
June 24, 2005 13:32 WSPC/103-M3AS 00066

Mathematical Models and Methods in Applied Sciences
Vol. 15, No. 7 (2005) 985–1008
c© World Scientific Publishing Company

HIERARCHICAL MODELING BASED ON MIXED PRINCIPLES:
ASYMPTOTIC ERROR ESTIMATES

ALEXANDRE L. MADUREIRA
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Petrópolis, RJ 25651-070, Brazil

alm@lncc.br

Received 18 September 2003
Communicated by D. Arnold

We analyze approximation properties of dimension reduction models that are based on
mixed principles. The problems of interest are elliptic PDEs in thin domains. The goal
is to obtain estimates that take into account both the thickness of the domain and the
order of the model. The techniques involved do not require the models to be energy
minimizers, and are based on asymptotic expansions for the exact and model solutions.
We obtain estimates in several norms and semi-norms, and also interior estimates (which
disregards boundary layers).
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1. Introduction

The idea of taking advantage of the small thickness, and using dimension reduction
to approximate PDEs that are posed in thin domains is quite attractive. In fact,
it seems quite natural to pose and solve a modified problem in a region with one
less dimension and then extend the reduced solution to the more general domain.
Estimating how good such approximations is nontrivial.

There were several attempts to derive such modeling error estimates, but they
often required the models to be of minimum energy type.21,24,27–29 To the best
of our knowledge, the only exceptions were estimates based on the two energies
principle,1,9,23,25 which works only for a few models, and yields estimates only in
the energy norm. Such restriction did not allow for a more general analysis of
hierarchical models based on mixed principles.

Arnold and Madureira3 investigated minimum energy models for a Poisson
problem in thin plates, and described how the models converge as the thickness
decreases, and as the models become more sophisticated. Here, we perform simi-
lar analysis, but this time the models do not minimize the potential energy, and
therefore they are not Ritz projections of the exact solution. We choose our models
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based on a mixed, or saddle point, principle. This is possible since, unlike previous
analyses, we do not rely on the fact that the solution of the model is an energy
minimizer.19

Consider the three-dimensional plate P ε = Ω × (−ε, ε), where Ω is a two-
dimensional smoothly bounded region and ε < 1 is a small positive quantity. We
denote the lateral boundary of the plate by ∂P ε

L = ∂Ω × (−ε, ε), and its top and
bottom by ∂P ε

± = Ω × {−ε, ε}. Let uε ∈ H1(P ε) be the weak solution of

−∆uε = fε in P ε,

∂uε

∂n
= gε on ∂P ε

±,

uε = 0 on ∂P ε
L,

(1.1)

where fε : P ε → R and gε :P ε
± → R.

There is an alternative way to characterize uε. Let V (P ε) = L2(P ε) and
Sgε(P ε) =

{
σ ∈ H(div, P ε) : σ · n = gε on ∂P ε±

}
. Define σε = (σ∼

ε, σε
3) = ∇uε.

Then, (uε, σε) is the unique critical point of

L(v, τ) =
1
2

∫
P ε

|τ |2 dxε +
∫

P ε

fεv dxε +
∫

P ε

div τv dxε

on V (P ε) × Sgε(P ε). Actually, (uε, σε) is a saddle point of L.
We introduce now two classes of models based on the above variational principle.

Choosing subspaces of V (P ε) and Sgε(P ε) composed of functions with polynomial
dependence in the transverse direction, and looking for a critical point of L within
these subspaces, we define saddle point models which we call SP′ models. For a
function v ∈ L2(P ε), and an integer p, we write deg3 v ≤ p meaning that v is a
polynomial of degree at most p in x3, with coefficients in L2(Ω). The interpretation
for deg3 v < 0 is that v = 0. For V (P ε, p) =

{
v ∈ V (P ε) : deg3 v ≤ p

}
and

Sgε(P ε, p) =
{
τ ∈ Sgε(P ε) : deg3 τ∼ ≤ p, deg3 τ3 ≤ p − 1

}
we have the SP1

′(p) models. Another option is to choose Sgε(P ε, p) =
{
τ ∈

Sg(P ε): deg3 τ∼ ≤ p, deg3 τ3 ≤ p + 1
}
, and we define the SP2

′(p) models. The
solutions of the models, uε(p) ∈ V (P ε, p) and σε(p) ∈ Sgε(P ε, p) satisfy the weak
equations∫

P ε

σε(p) · τ dxε +
∫

P ε

uε(p) div τ dxε = 0 for all τ ∈ S0(P ε, p), (1.2)∫
P ε

div σε(p)v dxε = −
∫

P ε

fεv dxε for all v ∈ V (P ε, p). (1.3)

Note that in both SP′
1(p) and SP′

2(p) models, div Sgε(P ε, p) = V (P ε, p) and there-
fore, not only there exists a unique solution for (1.2), (1.3), but also div σε(p) =
−πV fε, where πV fε is the orthogonal L2 projection of fε into V (P ε, p). This implies
that σε(p) is the minimizer of the complementary energy

Jc(τ ) =
1
2

∫
P ε

|τ |2 dx

over all τ ∈ Sgε(P ε, p) such that div τ = −πV fε.
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It is clear that by increasing p, we generate two families of hierarchical models,
SP′

1(p) and SP′
2(p). We study here the more sophisticated SP′

2(p) models. The
simplest instance in this family, SP′

2(1), follows. If

uε(1)(xε) = ω0(x∼
ε) + ω1(x∼

ε)xε
3,

σε(1)(xε) =

(∇∼ω0(x∼
ε)

ε−1g0xε
3

)
+

( ∇∼ω1(x∼
ε)xε

3

− 5
4 (ε−2xε

3
2 − 1)ω1 + 1

4 (5ε−2xε
3
2 − 1)g1

)
,

then

∆2Dω0 = −f0 − ε−1g0,
2
3
ε2∆2Dω1 − 5

3
ω1 = −2f1 − 5

3
g1 in Ω,

ω0 = ω1 = 0 on ∂Ω,
(1.4)

where ∆2D = ∂11 + ∂22 and

f0(x∼
ε) =

1
2ε

∫ ε

−ε

fε(x∼
ε, xε

3) dxε
3, f1(x∼

ε) =
1
2ε

∫ ε

−ε

fε(x∼
ε, xε

3)x
ε
3 dxε

3,

g0(x∼
ε) =

1
2
[
gε(x∼

ε, ε) + gε(x∼
ε,−ε)

]
, g1(x∼

ε) =
1
2
[
gε(x∼

ε, ε) − gε(x∼
ε,−ε)

]
.

The two differential equations in (1.4) are independent of each other. We can express
any function defined on P ε as a sum of its even and odd parts with respect to xε

3, in
a unique way. The even parts of fε, gε appear only in the equation for ω0, and the
respective odd parts show up in the equation for ω1. Also, the equation determining
ω1 is singularly perturbed, but this is not the case for the equation determining ω0.
If higher order methods were used, we would have two independent singularly per-
turbed systems of equations, corresponding to the even and odd parts of uε(p).
A similar splitting also occurs for the linearly elastic isotropic and homogeneous
plate, where the equations decouple into two independent problems corresponding
to bending and stretching of the plate.

We denote by Pp(−a, a) the space of polynomials of degree p in (−a, a). Also, if s

is a real number and D is an open domain, then Hs(D) is the Sobolev space of order
s, and H̊s(D) is the closure in Hs(D) of the set of smooth functions with compact
support. We write L̂2(−a, a) to indicate the set of square integrable functions with
mean value zero in the domain (−a, a), for a positive number a. For m ∈ N and a
certain separable Hilbert space E, Hm(D; E) is the space of functions defined on D

with values in E such that the E-norm of all partial derivatives of order less than
or equal to m are in L2(D). And D(D) denotes the space of C∞ functions in D

with compact support, while D′(D) is the space of distributions.
As we have already hinted, we use one underbar for 3-vectors and one undertilde

for 2-vectors. We can then decompose 3-vectors as follows:

u =
(

u∼
u3

)
.

