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Abstract. In this paper we propose a novel way, via finite elements to treat problems that

can be singular perturbed, a reaction-diffusion equation in our case. We enrich the usual

piecewise linear or bilinear finite element trial spaces with local solutions of the original

problem, as in the Residual Free Bubble (RFB) setting, but do not require these functions

to vanish on each element edge, a departure from the RFB paradigm. Such multiscale

functions have an analytic expression, for triangles and rectangles. Bubbles are the choice

for the test functions allowing static condensation, thus our method is of Petrov–Galerkin

type. We perform several numerical validations which confirm the good performance of the

method.

1. Introduction

It is well known that the standard finite element method based on piecewise polynomial

approximations is unable to adequately model singularly perturbation equations (e.g., see

[19] and references therein).

Previous works [8, 16, 21, 9] carried out more stable and accurate formulations based on

stabilized methods for the reaction-diffusion model. These formulations are based on piece-

wise polynomials employed on modified variational formulations. These modifications are

additional perturbation terms involving stability parameters and are functions of residuals

of the governing differential equation.

Partial justification of these ideas were made possible by relating them to the Galerkin

method using piecewise polynomials enriched with “bubble” functions, as illustrated in [1,

3, 4]. For the sake of simplicity, consider at this point bubble functions as continuous within

each element and with zero value on the elements boundaries. The relation between these

enriched Galerkin methods to stabilized ones is based on eliminating the bubble functions at

the element level (a.k.a. static condensation), made possible due to the assumption of the

zero value on the element boundary. This produces a stabilized-like formulation, in which
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the stability parameter is given by the shape of the bubble function, i.e., there is no ad hoc

procedure to establish these parameters, other than selecting bubble functions.

To systematically treat various singularly perturbed problems, residual-free bubbles were

introduced in [6, 10, 11, 12, 13, 14]. These bubbles are produced by solving, exactly or not,

differential equations at the element level, involving the differential operator of the problem.

The right hand sides of these local problems are the residuals due to the polynomial part

of the solution. The other ingredient is the requirement that the bubble part vanishes on

element boundaries for second order problems.

It turns out that this construction for the reaction diffusion problem yields a poor approx-

imation. Assuming the bubble part of the trial solution to be zero introduces inaccuracies

across element edges. We wish to explore a possible avenue that builds on former ideas,

without the zero boundary value restriction on elements, as follows:

(1) We let the test space to be enriched with residual-free bubble functions;

(2) We let the trial space to be derived from the previous construction with boundary

values determined by local restriction of the governing differential operator.

Therefore we start out with a Petrov-Galerkin setting.

We keep the restriction of zero value on element boundary for the test space bubble

functions, so that we can still use the static condensation argument. In this manner we

are allowed to integrate by parts and get a differential equation for the trial enrichment, as

before. Even more importantly, we keep the modification computable at the element level.

Now, we are in principle free to set the boundary condition for the trial enrichment.

Towards this end, we use the restriction of the differential operator on the element edges and

get ordinary differential equations that can be solved a priori. A related idea was proposed

by Hou and Wu [17, 18] for some multiscale examples. A numerical analysis for the present

method is performed in [7].

The paper is organized as follows. In Section 2 our Petrov-Galerkin formulation is intro-

duced. In Section 3 approximations of the solution for the trial enrichment at the element

level are discussed, and next, in Section 4, we perform numerical tests.

2. The Enriched Space Approach

Let Ω be a bounded domain in R2 with polygonal boundary ∂Ω. We consider u ∈ H1
0 (Ω)

the solution of the reaction diffusion equation

Lu := −ε∆u+ σu = f in Ω, u = 0 on ∂Ω,(1)

where ε and σ are positive constants. We assume f ∈ L2(Ω), thus (1) is well-posed.
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The usual weak formulation of problem (1) consists on finding u ∈ H1
0 (Ω) such that

(2) a(u, v) = (f, v), for all v in H1
0 (Ω),

where the bilinear form a : H1
0 (Ω)×H1

0 (Ω)→ R is given by

a(u, v) := ε(∇u,∇v) + σ(u, v).(3)

As usual (·, ·)D denotes the inner product in L2(D) where D is an open set of Ω. To simplify

the notation, we write (·, ·) when D = Ω. The weak problem (2) is well-posed thanks to the

coercivity of the bounded bilinear form a(·, ·) over H1
0 (Ω) and the Lax–Milgram Theorem.

