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A MULTISCALE FINITE ELEMENT METHOD
FOR PARTIAL DIFFERENTIAL EQUATIONS

POSED IN DOMAINS WITH ROUGH BOUNDARIES

ALEXANDRE L. MADUREIRA

Abstract. We propose and analyze a finite element scheme of multiscale type
to deal with elliptic partial differential equations posed in domains with rough
boundaries. There is no need to assume that the boundary is periodic in any
sense, so the method is quite general. On the other hand, if the boundary is
periodic we prove convergence of the scheme.

1. Introduction

Several applications require solving PDEs in domains with rough boundaries.
Finding exact solutions is in general out of question, and numerically approximating
the problem can be hard since discretizing the boundaries requires a sophisticated
and quite refined, i.e. expensive, mesh. That is because good quality meshes for
such domains often over-refine unnecessarily the interior of the domain.

Assuming that the wrinkles of the boundary are, in a proper sense, periodic,
several authors proposed effective boundary conditions, also known as wall laws,
on a mollified boundary that somehow upscaled the small scale geometry [1–6,
8–10, 12, 14, 25, 26]. This was possible for several operators and geometries, and
involved solving cell problems, as is typical in homogenization procedures. Also, the
article [13] recently presented the case of random, spatially homogeneous wrinkles.

Despite the remarkable advances just mentioned, to the best of our knowledge,
the case of nonperiodic wrinkles was left untouched, with the exception noted above.

On the other hand, some numerical methods for PDEs with oscillatory coeffi-
cients were recently suggested and analyzed [11, 16–24, 30]. A desirable feature of
these numerical schemes is that there is no need to derive a homogeneous equation,
and only then discretize. On the contrary, the methods tackle the problems in their
original forms.

The goal of the present paper is to propose a Multiscale Finite Element Method
(MsFEM) to numerically solve PDEs in domains with oscillatory boundaries.

Consider the sequence of problems parameterized by ε < 1: find uε such that

(1.1)
−∆ uε = f in Ωε,

uε = 0 on ∂Ωε,

Received by the editor February 12, 2007 and, in revised form, October 5, 2007.
2000 Mathematics Subject Classification. Primary 35J05, 35J25, 65N12, 65N15, 65N30.
The author was partially supported by the CNPq/Brazil Projects 306104/2004-0 and

486026/2006-0, and also by FAPERJ Project APQ1 E-26/170.629/2006.

c©2008 American Mathematical Society
Reverts to public domain 28 years from publication

25



26 ALEXANDRE L. MADUREIRA

Ωs

Ωε
r

Γ
d

Figure 1. The domain Ωε.

for f ∈ L2(Ωε). For simplicity, we assume that the domain Ωε is a rectangle with
a rough bottom, as depicted in Figure 1. For d > ε, let

(1.2) Ωε = {x = (x, y) ∈ R
2 : 0 < x < 1, −d + ψε

r(x) < y < 1},
where the Lipschitz function ψε

r is such that ψε
r(0) = ψε

r(1) = 0, and ‖ψε
r‖L∞(0,1) <

ε. The graph of ψε
r defines Γε

r, the lower boundary of Ωε:

Γε
r = {(x, y) ∈ ∂Ωε : y = −d + ψε

r(x)}.
For the sake of the forthcoming analysis, it is convenient to consider Ωε as the

union of an ε-independent domain and a “rough rectangle”; see (2.1) below. The
parameter d indicates the “thickness” (disregarding the wrinkles) of the rugged
part.

Next, we outline the contents of this paper. In Section 2, we introduce a numer-
ical scheme to solve (1.1), and in Section 3, we do an error analysis for the periodic
case.

We now briefly introduce and explain some basic notation that we use throughout
this paper. As usual, if D is an open set, then L2(D) is the set of square integrable
functions in D, and Hs(D) is the corresponding Sobolev space of order s, for a real
number s. We denote the norms of those spaces by ‖·‖L2(D) and ‖·‖Hs(D). Without
loss of generality, we have chosen to work in two dimensions. Nonetheless, all that
follows can be generalized to the three-dimensional case. Bold fonts indicate two-
dimensional vectors, and we denote by c a generic constant (not necessarily the
same in all occurrences) which is independent of ε, but may depend on Sobolev
norms of f .