We denote a typical point in P ε by xε = (x∼
ε, xε

3), with x∼
ε = (xε

1, x
ε
2) ∈ Ω.
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The goal of this work is to estimate the modeling error, and we do so by compar-
ing the asymptotic expansions of uε and uε(p). The expansion for uε was carefully
developed in the work of Arnold and Madureira,3 and we summarize the main
results in Sec. 2. In this same section, we develop the expansion for uε(p), and
present related estimates. In Sec. 3 we obtain the modeling errors in several norms.
Finally, in the Appendix, we deal with issues related to approximation properties
at the boundary layers present in the solution of (1.1).

2. Asymptotic Expansions

To introduce the asymptotic expansion for uε, some notation is necessary. For each
point xε in P ε we assign a point x = (x∼, x3) = (x∼

ε, ε−1xε
3) in the ε-independent

plate P = Ω× (−1, 1). We also define ∂PL = ∂Ω× (−1, 1) and ∂P± = Ω×{−1, 1}.
In this new domain, we define f(x) = fε(xε) and g(x) = ε−1gε(xε).

It is possible to formally expand uε in the power series

uε(xε) ∼
∞∑

k=0

ε2ku2k(x∼
ε, ε−1xε

3) − χ(ρ)
∞∑

k=2

εkŨk(ε−1ρ, θ, ε−1xε
3).

The leading term u0(xε) = ζ0(x∼
ε), where

∆2Dζ0(x∼) = −1
2

∫ 1

−1

f(x∼, x3) dx3 − 1
2
[g(x∼, 1) + g(x∼,−1)],

ζ0 = 0 on ∂Ω.

(2.1)

For all x∼ ∈ Ω,

∂33u
2 = −f − ∆2Du0, in (−1, 1),∫ 1

−1

u2(x∼, x3) dx3 = 0, ∂3u
2(x∼,−1) = −g(x∼,−1), ∂3u

2(x∼, 1) = g(x∼, 1).
(2.2)

Similarly, for k > 1,

∂33u
2k = −∆2Du2k−2, in (−1, 1),∫ 1

−1

u2k(x∼, x3) dx3 = 0, ∂3u
2k(x∼,−1) = ∂3u

2k(x∼, 1) = 0.
(2.3)

The functions Ũk are boundary correctors, functions that decay exponentially fast
away from the lateral boundary, indicating the presence of boundary layers in the
original solution. These functions are defined only close to the lateral boundary
∂P ε

L, and can be expressed in a simpler form if we use a local coordinate system.
So, we indicate a point x∼

ε close enough to ∂Ω by (ρ, θ), where ρ < ρ0 is the distance
between x∼

ε and ∂Ω, ρ0 is a positive number smaller than the minimum radius of
curvature, and θ gives roughly the arclength along the boundary.2,3,9 The boundary
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correctors Ũk are originally defined in the semi-infinite strip Σ = R
+ × (−1, 1), as

the solutions of

(∂ρ̃ρ̃ + ∂33)Ũk = Fk in Σ,

∂Ũk

∂n
= 0 on R

+ × {−1, 1},
Ũk(0, θ, x3) = uk(0, θ, x3) for x3 ∈ (−1, 1),

(2.4)

where

aj
1 = −[κ(θ)]j+1, aj

2 = (j + 1)[κ(θ)]j , aj
3 =

j(j + 1)
2

[κ(θ)]j−1κ′(θ),

Fk =
k−2∑
j=0

ρ̃j
(
aj
1∂ρ̃Ũ

k−j−1 + aj
2∂θθŨ

k−j−2 + aj
3∂θŨ

k−j−2
)
,

with the convention that uk = 0 for k odd and Ũ0 = Ũ1 = 0.
Finally, χ(ρ) is a smooth cutoff function identically one for 0 ≤ ρ ≤ ρ0/3 and

zero for ρ ≥ 2ρ0/3. The introduction of χ allows the definition of the boundary
correctors on all P ε, and only adds an error that decays exponentially with ε−1.

We begin to compile several results that are useful. The proofs can be found
elsewhere.3,19 First we bound Sobolev norms for some terms in the asymptotic
expansion. These bounds follow immediately from regularity results for Eqs. (2.1)–
(2.3). We denote by lowercase c a generic constant (not necessarily the same in all
occurrences) which is independent not only of ε and p, but also of f and g, while
we use uppercase C when the constant may depend on f and g, more precisely on
Sobolev norms of f and g, but not ε and p. Also,

‖v‖(m,n,P ) = ‖v‖Hm(Ω;Hn(−1,1)), |||(f, g)|||m,P = ‖f‖(m,0,P ) + ‖g‖Hm(∂P±).

Lemma 2.1. Suppose that f and g are smooth functions on P and ∂P±, respec-
tively. Then the functions u0, u2, . . . on P are uniquely determined by (2.1)–(2.3),
and u0(x) = ζ0(x∼) is independent of x3. Moreover, for m a non-negative integer
and s a real number such that s ≥ 2, there exists a constant c independent of f

and g such that

‖ζ0‖Hm+1(Ω) ≤ c|||(f, g)|||m−1,P ,

‖u2(x∼, ·)‖Hs(−1,1) ≤ c
(‖f(x∼, ·)‖Hs−2(−1,1) + |g(x∼,−1)| + |g(x∼, 1)|),

‖u2‖(m,s,P ) ≤ c
(‖f‖(m,s−2,P ) + ‖g‖Hm(∂P±)

)
.

(2.5)

Next we estimate the H1(P ε) norm of the difference between the truncated asymp-
totic expansions and the exact solution.

Theorem 2.1. For any positive integer N, there exists a constant C such that
the difference between the truncated asymptotic expansion and the original solution
measured in the original domain is bounded as follows:

‖e0‖H1(P ε) ≤ Cε3/2, ‖e2N‖H1(P ε) ≤ Cε2N+1,
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where

eε
2N (xε) = uε(xε) −

N∑
k=0

ε2ku2k(x∼
ε, ε−1xε

3) + χ(ρ)
2N∑
k=2

εkŨk(ε−1ρ, θ, ε−1xε
3).

We start now to develop the asymptotic expansion for the model solution. For
the SP′

2(p) methods, the relation σε(p) = ∇uε(p) does not hold in general and so
we will develop asymptotic expansions for uε(p) and σε(p) simultaneously. We start
by rewriting Eqs. (1.2) and (1.3) in the scaled domain P . Define

u(p)(x) = uε(p)(xε), σ∼(p)(x) = σ∼
ε(p)(xε), σ3(p)(x) = εσε

3(p)(xε),

V (P, p) =
{
v ∈ L2(P ) : deg3 v ≤ p

}
,

Sg(P, p) =
{
τ ∈ D′(P ) : τ ∈ L2(P ), div τ∼ + ε−2∂3τ3 ∈ L2(P ),

τ · n = g on ∂P±, deg3 τ∼ ≤ p, deg3 τ3 ≤ p + 1
}
.

(2.6)

Then u(p) ∈ V (P, p) and σ(p) ∈ Sε2g(P, p) satisfy∫
P

σ∼(p) · τ∼ + ε−2σ3(p)τ3 dx +
∫

P

u(p)(div τ∼ + ε−2∂3τ3) dx = 0

for all τ ∈ S0(P, p), (2.7)∫
P

[div σ∼(p) + ε−2∂3σ3(p)]v dx = −
∫

P

fv dx for all v ∈ V (P, p).