Let Th be a regular partition of domain Ω into elements K (triangles or quadrangles) with

boundary ∂K such that

Ω =
⋃

K∈Th

K,

where the intersection of two elements is either a vertex, or an edge, or empty. We define

Vh as the set of edges Z belonging to Th, we denote by hK the diameter of K ∈ Th, and we

set h = maxK∈Th{hK}.
The space of piecewise linear polynomials P1(K) is used to approximate the exact solution.

The same strategy is also valid for approximations in the bilinear space Q1(K) as far as the

elements K ∈ Th are defined as affine transformation of the unit square. We denote the

standard finite element space by

Vh := {vh ∈ H1(Ω) | vh|K ∈ P1(K) for all K ∈ Th},(4)

and

V 0
h := Vh ∩H1

0 (Ω).

The standard Galerkin scheme associated to the continuous problem reads: find ug ∈ V 0
h

such that

(5) a(ug, v1) = (f, v1), for all v1 in V 0
h .

It is well known that the Galerkin method (5) is unable to approximate the boundary layers

present in the solution if ε � σh2. Therefore, we are interested in finding a finite element

discretization for (2) that is stable and coarse mesh accurate for all ε and σ. We use the

approach of enriching the finite element space. The idea is to add special functions, also called

multiscale functions, to the usual polynomial spaces to stabilize and improve the accuracy of
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the Galerkin method. Henceforth, we propose a Petrov-Galerkin approach wherein we keep

the space of test functions as polynomial plus bubbles, i.e.,

V 0
h ⊕H1

0 (Th),

where H1
0 (Th) and H1(Th) are the spaces of functions on Ω whose restriction to each element

K belongs to H1
0 (K) and H1(K), respectively. Furthermore, we denote by Eh a subspace of

H1(Th), called multiscale space, such that Eh ∩ V 0
h = {0}.

We introduce the trial subspace Uh of H1(Th) defined by

Uh := V 0
h ⊕ Eh,(6)

thus an element vh of Uh may be uniquely written as

vh := v1 + ve,

where v1 ∈ V 0
h and ve ∈ Eh. Therefore, our approximation of the exact solution in the

enriched space (6), is defined by the solution of the following Petrov-Galerkin problem: find

uh ∈ Uh such that

(7) ah(uh, vh) = (f, vh), for all vh ∈ V 0
h ⊕H1

0 (Th)

where

ah(u, v) :=
∑

K∈Th

a(u, v)K ,

and

a(u, v)K := ε(∇u,∇v)K + σ(u, v)K .

From (7) we immediately have that the corresponding uh ∈ Uh satisfies

ah(uh, v1) = (f, v1) for all v1 ∈ V 0
h ,(8)

a(uh, v
K
b )K = (f, vKb )K for all vKb ∈ H1

0 (K).(9)

The well-posedness of (7) is discussed in [7]. Integrating (9) by parts, we immediately have

that the enriched part of the solution uh, denoted by ue ∈ Eh, is the strong solution of the

local problem

(10) Lue = f − Lu1 in each K ∈ Th.

In order to have (10) well-posed we must set boundary conditions on ∂K. We perform

that by introducing the operator BK : L2(∂K) → H1(∂K) defined in the following way:
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given w1 ∈ L2(∂K) we associate we = BKw1 ∈ H1(∂K) such that

(11) L∂Kwe := −ε∂sswe + σwe = w1 and we = 0 at the nodes.

The coefficient σ is set as a positive constant which can depend on |K|. Such dependence

will be specified later (see equation (35) for the triangle element case), and we denote by s a

variable that parametrize ∂K by arc-length. We point out that (11) is well-posed. A similar

boundary condition was used in Hou et al. for elliptic problems with oscillating coefficients

(see [17, 18]).

Now, let MK : H1(K) → H2(K) be the linear operator defined as follows: given v1 ∈
H1(K) let ve =MK v1 ∈ H2(K) be the solution of the problem

Lve = v1 in K ,(12)

ve = BK(
σ

σ
v1) on ∂K ,(13)

where BK is the linear local operator defined in (11).

Problem (12), (13) is clearly well-posed in each K ∈ Th. Therefore, from (10) we impose

(14) ue =MK(f − Lu1),

and from now on, we assume that f ∈ Vh.

Remark 1. The standard enriched strategy with bubble-like functions, as the Residual-Free-

Bubble (RFB) approach [3, 5, 6], is similar to (14) where ue vanishes on all ∂K ∈ Vh. In

both cases, we have the same local operator. However, thanks to the boundary condition

(11) we will be able to obtain analytic solutions.

