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ABSTRACT. In an abstract setting, we investigate the basic ideas behind the Multiscale Hybrid
Mixed (MHM) method, a Domain Decomposition scheme designed to solve multiscale partial dif-
ferential equations (PDEs) in parallel. As originally proposed, the MHM method starting point is a
primal hybrid formulation, which is then manipulated to result in an efficient method that is based
on local independent PDEs and a global problem that is posed on the skeleton of the finite element
mesh. Recasting the MHM method in a more general framework, we investigate some conditions
that yield a well-posed method. We apply the general ideas to different formulations, and, in par-
ticular, come up with an interesting and fruitful connection between the Multiscale Finite Element
Method and a dual hybrid method. Finally, we propose a method that combines the main ideas of
the Discontinuous Enrichment Method and the MHM method.

1. THE ORIGINAL PROBLEM

Multiscale problems are, by definition, difficult to solve computationally, and numerical meth-
ods with domain decomposition flavor are appealing, since they woo parallel implementations.
Some important ideas have been around for a while, for instance in the seminal paper [20]. More
recent attempts to solve multiscale PDEs using domain decomposition or hybrid formulations in-
clude [2,3, 15, 19]. Several theoretical aspects and applications involving hybrid methods appear,
for instance, in [4,11-13,26], and references therein.

An interesting proposal by Harder, Paredes and Valentin [23] came out also recently. Aiming
to solve heterogeneous Darcy equations using a primal hybrid method, the authors came up with
an efficient formulation that is well-posed and easy to implement in parallel. They christened the
scheme Multiscale Hybrid Mixed, or MHM for short.
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The MHM method was latter extended to other operators [1,22,24,28], but it was always devel-
oped in a case by case basis. The aim of the present work is to state the method in a more general
form, and show that, under certain conditions, the scheme is well-posed. We also explore appli-
cations of the method from different starting points, and in particular an interesting connection
between a dual hybrid formulation and the Multiscale Finite Element methods pops up. Finally,
we explore ideas of the Discontinuous Enrichment Method, recasting them in the MHM method
formalism.

The remainder of this section contains the definition of a mixed formulation in Hilbert spaces,
and some working hypothesis. Next, Section 2 deals with the development and analysis of the
MHM method in a continuous setting, while Section 3 does the same in a discrete setting. Finally,
some examples are presented in Section 4, and Section 5 unfolds a method that combines the MHM
and the Discontinuous Enrichment Methods.

We consider mixed methods for PDEs in Hilbert Spaces. For theoretical background see [5, 6,
16,29,30]. Let X, M be Hilbert spaces, and a € L(X x X,R), b € L(X x M,R),[ € X and
o € M. The symbol L(H,, Hy) denotes the space of continuous linear functions between Hilbert
spaces H; and H.

Consider the problem of finding (u,n) € X x M such that

a(u,v) +b(v,n) =1(v) forallv e X,

ey
b(u, ) =o(p) forall ue M.

We interpret [(-) as an action of | € X through the X-inner-product. Similarly for o(-), etc. We

could also consider the same problem in the form
Au+BTp=1 inX
Bu =0 inM,
where A € £(X, X) and B € L(X, M) are such that
(Aw,v)x = a(w,v),  (Bo,p)ar = b(v, 1)

for all v, w € X and u € M. Here, (-,-)x and (-, -) s denote the X - and M -inner-products.
To proceed with the description of the method we consider some assumptions, which in partic-

ular guarantee that (1) is well-posed. It is convenient to introduce some notation at this point. Let
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X.m be the space of “rigid motions”, elements that belong to the kernel of A:

(2) Xim =Kem A ={w e X : a(w,v) =0forallv € X},
and let
3) X=XmoX

where X = XL with respect to the X -inner-product.

Hypotheses 1.

(a) a(-,-) is symmetric.

(b) Usual well-posedness assumptions for (1):

: b(v, 1)
a(v,v) 2 ||[v||% for v € Kern(B), inf sup ————— >'1
( ) H HXf ( ) NEMve)I? HUHXHMHM

(¢) Korn-like inequality: a(-,-) is coercive in X

a(0,0) = 0|3 forallv e X.

The symbols 2 and < indicate that the corresponding inequalities hold up to constants.