Consider the asymptotic expansions

u0(p) + ε2u2(p) + ε4u4(p) + · · · ,
σ0(p) + ε2σ2(p) + ε4σ4(p) + · · · ,

(2.8)

where u2k(p) ∈ L2(P ) for any positive integer k. Also σ0(p) and σ2k(p) ∈ S0(P, p)
for integers k ≥ 2, and σ2(p) ∈ Sg(P, p). Then, after the formal process of substi-
tuting (2.8) into (2.7) and grouping together terms with the same powers of ε, for
k ∈ N we ask that∫

P

σ∼
2k−2(p) · τ∼ + σ2k

3 (p)τ3 dx +
∫

P

[u2k−2(p) div τ∼ + u2k(p)∂3τ3] dx = 0

for all τ ∈ S0(P, p), (2.9)∫
P

[div σ∼
2k−2(p) + ∂3σ

2k
3 (p)]v dx = −δk1

∫
P

fv dx for all v ∈ V (P, p), (2.10)

where we define u−2 = 0, σ−2 = 0.
We now determine u2k(p), σ2k(p). First, set k = 0. From Eq. (2.10) we find

that ∂3σ
0
3(p) = 0. As σ0(p) ∈ S0(P, p), then σ0

3(p) = 0. From (2.9), we see that
u0(p) is independent of x3. Making k = 1 and using (2.9) with τ3 = 0, it follows
that σ∼

0(p) = ∇∼u0(p). From the compatibility condition of (2.10), u0(p)(x) = ζ0(x∼),
see (2.1). If we proceed with the argument, and with x∼ ∈ Ω as a parameter, we find

that u2(p)(x∼, ·) ∈ P̂p(−1, 1), the space of polynomials of degree p in (−1, 1) with
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zero average. Also, σ2
3(p)(x∼, ·) ∈ Pp+1(−1, 1) with σ2

3(p)(x∼,−1) = −g(x∼,−1) and
σ2

3(p)(x∼, 1) = g(x∼, 1) should satisfy

∫ 1

−1

σ2
3(p)(x∼, x3)τ3(x3) dx3 +

∫ 1

−1

u2(p)(x∼, x3)∂3τ3(x3) dx3 = 0

for all τ3 ∈ P̊p+1(−1, 1),∫ 1

−1

∂3σ
2
3(p)(x∼, x3)v(x3) dx3 = −

∫ 1

−1

[f(x∼, x3) + ∆2Dζ0(x∼)]v(x3) dx3 (2.11)

for all v ∈ P̂p(−1, 1),

σ∼
2(p) = ∇∼u2(p),

where P̊p+1(−1, 1) = Pp+1(−1, 1) ∩ H̊1(−1, 1). Also, for any integer k ≥ 2, we
define σ2k

3 (p)(x∼, ·) ∈ P̊p+1(−1, 1) and u2k(p)(x∼, ·) ∈ P̂p(−1, 1) by imposing

∫ 1

−1

σ2k
3 (p)(x∼, x3)τ3(x3) dx3 +

∫ 1

−1

u2k(p)(x∼, x3)∂3τ3(x3) dx3 = 0

for all τ3 ∈ P̊p+1(−1, 1),∫ 1

−1

∂3σ
2k
3 (p)(x∼, x3)v(x3) dx3 = −

∫ 1

−1

∆2Du2k−2(p)(x∼, x3)v(x3) dx3 (2.12)

for all v ∈ P̂p+1(−1, 1),

σ∼
2k(p) = ∇∼u2k(p).

Note from (2.2) that u2(p)(x∼, ·), and σ2
3(p)(x∼, ·) are mixed approximations for

u2(x∼, ·), and ∂3u
2(x∼, ·), with x∼ ∈ Ω as a parameter.

Equation (2.9) imposes, as a natural condition, that u(p) vanishes on ∂PL.
Nevertheless, this boundary condition is not being imposed for the terms of the
asymptotic expansion, with the exception of u0(p). Thus, in general, u2k(p) does
not vanish on ∂PL, for k ≥ 1. We seek then a pair of correctors U(p), Ξ(p) such
that∫

P

Ξ∼(p) · τ∼ + ε−2Ξ3(p)τ3 + U(p)(div τ∼ + ε−2∂3τ3) dx =
∫

∂PL

U0 τ∼ · n∼ dx∼ dx3

for all τ ∈ S0(P, p),∫
P

[div Ξ∼(p) + ε−2∂3Ξ3(p)]v dx = 0 for all v ∈ V (P, p),

U0 ∼ ε2u2(p) + ε4u4(p) + · · · .

(2.13)

We rewrite the singular perturbation problem (2.13) using the horizontal boundary-
fitted coordinates (ρ, θ) in the region

Ωb =
{
z∼ − ρn∼ : z∼ ∈ ∂Ω, 0 < ρ < ρ0

}
,
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where ρ0 is a positive number smaller than the minimum radius of curvature of ∂Ω.
The normal and tangential vectors to ∂Ω extend naturally to Ωb by

n∼(ρ, θ) = n∼(θ), s∼(ρ, θ) = s∼(θ), (2.14)

and the quantities

Ξn(p)(xε) = Ξ∼(p)(xε) · n∼(x∼
ε), Ξs(p)(xε) = Ξ∼(p)(xε) · s∼(x∼

ε),

τn(p)(xε) = τ∼(p)(xε) · n∼(x∼
ε), τs(p)(xε) = τ∼(p)(xε) · s∼(x∼

ε),
(2.15)

are then well defined in Ωb. A long but straightforward computation shows that

div Ξ∼(p) = ∂ρΞn(p) +
∂θΞs(p)

J
− κ

J
Ξn(p),

where J(ρ, θ) = 1−ρκ(θ), and κ is the curvature of ∂Ω. Next, we use the “stretched”
(in the normal and vertical directions) variables (ρ̃, θ, x3), where ρ̃ = ε−1ρ, to pose
an ε-independent sequence of corrector problems, and define

Ũ(p)(ρ̃, θ, x3) = U(p)(ρ, θ, x3), Ξ̃n(p)(ρ̃, θ, x3) = εΞn(p)(ρ, θ, xε
3),

Ξ̃s(p)(ρ̃, θ, x3) = Ξs(p)(ρ, θ, xε
3), Ξ̃3(p)(ρ̃, θ, x3) = εΞ3(p)(ρ, θ, xε

3).
(2.16)

Similar definitions hold for τ̃n, τ̃s and τ̃3. The motivation for multiplying Ξn(p)
and Ξ3(p) by ε is that we expect them to “behave” as ε−1, after all they approxi-
mate ∂ρŨ and ∂3Ũ in P ε. The combination of the above described transformations
leads to∫

Q̃

[
ε−2Ξ̃n(p)τ̃n + Ξ̃s(p)τ̃s + ε−2Ξ̃3(p)τ̃3 + Ũ(p)

(
ε−2∂ρ̃τ̃n +

∂θτ̃s

J
+ ε−2∂3τ̃3

)]
J

− ε−1κŨ(p)τ̃n dQ̃ =
∫ 2π

0

∫ 1

−1

U0(p)(0, θ, x3)τ̃n(0, θ, x3) dx3 dθ,

∫
Q̃

[
ε−2∂ρ̃Ξ̃n(p) +

∂θΞ̃s(p)
J

+ ε−2∂3Ξ̃3 − ε−1 κ

J
Ξ̃n(p)

]
vJ dQ̃ = 0,

where Q̃ = R
+ × (0, 2π) × (−1, 1) is a semi-infinite quadrilateral domain with the

union of its top and bottom boundaries given by ∂Q̃± = R
+ × (0, 2π) × {−1, 1},

and

τ̃ ∈ {τ ∈ H(div, Q̃): τ3 = 0 on ∂Q̃±, deg3 τ∼ ≤ p, deg3 τ3 ≤ p + 1
}
,

v ∈ {L2(Q̃): deg3 v ≤ p
}
.

Replacing τ̃n by τ̃n/J , τ̃3 by τ̃3/J and v by v/J , using the Taylor series of 1/J , and
formally substituting

Ũ(p) ∼ ε2Ũ2(p) + ε3Ũ3(p) + ε4Ũ4(p) + · · · ,
Ξ̃(p) ∼ ε2Ξ̃

2
(p) + ε3Ξ̃

3
(p) + ε4Ξ̃

4
(p) + · · · ,
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we arrive at the following sequence of problems, parametrized by θ ∈ R/L and
defined in the semi-infinite strip Σ:∫

Σ

Ξ̃k
n(p)τ̃n + Ξ̃k

3(p)τ̃3 + Ũk(p) (∂ρ̃τ̃n + ∂3τ̃3) dρ̃ dx3

= −
∫ 1

−1

uk(p)(0, θ, x3)τ̃n(0, x3) dx3 for all τ∼ ∈ S∼0(Σ, p),∫
Σ

[
∂ρ̃Ξ̃k

n(p) + ∂3Ξ̃k
3(p)

]
v dρ̃ dx3 =

∫
Σ

Gk(p)v dρ̃ dx3 for all v ∈ V (Σ, p), (2.17)

Ξ̃k
s(p) = ρ̃κ(θ)Ξ̃k−1

s (p) + ∂θŨ
k(p),

Gk(p) =
k−2∑
j=0

ρ̃j
(
aj
1Ξ̃

k−j−1
n (p) + aj

2∂θθŨ
k−j−2(p) + aj

3∂θŨ
k−j−2(p)

)
,

where uk(p) = 0 for k odd and

V (Σ, p) =
{
v ∈ D′(Σ) : (1 + ρ̃)−1v ∈ L2(Σ), deg3 v ≤ p

}
,

S∼0(Σ, p) =
{
τ∼ ∈ D′

∼ (Σ) : (1 + ρ̃)div τ∼ ∈ L2(Σ), τ∼ ∈ L∼
2(Σ),

deg3 τ∼ ≤ p, deg3 τ3 ≤ p + 1
}
.