2. Multiscale finite element method

We propose in this section a multiscale numerical method to approximate the
solutions of (1.1). Variants of this method were successfully employed in different
contexts, and we extend their use to the present problem.

In the MsFEM [19–24], the basis functions are local (elementwise) solutions of
the original problem, and should capture the local features of the problem to upscale
this information into the global formulation.

In our setting, we propose a Galerkin method where the basis functions in the
trial and test spaces have local support, as in the traditional finite element method.
Nevertheless, the present method is unusual since it does not use polygonal shape
functions. Actually, the elements are not even triangles or quadrilaterals, but have
a “rough geometry” whenever they intersect the rough boundary. The basic idea
behind the method is that the influence of the geometry should be captured by the
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Figure 2. A mesh for Ωε, and a patch of elements of Th inter-
cepting Γε

r.

basis functions without affecting the dimension of the finite element space. So our
multiscale method is of Galerkin type, where the basis functions are local solutions
of the operator under consideration (Laplacian), possibly in a rough element.

Before discretizing Ωε in finite elements, we define

(2.1) Ωs = (0, 1) × (0, 1), Ωε
r = Ωε\Ωs, Γ = (0, 1) × {0}.

Note that

(2.2) Ωε
r = {x = (x, y) ∈ Ωε : 0 < x < 1, −d + ψε

r(x) < y < 0}.
Let N ∈ N and h = 1/(N + 1) > ε. For i = 0, . . . , N , let Kε

i = {(x, y) ∈
Ωε

r : ih < x < (i + 1)h}. Note that such elements define a tiling of Ωε
r. Next, we

introduce a Cartesian mesh for Ωs using squares of side h. Such a procedure induces
a partition Th of Ωε in finite elements, not all of them being squares. Indeed, if
K ∈ Th ∩ Ωs, then K is a square of size h. Otherwise, K has a rough bottom, and
straight lateral and top edges; see Figure 2. The mesh Th has as nodal points the
set N = {(ih, jh) ∈ Ωε : i = 1, . . . , N, j = 0, . . . , N}.

For each node xi ∈ N ∩ Ωs, we associate a piecewise bilinear polynomial λi ∈
H1

0 (Ωε) such that λi(xj) = δij for all xj ∈ N .
For each node xi ∈ N ∩ Γ, we define λi ∈ H1

0 (Ωε) such that

(2.3)

−∆ λi = 0 in
N⋃

j=0

Kε
j ,

λi(xj) = δij for all xj ∈ N , λi is linear on
N⋃

j=0

∂Kε
j ∩ Ωε.

We extend λi to Ωs by imposing that λi is piecewise bilinear in Ωs.
Using the functions just defined, we set

V ε
h = span{λi} ⊂ H1

0 (Ωε).

The MsFEM solution uε
h ∈ V ε

h is simply the Galerkin approximation of uε in V ε
h ,

i.e,

(2.4)
∫

Ωε

∇uε
h(x) · ∇ vh(x) dx =

∫
Ωε

f(x)vh(x) dx for all vh ∈ V ε
h .

Remark 2.1. Note that the computation of each basis function is ε-dependent, thus
expensive. Although the cost can be mitigated by parallelization, this is clearly a
drawback. Nonetheless, as noted by Marcus Sarkis [31], at least for two-dimensional
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problems, it is possible to obtain a quite narrow banded stiffness matrix by num-
bering the nodes properly.

Remark 2.2. The present method is particularly attractive if the problem (1.1) is
to be solved repeatedly for different source terms. Indeed, the basis functions need
to be computed only once for a given geometry, and the size of the stiffness matrix
is ε-independent.