2. MHM: CONTINUOUS SETTING

We divide this section in two parts. The first part contains the formal derivation of the method.
The second part tells us that not only all the formal steps are valid, but also that the final problem

is well-posed.

2.1. The formalism. From (3), given u € X there are unique u,,, € X, and u € X such that
U = Uy + u. We gather from (1) and the definition of X, that

(@, ) +b(0,n) =1(v) foralld e X,
b(Vrm, ) = U(vym)  for all vy, € X,
b(i, 1) + b(tem, 1) =o(p) forallpe M.

LetT: M — X and T : X — X such that

(4) a(Tn, o) =b(o,n),  a(Tl,o)=11), forallve X.
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Thus
6)) a=-Tn+TI,

and we gather then that u,,,, € X, and n € M solve

b(T, 1) = b(ttsm, 1) = —0 () + b(TL, ) forall € M,
(6)
b(Vem, M) = l(vrm) for all vy € Xim-

In terms of operators, the above splitting leads to

At +BTy =1,
B?mn = lrmv
Bil + B Uem =0,

where [ € X, I, € Xom, A € E(X,X), Be E(X,M) and By, € L(Xim, M) are such that

I(w) = l(w) forallw e X, Lm(w) = l(w) forallw € X,
(Aw,v) = a(w,v) forallw,ve X,
(N N -
(Bu,u) = b(v,u) forallv e X, ue M,

(Bmw, ) = b(w, ) forallw € Xy, p € M.

With such notation, 7 = A~*BT and T' = A~!. Using (5),
E’fl_léTn — Bitym = —0 + B[l_li,

()
B?mn = lm-

Remark 2. In the case where A is invertible, then BA=1BT = BA-'BT is often called Uzawa

operator and Schur complement.

The whole purpose of the MHM method is that there are instances where efficient computations
of T, T are feasible, possibly in parallel, and the resulting system (6) (or (8)) is of reduced size. Of
course, whenever A is injective, then X,,, = {0} and the final system is no longer of mixed type,

but elliptic, simplifying matters even further.
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2.2. Mathematical properties. The well-posedness of (4) follows from the assumption (c) in
Hypotheses 1. This also guarantees that 7" and T are well-defined, and that these operators are
coercive and bounded.

Now, the existence of solution for (6) (or (8)), follows from the well-posedness of (1). Indeed,
given the solution pair (u,n) € X x M we decompose u = @ + u,,,, and gather that (5) holds.
Thus, the first equation of (6) is satisfied. The second equation in (6) follows immediately from
the first equation in (1).

Reversing the steps, if (tm,”) € X X M solves (6) with zero right hand side, then a simple
substitution yields that v = —71'n + u,, and 7 satisfy (1) also with zero right hand side. So,
uniqueness of solutions for (6) follows.

The well-posedness of (6) or its equivalent form (8) can also be derived directly. Note first that

b(T-,-) is actually symmetric positive definite, since from (4),

b(Tn, ) = a(Twp,Tn),

and from Hypothesis 1.c,

O(Tp,p) = a(Tu, Tu) 2 | Tullx 2 [lpli-

Showing the inf-sup condition

b rm:»
sup 2 ) >

et ||l v
is equivalent [16, page 470] to show that B,,, is one to one and that Im(B,,,) is closed in M. That

is the content of the following lemma.

Lemma 3. Let B,,, be defined as in (7), and assume that the Hypotheses 1 hold. Then B, is

injective and Im By, is closed in M.

Proof. Let vy, € Kern By, C X,,. Then v, € Kern B and the first inequality in Hypothesis 1.b
yields || v |3 < a(vem, vrm) = 0 since vy € Xpp. Thus vy, = 0, and By, is one to one.

To show that Im B,,, is closed in M, let y,, — p in M such that p,, € Im B,,, C Im B. From
the second inequality of Hypothesis 1.b it follows that B is surjective, and thus there exist v, € X
such that Bv,, = p, and ||v,]|x < [[pnllar. Let vl € X, such that 02, — v, € Kern B. Then,
from (b),

lorallx S vt = vallx + loallx S alvn, va)' + lvallx S lloallx S lliallne
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Since y,, converges, ||vr || x must be bounded. Let then v,,,, € X, be the weak limit of a converg-
ing subsequence of (v” ), which we still denote by (v ). Then
(B, 1) = (Vem), Byail) = nLIEO<BrmU?ma n = 7}1_{200%7 n = {u,n)

foralln € M. Thus p = Byym¥rm € Im By, and Im By, is closed. U

3. MHM: DISCRETE SETTING

There are basically two ways to discretize (1). One is to simply discretize (6), and that was done
in the original proposal [23] and latter in [22,28]. However it is also possible to first discretize (1)
and only then perform the decomposition (3). Under a mild restriction, it turns out that these

approaches are actually equivalent.