These are appropriate spaces to pose the boundary corrector problem. Looking
at (2.4), note that Ũk(p) and Ξ̃∼

k(p) are mixed approximations for Ũk and ∇∼Ũk.
We show below in Lemma 2.2 that (2.17) is well-posed, and that the solutions

Ũk and Ξ̃
k

decay exponentially to zero with ρ̃.
Finally, the following expansions hold:

uε(p)(xε) ∼
∑
k≥0

ε2ku2k(p)(x∼
ε, ε−1xε

3) − χ(ρ)
∑
k≥2

εkŨk(p)(ε−1ρ, θ, ε−1xε
3),

σ∼
ε(p)(xε) ∼

∑
k≥0

ε2k

(
σ∼

2k(p)

ε−1σ2k
3 (p)

)
(x∼

ε, ε−1xε
3) (2.18)

−χ(ρ)
∑
k≥2

εkΞ̃k(p)(ε−1ρ, θ, ε−1xε
3),

where

Ξ̃k(p) = (ε−1Ξ̃k
n(p)n∼ + Ξ̃k

s(p)s∼, ε−1Ξk
3(p)). (2.19)

The above formal reasoning shall be justified in Theorem 2.2. First we study
the terms present in the expansion.

We present below the stability result regarding the boundary correctors for the
models. The existence, uniqueness and the first inequality in (2.20) follows from
standard theory for mixed problems.8,19 The exponential decay is an application of
Theorem 5.4 of Arnold and Madureira.3

Lemma 2.2. Assume, for a fixed positive integer k, that uk is defined as
above. Then, for each θ, there exists a unique solution Ũk(p) ∈ V (Σ, p), and
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(Ξ̃k
n(p), Ξ̃k

3(p)) ∈ S∼0(Σ, p) to (2.17). Also, there exist positive constants C and α

such that

∥∥(1 + ρ̃)−1Ũk(p)
∥∥

L2(Σ)
+
∥∥|Ξ̃k

n(p)| + |Ξ̃k
3(p)|∥∥

L2(Σ)

+
∥∥(1 + ρ̃)[∂ρ̃Ξ̃k

n(p) + ∂3Ξ̃k
3(p)]

∥∥
L2(Σ)

≤ C, (2.20)∫ ∞

t

∫ 1

−1

[Ũk(p)]2 + |Ξ̃∼
k
(p)|2 dx3 dρ̃ ≤ Ce−αt,

for every non-negative real number t and every positive integer p. The constant α

may depend on Ω and k, but is independent of f, g and p, while the constant C may
depend on Ω, k, f and g.

In the remainder of this section, we estimate the convergence rates of the trun-
cated asymptotic expansions.

Theorem 2.2. For each positive integer N, let

e2N (p)(xε) = uε(p)(xε) −
N∑

k=0

ε2ku2k(p)(x∼
ε, ε−1x3)

+ χ(ρ)
2N∑
k=1

εkŨk(p)(ε−1ρ, θ, ε−1x3),

∆2N (p)(xε) = σε(p)(xε) −
N∑

k=0

ε2k

(
σ∼

2k(p)

ε−1σ2k
3 (p)

)
(x∼

ε, ε−1x3)

+ χ(ρ)
2N∑
k=2

εk

(
ε−1Ξ̃k

n(p)n∼ + Ξ̃k
s(p)s∼

ε−1Ξk
3(p)

)
(ε−1ρ, θ, ε−1x3).

Then there exists a constant C such that

‖e2N(p)‖L2(P ε) + ‖∆2N (p)‖H(div,P ε) ≤ Cε2N+1.

Note that the above convergence in ε is the same as in Theorem 2.1. The proof
of Theorem 2.2 uses the theory of mixed problems,8 and we shall go through the
main steps.

In what follows, we denote by πp the orthogonal projection from L2(−1, 1)
to Pp(−1, 1), and by π̊1 the orthogonal projection operator from H̊1(−1, 1) to
P̊p(−1, 1), with respect to the inner product that induces the norm | · |H1(−1,1).
We need the following technical result.

Lemma 2.3. If τ ∈ H̊1(−1, 1), then (̊π1
p+1τ)′ = πpτ

′ and if φ ∈ H1(−1, 1) ∩
L̂2(−1, 1), then (π̂1

pφ)′ = πp−1φ
′.
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Proof. For any v ∈ Pp(−1, 1), we can write v = v̊′ + c, where v̊(ρ̃2) =∫ ρ̃2

−1 v(s) − c ds and c = (1/2)
∫ 1

−1v(s) ds. Note that v̊ ∈ H̊1(−1, 1) and for
τ ∈ H̊1(−1, 1),∫ 1

−1

(̊π1
p+1τ)′v dρ̃2 =

∫ 1

−1

(̊π1
p+1τ)′ (̊v′ + c) dρ̃2 =

∫ 1

−1

τ ′ (̊v′ + c) dρ̃2 =
∫ 1

−1

τ ′v dρ̃2.

So (̊π1
p+1τ)′ = πpτ

′. The second identity of the lemma follows from similar
arguments.

We denote the orthogonal L2 projection in the vertical direction by π
(x3)
p , i.e. if

v ∈ L2(P ), then π
(x3)
p v ∈ L2(Ω; Pp(−1, 1)) is such that∫

P

(π(x3)
p v − v)ψ dx = 0 for all ψ ∈ L2(Ω; Pp(−1, 1)).

Similar notation holds for π̊
(x3)
p .

Before proving the main result, we show how the solutions of a mixed,
ε-dependent problem in P behave. Recall that we define V (P, p) and S0(P, p)
in (2.6).

Theorem 2.3. Let F̃ ∈ (S0(P, p))∗, the dual space of S0(P, p), and let g̃ ∈ L2(P ).
Then there exists unique u ∈ V (P, p) and σ ∈ S0(P, p) such that∫

P

(σ∼ · τ∼ + ε−2σ3τ3) dx +
∫

P

u(div τ∼ + ε−2∂3τ3) dx = F̃ (τ∼)

for all τ ∈ S0(P, p), (2.21)∫
P

(div σ∼ + ε−2∂3σ3)v dx =
∫

P

g̃v dx for all v ∈ V (P, p). (2.22)

Moreover, there is a universal constant c such that

‖u‖L2(P ) + ‖σ∼‖L2(P ) + ε−1‖σ3‖L2(P ) + ‖div σ∼ + ε2∂3σ3‖L2(P )

≤ c
(‖F̃‖(S0(P,p))∗ + ‖g̃‖L2(P )

)
.

Proof. Let

M = V (P, p), ‖v‖M = ‖v‖L2(P ),

X = S0(P, p), ‖τ‖2
X = ‖τ∼‖

2
L2(P ) + ε−2‖τ3‖2

L2(P ) + ‖div τ∼ + ε−2∂3τ3‖2
L2(P ),

a(σ, τ ) =
∫

P

σ∼ · τ∼ + ε−2σ3τ3 dx, b(τ , v) =
∫

P

(div τ∼ + ε−2∂3τ3)v dx.

Since div τ∼ + ε−2∂3τ3 ∈ V (P, p) for all τ ∈ S0(P, p), the coercivity hypothesis

a(r, r) ≥ ‖r‖2
X for all r ∈ {r̃ ∈ X : b(r̃, w) = 0, for all w ∈ M

}
(2.23)
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holds immediately. Now we want to show that the inf–sup hypothesis

sup
r∈X

b(r, v)
‖r‖X

≥ k0‖v‖M for all v ∈ M (2.24)

is also satisfied for some positive constant k0. Let v ∈ V (P, p), and define V (P ) =
{ṽ ∈ H1(P ) : ṽ = 0 on ∂PL}, and u ∈ V (P ) such that∫

P

∇∼u · ∇∼ ṽ + ε−2∂3u∂3ṽ =
∫

P

vṽ dx for all ṽ ∈ V (P ).

