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Abstract. Recently, ahp interior penalty discontinuous Galerkin finite element method for the
biharmonic equation was introduced and analysed by the firstand third authors. We now extend
such ideas in a nontrivial way for the Reissner–Mindlin plate model. The extension is such that,
as the plate thickness tends to zero, we recover the method for the biharmonic problem. Our
present scheme does not introduce shear as an extra unknown,and does not need reduced
integration techniques. We present here ana priori error analysis of these methods and prove
error bounds inh which are uniform with respect to the plate thickness. Numerical tests are
presented.
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1. Introduction

The Reissner–Mindlin model for plates is not only a good model for linearly elastic plates,
but also it brings in computational challenges that requireingenious numerical methods. The
reason is that the system depends in a nontrivially onε, the half-thickness of the plate. As
the plate become thinner, the Reissner–Mindlin solution approaches the Kirchhoff–Love, bihar-
monic solution. Thus, for smallε, naive numerical schemes fail, since they do not approximate
well solutions of fourth order problems in general. This is described as anumerical locking.

This is all well known and there are in the literature finite element schemes that avoid
locking altogether, see (Falk, 2008) and references therein for a comprehensive review. Recently
some authors started to take advantage of the flexibility of discontinuous Galerkin (DG) finite
element methods to design new, locking free, plate models (Arnold et al., 2005; Brezzi and
Marini, 2003; Chinosi et al., 2006; Lovadina, 2005). We follow the same philosophy.

The discontinuous Galerkin method for fourth order elliptic equation was introduced and
analyzed by (Baker, 1977). Ahp version of interior penalty discontinuous Galerkin meth-
ods have been considered in (Mozolevski and Bösing, 2007; Mozolevski and Süli, 2003; Mo-
zolevski et al., 2007; Süli and Mozolevski, 2007), where the authors analyse and obtaina priori
error bounds for variants of the method. Such DG,hp-scheme for the biharmonic equation was
our motivation in this present work. We propose here a methodfor the Reissner–Mindlin system
that, asε tends to zero, “converges” to the scheme for the biharmonic.We prove convergence
in a natural energy norm, and provide numerical tests that confirm our predictions.

Let Ω be a convex and polygonal two-dimensional domain with boundary ∂Ω. Consider
a homogeneous and isotropic linearly elastic plate occupying the three-dimensional domain
Ω× (−ǫ, ǫ). Assume that such a plate is clamped on its lateral side, and under a transverse load
of density per unity areaǫ3g that is symmetric with respect to its middle surface. Under such
pure bending regime, there are two popular two-dimension models for the plate’s displacement.

In the Kirchhoff–Love model, the displacement at(x, x3) ∈ Ω × (−ǫ, ǫ) is approximated
by

(

−x3 ∇ψ(x), ψ(x)
)

, where

D∆2 ψ = g in Ω,

ψ =
∂ψ

∂n
= 0 on∂Ω,

(1)

andD = 4µ(µ+ λ)/[3(2µ+ λ)]. Here,µ andλ are the Lamé coefficients.
The simplest Reissner–Mindlin model approximation (Alessandrini, 1996) is given by

(

−x3θ(x), ω(x)
)

, where

−div C e(θ) + ǫ−2µ(θ − ∇ω) = 0 in Ω,

ǫ−2µ div(θ − ∇ω) = g in Ω,

θ = 0, ω = 0 on∂Ω.

(2)

We denote bye(θ) the symmetric part of the gradient ofθ, and

C e(θ) =
1

3
[ 2µ e(θ) + λ∗ div θ I ],

with λ∗ = 2µλ/(2µ+λ), andI is the identity matrix. LetΛ0, Λ1 be positive constants such that

Λ0| e(θ)|2 ≤ | C e(θ) : e(θ)| ≤ Λ1| e(θ)|2, (3)

whereτ : σ =
∑2

i,j=1 τijσij denote the inner product between two matricesτ andσ, and
|τ | = (τ : τ)1/2.



In the weak formulation,θ ∈ H̊
1
(Ω) andω ∈ H̊1(Ω) are such that

a(θ,η) + ǫ−2µ(θ − ∇ω,η) = 0 for all η ∈ H̊
1
(Ω),

−ǫ−2µ(θ − ∇ω,∇ ν) = (g, ν) for all ν ∈ H̊1(Ω),
(4)

where(·, ·) denotes the inner product inL2(Ω) andL2(Ω), and

a(θ,η) =

∫

Ω

C e(θ) : e(η) dx.