3.1. Discretize first, split spaces latter. Starting with (1), we define X; C X and M, C M, and
search for (u”,n") € X}, x Mj, such that

a(u, v") +b(v", ) = 1(v") forallv" € X,
©)

b(u", ") =o(u") forall u € My,

We assume that the discrete counterpart of Hypothesis 1.b holds, and then (9) is well-posed. As-

suming also that X,,, C X}, we can mimic (3) and decompose X}, = X, P X n, again with respect

to the X -inner-product. Let u" = u!_ + 4" € X, ® X}, and proceeding as in Section 2 we obtain
b(Tin", 1) = bluls,, 1) = = (") + b(TH1", ") forall p* € M,

(10) .
b(vrmu n ) = l(Urm) for all Urm € er,

where [" is the projection of [ in Xh. Asin 4), T}, : M;, — Xh and Th : Xh — Xh solve
(11) a(Tyn,®) = b(0,m),  a(Tl", o) =1"(®), forallv € X,.

Similarly to the continuous case, 1}, = A,ZIB,? and 7, h = fl,;l, where flh and Bh are the discrete
counterparts of A and B. The existence of flgl follows from Hypothesis 1.c, and the matrix
formulation of (10) follows (8). Observe that (10) is then nothing more than (9), written differently.

Thus, (10) is also well-posed and we have the error estimate

(12) I —n"lar + llu—"llx S inf Ju—o"x+ inf [n—p"[a
vheXy, pheMy,
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Under the extra hypotheses that 7j, = 7" and T =T}, then
inf Jlu—"llx < inf a—o"|x < inf |Tn—Tp"|lx < inf |n—u"|x.
vheXy, sheXy, pheMy pheMy,

Thus, (12) becomes

inf [l — 4" ||ur.
pheMp

(13) I = n"llar + llu = w*lx <
Remark 4. The estimate (13) was obtained in [1, 22] for the applications considered in those pa-
pers, and states that the numerical error for the method is controlled by the discretization at the
mesh skeleton. The influence of local discretizations was also considered in [22]. Of course, sev-
eral factor can contribute to deteriorate the estimate, since the constants can depend on physical
parameters, and even on the mesh, if the discrete inf-sup conditions depend on h. These situations

have to be examined and healed in a case-by-case basis.

3.2. Split spaces first, discretize latter. We now take a different standing point, first splitting the
spaces to obtain (6). The discretion step comes out by choosing M;, C M, but we assume that X,
is so simple (finite dimensional) that we have it analytically. Adding a zest to the model, we allow
the possibility that 7" and T are approximated by a different scheme other than choosing X; C X

to discretize (4). Thus, we seek uffm € X, and " € M;, such that
DT, 1) = b(ulh, p") = —o (") + b(Tpl", ") forall p* € M,

(14) .
b(Vem, n") = 1(Vym) for all vy € Xim,

where T, ‘i’h indicate stable approximations for 7', T, defined in (4). Thus, b(%,, ) is coercive

since
D(Tpp, 1) = (T, Top") 2 | Tap || x 2 |11 ar-

The well-posedness of (14) follows under the inf-sup assumption

b h
inf  sup L,,uh) 2 1.
Vrm € Xrm ;U'hth ‘|Urm||XH/,l/ ||M

With the aid of Strang’s Lemma, it is possible to bound the error as follows [6, 16]:
1 = 0" llar + [[tem — whallx S M;}wa 1 = 1"l + 1T = Tl carzy + 1T = Tl oox 5
h
Defining @" = —%,n" + ),/ and v = u” + @", we gather that

la—a"|lx < 1T —Fwn"llx + 177 = Zalllx < [ln—1"lx + 1T = Full gar,z) + 17 = Snll o2
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Thus
(15 n ="l + llu—u"|Ix S#ggﬂg 1 = 1"l + 1T = Tnll ey + 1T = Snll g 59
h