Then ‖u‖H1(P ) ≤ c‖v‖L2(P ), where c is a universal constant. Moreover,∫
Ω

ε−2|u(x∼, ·)|2H1(−1,1) dx∼ =
∫

P

ε−2[∂3u(x∼, x3)]2 dx

≤
∫

P

|∇∼u(x∼, x3)|2 + ε−2[∂3u(x∼, x3)]2 dx

=
∫

P

vu dx ≤ ‖v‖L2(P )‖u‖L2(P )

≤ c‖v‖2
L2(P ). (2.25)

Set σ∼ = ∇∼u, σ3 = ∂3u and σ∼ = (σ∼, σ3). We cannot use σ∼ as a “candidate” for the
inf–sup condition since σ∼ does not belong to S0(P, p) in general. Let û(x∼, x3) =

u(x∼, x3) − (1/2)
∫ 1

−1
u(x∼, x3) dx3, and for each x∼ ∈ Ω, define σ3(p)(x∼, ·) ∈ P̊p+1

(−1, 1) and u(p)(x∼, ·) ∈ P̂p(−1, 1) such that∫ 1

−1

[σ3(x∼, x3) − σ3(p)(x∼, x3)]τ(x3) + [û(x∼, x3) − u(p)(x∼, x3)]∂3τ(x3) dx3 = 0

for all τ ∈ P̊p+1(−1, 1),∫ 1

−1

∂3[σ3(x∼, x3) − σ3(p)(x∼, x3)]v̂(x3) dx3 = 0 for all v̂ ∈ P̂p(−1, 1).

Then ∂3σ3(p) = π
(x3)
p ∂3σ3, and using Lemma 2.3 we conclude that σ3(p) = π̊

(x3)
p+1σ3.

It follows that

ε−2‖σ3(p)‖2
L2(P ) =

∫ 1

−1

ε−2‖σ3(p)(x∼, ·)‖2
L2(−1,1) dx∼

≤ c

∫ 1

−1

ε−2‖σ3(x∼, ·)‖2
L2(−1,1) dx∼

= c

∫ 1

−1

ε−2|u(x∼, ·)|2H1(−1,1) dx∼ ≤ c‖v‖2
L2(P ).

(2.26)

Define now σ∼(p) = π
(x3)
p σ∼. Then

‖σ∼(p)‖L2(P ) ≤ c‖σ∼‖L2(P ) ≤ c‖v‖L2(P ),

‖div σ∼(p) + ε−2∂3σ3(p)‖L2(P ) = ‖π(x3)
p div σ∼ + ε−2π(x3)

p ∂3σ3‖L2(P ) (2.27)

≤ c‖div σ∼ + ε−2∂3σ3‖L2(P ) = c‖v‖L2(P ).
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Thus, from (2.26) and (2.27), ‖σ∼(p)‖X ≤ c‖v‖L2(P ). We can finally prove the inf–sup
condition, since for all v ∈ V (P ; p),

sup
τ∼∈X

1
‖τ‖X

∫
P

v(div τ∼ + ε−2∂3τ3) dx ≥ 1
‖σ(p)‖X

∫
P

v[div σ∼(p) + ε−2∂3σ3(p)] dx

=
1

‖σ(p)‖X

∫
P

v[π(x3)
p div σ∼ + ε−2π(x3)

p ∂3σ3] dx

=
1

‖σ(p)‖X

∫
P

v(div σ∼ + ε−2∂3σ3) dx

=
‖v‖2

L2(P )

‖σ(p)‖X
≥ c‖v‖L2(P ),

and (2.24) follows. Thus we conclude the present result.

We need the following notation in the proof of the next result. Define

u2N (p)(x) =
N∑

k=0

ε2ku2k(p)(x), σ2N (p)(x) =
N∑

k=0

ε2kσ2k(p)(x),

U2N (p)(x) = χ(ρ)
2N∑
k=2

εkŨk(p)(ε−1ρ, θ, x3),

Ξ2N (p)(x) = χ(ρ)
2N∑
k=2

εk

(
ε−1Ξ̃k

n(p)n∼ + Ξ̃k
s(p)s∼

ε−1Ξk
3(p)

)
(ε−1ρ, θ, x3).

Proof. (of Theorem 2.2) For all τ ∈ S0(P, p), define τ̃s as in (2.15), (2.16). Then
it follows from the construction of the terms in the asymptotic expansion, and
Lemma 2.2 that∫

P

[σ∼(p) − σ∼2N (p) + Ξ∼2N (p)] · τ∼ + ε−2[σ3(p) − (σ2N )3(p) + (Ξ2N )3(p)]τ3 dx

+
∫

P

[u(p) − u2N(p) + U2N (p)](div τ∼ + ε−2∂3τ3) dx = R1(N, τs),∫
P

{div[σ∼(p) − σ∼2N (p) + Ξ∼2N (p)] + ε−2∂3[σ3(p) − (σ2N )3(p) + (Ξ∼2N )3(p)]}v dx

= R2(N, v),

where |R1(N, τs)| ≤ Cε2N‖τ‖S
0
(P,p), and |R2(N, v)| ≤ Cε2N‖v‖V (P,p). Using

Lemma 2.3, we have that

‖u(p) − u2N(p) + U2N‖L2(P ) + ‖σ∼(p) − σ∼2N (p) + Ξ̃∼2N (p)‖L2(P )

+ ε−1‖σ3(p) − (σ2N )3(p) + (Ξ̃2N )3(p)‖L2(P )

+ ‖div[σ∼(p) − σ∼2N (p) + Ξ̃∼2N (p)] + ε−2∂3[σ3(p) − (σ2N )3(p) + (Ξ2N )3(p)]‖L2(P )

≤ Cε2N . (2.28)
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Next, to conclude the final result, we add and subtract new terms, using the triangle
inequality, estimate (2.28), and Lemma 2.2, and finally scaling the domain, from P

to P ε.

3. Estimates for the Modeling Error

We begin now the central part of this paper, the derivation of error bounds for
the models SP′

2. An essential part is to estimate the difference between individual
terms in the asymptotic expansions.

We need the following technical result.19

Lemma 3.1. Given u ∈ H2(−1, 1) ∩ L̂2(−1, 1) and σ = u′, there exists unique
u(p) ∈ P̂p(−1, 1) and σ(p) ∈ Pp+1(−1, 1) with σ(p)(−1) = σ(−1), and σ(p)(1) =
σ(1), such that

∫ 1

−1

[σ − σ(p)]τ + [u − u(p)]τ ′ dx = 0 for all τ ∈ P̊p+1(−1, 1),

∫ 1

−1

[σ − σ(p)]′v dx2 = 0 for all v ∈ P̂p(−1, 1).

Moreover, for any non-negative real number s, there exists a constant C such that

‖u − u(p)‖L2(−1,1) ≤ Cp−2−s‖u‖Hs+2(−1,1),

‖u − u(p)‖H1/2(−1,1) ≤ Cp−1−s‖u‖Hs+2(−1,1),

‖σ − σ(p)‖L2(−1,1) ≤ Cp−1−s‖u‖Hs+2(−1,1),

‖σ − σ(p)‖H1(−1,1) ≤ Cp−s‖u‖Hs+2(−1,1).

In what follows, we need the definitions below.

Definition 3.1. For a non-negative real number s, let

as = ‖f‖L2(Ω;Hs(−1,1)) + ‖g‖L2(∂P±), a1
s = ‖f‖H1(Ω;Hs(−1,1)) + ‖g‖H1(∂P±),

ab
s =

(∫
∂Ω

‖f(x∼, ·)‖2
Hs(−1,1) + |g(x∼,−1)|2 + |g(x∼, 1)|2 dx∼

)1/2

.

We note from Lemma 2.1 that there exists a constant c independent of f and g

such that

‖u2‖L2(Ω;Hs(−1,1)) ≤ cas, (3.1)

‖∇∼u2‖L2(Ω;Hs(−1,1)) ≤ ca1
s, (3.2)

‖u2‖L2(∂Ω;Hs(−1,1)) ≤ cab
s. (3.3)

To simplify the notation, henceforward we denote σ2
3(x) = ∂x3u

2(x).
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Lemma 3.2. Assume that u2, σ2
3 , u2(p), σ2

3(p) are defined as above. Then, with
x∼ ∈ Ω as a parameter,

∫ 1

−1

[σ2
3(x∼, x3) − σ2

3(p)(x∼, x3)]τ(x3) + [u2(x∼, x3) − u2(p)(x∼, x3)]τ ′(x3) dx3 = 0

for all τ ∈ P̊p+1(−1, 1),∫ 1

−1

∂3[σ2
3(x∼, x3) − σ2

3(p)(x∼, x3)]v(x3) dx3 = 0 for all v ∈ P̂p(−1, 1).

