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ABSTRACT. In an abstract setting, we investigate the basic ideas behind the Multiscale Hybrid

Mixed (MHM) method, a Domain Decomposition scheme designed to solve multiscale partial dif-

ferential equations (PDEs) in parallel. As originally proposed, the MHM method starting point is a

primal hybrid formulation, which is then manipulated to result in an efficient method that is based

on local independent PDEs and a global problem that is posed on the skeleton of the finite element

mesh. Recasting the MHM method in a more general framework, we investigate some conditions

that yield a well-posed method. We apply the general ideas to different formulations, and, in par-

ticular, come up with an interesting and fruitful connection between the Multiscale Finite Element

Method and a dual hybrid method. Finally, we propose a method that combines the main ideas of

the Discontinuous Enrichment Method and the MHM method.

1. THE ORIGINAL PROBLEM

Multiscale problems are, by definition, difficult to solve computationally, and numerical meth-

ods with domain decomposition flavor are appealing, since they woo parallel implementations.

Some important ideas have been around for a while, for instance in the seminal paper [20]. More

recent attempts to solve multiscale PDEs using domain decomposition or hybrid formulations in-

clude [2, 3, 15, 19]. Several theoretical aspects and applications involving hybrid methods appear,

for instance, in [4, 11–13, 26], and references therein.

An interesting proposal by Harder, Paredes and Valentin [23] came out also recently. Aiming

to solve heterogeneous Darcy equations using a primal hybrid method, the authors came up with

an efficient formulation that is well-posed and easy to implement in parallel. They christened the

scheme Multiscale Hybrid Mixed, or MHM for short.
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The MHM method was latter extended to other operators [1,22,24,28], but it was always devel-

oped in a case by case basis. The aim of the present work is to state the method in a more general

form, and show that, under certain conditions, the scheme is well-posed. We also explore appli-

cations of the method from different starting points, and in particular an interesting connection

between a dual hybrid formulation and the Multiscale Finite Element methods pops up. Finally,

we explore ideas of the Discontinuous Enrichment Method, recasting them in the MHM method

formalism.

The remainder of this section contains the definition of a mixed formulation in Hilbert spaces,

and some working hypothesis. Next, Section 2 deals with the development and analysis of the

MHM method in a continuous setting, while Section 3 does the same in a discrete setting. Finally,

some examples are presented in Section 4, and Section 5 unfolds a method that combines the MHM

and the Discontinuous Enrichment Methods.

We consider mixed methods for PDEs in Hilbert Spaces. For theoretical background see [5, 6,

16, 29, 30]. Let X , M be Hilbert spaces, and a ∈ L(X × X,R), b ∈ L(X ×M,R), l ∈ X and

σ ∈ M . The symbol L(H1, H2) denotes the space of continuous linear functions between Hilbert

spaces H1 and H2.

Consider the problem of finding (u, η) ∈ X ×M such that

(1)
a(u, v) + b(v, η) = l(v) for all v ∈ X,

b(u, µ) = σ(µ) for all µ ∈M.

We interpret l(·) as an action of l ∈ X through the X-inner-product. Similarly for σ(·), etc. We

could also consider the same problem in the form

Au+BTη = l in X

Bu = σ in M,

where A ∈ L(X,X) and B ∈ L(X,M) are such that

〈Aw, v〉X = a(w, v), 〈Bv, µ〉M = b(v, µ)

for all v, w ∈ X and µ ∈M . Here, 〈·, ·〉X and 〈·, ·〉M denote the X- and M -inner-products.

To proceed with the description of the method we consider some assumptions, which in partic-

ular guarantee that (1) is well-posed. It is convenient to introduce some notation at this point. Let
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Xrm be the space of “rigid motions”, elements that belong to the kernel of A:

(2) Xrm = KernA = {w ∈ X : a(w, v) = 0 for all v ∈ X},

and let

(3) X = Xrm ⊕ X̃

where X̃ = X⊥rm with respect to the X-inner-product.

Hypotheses 1.

(a) a(·, ·) is symmetric.

(b) Usual well-posedness assumptions for (1):

a(v, v) & ‖v‖2
X for v ∈ Kern(B), inf

µ∈M
sup
v∈X

b(v, µ)

‖v‖X‖µ‖M
& 1.