Note that the Poincaré’s and Korn’s inequalities hold, i.e., there exists anǫ-independent
constantc such that

‖η‖2
1,Ω ≤ ca(η,η), ‖ω‖0,Ω ≤ c‖∇ω‖0,Ω for all (η, ω) ∈

(

H̊
1
(Ω) × H̊1(Ω)

)

.

The existence and uniqueness of solutions for Reissner–Mindlin follow since (θ, ω) is the
unique minimum of the functional

a(θ, θ) + ǫ−2µ(θ − ∇ω, θ − ∇ω) − (g, ω)

in
(

H̊
1
(Ω), H̊1(Ω)

)

.
The relation between the Kirchhoff–Love and Reissner–Mindlin models becomes clear

since, asǫ → 0, the sequence of solutions(θ, ω) converges to(∇ψ, ψ), whereψ solves (1),
and minimizes

a(∇ ν,∇ ν) − (g, ν)

in H̊2(Ω). This is an instance of a more general result of (Chenais and Paumier, 1994).
The contents of this paper are as follows. In the next section, we introduce a formulation

for the Reissner–Mindlin system, and in Section 3., we defineour scheme and state continuity
and coercivity results. Sections 4. and 5. contain the convergence and numerical results.

We now introduce some notation used in this paper. For a givenopen setD, the setL2(D)
contains the square integrable functions inD. For a non-negativet,H t(D) is the corresponding
Sobolev space of ordert. The notation for its inner product, norm and semi-norm is(·, ·)t,D,
‖ · ‖t,D and| · |t,D. We write vectors, and vector spaces in bold, and we denote byc a generic
constant (not necessarily the same in all occurrences) which is independent ofε.

2. Weak formulation in broken Sobolev space

Let Kh = {K} be a shape-regular partition ofΩ into non-overlapping triangles. The
numberhK denotes the diameter of an elementK ∈ Kh, andh is the maximum ofhK , for all
K ∈ Kh. Let Eh be the set of all open facese of all elements inKh, andhe the length ofe. The
setEh will be divided into two subsets,E◦

h (the set of interior faces) andE∂
h (the set of boundary

faces), defined by

E◦
h = {e ∈ Eh : e ⊂ Ω}, E∂

h = {e ∈ Eh : e ⊂ ∂Ω}.
In addition, we defineΓ◦ = {x ∈ e : e ∈ E◦

h} andΓ = Γ◦ ∪ ∂Ω. Let

H t(Kh) = {v ∈ L2(Ω) : v|K ∈ H t(K), for all K ∈ Kh}

be the space of piecewise SobolevH t-functions and denote its inner product, norm and semi–
norm by(·, ·)t,h, ‖·‖t,h and|·|t,h. For simplicity denoteH t(Kh) = H t(Kh)×H t(Kh). Similarly,
for any open subsetγ ⊂ Γ let denote by(·, ·)γ and‖ · ‖γ the inner product and norm inL2(γ).



For anyK ∈ Kh let nK be the outer normal to the boundary∂K. Let K− andK+ be
two distinct elements ofKh sharing the edgee = K−

⋂

K+ ∈ E◦
h. We define the jump of

φ ∈ H1(Kh) by

[φ] = φ−
n
− + φ+

n
+,

whereφ± = φ|K± andn
± = nK±. For an vector functionθ ∈ H1(Kh), define

[θ] = θ− · n− + θ+ · n+, JθK = θ− ⊙ n
− + θ+ ⊙ n

+,

whereθ ⊙ n = (θn
T + nθT )/2. Note that the jump of a scalar function is a vector, and for

a vector functionθ, the jump[θ] is a scalar, while the jumpJθK is a symmetric matrix. The
average of scalar or vector functionχ is defined by

{χ} =
1

2
(χ− + χ+).

On a boundary facese ∈ E∂
h

⋂

∂K with outer normaln, define the jumps and averages as

[φ] = φ|Kn, [θ] = θ|K · n, JθK = θ|K ⊙ n, {χ} = χ|K .

Then, the following identities hold (Arnold et al., 2005) for smoothθ andτ :

∑

K∈Kh

∫

∂K

θ · nKv =
∑

e∈Eh

∫

e

{θ} · [v], (5)

∑

K∈Kh

∫

∂K

τnK · η =
∑

e∈Eh

∫

e

{τ} : JηK. (6)

From the shape-regularity, there exists a constantc such that on any facee ∈ Eh

⋂

∂K

he ≤ hK ≤ che.

Thus, the following multiplicative trace inequality holds(Thomée, 1997).