Moreover, for any non-negative real number s, there exists a constant C such that

‖u2 − u2(p)‖L2(P ) ≤ Cp−2−sas,

‖∇∼u2 −∇∼u2(p)‖L2(P ) ≤ Cp−2−sa1
s,

‖σ2
3 − σ2

3(p)‖L2(P ) ≤ Cp−1−sas,

‖∂xε
3
σ2

3 − ∂xε
3
σ2

3(p)‖L2(P ) ≤ Cp−sas.

(3.4)

Proof. The first part of the lemma results from (2.2), (2.11). To obtain the esti-
mates (3.4), it is enough to apply Lemma 3.1, in each vertical fiber, and then
integrate in Ω, and use (3.1) and (3.2).

We estimate now the error due to the first boundary layer terms. The following
definition is useful.

Definition 3.2. Let x∼ ∈ ∂Ω and s be a non-negative real number. Let

N(s) = max{n ∈ Z: 2n < s}. (3.5)

If supx3∈{−1,1} |g(x∼, x3)| 	= 0, set m = 1. If |g(x∼,−1)| = |g(x∼, 1)| = 0 and

sup
x3∈{−1,1}

N(s+5/2)∑
j=2

|∂2j−3
3 f(x∼, x3)| 	= 0, (3.6)

let m be the minimum integer in {2, . . . , N(s + 5/2)} such that

sup
x3∈{−1,1}

|∂2m−3
3 f(x∼, x3)| 	= 0.

We define in both cases µ(x∼, s, δ) = min{4m − 3 − δ, s + 3/2}. If |g(x∼,−1)| =
|g(x∼, 1)| = 0 and (3.6) does not hold, then define µ(x∼, s, δ) = s + 3/2. Finally, set

µ̄(s, δ) = inf
x∼∈∂Ω

µ(x∼, s, δ).

The next result estimates the boundary correctors in P . We present its proof in
the Appendix. Define

Ξ̃2
n = ∂ρ̃Ũ

2, Ξ̃3 = ∂x3 Ũ
2.
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Lemma 3.3. Let

Υn(xε) = χ(ρ)[Ξ̃2
n − Ξ̃2

n(p)](ε−1ρ, θ, ε−1xε
3),

Υ3(xε) = χ(ρ)[Ξ̃2
3 − Ξ̃2

3(p)](ε−1ρ, θ, ε−1xε
3).

For any non-negative real number s such that s + 1/2 is not an even integer, and
for any arbitrarily small δ > 0, there exists a constant c such that

‖Υn‖L2(P ε) + ‖Υ3‖L2(P ε) ≤ cε
(
p−1−s + p−µ̄(s,δ)

)
ab

s.

We are ready to estimate the difference between the exact and model solutions
in several norms. This is the main result of the paper. To also consider interior
estimates, which disregard the boundary layer, define P ε

0 = Ω0 × (−ε, ε), where Ω0

is an open domain such that Ω̄0 ⊂ Ω. We present interior estimates only when these
have better rates of convergence than global estimates.

Theorem 3.1. For any non-negative real numbers s and s∗ such that s∗ + 1/2 is
not an even integer, and for any arbitrarily small δ > 0, there exist constants c and
C independent of ε and p, with c also independent of f and g, such that the error
between uε and its approximation uε(p) is bounded as

‖uε − uε(p)‖L2(P ε) ≤ Cε5/2p−2−sas + Cε3,

‖σ∼
ε · n∼ − σ∼

ε(p) · n∼‖L2(P ε) ≤ Cε2
(
p−1−s∗

+ p−µ̄(s∗,δ)
)
ab

s∗ + Cε5/2,

‖σ∼
ε · s∼ − σ∼

ε(p) · s∼‖L2(P ε) ≤ Cε5/2p−2−sa1
s + Cε3,

‖σ∼
ε − σ∼

ε(p)‖L2(P ε
0 ) ≤ Cε5/2p−2−sa1

s + Cε9/2,

‖σε
3 − σε

3(p)‖L2(P ε) ≤ Cε3/2p−1−sas + Cε2,

where σ∼
ε = ∇∼uε.

Proof. We prove the fifth estimate only, as the others follow from similar argu-
ments. Using the triangle inequality the following holds:

‖σε
3−σε

3(p)‖L2(P ε) ≤ ‖e2‖H1(P ε)+‖∆2‖L2(P ε)+ε3/2‖σ2
3−σ2

3(p)‖L2(P )+ε‖Υ3‖L2(P ε).

From Theorems 2.1 and 2.2, we have that

‖e2‖H1(P ε) + ‖∆2‖L2(P ε) ≤ Cε3.

The estimate

‖Υ3‖L2(P ε) ≤ Cε

comes from Lemmas 2.2 and 3.3. Finally we apply Lemma 3.2 to bound ‖σ2
3 −

σ2
3(p)‖L2(P ) and the result follows.

Comparing the results of minimum energy models (Theorem 4.3 of Ref. 3) and
Theorem 3.1, we see the same rates of convergence in p (with one exception) and
in ε for both classes of models. One should compare the estimates for ∂xε

3
uε(p) in

the SP models with the ones for σε
3(p) in the SP′ models, etc.



June 24, 2005 13:32 WSPC/103-M3AS 00066

Hierarchical Modeling Based on Mixed Principles 1001

Table 1. Rates of convergence of the model error.

Quantity Absolute error Relative error

uε − uε(p) ε5/2p−2−sas ν−2ε2p−2−sas

σ∼
ε · n∼ − σ∼

ε(p) ε2p−µ̄ab
s (ε5/2p−2−sa1

s) ν−3/2ε3/2p−µ̄ab
s (ν−2ε2p−2−sa1

s)

σ∼
ε · s∼ − σ∼

ε(p) · s∼ ε5/2p−2−sa1
s ν−2ε2p−2−sa1

s

σε
3 − σε

3(p) ε3/2p−1−sas p−1−sas

Appendix A. Boundary Layer Results

Our goal in this Appendix is to prove Lemma 3.3, which estimates the approxima-
tion error for the boundary layer part. It is natural then to study the solutions of
the following problems defined in the semi-infinite strip Σ, described below. In this
Appendix, we denote an arbitrary point in Σ by ρ̃∼ = (ρ̃1, ρ̃2).

Let U ∈ V (Σ) and Ξ∼ ∈ S∼0(Σ), where

V (Σ) =
{
v ∈ D′(Σ): (1 + ρ̃1)−1v ∈ L2(Σ)

}
,

S∼0(Σ) =
{
τ∼ ∈ D′

∼ (Σ): (1 + ρ̃1)div τ∼ ∈ L2(Σ), τ∼ ∈ L∼
2(Σ),

τ∼ · n∼ = 0 on R
+ × {−1, 1}},

be such that∫
Σ

Ξ∼ · τ∼ dρ̃∼ +
∫

Σ

Udiv τ∼ dρ̃∼ = −
∫

γ0

U0τ1 dρ̃2 for all τ∼ ∈ S∼0(Σ),

∫
Σ

div Ξ∼v dρ̃∼ = 0 for all v ∈ V (Σ).
(A.1)

Here, γ0 =
{
ρ̃∼ ∈ Σ: ρ̃1 = 0

}
. The approximate solutions U(p) ∈ V (Σ, p) and

Ξ∼(p) ∈ S∼0(Σ, p) satisfy∫
Σ

Ξ∼(p) · τ∼ dρ̃∼ +
∫

Σ

U(p)div τ∼ dρ̃∼ = −
∫

γ0

U0(p)τ1 dρ̃2 for all τ∼ ∈ S∼0(Σ, p),

∫
Σ

div Ξ∼(p)v dρ̃∼ = 0 for all v ∈ V (Σ, p).
(A.2)

To aid the analysis of the difference between the solutions of (A.1) and (A.2),
we extend previously defined projection operators to act in the semi-infinite strip
Σ as well. We shall use an upper-index (ρ̃2) to the projection operators notation to
indicate that the projection is taking place along each fiber only. So, for instance,
if v ∈ L2(R+; H̊1(−1, 1)), then π̊

1(ρ̃2)
p v ∈ L2(R+; P̊p(−1, 1)) is such that∫

Σ

∂ρ̃2(τ − π̊1(ρ̃2)
p τ)∂ρ̃2τp dρ̃∼ = 0 for all τp ∈ L2(R+; P̊p(−1, 1)).