3. Numerical analysis

In this section we perform the error analysis for the numerical schemes proposed.
Such analysis is based on asymptotic methods, and we restrict ourselves to the case
of periodic wrinkles, when the solution has a well-known structure. We do not
present the arguments leading to the development of the terms in the expansion,
but we rather simply define the terms. Madureira and Valentin [25, 26] consider a
complete asymptotics for a curved rough boundary.

By periodic wrinkles, we mean that ψε
r(x) = εψr(x/ε), where ψr is periodic

with period 1, and ‖ψr‖L∞(R) < 1. In what follows, we assume for simplicity that f
vanishes in Ωε

r. We also assume that there exist constants γ ∈ (0, 1], and c0 positive
such that

(3.1) c0ε
1−γ ≤ d,

where we recall that the parameter d helps to define the rough domain Ωε
r. See

Figure 1, and equations (1.2), (2.2).

Remark 3.1. The restriction (3.1) indicates that d cannot be “too small”. Indeed,
the rough boundary originates ripples in uε that decay exponentially as y/ε grows,
and it is important in the numerical analysis that the oscillatory part of the solution
in Ωs is at most polynomially small with respect to ε. So, the distance d helps to
define the region Ωs which is free from the high-gradient part of the solution.

3.1. Asymptotic expansion for the exact solution. To make clear how the
solution of equation (1.1) depends on the small parameter ε, we expand uε in a
formal power series with respect to ε.

We develop the expansion using the decomposition (2.1) of Ω in Ωε
r and Ωs, and

the expansions are coupled by boundary conditions on Γ. In Ωs the asymptotic
expansion of uε is composed by smooth terms, and in Ωε

r the expansion is made up
of a highly oscillatory part which decays exponentially to zero away from Γε

r, plus
a linear function in y. The first few terms of the expansion are as follows:

(3.2) uε(x) ∼

⎧⎨
⎩

(d + y − εW − εz)
∂u0

∂y
(x, 0) + (d + y)

∂u1

∂y
(x, 0) + . . . in Ωε

r,

u0(x) + u1(x) + . . . in Ωs.

The first term of the asymptotics solves

(3.3)
−∆ u0 = f in Ωs,

u0 = 0 on ∂Ωs, u0 = 0 on Ωε
r.

Remark 3.2. In (3.2) and the remainder of this paper, the term ∂u0/∂y(x, 0) denotes
the restriction of ∂u0/∂y|Ωs

on Γ. The same convention holds for ∂u1/∂y(x, 0), etc.
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x̂

ψr

Figure 3. The cell domain.

To continue the description of the expansion, it is necessary to introduce a cell
problem. This is no different from other singularly perturbed problems, perhaps
elliptic PDEs with highly oscillatory coefficients being the most notorious. Such
cell problems are an essential part in up-scaling procedures, bringing information
related to the small scale geometry into the large scale behavior of the solution.

In the present case, the cell problem is defined in the semi-infinite strip Ωr, which
“contains” the geometry of the wrinkles,

Ωr = {(x̂, ŷ) ∈ R
2 : x̂ ∈ (0, 1), ŷ > ψr(x̂)},

i.e., Ωr occupies the region delimited by straight lateral boundaries at x̂ = 0 and
x̂ = 1, and by the lower boundary Γr = {(x̂, ψr(x̂)) ∈ R

2 : x̂ ∈ (0, 1)}; see Figure 3.

We define C∞
per(Ωr) by restricting to Ωr the functions in C∞(R2) which are one-

periodic with respect to θ̂. Let H1
per(Ωr) be the closure of C∞

per(Ωr) with respect to
the H1(Ωr) norm. We also introduce the space of exponentially decaying functions

S(Ωr) = {w ∈ H1
per(Ωr) : w(x̂, ŷ)eαŷ ∈ H1(Ωr) for some α > 0} .

It is possible to show [7, 26] that there exists unique w ∈ S(Ωr), and a unique
constant z such that

(3.4) ∆ w = 0 in Ωr, w = ŷ − z on Γr.