Lemma 1 For a shape regular partitionKh, there exists a constantc such that

‖v‖2
0,∂K ≤ c

(

1

hK
‖v‖2

0,K + hk|v|21,K

)

for all v ∈ H1(K), and allK ∈ Kh. (7)

For the biharmonic equation (1), the following symmetric discontinuous Galerkin formulation
(Süli and Mozolevski, 2007) definesψh ∈ H4(Kh) such that

Bb(ψh, φ) = (g, φ) for all φ ∈ H4(Kh), (8)

where the bilinear formBb(ψ, φ) = BKh
(ψ, φ) +BΓ(ψ, φ) +Bs(ψ, φ), and

BKh
(ψ, φ) = (∆ψ,∆φ)h,

BΓ(ψ, φ) =
∑

e∈Eh

[

({∇ ∆ψ}, [φ])e + ([ψ], {∇ ∆φ})e − ({∆ψ}, [∇φ])e

− ([∇ψ], {∆φ})e

]

,

Bs(ψ, φ) =
∑

e∈Eh

[

αe([ψ], [φ])e + βe([∇ψ], [∇φ])e

]

.



The positive stabilization parametersα and β with valuesαe, βe for e ∈ Eh, are fixed at
Lemma 3, to weakly impose the boundary conditions and inter-element continuity, and to sta-
bilize the method.

We next derive a discontinuous Galerkin formulation for theReissner–Mindlin problem
that “recovers” (8) asε → 0. For smooth(θ, ω), multiplying both sides of the first equation in
(2) byη ∈ H3(Kh) and integrating by parts over an elementK, we get

aK(θ,η) + ǫ−2µ(θ − ∇ω,η)K − (C e(θ)n,η)∂K = 0, (9)

whereaK(θ,η) =
∫

K
C e(θ) : e(η) dx. In the same way, from the second equation in (2), for

anyν ∈ H1(Kh) we obtain

−ǫ−2µ(θ − ∇ω,∇ ν)K + ǫ−2µ((θ − ∇ω) · n, ν)∂K = (g, ν)K .

To eliminateθ −∇ω in the second term of the above equation, we use the first equation in (2),
and

−ǫ−2µ(θ − ∇ω,∇ ν)K + (div C e(θ) · n, ν)∂K = (g, ν)K . (10)

Summing (9), (10) over the elements, and from (5), (6), it follows that

ah(θ,η) + ǫ−2µ(θ − ∇ω,η)h +
∑

e∈Eh

−(C{e(θ)}, JηK)e = 0,

−ǫ−2µ(θ − ∇ω,∇ ν)h +
∑

e∈Eh

({div C e(θ)}, [ν])e = (g, ν),

whereah(θ,η) = (C e(θ) : e(η))h. Adding the symmetrization and penalization terms,

ah(θ,η) + ǫ−2µ(θ − ∇ω,η)h+
∑

e∈Eh

−(C{e(θ)}, JηK)e − (JθK, C{e(η)})e

+ ([ω], {div C e(η)})e + βe(JθK, JηK)e = 0,

−ǫ−2µ(θ − ∇ω,∇ ν)h +
∑

e∈Eh

({div C e(θ)}, [ν])e + αe([ω], [ν])e = (g, ν).

(11)

The system (11) corresponds to the critical point of

1

2
ah(η,η) +

∑

e∈Eh

[

−({C e(η)}, JηK)e +
βe

2
(JηK, JηK)e + ([ν], {div C e(η)})e

+
αe

2
([ν], [ν])e

]

+ ǫ−2µ(η − ∇ ν,η − ∇ ν)h − (g, ν).

As ε→ 0,

1

2
ah(∇ ν,∇ ν) +

∑

e∈Eh

[

−({C e(∇ ν)}, J∇ νK)e +
βe

2
(J∇ νK, J∇ νK)e

+ ([ν], {div C e(∇ ν)})e +
αe

2
([ν], [ν])e

]

− (g, ν).

The variational formulation characterizing the minimum ofthis functional is

ah(∇ω,∇ ν) +
∑

e∈Eh

[

−({C e(∇ω)}, J∇ νK)e − (J∇ωK, {C e(∇ ν)})e

+βe(J∇ωK, J∇ νK)e +({div C e(∇ω)}, [ν])e + ([ω], {div C e(∇ ν)})e +αe([ω], [ν])e

]

= (g, ν). (12)



After integrating by parts, it follows that (12) recovers asε → 0, a variant of the formulation
for the biharmonic equation from (Süli and I. Mozolevski, 2007).