We define π
(ρ̃2)
p in a similar fashion. Also, if τ∼ = (τ1, τ2)T, then Π∼pτ∼ =

(π(ρ̃2)
p τ1, π̊

1(ρ̃2)
p+1 τ2)T. We then have the result below.

Lemma A.1. If τ∼ ∈ S∼0(Σ) ∩ L2(Σ) × L2(R+; H̊1(−1, 1)), then π
(ρ̃2)
p div τ∼ =

div Π∼pτ∼.
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Proof. It is enough to show that
∫
Σ(div Π∼pτ∼)v dρ̃∼ =

∫
Σ div τ∼v dρ̃∼ for all v ∈

V (Σ, p). Assuming that v is sufficiently smooth (the general case follows by density),
we indeed have∫

Σ

div Π∼pτ∼v dρ̃∼ =
∫

Σ

(−π(ρ̃2)
p τ1∂1v + ∂2π̊

1(ρ̃2)
p+1 τ2v) dρ̃∼ +

∫
γ0

π(ρ̃2)
p τ1v dρ̃2

=
∫

Σ

∂1τ1v + ∂2τ2v dρ̃∼,

where we use Lemma 2.3 and integration by parts.

It is important to estimate

‖Ξ∼ − Π∼pΞ∼‖
2
L2(Σ) = ‖Ξ1 − π(ρ̃2)

p Ξ1‖2
L2(Σ) + ‖Ξ2 − π̊

1(ρ̃2)
p+1 Ξ2‖2

L2(Σ). (A.3)

The error due to the mixed approximation depends on the regularity of the solution.
The convergence rate defined below reflects that.

Definition A.1. For U0 ∈ Hr0(−1, 1) with r0 > 3/2, and N as in (3.5), if there
exists a minimum integer m ∈ {1, . . . , N(r0 + 1/2)} such that |∂2m−1

2 U0(−1)| +
|∂2m−1

2 U0(1)| 	= 0, let γ̄(r0, δ) = min
{
4m− 3− δ, r0 − 1/2

}
, otherwise let γ̄(r0, δ) =

r0 − 1/2.
The solution U for (A.1) has a singular behavior at the corners of the semi-

infinite strip. To study the approximation rates for U , it is useful to decompose
this solution in its singular and “smooth” parts. We describe the singular behavior
of the solution of (A.1), by introducing in Σ two polar coordinate systems, (rl, θl),
l = 1, 2 relative to the vertices P1 = (0, 1) and P2 = (0,−1). The convention is that
rl gives the distance to Pl and the angle θl ∈ [0, π/2] increases counterclockwise, so
points lying on γ0 have θ1 = 0 and θ2 = π/2.

The next theorem,17 shows a decomposition of the solution U in singular and
smooth parts and it will be of great use henceforward.

Theorem A.1. Let U ∈ V (Σ) be the solution of (A.1) with r0 > 3/2 such that
r0 + 1/2 is not an even integer. Then there exist constants cj such that

U = US + W, US = χ̌
2∑

l=1

N(r0+1/2)∑
j=1

cj∂
(2j−1)
2 U0

(
(−1)l+1

)
vj

l , (A.4)

where χ̌ is a smooth cutoff function that equals the identity for x1 < 1 and vanishes
for x1 > 2, N is as in (3.5), and

vj
1 =

[
θ1 cos

(
(2j − 1)θ1

)
+ log r1 sin

(
(2j − 1)θ1

)]
r
(2j−1)
1 ,

vj
2 =

[(
π

2
− θ2

)
sin
(
(2j − 1)θ2

)
+ log r2 cos

(
(2j − 1)θ2

)]
r
(2j−1)
2 .

Furthermore, ‖W‖Hr0+1/2(Σ) ≤ c‖U0‖Hr0 (γ0) for some constant c.
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With the above decomposition result, it is possible to prove3 that

‖Ξ1 − π(ρ̃2)
p Ξ1‖L2(Σ) ≤ Cp−γ̄(r0,δ)‖U0‖Hr0 (−1,1). (A.5)

Unfortunately, the estimates for Ξ2 do not come so easily, since π̊
1(ρ̃2)
p+1 does

not necessarily yield the best approximation in the L2 norm. We divide the error
analysis in two cases. We first analyze the general situation and then improve the
result for particular conditions.

Lemma A.2. For any arbitrarily small positive real number δ, there exists a con-
stant c such that

‖Ξ2 − π̊
1(ρ̃2)
p+1 Ξ2‖L2(Σ) ≤ cp−1+δ‖U0‖H3/2(−1,1). (A.6)

Proof. We show only the main inequalities involved. In general, U ∈ H2−δ(Σ).
Hence

‖∂2U − π̊
1(ρ̃2)
p+1 ∂2U‖L2(Σ) ≤ cp−1+δ‖U‖L2(R+;H2−δ(−1,1)) ≤ cp−1+δ‖U0‖H3/2(−1,1).

See Ref. 19 for further details.

Assume now that

|∂2U0(−1)| + |∂2U0(1)| = 0. (A.7)

If r0 ∈ (3/2, 5/2), then

‖Ξ2U − π̊
1(ρ̃2)
p+1 Ξ2‖L2(Σ) ≤ cp−r0−1/2‖U0‖Hr0 (−1,1). (A.8)

Otherwise, using a duality argument,7

‖Ξ2 − π̊
1(ρ̃2)
p+1 Ξ2‖L2(Σ) ≤ cp−1‖∂2Ξ2 − ∂2π̊

1(ρ̃2)
p+1 Ξ2‖L2(Σ)

= cp−1‖∂2Ξ2 − π(ρ̃2)
p ∂2Ξ2‖L2(Σ), (A.9)

by Lemma 2.3. Note that Ξ2 solve the following Dirichlet problem:

∆Ξ2 = 0 in Σ,

Ξ2 = 0 on R × {−1, 1}, Ξ2 = ∂2U0 on γ0,
(A.10)

where U0 ∈ Hr0(−1, 1).
A way to obtain a good approximation for Ξ2 is, as before, by splitting Ξ2 in

singular and smooth parts, and seeking approximations for both. In the next two
results we do exactly that. The following theorem comes from Ref. 17.

Theorem A.2. Let Ξ2 be the solution of (A.10) with r0 > 5/2 such that r0 +1/2 is
not an even integer, and assume that (A.7) holds. Then there exist constants cj , c

such that

Ξ2 = Ξ2S + W2, Ξ2S = χ̌

2∑
l=1

N(r0+1/2)∑
j=2

cj∂
2j−1
2 U0

(
(−1)l+1

)
v̄j−1

l , (A.11)
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where

v̄j
1 =

[(
π

2
− θ1

)
cos(2jθ1) + log r1 sin(2jθ1)

]
r2j
1 ,

v̄j
2 = [θ2 cos(2jθ2) + log r2 sin(2jθ2)]r

2j
2 ,

and ‖W2‖Hr0−1/2(Σ) ≤ c‖U0‖Hr0 (γ0).

The next lemma shows the approximation rates to the above defined singu-
lar functions. It follows from an application of the ideas of Dorr,13,14 and the
Remark 6.3 of Bernardi and Maday.7 See Ref. 19 for a description of how such
convergence rates can be obtained.

Lemma A.3. Let v(r, θ) = χ̌rα[ξ1(θ) + ξ2(θ) log r], where ξ1, ξ2 ∈ C∞([0, π/2]),
and α is a non-negative real number. Then, for every δ, there exists a constant c

such that

‖v − π(ρ̃2)
p v‖H1(Σ) ≤ cp−2α+δ.

With the above lemma, it is easy to estimate approximation errors to Ξ2, as we
show below.