(c) Korn-like inequality: a(·, ·) is coercive in X̃

a(ṽ, ṽ) & ‖ṽ‖2
X for all ṽ ∈ X̃.

The symbols & and . indicate that the corresponding inequalities hold up to constants.

2. MHM: CONTINUOUS SETTING

We divide this section in two parts. The first part contains the formal derivation of the method.

The second part tells us that not only all the formal steps are valid, but also that the final problem

is well-posed.

2.1. The formalism. From (3), given u ∈ X there are unique urm ∈ Xrm and ũ ∈ X̃ such that

u = urm + ũ. We gather from (1) and the definition of Xrm that

a(ũ, ṽ) +b(ṽ, η) = l(ṽ) for all ṽ ∈ X̃,

b(vrm, η) = l(vrm) for all vrm ∈ Xrm,

b(ũ, µ) + b(urm, µ) = σ(µ) for all µ ∈M.

Let T : M → X̃ and T̂ : X → X̃ such that

(4) a(Tη, ṽ) = b(ṽ, η), a(T̂ l, ṽ) = l(ṽ), for all ṽ ∈ X̃.
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Thus

(5) ũ = −Tη + T̂ l,

and we gather then that urm ∈ Xrm and η ∈M solve

(6)
b(Tη, µ)− b(urm, µ) = −σ(µ) + b(T̂ l, µ) for all µ ∈M,

b(vrm, η) = l(vrm) for all vrm ∈ Xrm.

In terms of operators, the above splitting leads to

Ãũ +B̃Tη = l̃,

BT
rmη = lrm,

B̃ũ+Brmurm = σ,

where l̃ ∈ X̃ , lrm ∈ Xrm, Ã ∈ L
(
X̃, X̃

)
, B̃ ∈ L(X̃,M) and Brm ∈ L(Xrm,M) are such that

(7)

l̃(w) = l(w) for all w ∈ X̃, lrm(w) = l(w) for all w ∈ Xrm,

〈Ãw, v〉 = a(w, v) for all w, v ∈ X̃,

〈B̃v, µ〉 = b(v, µ) for all v ∈ X̃, µ ∈M,

〈Brmw, µ〉 = b(w, µ) for all w ∈ Xrm, µ ∈M.

With such notation, T = Ã−1B̃T and T̂ = Ã−1. Using (5),

(8)
B̃Ã−1B̃Tη −Brmurm = −σ + B̃Ã−1l̃,

BT
rmη = lrm.

Remark 2. In the case where A is invertible, then B̃Ã−1B̃T = BA−1BT is often called Uzawa

operator and Schur complement.

The whole purpose of the MHM method is that there are instances where efficient computations

of T , T̂ are feasible, possibly in parallel, and the resulting system (6) (or (8)) is of reduced size. Of

course, whenever A is injective, then Xrm = {0} and the final system is no longer of mixed type,

but elliptic, simplifying matters even further.
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2.2. Mathematical properties. The well-posedness of (4) follows from the assumption (c) in

Hypotheses 1. This also guarantees that T and T̂ are well-defined, and that these operators are

coercive and bounded.

Now, the existence of solution for (6) (or (8)), follows from the well-posedness of (1). Indeed,

given the solution pair (u, η) ∈ X ×M we decompose u = ũ + urm and gather that (5) holds.

Thus, the first equation of (6) is satisfied. The second equation in (6) follows immediately from

the first equation in (1).

Reversing the steps, if (urm, η) ∈ Xrm ×M solves (6) with zero right hand side, then a simple

substitution yields that u = −Tη + urm and η satisfy (1) also with zero right hand side. So,

uniqueness of solutions for (6) follows.

The well-posedness of (6) or its equivalent form (8) can also be derived directly. Note first that

b(T ·, ·) is actually symmetric positive definite, since from (4),

b(Tη, µ) = a(Tµ, Tη),

and from Hypothesis 1.c,

b(Tµ, µ) = a(Tµ, Tµ) & ‖Tµ‖2
X & ‖µ‖2

M .

Showing the inf-sup condition

sup
µ∈M

b(vrm, µ)

‖µ‖M
& ‖vrm‖X ,

is equivalent [16, page 470] to show that Brm is one to one and that Im(Brm) is closed in M . That

is the content of the following lemma.

