗) as the unique critical point (namely a saddle
point) of the HR functional

J(τ , v) =
1
2

∫

Pt

Aτ : τ dx−
∫

Pt

τ : ε(v) dx+
∫

Pt

f · v dx+
∫

∂P±t

g · v dx
∼

over Σ• × V • := L2(Pt)× { v ∈ H1(Pt) : v = 0 on ∂PL
t }. The second form of the Hellinger–

Reissner principle, HR′ characterizes (σ∗, u∗) as the unique critical point (again a saddle
point) of the HR′ functional

J ′(τ , v) =
1
2

∫

Pt

Aτ : τ dx+
∫

Pt

div τ · v dx+
∫

Pt

f · v dx

on Σ∗g × V ∗ := {σ ∈ H(div, Pt) |σn = g on ∂P±t } × L2(P ).
Plate models may be derived by replacing Σ•×V • in HR with subspaces which admit only

a specified polynomial dependence on x3. If the subspaces Σ and V are chosen carelessly, there
may not exist any such critical point or it may not be unique. We insure a unique solution by
insisting that ε(V ) ⊂ Σ. In the simplest example, we seek a saddle-point of the HR functional



over σ ∈ Σ• with σ
∼∼

linear in x3, σ
∼

constant in x3, and σ33 zero, and u ∈ V • with u
∼

linear
and u3 constant in x3. This leads to the lowest order model in the family we refer to as HR1.
This family of models and two other families are described in Table 1.

Table 1. The principle plate models based on the HR principle. The degree p is a positive integer.

model deg3 σ∼∼
deg3 σ∼ deg3 σ33 deg3 u∼ deg3 u3

HR1(p) p p− 1 p− 2 p p− 1
HR2(p) p p− 1 p p p− 1
HR3(p) p p+ 1 p p p+ 1

The HR1(1) turns out to yield the classical generalized plane stress model for stretching
and a form of the Reissner–Mindlin model (with shear correction factor 1) for bending. It is
perhaps the simplest way to derive these models.

The model families HR2(p) and HR3(p) are minimum energy or energy projection models.
Namely, because they satisfy the condition A−1 ε(V ) ⊂ Σ, the three-dimensional constitutive
equation is satisfied exactly and u is determined as the minimizer in V of the potential energy.
In the literature there has been a great deal of attention paid to the minimum energy models
(cf., e.g., [3], [7], [8]), and much less to other models arising mixed variational principles.
However, the restriction to minimum energy principles eliminates many of the best features
of the variational approach.

A striking failure of the minimum energy approach occurs with the simplest minimum
energy model, HR2(1). It turns out that this is an incorrect plate model, one which is not
even consistent with the Kirchhoff–Love reduced problem in the limit of vanishing thickness.
More precisely, the HR1(1) model equations are of same form as generalized plane stress and
Reissner–Mindlin, but these equations contain spurious terms, causing divergence as t tends
to 0 (for both stretching and bending). This phenomenon is well-known and has been studied
in some generality recently in [7], where it is shown that for a minimum energy method to be
consistent in the t = 0 limit, the polynomial spaces must be of higher degree. By contrast,
the HR1(1) method, which uses spaces of lower degree than HR2(1), is a consistent method.

While the HR2(1) model is incorrect, for p ≥ 3 it can be shown that the HR2(p) model
is convergent. (For p = 3, it can be shown to be identical to a method of Lo, Christensen,
and Wu [5].) The HR3(p) is also convergent for all p ≥ 1. However, even in the simplest case
(p = 1), the models in this family are more complex (involve more dependent variables) than
HR1(1).

Table 2. The principle plate models based on the HR′ principle. The degree p is a positive integer.

model deg3 σ∼∼
deg3 σ∼ deg3 σ33 deg3 u∼ deg3 u3

HR′1(p) p p− 1 p p p− 1
HR′2(p) p p+ 1 p p p− 1
HR′3(p) p p+ 1 p p p+ 1
HR′4(p) p p+ 1 p+ 2 p p+ 1

Table 2 shows the principle model families for the HR′ principle. Here we wish to par-
ticularly emphasize the model HR′4(1), which is the simplest complementary energy model.
Namely, σ minimizes the complementary energy Ec(τ) = (1/2)

∫

Pt
Aτ : τ dx over all τ ∈ Σg

satisfying the equilibrium condition div τ = −PV f (PV is the L2-projection onto V ). This



model agains gives rise to the classical generalized plane stress stretching equations, but with
the load constructed in a more sophisticated way from the three-dimensional loading. The
bending model is again Reissner–Mindlin, but with a shear correction factor of 5/6 and,
again, more complicated loads. As we discuss below, this method is not only consistent with
the Kirchhoff–Love solution in the limit of vanishing thickness, but, more importantly, it is
convergent in relative energy norm. This is a strong property not shared by all methods
which are consistent in the thin plate limit. In fact, the Kirchhoff–Love solution is itself
not convergent in relative energy norm. Morgenstern, in his pioneering work on the energy
convergence of the biharmonic plate model [6], showed that three-dimensional displacement
and stress fields could be constructed from the biharmonic solution which converge to the
full three-dimensional solution in relative energy norm. However the construction of these
fields is rather ad-hoc, and not suggested by the biharmonic model itself. By contrast, the
approximation delivered by the HR′4(1) model is, without any post-processing, convergent.

The key to the error analysis in [6] is the two energies principle or Prager–Synge theorem,
and we follow that approach. This approach requires a stress field which is in equilibrium
with the imposed volume and surface loads. Generally such a field is not trivial to construct
(especially if volume loading is present—this case wasn’t treated in [6]). However the HR′4(1)
method, being a complementary energy method, automatically generates such a stress field.
Combining the two energies principle with careful a priori estimates of the plate model solu-
tions, we are able to obtain precise bounds on the energy error ‖ ε(u∗−u)‖0,Pt + ‖σ∗−σ‖0,Pt
in terms of the thickness t and various norms of the loading functions f and g. For example,
if the surface load is purely in-plane and is even in x3 and the volume load vanishes, we find
that | ε(u∗−u)‖0,Pt +‖σ∗−σ‖0,Pt ≤ const., while ‖ ε(u)‖0,Pt and ‖σ‖0,Pt behave as O(t−1/2).
Thus

‖ ε(u∗ − u)‖0,Pt
‖ ε(u)‖0,Pt

+
‖σ∗ − σ‖0,Pt
‖σ‖0,Pt

≤ Ct1/2,

so the HR′1(4) plate model converges with order t1/2 measured in relative energy norm in this
stretching situation. The same result holds for many other loading cases.
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