Remark 5. In terms of implementation, it is necessary to compute the action of 7" on a basis of Mj,.
Consider then {¢; }2™ " a basis for M), define \; = —T);, and assume that 77 = Z?;“f M paabs.
This allows the computations of the matrices involved in (10), and the post-processing u = Uy, +

S M\ + T

Remark 6. The approximation of 7" is a matter of choice, and, in particular, another round of a
MHM method at the local level should not be ruled out, originating a sort of numerical zoom
(Frédéric Valentin, personal communication, 2013). This however, becomes clear only in the split
first, discretize latter scheme. If choices of discretizations for X are done beforehand (see previous
subsection), then 7}, is uniquely defined, and ¥, = T}, = 21,;1[3,? and fh = Th = fl;l.

4. SOME EXAMPLES

In this section we explore how the general ideas previously developed can be applied to well-
known formulations of a simple elliptic problem. Briefly, what we obtain is that starting from the
dual and primal mixed formulation, we either cannot apply the formalism (dual mixed formulation)
or, depending on the local discretization, obtain the Galerkin method (primal mixed formulation).
The hybrid formulations yield interesting cases, delivering either the method of [23] (primal hybrid
formulation), or the Multiscale Finite Element Method (dual hybrid formulation).

consider the Poisson problem of finding

sym?

For a polygonal domain Q C R?, and C : Q — RZ]
u:Q— Rand o : Q — R? weak solution of

(16) oc=CVu, —dive=/f in{, u=0 on 0.

In what follows, we apply the MHM method formalism to different mixed formulations, starting

with the traditional primal and mixed formulations, and proceeding to the hybrid forms.
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4.1. Dual mixed formulation. Characterizing the above problem from the second Hellinger-
Reissner principle yields that o € H (div; ) and u € L*(2) solve

/C_IU'Td$+/UdiV’Td$:O for all 7 € H (div; Q),
Q Q

/divavdaz :—/fvd:v for all v € L*(Q).
Q Q

Using the notation previously introduced, we gather that a(o, 7) = fQ C~' o -7 da is not coercive
over X = H (div; ©2), violating the Hypothesis 1.c. That, of course, does not mean that the
dual mixed formulation is not well-posed. It means only that we cannot apply the MHM method

formalism as developed in Section 2.

4.2. Primal mixed formulation. Another characterization searches for ¢ € L*(2) and u €
H(9) solve

/C_lo'~7'd:1:—/Vu-szc:O for all T € L*(Q),

Q Q

/O'-Vvda: :/fvda: forallv € H'(Q).
Q Q

Using the notation previously introduced,

a(a,r):/C_lo'-Tda:, /VU T dzx,
0
X =X=L*Q), Xm={0}, M=HY(Q).

In the present case, T : H(€2) — L?(€2) is such that, for v € (),
/Cl(Tv) cTdr = —/ Vou-rde,
Q Q
for all 7 € L*(Q). Thus Tv = — C V v, and the MHM method seeks u € H'(€2) such that
(17) /Tu~Vvdw:—/fvd:c for all v € H'().
Q Q

So, the application of the MHM method formalism simply yield the primal Galerkin method at the

continuous level. At the discrete level, the method will depend on the discretization of 7'.
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4.3. Primal hybrid formulation. We shall not discuss this case in detail since it was extensively
described already [23]. We mention however that after partitioning {2 into elements, the resulting
spaces are: X,,, composed of piecewise constants, X the space of functions that are elementwise
in H', and M is the space H~'/? on the mesh skeleton. The operator 7" returns solutions of local
problems with Neumann boundary conditions. This is not only an embarrassingly parallel [32]
scheme, but it also avoids the onset of strong spurious internal boundary layers in the presence of
heterogeneous coefficients [25,31]. The final problem (6) is posed on the mesh skeleton, and is
cheap to solve.

A peculiarity of the MHM method is that decomposition of X made the local problems well-
posed, making the primal hybrid formulation, with all its natural advantages, as easy to implement
as its dual counterpart, avoiding difficulties as discussed in [27]. This sort of approach is not
limited to problems in the form (6). In [21] for instance, a similar situation arises, depending on

geometric conditions of the domain partition.