Lemma 3. Let Brm be defined as in (7), and assume that the Hypotheses 1 hold. Then Brm is

injective and ImBrm is closed in M .

Proof. Let vrm ∈ KernBrm ⊂ Xrm. Then vrm ∈ KernB and the first inequality in Hypothesis 1.b

yields ‖vrm‖2
X . a(vrm, vrm) = 0 since vrm ∈ Xrm. Thus vrm = 0, and Brm is one to one.

To show that ImBrm is closed in M , let µn → µ in M such that µn ∈ ImBrm ⊂ ImB. From

the second inequality of Hypothesis 1.b it follows that B is surjective, and thus there exist vn ∈ X
such that Bvn = µn and ‖vn‖X . ‖µn‖M . Let vnrm ∈ Xrm such that vnrm − vn ∈ KernB. Then,

from (b),

‖vnrm‖X . ‖vnrm − vn‖X + ‖vn‖X . a(vn, vn)1/2 + ‖vn‖X . ‖vn‖X . ‖µn‖M
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Since µn converges, ‖vnrm‖X must be bounded. Let then vrm ∈ Xrm be the weak limit of a converg-

ing subsequence of (vnrm), which we still denote by (vnrm). Then

〈Brmvrm, η〉 = 〈vrm, B
T
rmη〉 = lim

n→∞
〈Brmv

n
rm, η〉 = lim

n→∞
〈µn, η〉 = 〈µ, η〉

for all η ∈M . Thus µ = Brmvrm ∈ ImBrm, and ImBrm is closed. �

3. MHM: DISCRETE SETTING

There are basically two ways to discretize (1). One is to simply discretize (6), and that was done

in the original proposal [23] and latter in [22, 28]. However it is also possible to first discretize (1)

and only then perform the decomposition (3). Under a mild restriction, it turns out that these

approaches are actually equivalent.

3.1. Discretize first, split spaces latter. Starting with (1), we define Xh ⊂ X and Mh ⊂M , and

search for (uh, ηh) ∈ Xh ×Mh such that

(9)
a(uh, vh) + b(vh, η) = l(vh) for all vh ∈ Xh

b(uh, µh) = σ(µh) for all µ ∈Mh.

We assume that the discrete counterpart of Hypothesis 1.b holds, and then (9) is well-posed. As-

suming also thatXrm ⊂ Xh, we can mimic (3) and decomposeXh = Xrm⊕X̃h, again with respect

to the X-inner-product. Let uh = uhrm + ũh ∈ Xrm⊕ X̃h, and proceeding as in Section 2 we obtain

(10)
b(Thη

h, µh)− b(uhrm, µh) = −σ(µh) + b(T̂hl
h, µh) for all µh ∈Mh,

b(vrm, η
h) = l(vrm) for all vrm ∈ Xrm,

where lh is the projection of l in X̃h. As in (4), Th : Mh → X̃h and T̂h : X̃h → X̃h solve

(11) a(Thη, ṽ) = b(ṽ, η), a(T̂hl
h, ṽ) = lh(ṽ), for all ṽ ∈ X̃h.

Similarly to the continuous case, Th = Ã−1
h B̃T

h and T̂h = Ã−1
h , where Ãh and B̃h are the discrete

counterparts of Ã and B̃. The existence of Ã−1
h follows from Hypothesis 1.c, and the matrix

formulation of (10) follows (8). Observe that (10) is then nothing more than (9), written differently.

Thus, (10) is also well-posed and we have the error estimate

(12) ‖η − ηh‖M + ‖u− uh‖X . inf
vh∈Xh

‖u− vh‖X + inf
µh∈Mh

‖η − µh‖M .
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Under the extra hypotheses that Th = T and T̂ = T̂h then

inf
vh∈Xh

‖u− vh‖X ≤ inf
ṽh∈X̃h

‖ũ− ṽh‖X ≤ inf
µh∈Mh

‖Tη − Tµh‖X . inf
µh∈Mh

‖η − µh‖X .

Thus, (12) becomes

(13) ‖η − ηh‖M + ‖u− uh‖X . inf
µh∈Mh

‖η − µh‖M .