Moreover, 0 ≤ z ≤ ‖ψr‖L∞(0,1), and ‖w‖H1(Ωr) ≤ c, where c depends on the
geometry only. Both z and w are related to the boundary layers that naturally
occur in the original problem. Let W (x, y) = w(ε−1x, ε−1(d + y)) in Ωε

r.
Finally, let

(3.5)
−∆ u1 = 0 in Ωs,

u1 = (d − εz)
∂u0

∂y
on Γ, u1 = 0 on ∂Ωs\Γ, u1 = 0 on Ωε

r.

Remark 3.3. The above terms are slightly different from what usually appears in
the literature. The difference is due to our definition of d, since usually d = d0ε,
where d0 is a predefined constant. See for instance [25, 26].

Albeit (3.2) is formal, it is possible to show [26] that if

e(x) = uε(x) − u0(x) − u1(x) + (y − εW )
∂u0

∂y
(x, 0)χε

r,



30 ALEXANDRE L. MADUREIRA

where χε
r is the characteristic function of Ωε

r, and under the assumption (3.1), there
exists an ε-independent constant c such that

(3.6) ‖e‖H1(Ωε) ≤ cd3/2, ‖e‖H1(Ωs) ≤ cd2.

To obtain the above estimates, it is useful to have the following bounds for
each individual term. Such bounds follow from classical regularity estimates, and
changes of coordinates.

Lemma 3.4. Let u0, u1, and W be defined as above. Then there exists an ε-
independent constant c such that

‖u0‖H1(Ωs) + d−1‖u1‖H1(Ωs) + ε−1/2‖W‖L2(Ωε
r) + ε1/2‖∇W‖L2(Ωε

r) ≤ c.

Proof. The estimate for u0 follows immediately from (3.3), and (3.5) yields the
bound for u1. The estimates related to W come from the change of coordinates
x̂ = ε−1x, ŷ = ε−1(d + y), since, e.g.,∫

Ωε
r

|W (x)|2 dx = ε

∫
Ωr

|w(x̂)|2 dx̂,

∫
Ωε

r

| ∇W (x)|2 dx = ε−1

∫
Ωr

| ∇w(x̂)|2 dx̂.

�

3.2. Analysis of the multiscale finite element method. The goal of this sub-
section is to prove a convergence result for the MsFEM. We first note that Poincaré’s
inequality holds uniformly with respect to ε [26], i.e., there exists an ε-independent
constant such that

‖v‖L2(Ωε) ≤ |v|H1(Ωε),

for all v ∈ H1
0 (Ωε). With that, we conclude that Céa’s Lemma also holds uniformly

in ε, as we state below.

Lemma 3.5 (Céa’s Lemma). Let uε ∈ H1
0 (Ωε) be the weak solution of (1.1), and

uε
h ∈ V ε

h the solution of (2.4). Then there exists an ε-independent constant c such
that

‖uε − uε
h‖H1(Ωε) ≤ c inf

vε
h∈V ε

h

|uε − vε
h|H1(Ωε).

Hence, the task now is to find a good approximation for uε in V ε
h . As in [23], we

use the asymptotics of both uε and the basis functions as a tool. We present here the
asymptotic expansion in Kε

i of the basis function λi defined in (2.3), corresponding
to a nodal point (ih, 0) ∈ Γ ∩ N . The asymptotics of λi in Kε

i−1 is similar. In Kε
i

we have that

(3.7) λi(x) =
1

h(d − εz)
[(

d + y − εW − εz
)
(xi+1 − x) + εθi(x) + εri(x)

]
,

where xi+1 = (i + 1)h, and θi solves

−∆ θi = 0 in Kε
i ,

θi(x, y) = (xi+1 − x)
[
W (x, y) − zy

d

]
on ∂Kε

i \Γε
r, θi = 0 on Γε

r.

Also,

−∆ ri = 2
∂W

∂x
in Kε

i , ri = 0 on ∂Kε
i .



MSFEM FOR PDES IN DOMAINS WITH ROUGH BOUNDARIES 31

Note that the expansion (3.2) in Ωε
r and (3.7) are quite similar since in both

cases the lower order terms involve the expression d+ y− εW − εz times a function
of x only, that is, ∂u0/∂y in (3.2), and (xi+1 − x)/[h(d − εz)] in (3.7).