Inspired by (14) we define the multiscale finite dimensional space Eh by

Eh := {ve ∈ H1(Th) | ve|K =MK v1 for all v1 ∈ Vh},

and it follows by construction and by (8) that (7) is equivalent to the finite dimensional

problem: find u1 ∈ V 0
h such that

(15) ah((I −MKL)u1, v1) = (f, v1)− ah(MKf, v1) for all v1 ∈ V 0
h ,

where I is the identity operator. The variational formulation (15) can be seen as the standard

Galerkin method with the modified bilinear and linear forms

(16) a(u1, v1)− ah(MKu1, σv1) = (f, v1)− ah(MKf, v1) for all v1 ∈ V 0
h ,

where we have used that u1 is piecewise linear.
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Remark 2. The space Eh is a finite dimensional space and dim(Eh) = dim(Vh). We note

from (13) that the functions belonging to Eh may be a priori discontinuous across the edges

of triangles. The continuity is enforced only at the nodes of the triangulation. Therefore,

the method is nonconforming.

Remark 3. Concerning stabilized finite element method theory, it is interesting to observe

some analogies between enriched approach and the unusual method proposed in [15]. The

bilinear form (15) corresponds to the Residual-Free-Bubble one [20] in the case that ue

vanishes on the boundary of each element. We recall that the unusual method reads: find

us1 ∈ V 0
h such that

as (us1, v1) = fs (v1) for all v1 ∈ V 0
h ,

where the bilinear form as : V 0
h × V 0

h → R reads

as (u, v) := a (u, v)−
∑

K∈Th

(τKLu, σv)K

and the linear form fs : V 0
h → R is defined by

fs (v) := (f, v)−
∑

K∈Th

(τKf, σv)K .

The stabilization parameter τK is a piecewise constant function defined by

τK =
h2
K

σh2
K max{1, P eK}+ 6ε

,

where PeK is the Peclet number

PeK =
6ε

σh2
K

.

It is possible to show that enriched methods, particularly the RFB formulation, is equiv-

alent to (3) as MK = τKI (see [9] and [2] for the case of Stokes operator). With respect to

the proposed enriched approach, we believe that it is equivalent to the unusual method, but

such equivalence in not trivial. This shall be investigated in a future work.

3. Local problem

3.1. Corresponding discrete formulation. The resolution of the weak problem (15) re-

quires the resolution of the local problem (14) for each K ∈ Th, i.e, we need to find ue ∈ Eh
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such that

Lue = f − σu1 in K ,(17)

ue = BK(
σ

σ
f − σu1) on ∂K ,(18)

where the operator BK is defined in (11). Let us rewrite (17), (18) in terms of basis functions.

We assume that

(19) Eh = span{φi}i∈I and Vh = span{ψi}i∈I ,

where ψi are the usual hat functions. Then, f and u1 are given by

u1 =
∑

i∈I0

ψiui, f =
∑

j∈I

ψjfj,

where ui , i ∈ I0, and fj, j ∈ I, are the nodal values of u and f , respectively. Here I and I0

are the set of indexes of total and internal nodal points, respectively. It follows from (17),

(18), and from the linearity of the operators L and L∂K that

(20) ue =
∑

i∈I0

φiui −
∑

i∈I

φi
fi
σ
,

where the basis functions φi ∈ Eh, i ∈ I, satisfy

Lφi = −σψi in K,(21)

φi = µi on ∂K,(22)

for all K ∈ Th. From (18) and (20), µi ∈ H1(∂K) is the solution of the boundary value

problem

L∂Kµi = −σψi in ∂K and µi = 0 at the nodes,(23)

on each edge belonging to ∂K ∈ Vh. Now, let λj ∈ Uh be defined by

(24) λj := ψj + φj = (I − σMK)ψj for all j ∈ I.

Thus the discrete version of the weak formulation (15) reads
∑

j∈I0

a(λj, ψi)uj =
∑

j∈I

[

(λj, ψi)−
ε

σ
(∇ψj,∇ψi) +

ε

σ
(∇λj,∇ψi)

]

fj for all i ∈ I0,

or equivalently
∑

j∈I0

a(λj, ψi)uj =
∑

j∈I

[a(λj, ψi)− ε(∇ψj,∇ψi)]
fj
σ

for all i ∈ I0.(25)

In order to solve the weak problem (25) we have to calculate φi ∈ Eh, i ∈ I, from (21)–(23)

what is done analytically in the next subsection. A typical solution of (21)–(23) is shown in
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Figure 1 wherein we set σ = 1 and ε = 10−3. Note that the support of φi coincide with the

support of the piecewise linear function ψi.
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Figure 1. An enriching function −φi (left) and its cross section at x = 0 (right).