Remark 4. The estimate (13) was obtained in [1, 22] for the applications considered in those pa-

pers, and states that the numerical error for the method is controlled by the discretization at the

mesh skeleton. The influence of local discretizations was also considered in [22]. Of course, sev-

eral factor can contribute to deteriorate the estimate, since the constants can depend on physical

parameters, and even on the mesh, if the discrete inf-sup conditions depend on h. These situations

have to be examined and healed in a case-by-case basis.

3.2. Split spaces first, discretize latter. We now take a different standing point, first splitting the

spaces to obtain (6). The discretion step comes out by choosing Mh ⊂M , but we assume that Xrm

is so simple (finite dimensional) that we have it analytically. Adding a zest to the model, we allow

the possibility that T and T̂ are approximated by a different scheme other than choosing Xh ⊂ X

to discretize (4). Thus, we seek uhrm ∈ Xrm and ηh ∈Mh such that

(14)
b(Thη

h, µh)− b(uhrm, µh) = −σ(µh) + b(T̂hl
h, µh) for all µh ∈Mh,

b(vrm, η
h) = l(vrm) for all vrm ∈ Xrm,

where Th, T̂h indicate stable approximations for T , T̂ , defined in (4). Thus, b(Th·, ·) is coercive

since

b(Thµ
h, µh) = a(Thµ

h,Thµ
h) & ‖Thµh‖X & ‖µh‖M .

The well-posedness of (14) follows under the inf-sup assumption

inf
vrm∈Xrm

sup
µh∈Mh

b(vrm, µ
h)

‖vrm‖X‖µh‖M
& 1.

With the aid of Strang’s Lemma, it is possible to bound the error as follows [6, 16]:

‖η − ηh‖M + ‖urm − uhrm‖X . inf
µh∈Mh

‖η − µh‖M + ‖T − Th‖L(M,X̃) + ‖T̂ − T̂h‖L(X,X̃).

Defining ũh = −Thηh + T̂hl and uh = uhrm + ũh, we gather that

‖ũ− ũh‖X ≤ ‖Tη−Thη
h‖X + ‖T̂ l− T̂hl‖X ≤ ‖η− ηh‖X + ‖T −Th‖L(M,X̃) + ‖T̂ − T̂h‖L(X,X̃),
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Thus

(15) ‖η − ηh‖M + ‖u− uh‖X . inf
µh∈Mh

‖η − µh‖M + ‖T − Th‖L(M,X̃) + ‖T̂ − T̂h‖L(X,X̃).

Remark 5. In terms of implementation, it is necessary to compute the action of T on a basis of Mh.

Consider then {ψi}dimMh
i=1 a basis for Mh, define λi = −Tψi, and assume that η =

∑dimMh

i=1 ηiψi.

This allows the computations of the matrices involved in (10), and the post-processing u = urm +∑dimMh

i=1 ηiλi + T̂ l.

Remark 6. The approximation of T is a matter of choice, and, in particular, another round of a

MHM method at the local level should not be ruled out, originating a sort of numerical zoom

(Frédéric Valentin, personal communication, 2013). This however, becomes clear only in the split

first, discretize latter scheme. If choices of discretizations forX are done beforehand (see previous

subsection), then Th is uniquely defined, and Th = Th = Ã−1
h B̃T

h and T̂h = T̂h = Ã−1
h .

4. SOME EXAMPLES

In this section we explore how the general ideas previously developed can be applied to well-

known formulations of a simple elliptic problem. Briefly, what we obtain is that starting from the

dual and primal mixed formulation, we either cannot apply the formalism (dual mixed formulation)

or, depending on the local discretization, obtain the Galerkin method (primal mixed formulation).

The hybrid formulations yield interesting cases, delivering either the method of [23] (primal hybrid

formulation), or the Multiscale Finite Element Method (dual hybrid formulation).

For a polygonal domain Ω ⊂ R2, and C : Ω → R2×2
sym, consider the Poisson problem of finding

u : Ω→ R and σ : Ω→ R2 weak solution of

(16) σ = C∇u, − divσ = f in Ω, u = 0 on ∂Ω.