The following lemma presents an upper bound for the H1 norms of ri and θi.

Lemma 3.6. Let ri and θi be defined as above. Then there exists a constant c
independent of ε and h such that

‖ri‖H1(Kε
i ) ≤ cε1/2h1/2, ‖θi‖H1(Kε

i ) ≤ ch.

Proof. It follows from standard estimates that ‖ri‖H1(Kε
i ) ≤ ‖W‖L2(Kε

i ). Then,
arguing as in the proof of Lemma 3.4 we obtain the first estimate. Next, again
from standard estimates, ‖∇ θi‖L2(Kε

i ) ≤ c‖θi‖H1/2(∂Kε
i \Γε

r). Note that

‖θi‖H1/2(∂Kε
i \Γε

r) ≤ h‖W‖H1/2(∂Kε
i \Γε

r) + hz.

From the exponential decay properties of W , and trace and interpolation inequali-
ties, we gather that ‖W‖H1/2(∂Kε

i \Γε
r) ≤ c. Thus, the result follows. �

Theorem 3.7. Let uε be the solution of (1.1), and uε
h ∈ V ε

h be the solution of (2.4).
Assume further (3.1), and that the trace of ∂u0/∂y|Ωs

on Γ belongs to H2(Γ), where
u0 solves (3.3). Then there exists a constant c independent of ε and h such that

‖uε − uε
h‖H1(Ωε) ≤ c(h + d3/2 + εh−1/2 + ε3/2h−1).

Proof. We shall base our proof on Lemma 3.5 and the asymptotics for uε and the
functions in V ε

h . Let Υ(x) = (y−εW )∂u0/∂y(x, h)χε
r. Using the triangle inequality

and (3.6), it follows that

(3.8) |uε − vh|H1(Ωε) ≤ |uε − u0 − u1 + Υ|H1(Ωε) + |u0 + u1 + Υ − vh|H1(Ωε)

≤ cd3/2 + |u0 + u1 + Υ − vh|H1(Ωε)

for all vh ∈ V ε
h . We choose vh to be uI(x) =

∑
xi∈N [u0(xi) + u1(xi)]λi(x). Then,

in Ωs, uI is piecewise bilinear, continuous, and interpolates u0 + u1. Thus

(3.9) |u0 + u1 − uI |H1(Ωs) ≤ ch.

In Ωε
r,

uI(x) =
(
d + y − εW − εz

)
Ih(

∂u0

∂y
)(x) + RI ,

RI(x) = εh−1
N∑

i=1

∂u0

∂y
(xi, 0)[θi(x) + ri(x)],

where Ih(∂u0/∂y)(·) is the piecewise linear interpolant of ∂u0/∂y(·, 0) in (0, 1). Let
eI(x, y) = ∂u0/∂y(x, h) − Ih(∂u0/∂y)(x) be the interpolation error. We need the
estimates [15, 29]

‖eI‖L2(0,1) + h‖∂eI

∂x
‖L2(0,1) + h‖eI‖L∞(0,1) + h2‖∂eI

∂x
‖L∞(0,1) ≤ ch2‖∂u0

∂y
‖H2(0,1).

We compute
(3.10)

|Υ− uI |H1(Ωε
r) ≤ |yeI |H1(Ωε

r) + ε|weI |H1(Ωε
r) + |d− εz||Ih(

∂u0

∂y
)|H1(Ωε

r) + |RI |H1(Ωε
r).
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Estimating each term we have

|yeI |2H1(Ωε
r) ≤ d

∫
Ωε

r

|∂eI

∂x
|2 dx +

∫
Ωε

r

|eI |2 dx ≤ cd2h2 + cdh4,

|weI |2H1(Ωε
r) ≤ ‖eI‖2

L∞(0,1)|w|2H1(Ωε
r) + ‖∂eI

∂x
‖2

L∞(0,1)|w|2L2(Ωε
r) ≤ cε−1h2 + cε,

|d − εz|2|Ih(
∂u0

∂y
)|2H1(Ωε

r) ≤ cd2|Ih(
∂u0

∂y
)|2H1(Ωε

r) ≤ cd2

∫
Ωε

r

|
∂Ih(∂u0

∂y )

∂x
|2 dx ≤ cd3.