4.4. Dual hybrid formulation. We now formulate the problem using the dual hybrid formula-
tion [2,3,5,10,29].

4.4.1. Continuous formulation. Let P be a partition of €2 into elements, and let £ be the mesh

skeleton associated with P. Consider the spaces associated to such partition,
W/ ={rcL*Q): —divr = fin K € P}, HY?(&) = {v], : ve H'(Q)}.

Fixing o/ € W/ arbitrarily, we seek then & € W and u € H'/?(£) such that

/C_lcr-Tda:—Z/ uT-ndw:—/C_la'f-‘rdw forall 7 € WY,
Q oK Q

KeP

—Z/ vo - ndx :Z/ vo! -ndx forallv € HY*(E).
oK oK

KeP KeP

It is not hard to check that the solutions of (16) satisfy the above system, but a caveat is necessary:

in (16), u belongs to H 1(Q), while here we are considering its trace only. In terms of the MHM
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method,

a(O',T):/QC_10'~Td-’D, b(T,v) = 2/8er nde, X=X=W" X, =/{0},

KeP
Z/BK I nde.

M= HY2(&), (1) = —/C’1 ol -rdx, o
@ KeP
The operators T : HY/2(£) — W and T : (W°)’ — W0 are such that, given v € H/2(E),

(18)

/C_l(Tv)-Tdm:—Z/ T - ndex, /C (T1) - Tdx = I(T /C ol - Tdx
0 oK

KeP

for all 7 € W'. The MHM method seeks u € H'/?(&) such that

(19) Z / (Tu) -ndx = Z / vo! -ndx + Z / vTl-nde forallve H/(E).
KeP KePp KePp

4.4.2. Discretization. In the spirit of Remark 5, we consider a discretization M;, C M, using here

a notation more adapted to the present problem. Let {@bz}dlm Mh be a basis for M, n, and o; = —T1;.
If uh = SO0 Me g4, then, from (5), o = S0 M w0, + T'1. Note that o; solve

/C_lo'i‘Tda:: V7 - ndx

K 0K

forall 7 € WY and K € P. Thus o; = C V ¢;, where ¢, solves

(20) —divCV ¢ = 0in K, ¢ = 1; on OK.

We now extend the basis functions );, defined on the mesh skeleton, to the whole domain (2.
Let U, € H 1(Q) be such that W;|, = ;. It is clear that the extension is not unique, and we will
explore such flexibility further on. Note that

dim My, dim My,

Z/ ¥;(Tu) -nde = — Z ul/V\If coidr = — Z ul/V\If .CV ¢ du,
KePpP
¢j(af+TZ)-ndm:/quj-(af+Tl)dx—/qujdm.
Kep JOK Q Q
Thus, from (19),
(21)
dim My,

Z uZ/V\I/ CV ¢;dx = — /V\p (o +T1) d:c+/f\1/ de forj=1,...,dim M,.
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Note that (21) corresponds to the discretization of (19), which is defined on the mesh skeleton.
By the same token, (21) depends only on {7, }jfi Mu(recall that 1, is the trace of U;). Indeed,
it suffices to fix each basis function 1); at all element edges to uniquely define the unknowns
{ul}?;nll MnGiven the freedom to define the basis functions at the elements interior, it seems that

the elegant choice is to let ©; = ¢;, see (20). With that and the aid of (18), the formulation (21)

becomes
dim My,

(22) > ui/V@-Cngidw:/fqﬁjdw forj=1,...,dim M,.
i=1 Q Q

It turns out that (22) is actually the Multiscale Finite Element Method (MsFEM) [9, 14, 25].
Such characterization of the MsFEM eliminates the need to choose the basis functions in an ad
hoc manner, only the definition of 1); is needed. Now the fact that the basis functions solve the
operator is a consequence of the method, not its first step. This resonates with the way the Residual

Free Bubble Method is developed, and the remark below explore such connection.

Remark 7. Note that (21) can be further simplified by choosing o/ = C V 6, where 6|, € H*(K)
solve —divC V @ = f inside all elements K € P. Indeed, in such case, Tl = 0. This is exactly
the system solved by the “non-bubble” part of the Residual Free Bubble (RFB) method [8, 18,31].
Thus, over the edges, both methods coincide — see [7,31] for further details.