In what follows, we apply the MHM method formalism to different mixed formulations, starting

with the traditional primal and mixed formulations, and proceeding to the hybrid forms.
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4.1. Dual mixed formulation. Characterizing the above problem from the second Hellinger-

Reissner principle yields that σ ∈H(div; Ω) and u ∈ L2(Ω) solve∫
Ω

C−1 σ · τ dx+

∫
Ω

u div τ dx = 0 for all τ ∈H(div; Ω),∫
Ω

divσv dx = −
∫

Ω

fv dx for all v ∈ L2(Ω).

Using the notation previously introduced, we gather that a(σ, τ ) =
∫

Ω
C−1 σ ·τ dx is not coercive

over X̃ = H(div; Ω), violating the Hypothesis 1.c. That, of course, does not mean that the

dual mixed formulation is not well-posed. It means only that we cannot apply the MHM method

formalism as developed in Section 2.

4.2. Primal mixed formulation. Another characterization searches for σ ∈ L2(Ω) and u ∈
H̊1(Ω) solve ∫

Ω

C−1 σ · τ dx−
∫

Ω

∇u · τ dx = 0 for all τ ∈ L2(Ω),∫
Ω

σ ·∇ v dx =

∫
Ω

fv dx for all v ∈ H̊1(Ω).

Using the notation previously introduced,

a(σ, τ ) =

∫
Ω

C−1 σ · τ dx, b(τ , v) = −
∫

Ω

∇ v · τ dx,

X = X̃ = L2(Ω), Xrm = {0}, M = H̊1(Ω).

In the present case, T : H̊1(Ω)→ L2(Ω) is such that, for v ∈ H̊1(Ω),∫
Ω

C−1(Tv) · τ dx = −
∫

Ω

∇ v · τ dx,

for all τ ∈ L2(Ω). Thus Tv = −C∇ v, and the MHM method seeks u ∈ H̊1(Ω) such that

(17)
∫

Ω

Tu ·∇ v dx = −
∫

Ω

fv dx for all v ∈ H̊1(Ω).

So, the application of the MHM method formalism simply yield the primal Galerkin method at the

continuous level. At the discrete level, the method will depend on the discretization of T .
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4.3. Primal hybrid formulation. We shall not discuss this case in detail since it was extensively

described already [23]. We mention however that after partitioning Ω into elements, the resulting

spaces are: Xrm composed of piecewise constants, X̃ the space of functions that are elementwise

in H1, and M is the space H−1/2 on the mesh skeleton. The operator T returns solutions of local

problems with Neumann boundary conditions. This is not only an embarrassingly parallel [32]

scheme, but it also avoids the onset of strong spurious internal boundary layers in the presence of

heterogeneous coefficients [25, 31]. The final problem (6) is posed on the mesh skeleton, and is

cheap to solve.

A peculiarity of the MHM method is that decomposition of X made the local problems well-

posed, making the primal hybrid formulation, with all its natural advantages, as easy to implement

as its dual counterpart, avoiding difficulties as discussed in [27]. This sort of approach is not

limited to problems in the form (6). In [21] for instance, a similar situation arises, depending on

geometric conditions of the domain partition.

4.4. Dual hybrid formulation. We now formulate the problem using the dual hybrid formula-

tion [2, 3, 5, 10, 29].

4.4.1. Continuous formulation. Let P be a partition of Ω into elements, and let E be the mesh

skeleton associated with P . Consider the spaces associated to such partition,

Wf = {τ ∈ L2(Ω) : − div τ = f in K ∈ P}, H1/2(E) = {v|E : v ∈ H̊1(Ω)}.

Fixing σf ∈Wf arbitrarily, we seek then σ ∈W0 and u ∈ H1/2(E) such that

∫
Ω

C−1 σ · τ dx−
∑
K∈P

∫
∂K

uτ · n dx = −
∫

Ω

C−1 σf · τ dx for all τ ∈W0,

−
∑
K∈P

∫
∂K

vσ · n dx =
∑
K∈P

∫
∂K

vσf · n dx for all v ∈ H1/2(E).

It is not hard to check that the solutions of (16) satisfy the above system, but a caveat is necessary:

in (16), u belongs to H̊1(Ω), while here we are considering its trace only. In terms of the MHM
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method,

a(σ, τ ) =

∫
Ω

C−1 σ · τ dx, b(τ , v) = −
∑
K∈P

∫
∂K

vτ · n dx, X = X̃ = W0, Xrm = {0},

M = H1/2(E), l(τ ) = −
∫

Ω

C−1 σf · τ dx, σ(v) =
∑
K∈P

∫
∂K

vσf · n dx.