Using Lemma 3.6 we finally estimate

|RI |2H1(Kε
i ) ≤ cε2h−2(‖θi‖2

H1(Kε
i ) + ‖ri‖2

H1(Kε
i )) ≤ c(ε2 + ε3h−1).

Adding up over the elements we obtain |RI |H1(Kε
i ) ≤ c(εh−1/2 + ε3/2h−1). Finally,

from (3.10) we gather that

(3.11) |Υ − uI |H1(Ωε
r) ≤ c(dh + d1/2h2 + ε1/2h + ε3/2 + d3/2 + εh−1/2 + ε3/2h−1).

The theorem follows from (3.1), (3.8), (3.9), and (3.11). �

Remark 3.8. If d ≤ c1h
2/3, and ε ≤ c2h for some constants c1, c2, then

(3.12) ‖uε − uε
h‖H1(Ωε) ≤ ch + cεh−1/2.

In practice it is wise to choose d as small as possible, reducing the computational
costs associated with computing the basis functions λi.

In Theorem 3.7 and estimate (3.12), the εh−1/2 error is related to the choice of
(linear) boundary conditions for the λi which originates the troublesome term θi

in (3.7). Of course, the exact solution is far from being linear close to the rough
boundary, and such a mismatch indicates that indeed θi is spurious.

Such a type of resonance error is not an exclusivity of the present method.
For instance, some multiscale methods (e.g. MsFEM, and Residual Free Bubbles)
proposed to tackle PDEs with rapidly varying coefficients also suffer from the same
malady, and various strategies were devised to overcome it [22], [23], [24], [30].

One promising strategy to avoid such boundary effects in our case is oversam-
pling [19, 21, 22, 24]. The goal is to avoid the restriction that λi is linear over the
edges. Consider the element Kε

i , and the enlarged ficticious element

K̂ε
i = {(x, y) ∈ Ωε

r : ih − l < x < (i + 1)h + l},
for some l > 0. Let the auxiliary multiscale functions ψi, ψi+1 be the solutions
of (2.3) in K̂ε

i . We define then λi as

λi = c1
i ψi + c2

i ψi+1,

and the constants c1
i , c2

i are uniquely determined from the restriction λi(xj) = δij

for j = i, i + 1. The numerical solution is defined by (2.4), where again V ε
h =

span{λi}.
To conclude the definition of such an oversampling method, it is necessary to

define l. Such a constant needs to be large enough so that the effect in Kε
i of the

boundary condition on ∂K̂ε
i ∩ Ωε is negligible. On the other hand, increasing l

augments computational costs. A good compromise would be l = O(ε).
Note that the method becomes nonconforming as λi might have jumps over the

edges, and thus V ε
h �⊂ H1(Ωε) in general.
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4. Conclusion

In this work, we propose a multiscale finite element scheme to deal with PDEs
posed in domains with rough boundary. Previous techniques approach this problem
with homogenization techniques. As far as we now, the exceptions are [27,28], but
their methods seem more complicated than ours.

The present method is quite general, and its definition does not assume any
special feature of the wrinkles. Since the scheme is based on solutions of local
problems, parallelization is trivial. Of course, the method is still expensive since
local problems depend on ε, but it is much cheaper than using pure piecewise linear
FEM in the whole domain. However, if the wrinkles are periodic, it is still cheaper
to use traditional wall-laws.

Concerning estimates, an error analysis is available for the periodic case only,
where models using wall-laws have the H1(Ωε) norm error as h + ε1/2, and the
present method converges as h + εh−1/2. The h−1/2 term is related to a resonance
error, also present in other multiscale methods applied to PDEs with highly oscil-
latory coefficients [19, 21–24, 30]. Oversampling techniques might ameliorate such
a problem.
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