Remark 4. In the particular case where f is assumed to be constant, the weak formulation

(25) becomes

(26)
∑

j∈I0

a(λj, ψi)uj =
∑

j∈I

a(λj, ψi)
fj
σ

for all i ∈ I0.

Numerical experiments indicate that the modified scheme type

(27)
∑

j∈I0

a(λj, ψi)uj =
∑

j∈I

(λj, ψi)
fj
σ

for all i ∈ I0,

yields accurate numerical approximations. This mass lumping trick is, nonetheless, contrary

to our general philosophy of deriving the formulation through a sound formalism. Thus, we

do not advocate this approach.

3.2. Solving the local problem. The present method requires solving the local problems

(21)–(23). It is convenient to present such problem in terms of the unknown λi, i ∈ I,

introduce in (24). Let ρi be the restriction of λi to ∂K, i.e.,

ρi := ψi|∂K + φi|∂K = ψi|∂K + µi for all i ∈ I.(28)
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Note from (23) the function ρi, i ∈ I, satisfies the ordinary differential problem

L∂Kρi = 0 on ∂K and ρi = ψi at the nodes,(29)

on each edge belonging to ∂K ∈ Vh. Hence, from the definitions (24) and (28), the function

λi, i ∈ I, satisfies

Lλi = 0 in K,(30)

λi = ρi on ∂K,(31)

where ρi is the solution of (29). Now, we present analytical solutions of problem (30), (31)

when K is either a triangle or a rectangle.

3.2.1. Bilinear shape functions. Consider a quadrilateral straight mesh. Thanks to the non-

homogenous boundary conditions (29) and choosing σ = 2σ, it is quite easy to calculate

λi for i ∈ I. We observe that the method becomes conform since we impose continuity of

shape functions on the boundary ∂K. Consider a rectangle K with vertexes 1, . . . , 4 at (0, 0),

(hx, 0), (hx, hy), (0, hy).

Without loss of generality, we compute λ1 solution of (30), (31). Since the bilinear function

ψ1 can be written as ψ1(x, y) = ψ1
x(x)ψ1

y(y), then on y = 0, we have that

−ε∂
2λ1

∂x2
+ 2σλ1 = 0 for x in (0, hx),

λ1(0, 0) = 1, λ1(hx, 0) = 0.

Hence,

(32) λ1(x, 0) = λ1
x(x) :=

sinh
(√

σ
2ε
hxψ

1
x(x)

)

sinh
(√

σ
2ε
hx
) .

Similarly,

(33) λ1(0, y) = λ1
y(y) :=

sinh
(√

σ
2ε
hyψ

1
y(y)

)

sinh
(√

σ
2ε
hy
) , and λ1(hx, y) = λ1(x, hy) = 0.

We remark that λ1(x, y) = λ1
x(x)λ1

y(y) satisfies (30), (31) exactly. Then

λ1(x, y) =
sinh

(√

σ
2ε
hxψ

1
x(x)

)

sinh
(√

σ
2ε
hyψ

1
y(y)

)

sinh
(√

σ
2ε
hx
)

sinh
(√

σ
2ε
hy
) .(34)

The basis functions λj, j = 2, ..4, are immediately obtained from λ1 by simply changing

variables. If we take a particular node l ∈ I, and look at all elements connected to this node,

then the equation (34) can be used to illustrate the nodal shape functions λl. Fixing σ = 1,

we obtain for ε = 1, 10−1, 10−3, the shape functions λl, depicted in Figures 2 and 3. Note
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that as ε approaches zero, the usual pyramid is squeezed in its domain of influence in the

neighborhood around node l.

3.2.2. Linear shape functions. Consider now a regular triangular mesh. Let K be an element

of the triangulation Th, and Z an edge of its boundary ∂K. We explicit the dependence of

coefficients σ in terms of the shape of elements K by setting

σ :=
σ

γiK |Z|2
for all i ∈ I,(35)

where the positive constant γiK is defined by

γiK =

(

∂ψi
∂x
|K
)2

+

(

∂ψi
∂y
|K
)2

for all i ∈ I.(36)

Remark 5. We can identify the constant introduce in (36) in terms of the shape of K as

γiK =
|Z|2

4|K|2
,

where Z denotes the corresponding edge of K opposed to the node i. We note that γiK is of

order h−2
K for all i ∈ I and K ∈ Th.