Lemma A.4. Assume that the hypotheses of Theorem A.2 hold. Then

|∂2W2 − ∂2π̊
1(ρ̃2)
p W2|L2(Σ) ≤ cp3/2−r0‖U0‖Hr0 (γ0). (A.12)

Also, if Ξ2S is not the zero function, then for each arbitrarily small δ > 0 there
exists a constant c such that

‖Ξ2S − π(ρ̃2)
p Ξ2S‖H1(Σ) ≤ cp−4m+4+δ‖U0‖Hr0(γ0), (A.13)

where m ∈ {2, . . . , N(r0 + 1
2 )} is the minimum integer such that

|∂(2m−1)
2 U0(−1)| + |∂(2m−1)

2 U0(1)| 	= 0.

Proof. Inequality (A.12) follows from spectral approximation properties, i.e.

|∂2W2 − ∂2π̊
1(ρ̃2)
p W2|L2(Σ) ≤ cp3/2−r0‖W2‖L2(R+;Hr0−1/2) ≤ cp3/2−r0‖U0‖Hr0 (γ0),

where the last inequality follows from Theorem A.2. Estimate (A.13) follows from
the definition of Ξ2S , and Lemma A.3.

Now we are ready to estimate ‖Ξ∼ − Π∼pΞ∼‖L2(Σ).

Lemma A.5. For any r0 > 3/2 such that r0 + 1/2 is not an even integer, and any
arbitrarily small δ > 0, there exists a constant c such that

‖Ξ1 − π̊
1(ρ̃2)
p+1 Ξ1‖L2(Σ) ≤ cp−γ̄(r0,δ)‖U0‖Hr0 (−1,1),

‖Ξ2 − π̊
1(ρ̃2)
p+1 Ξ2‖L2(Σ) ≤ cp−γ̄(r0,δ)‖U0‖Hr0 (−1,1),

‖Ξ∼ − Π∼pΞ∼‖L2(Σ) ≤ cp−γ̄(r0,δ)‖U0‖Hr0 (−1,1),

where γ̄ is as in Definition A.1.
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Proof. The first bound follows immediately from (A.5). The second estimate fol-
lows, for r0 ∈ (3/2, 5/2], from (A.6) and (A.8). For r0 > 5/2, note only that,
from (A.9) and Theorem A.2,

‖Ξ2 − π̊
1(ρ̃2)
p+1 Ξ2‖L2(Σ)

≤ cp−1
(‖∂2Ξ2S − ∂2π̊

1(ρ̃2)
p+1 Ξ2S‖L2(Σ) + ‖∂2W2 − ∂2π̊

1(ρ̃2)
p+1 W2‖L2(Σ)

)
.

Next, use (A.12), the inequality

‖∂2Ξ2S − ∂2π̊
1(ρ̃2)
p+1 Ξ2S‖L2(Σ) ≤ ‖Ξ2S − π(ρ̃2)

p Ξ2S‖H1(Σ),

and (A.13). Finally, the third estimate of this lemma follows from (A.3).

The next theorem estimates the mixed approximation.

Theorem A.3. Assume that U ∈ V (Σ), Ξ∼ ∈ S∼0(Σ) solve (A.1) and U(p) ∈ V (Σ, p),
Ξ∼(p) ∈ S∼0(Σ, p) solve (A.2). Then for any non-negative real number r0 > 3/2 such
that r0 + 1/2 is not an even integer, and any arbitrarily small δ > 0, there exists a
constant c such that

‖Ξ∼ − Ξ∼(p)‖L∼
2(Σ) ≤ c

(‖U0 − U0(p)‖H1/2(γ0) + p−γ̄(r0,δ)‖U0(p)‖Hr0 (γ0)

)
.

Proof. Let Ũ ∈ V (Σ) and Ξ̃∼ ∈ S∼0(Σ) be such that∫
Σ

Ξ̃∼ · τ∼ dρ̃∼ +
∫

Σ

Ũdiv τ∼ dρ̃∼ =
∫

γ0

U0(p)τ1 dρ̃2 for all τ∼ ∈ S∼0(Σ),∫
Σ

div Ξ̃∼v dρ̃∼ = 0 for all v ∈ V (Σ).

Then,

‖Ξ∼ − Ξ̃∼‖L∼
2(Σ) ≤ c‖U0 − U0(p)‖H1/2(γ0). (A.14)

To conclude the estimate, we use Lemma A.1 as follows:∫
Σ

[Ξ̃∼ − Ξ∼(p)]Π∼pΞ̃∼ dρ̃∼ = −
∫

Σ

[Ũ − U(p)]div Π∼pΞ̃∼ dρ̃∼

= −
∫

Σ

[Ũ − U(p)]π(ρ̃2)
p div Ξ̃∼ dρ̃∼ = −

∫
Σ

[Ũ − U(p)]div Ξ∼(p) dρ̃∼

=
∫

Σ

[Ξ̃∼ − Ξ∼(p)]Ξ∼(p) dρ̃∼,

since π
(ρ̃2)
p div Ξ̃∼ = div Ξ∼(p), and then

‖Ξ̃∼ − Ξ∼(p)‖2
L2(Σ) =

∫
Σ

[Ξ̃∼ − Ξ∼(p)][Ξ̃∼ − Π∼pΞ̃∼] dρ̃∼ ≤ ‖Ξ̃∼ − Ξ∼(p)‖L2(Σ)‖Ξ̃∼ − Π∼pΞ̃∼‖L2(Σ).
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Next, since Π∼p is a bounded operator,

‖Ξ̃∼ − Ξ∼(p)‖L2(Σ) ≤ ‖Ξ̃∼ − Π∼pΞ̃∼‖L2(Σ)

≤ ‖Ξ̃∼ − Ξ∼‖L2(Σ) + ‖Ξ∼ − Π∼pΞ∼‖L2(Σ) + ‖Π∼pΞ∼ − Π∼pΞ̃∼‖L2(Σ)

≤ c‖Ξ̃∼ − Ξ∼‖L2(Σ) + ‖Ξ∼ − Π∼pΞ∼‖L2(Σ)

≤ c‖U0 − U0(p)‖H1/2(γ0) + ‖Ξ∼ − Π∼pΞ∼‖L2(Σ)

≤ c‖U0 − U0(p)‖H1/2(γ0) + cp−γ̄(r0,δ)‖U0(p)‖Hr0 (γ0), (A.15)

where we used Lemma A.5 to obtain the last inequality. The theorem follows
from (A.14) and the inequality above.

Comparing Theorem A.3 with Theorem A.5 of Ref. 3 we see that the estimates
for the mixed approximations are worse than the estimates for the Galerkin approx-
imation. For instance, if U0(ρ̃2) = U0(p)(ρ̃2) = ρ̃2, then we can bound the error
coming from the mixed methods as

‖Ξ∼ − Ξ∼(p)‖L2(Σ) ≤ cp−1+δ‖U0‖Hr0(γ0),

while we bound the error from the Galerkin methods as

‖∇∼U −∇∼U(p)‖L2(Σ) ≤ cp−2+δ‖U0‖Hr0 (γ0).

It is not clear whether the upper bound of Theorem A.3 is sharp or not, and, to
the best of our knowledge, there is no numerical evidence to support either case.
The culprit for this possible loss of accuracy is the use of a duality argument. In
fact, Eriksson15 worked out a one-dimensional example and showed that the duality
argument does not yield the best possible error estimate for the p-method.

Proof. (of Lemma 3.3) From Definitions 3.2, Appendix A.1 and Theorem A.3, we
have that, for each x∼ ∈ ∂Ω,

‖Ξ̃2
n − Ξ̃2

n(p)‖L2(Σ) + ‖Ξ̃2
3 − Ξ̃2

3(p)‖L2(Σ)

≤ c(‖u2(x∼, ·) − u2(p)(x∼, ·)‖H1/2(−1,1) + p−µ̄(s,δ)‖u2(x∼, ·)‖Hs+2(−1,1)). (A.16)

After changing coordinates, and using (A.16) we see that

‖Υn‖L2(P ε) + ‖Υ3‖L2(P ε) ≤ cε
(‖u2 − u2(p)‖L2(∂Ω;H1/2(−1,1))

+ p−µ̄(s,δ)‖u2‖L2(∂Ω;Hs+2(−1,1))

)
.

From Lemma 3.1 and using (3.3), we gather that

‖u2 − u2(p)‖H1/2(∂PL) ≤ cp−1−sas
b,

and the result follows.
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