The operators T : H1/2(E)→W0 and T̂ : (W0)′ →W0 are such that, given v ∈ H1/2(E),

(18)∫
Ω

C−1(Tv) · τ dx = −
∑
K∈P

∫
∂K

vτ · n dx,
∫

Ω

C−1(T̂ l) · τ dx = l(τ ) = −
∫

Ω

C−1 σf · τ dx

for all τ ∈W0. The MHM method seeks u ∈ H1/2(E) such that

(19)
∑
K∈P

∫
∂K

v(Tu) · n dx =
∑
K∈P

∫
∂K

vσf · n dx+
∑
K∈P

∫
∂K

vT̂ l · n dx for all v ∈ H1/2(E).

4.4.2. Discretization. In the spirit of Remark 5, we consider a discretization Mh ⊂M , using here

a notation more adapted to the present problem. Let {ψi}dimMh
i=1 be a basis forMh, and σi = −Tψi.

If uh =
∑dimMh

i=1 uiψi, then, from (5), σ =
∑dimMh

i=1 uiσi + T̂ l. Note that σi solve∫
K

C−1 σi · τ dx =

∫
∂K

ψiτ · n dx

for all τ ∈W0 and K ∈ P . Thus σi = C∇φi, where φi solves

(20) − div C∇φi = 0 in K, φi = ψi on ∂K.

We now extend the basis functions ψi, defined on the mesh skeleton, to the whole domain Ω.

Let Ψi ∈ H̊1(Ω) be such that Ψi|E = ψi. It is clear that the extension is not unique, and we will

explore such flexibility further on. Note that∑
K∈P

∫
∂K

ψj(Tu) · n dx = −
dimMh∑
i=1

ui

∫
Ω

∇Ψj · σi dx = −
dimMh∑
i=1

ui

∫
Ω

∇Ψj · C∇φi dx,

∑
K∈P

∫
∂K

ψj(σ
f + T̂ l) · n dx =

∫
Ω

∇Ψj · (σf + T̂ l) dx−
∫

Ω

fΨj dx.

Thus, from (19),

(21)
dimMh∑
i=1

ui

∫
Ω

∇Ψj · C∇φi dx = −
∫

Ω

∇Ψj · (σf + T̂ l) dx+

∫
Ω

fΨj dx for j = 1, . . . , dimMh.
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Note that (21) corresponds to the discretization of (19), which is defined on the mesh skeleton.

By the same token, (21) depends only on {ψj}dimMh
j=1 (recall that ψj is the trace of Ψj). Indeed,

it suffices to fix each basis function ψj at all element edges to uniquely define the unknowns

{ui}dimMh
i=1 . Given the freedom to define the basis functions at the elements interior, it seems that

the elegant choice is to let ψi = φi, see (20). With that and the aid of (18), the formulation (21)

becomes

(22)
dimMh∑
i=1

ui

∫
Ω

∇φj · C∇φi dx =

∫
Ω

fφj dx for j = 1, . . . , dimMh.

It turns out that (22) is actually the Multiscale Finite Element Method (MsFEM) [9, 14, 25].

Such characterization of the MsFEM eliminates the need to choose the basis functions in an ad

hoc manner, only the definition of ψj is needed. Now the fact that the basis functions solve the

operator is a consequence of the method, not its first step. This resonates with the way the Residual

Free Bubble Method is developed, and the remark below explore such connection.

Remark 7. Note that (21) can be further simplified by choosing σf = C∇ θ, where θ|
K
∈ H̊1(K)

solve − div C∇ θ = f inside all elements K ∈ P . Indeed, in such case, T̂ l = 0. This is exactly

the system solved by the “non-bubble” part of the Residual Free Bubble (RFB) method [8,18,31].

Thus, over the edges, both methods coincide — see [7, 31] for further details.

5. A “NEW” DISCONTINUOUS ENRICHMENT-MULTISCALE HYBRID MIXED METHOD

Often, for problems posed in heterogeneous media, the “macroscopic information” is of most

interest, and such information can be well-approximated by polynomial functions. The trouble

is, traditional methods with polynomial basis functions do not perform well for such problems.