Thanks to the definitions (35) and (36) we are able to compute the analytical solution of

(30), (31). Indeed, it is straightforward to check that

(37) λi(x, y) =

sinh

(

√

σ
εγiK

ψi(x, y)

)

sinh

(

√

σ
εγiK

) for all i ∈ I,

satisfies the boundary value problem (30), (31).

Remark 6. The enriched basis functions (37) are discontinuous across element edges since

γiK varies a priori in each K ∈ Th. Therefore as we have already pointed out, the present

method is nonconforming in general, but we can recover the continuity and the conformity

in the case of the value of γiK is the same for all K ∈ Th.
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Figure 2. The function λl for ε = 1 (left) and ε = 10−2 (right).
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Figure 3. The function λl for ε = 10−3.
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4. Numerical Results

4.1. Source problem. Let us first consider the unit source problem (f = 1) defined on the

unit square depicted in Figure 4, subject to a homogeneous boundary condition.

u = 0u = 0

u = 0

u = 0

x

y

1.00.0

1.0

Figure 4. Problem statement.

For a fixed σ = 1 and small ε, boundary layers appear close to the domain boundary.

Figures 5, 6 shows the solutions of four different methods, for ε = 10−6. The unusual

stabilized method and the current method perform better than the other two methods. For

ε = 10−3 and ε = 1, all methods have comparable performance, see Figures 7, 8.
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Figure 5. Comparison among Galerkin, Residual Free Bubble, unusual and

the enriched method for ε = 10−6.
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Figure 6. Profile of solutions at x = 0.5 (ε = 10−6).
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Figure 7. Profile of solutions at x = 0.5 (ε = 10−3).
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Figure 8. Profile of solutions at x = 0.5 (ε = 1).

4.2. Boundary layer problem using refined mesh. Here we consider a rectangular

domain with nontrivial boundary conditions, as depicted in Figure 9. We assume that

f = 0, and the domain is discretized using a refined mesh in part of the domain.

1.0u = 0

u = 1

u = 0 u = 2 y

0.5

0.0 x

y

Figure 9. Problem statement.
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Again for this problem we have the onset of boundary layers that causes spurious oscil-

lations in the numerical solutions. We computed the solution with different methods for

σ = 1, and ε = 10−6. Figures 10, 11, 12 show the good performance of the current method,

while all other methods suffer from spurious oscillations. Finally, Figure 13 illustrate that

for large ε, we recover the usual Galerkin method.

GALERKIN  METHOD RFB  METHOD

UNUSUAL  METHOD NEW  ENRICHED  METHOD%anticlipinit


Figure 10. Comparison between solutions obtained by different methods

(ε = 10−6).
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Figure 11. Profile of solutions at x = 0.5 (ε = 10−6).
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Figure 12. Profile of solutions at y = 0.05 (ε = 10−6).
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Figure 13. Profile of solutions at y = 0.5 (ε = 1).

4.3. NACA problem.

Here we illustrate the good performance of the present method even for unstructured

meshes. We consider the domain Ω and its discretization as depicted in Figure 14. We

assume f = 0 and homogeneous boundary Dirichlet conditions at the outer boundary. On

the inner boundary we impose u = 1. In all examples below we assume σ = 1. In figure 15 we

show that for moderate ε, both Galerkin and the present method perform well. As expected,

for small ε, the Galerkin method presents spurious oscillations. It is remarkable here that

even the unusual method is oscillatory, as shown in Figures 15, 17. As we show in Figure 16,

the present method captures the boundary layer without any oscillatory behavior.
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MESH%anticlipinit


GALERKIN  METHOD NEW  ENRICHED  METHOD%anticlipinit


Figure 14. Isovalues of the solutions by Galerkin Method and by enriched

method. Here ε = 10−2.
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GALERKIN  METHOD%anticlipinit


UNUSUAL  METHOD%anticlipinit
 NEW  ENRICHED  METHOD%anticlipinit


Figure 15. Isovalues of the solutions by Galerkin Method and by the enriched

method (ε = 10−6).
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NEW  ENRICHED  METHOD  -  ZOOM

Figure 16. The new method captures the boundary layer accurately. Zoom

of isovalues (ε = 10−6).
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Figure 17. Profile of solutions at x = 0.5 (ε = 10−6).
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