5. A “NEW” DISCONTINUOUS ENRICHMENT-MULTISCALE HYBRID MIXED METHOD

Often, for problems posed in heterogeneous media, the “macroscopic information” is of most
interest, and such information can be well-approximated by polynomial functions. The trouble
is, traditional methods with polynomial basis functions do not perform well for such problems.
In general, the MHM method does not yield such approximation at once either, since X,,, might
be too simple or even the zero space, and only after the primal variable postprocessing a good
approximation comes about.

The Residual Free Bubble (RFB) method [8, 18, 31] tries to overcome such shortcoming by
adding bubbles to the finite element spaces, and shares similarities to the MsFEM, presented in
a dual hybrid form in Subsection 4.4. Using a hybrid formulation that is closer to the original
proposition of the MHM method, the Discontinuous Enrichment Method (DEM) [17], also enriches
polynomial spaces with functions that are local solutions to the PDE under consideration. This time

however, the added space is nonconforming.
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5.1. The method. We now combine the ideas behind the DEM and MHM method, in a method
that we call DE-MHM, aiming to preserve the good properties of both approaches. Starting
with (1), we decompose X in the three-field X = X,,, ® X, ® X., where the definition of
Xim 18 as in (2). We assume that X;, C Kern B, and X, is, for instance, the orthogonal com-
plement of X,,, & X, with respect to the X-inner-product. In practice, X, would be a space of
continuous piecewise polynomials, and X, a space of discontinuous functions that undergo static
condensation.

We search then for (uym, + u, + ue, ) € X X M, where uyy, € X, u, € X, and u, € X, are
such that

b(Vrm, M) = (V) forall vy, € X,

a(uy, vp) + a(te, vp) =l(v,) forallv, € X,,
*9 a(up, ve) + a(te, ve) + b(ve,n) = l(ve)  forall v, € X,

b(Upm, ) + b(ue, 1) =o(p) forall up e M.

Similarly to (4), we define 7, : M — X, T? : X, — X, and Te : X — X, such that
(24)
a(Ten, ve) = b(ve,n), a(TPuy, ve) = a(uy, ve), a(Tel, ve) = l(ve), for all v, € X,.

Then, from the third equation of (23):
(25) ue = —Tn — TPu, + T1.
Replacing in (23), we have from the first and last equations that
(26)  b(0um, 1) + bt 1) + b(=Ten, 1) = b(TPtp, ) + Uvewm) + 0(12) — (T, po)
for all (vpm, 1) € Xym X M.

Note that (26) is of the form (6), but since its right hand side depends on u,,, we perform yet another

round of static condensation and write
(27) (s ) = (Sxup + Sx(0,1), Sty + Sar(a,1)),

where (Sxu,, Syu,) and (S x(0,1), S (o, [)) are the solutions of the mixed problem (26) with
b(TPuy, p) and 1(vym) + o (1) — b(T'L, 1) as the right hand side.
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Finally, using the second equation in (23), we gather the final equation

(28) a(uy,vy) — a(T.Smuy, vp) — a(TPuy,, v,) = l(v,) — a(Tl, vp) + a(TegM(a, 1), vp)

for all v, € X,,.

The principal part of the solution is then u,y, + u,. Of course, u. can also be added if necessary.
An example of particular interest is for the Darcy problem (16) with an oscillatory tensor and
based on the primal hybrid formulation, with X, as the space of continuous piecewise polynomials.
Several remarks are now in order. First, the well-posedness of (28) and (1) are equivalent.
In terms of implementation, as long as X, is finite dimensional, the only discretization needed
to solve (28), is that of the operators 7., T?, Sy, T and S m. Otherwise, a subspace of X, is
necessary. Regarding computational aspects, solving (26) is equivalent to solve the MHM method
final system (6), and the local problems (24) are equivalent to (4). And size of the extra system (28),
not present in the MHM method, depends only on the dimension of X,. A final remark concerns
the possibility of considerable savings in terms of computer memory, since it is no longer necessary
to store the solutions of problems (24) for postprocessing, as in the MHM method. Indeed, after

these solutions are obtained, they can be used to assemble the matrices in (28) and discarded.
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