We now consider a more general, possibly non-symmetric, formulation, depending onλ1,
λ2 ∈ [−1, 1]. Let (θ, ω) ∈ H3(Kh) ×H1(Kh) satisfy

A(θ, ω; η, ν) = (g, ν), for all (η, ν) ∈ H3(Kh) ×H1(Kh), (13)

where

A(θ, ω; η, ν) = ah(θ,η) + ǫ−2µ(θ − ∇ω,η − ∇ ν)h + λ1A1(η, ω) + A1(θ, ν)

− A2(θ,η) − λ2A2(η, θ) + Aα(ω, ν) + Aβ(θ,η),

and

A1(η, ω) =
∑

e∈Eh

([ω], {div C e(η)})e, A2(θ,η) =
∑

e∈Eh

(C{e(θ)}, JηK)e,

Aα(ω, ν) =
∑

e∈Eh

αe([ω], [ν])e, Aβ(θ,η) =
∑

e∈Eh

βe(JθK, JηK)e.

In caseλ1 = λ2 = 1, the above formulation is symmetric.

3. Discontinuous Galerkin finite element method

LetPp(K) be the space of polynomials with total degree less or equal top in K ∈ Kh. We
introduce the global discontinuous finite element space

Sp,h(Kh) = {v ∈ L2(Ω) : v|K ∈ Pp(K) for all K ∈ Kh}.

To formulate the method letp ≥ 2, and the finite element spacesΘh = S(p−1),h(Kh) ×
S(p−1),h(Kh), andWh = Sp,h(Kh). We define(θh, ωh) ∈ Θh ×Wh such that

A(θh, ωh; η, ν) = (g, ν), for all (η, ν) ∈ Θh ×Wh. (14)

Note that this formulation is consistent with Reissner–Mindlin problems (2) that admit suffi-
ciently smooth solutions. In this case, the Galerkin orthogonality

A(θ − θh, ω − ωh; η, ν) = 0 for all (η, ν) ∈ Θh ×Wh (15)

holds.
Consider the following norm for(η, ν) ∈ H3(Kh) ×H1(Kh):

|||η, ν|||2 = ‖ e(η)‖2
0,h + ǫ−2‖η − ∇ ν‖2

0,h + ‖
√
α[ν]‖2

Γ + ‖
√

βJηK‖2
Γ

+

∥

∥

∥

∥

1√
α
{div C e(η)}

∥

∥

∥

∥

2

Γ

+

∥

∥

∥

∥

1√
β
{C e(η)}

∥

∥

∥

∥

2

Γ

,

for p ≥ 3, and

|||η, ν|||2 = ‖ e(η)‖2
0,h + ǫ−2‖η−∇ ν‖2

0,h + ‖
√
α[ν]‖2

Γ + ‖
√

βJηK‖2
Γ +

∥

∥

∥

∥

1√
β
{C e(η)}

∥

∥

∥

∥

2

Γ

,

for p = 2. The bilinear formA is continuous in(H3(Kh) ×H1(Kh))
2 in respect to this norm.



Lemma 2 For a shape regular partitionKh, there exists a positive constantc, such that for all
(

(θ, ω); (η, ν)
)

∈
(

H3(Kh) ×H1(Kh)
)2

,

|A(θ, ω; η, ν)| ≤ c|||θ, ω||||||η, ν|||, (16)

wherec is independent ofhK ,K ∈ Kh.

Let us prove now the coercivity of bilinear formA in discrete space.

Lemma 3 Let Kh be a shape regular partition, and assume that(3) holds. Then there exist
positive constantŝσα, σ̂β such that ifσα ≥ σ̂α, σβ ≥ σ̂β , and

αe =
σα

h3
e

, βe =
σβ

he
for e ∈ Eh, (17)

then there exists a positive constantζ such that

A(θ, ω; θ, ω) ≥ ζ |||θ, ω|||2 for all (θ, ω) ∈ Θh ×Wh. (18)

4. A priori error analysis

From the continuity and coercivity of the bilinear formA in discrete spaces, the error
analysis follows from standard techniques. Let(θ, ω) denote the exact solution of (2), and
(θh, ωh) its approximation, the solution of (14). Next, let(θi, ωi) be an interpolant of(θ, ω) in
Θh ×Wh. We start by decomposing the approximation errors as follows:

θ − θh = (θ − θi) + (θi − θh) ≡ ei
θ
− ξθ, (19)

ω − ωh = (ω − ωi) + (ωi − ωh) ≡ ei
ω − ξω. (20)