In general, the MHM method does not yield such approximation at once either, since Xrm might

be too simple or even the zero space, and only after the primal variable postprocessing a good

approximation comes about.

The Residual Free Bubble (RFB) method [8, 18, 31] tries to overcome such shortcoming by

adding bubbles to the finite element spaces, and shares similarities to the MsFEM, presented in

a dual hybrid form in Subsection 4.4. Using a hybrid formulation that is closer to the original

proposition of the MHM method, the Discontinuous Enrichment Method (DEM) [17], also enriches

polynomial spaces with functions that are local solutions to the PDE under consideration. This time

however, the added space is nonconforming.
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5.1. The method. We now combine the ideas behind the DEM and MHM method, in a method

that we call DE–MHM, aiming to preserve the good properties of both approaches. Starting

with (1), we decompose X in the three-field X = Xrm ⊕ Xp ⊕ Xe, where the definition of

Xrm is as in (2). We assume that Xp ⊂ KernB, and Xe is, for instance, the orthogonal com-

plement of Xrm ⊕ Xp with respect to the X-inner-product. In practice, Xp would be a space of

continuous piecewise polynomials, and Xe a space of discontinuous functions that undergo static

condensation.

We search then for (urm + up + ue, η) ∈ X ×M , where urm ∈ Xrm, up ∈ Xp, and ue ∈ Xe are

such that

(23)

b(vrm, η) = l(vrm) for all vrm ∈ Xrm,

a(up, vp) + a(ue, vp) = l(vp) for all vp ∈ Xp,

a(up, ve) + a(ue, ve) + b(ve, η) = l(ve) for all ve ∈ Xe,

b(urm, µ) + b(ue, µ) = σ(µ) for all µ ∈M.

Similarly to (4), we define Te : M → Xe, T pe : Xp → Xe and T̂e : X → Xe such that

(24)

a(Teη, ve) = b(ve, η), a(T pe up, ve) = a(up, ve), a(T̂el, ve) = l(ve), for all ve ∈ Xe.

Then, from the third equation of (23):

(25) ue = −Teη − T pe up + T̂ l.

Replacing in (23), we have from the first and last equations that

(26) b(vrm, η) + b(urm, µ) + b(−Teη, µ) = b(T pe up, µ) + l(vrm) + σ(µ)− b(T̂ l, µ)

for all (vrm, µ) ∈ Xrm ×M.

Note that (26) is of the form (6), but since its right hand side depends on up, we perform yet another

round of static condensation and write

(27) (urm, η) =
(
SXup + ŜX(σ, l), SMup + ŜM(σ, l)

)
,

where
(
SXup, SMup

)
and

(
ŜX(σ, l), ŜM(σ, l)

)
are the solutions of the mixed problem (26) with

b(T pe up, µ) and l(vrm) + σ(µ)− b(T̂ l, µ) as the right hand side.
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Finally, using the second equation in (23), we gather the final equation

(28) a(up, vp)− a(TeSMup, vp)− a(T pe up, vp) = l(vp)− a(T̂ l, vp) + a(TeŜM(σ, l), vp)

for all vp ∈ Xp.

The principal part of the solution is then urm + up. Of course, ue can also be added if necessary.

An example of particular interest is for the Darcy problem (16) with an oscillatory tensor and

based on the primal hybrid formulation, withXp as the space of continuous piecewise polynomials.

Several remarks are now in order. First, the well-posedness of (28) and (1) are equivalent.

In terms of implementation, as long as Xp is finite dimensional, the only discretization needed

to solve (28), is that of the operators Te, T pe , SM , T̂ and ŜM . Otherwise, a subspace of Xp is

necessary. Regarding computational aspects, solving (26) is equivalent to solve the MHM method

final system (6), and the local problems (24) are equivalent to (4). And size of the extra system (28),

not present in the MHM method, depends only on the dimension of Xp. A final remark concerns

the possibility of considerable savings in terms of computer memory, since it is no longer necessary

to store the solutions of problems (24) for postprocessing, as in the MHM method. Indeed, after

these solutions are obtained, they can be used to assemble the matrices in (28) and discarded.
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