From the continuity and coercivity of the bilinear form, andthe Galerkin orthogonality (15) it
follows that

|||ξθ, ξω|||2 ≤ ζA(ξθ, ξω; ξθ, ξω) = ζA(ei
θ
− θ + θh, e

i
ω − ω + ωh; ξθ, ξω)

= ζA(ei
θ
, ei

ω; ξθ, ξω) − ζA(θ − θh, ω − ωh; ξθ, ξω) = ζA(ei
θ
, ei

ω; ξθ, ξω)

≤ c|||ei
θ
, ei

ω||||||ξθ, ξω|||,

and consequently,|||ξθ, ξω||| ≤ c|||ei
θ
, ei

ω|||. This means that

|||θ − θh;ω − ωh||| ≤ c|||ei
θ
, ei

ω|||, (21)

and to estimate the error of the method it is enough to estimate the interpolation error.
Proceeding as in (Arnold et al., 2007) to choose appropriateinterpolants, let us denote by

πW the projection ofL2(Ω) ontoWh ∩ H1(Ω). Forω ∈ Hp+1(Ω), let ωi = πWω. It follows
then that for0 ≤ q ≤ p+ 1, there exists a constantc such that

∥

∥ω − ωi
∥

∥

q,h
≤ chp+1−q ‖ω‖p+1,Ω for all ω ∈ Hp+1(Ω). (22)

Consider the rotated Brezzi–Douglas–Marini spaceBDM
R
p−1 of degreep − 1 , i.e., the

space of all piecewise polynomial vector fields of degree at mostp− 1 subject to inter-element
continuity of the tangential components; obviouslyBDM

R
p−1 ⊂ Θh. Let πΘ denotes the

the natural projector ofH1(Ω) into BDM
R
p−1. Note that∇Wh ⊆ Θh, and the following

commutativity property of the projectors follows from integration by parts:

πΘ ∇ω = ∇πWω. (23)



So, letθi = πΘθ be the interpolator ofθ ∈ H1(Ω). Definingγ = ǫ−2(θ − ∇ω) as the shear
stress vector, andγi = ǫ−2(θi − ∇ωi), it follows that

πΘγ = ǫ−2πΘ(θ − ∇ω) = ǫ−2(πΘθ − ∇πWω) = ǫ−2(θi − ∇ωi) = γi.

Thus,γi interpolatesγ, and with this key condition, the next results for interpolation error
estimates holds (Arnold et al., 2007). For0 ≤ s ≤ l, and1 ≤ l ≤ p

‖θ − θi‖s,h ≤ chl−s‖θ‖l,Ω for all θ ∈ H l(Ω), (24)

‖γ − γ i‖s,h ≤ chl−s‖γ‖l,Ω for all γ ∈ H l(Ω). (25)

The main result of this paper is the following.

Theorem 4 Let Ω ⊂ R
2 be an polygonal convex domain, and letKh be a shape regular par-

tition on Ω. Assume that the penalization parametersα andβ are so thatA(·, ·; ·, ·) is coer-
cive (according to Lemma 3). Assume also that the solution to(2) satisfy(θ, ω) ∈ Hp(Ω) ×
Hp+1(Ω), and thatp ≥ 2. Then(θh, ωh) ∈ Θh ×Wh, solution of discontinuous Galerkin finite
element method(14), satisfy

|||θ − θh;ω − ωh|||2 ≤ ch2p−2
(

‖θ‖2
p + ‖ω‖2

p+1 + ǫ2‖γ‖2
p−1

)

, (26)

wherec does not depend onh or ǫ.

Remark 5 Note that estimate(26) holds anyΘh containingBDM
R
p−1 (Arnold et al., 2007).

In fact, in the proof of Theorem 4, it was enough that the projection πΘ is well-defined and
that (23) holds. Particular choices include the case whereWh has only continuous functions,
and the case of equal interpolation degree for all the unknowns, i.e.,Θh = Sp,h(Kh)×Sp,h(Kh).
This is particularly useful since using equal order interpolation for all spaces might make the
computational implementation easier.

5. Numerical Results

We consider now some numerical tests that display the performance of our method. We
start by adapting the solution given in (Chinosi et al., 2006), and it follows that

ω1(x, y) =
1

3
x3(x− 1)3y3(y − 1)3,

ω2(x, y) = y3(y − 1)3x(x− 1)(5x2 − 5x+ 1) + x3(x− 1)3y(y − 1)(5y2 − 5y + 1),

ω(x, y) = ω1(x, y) − ǫ2
8(µ+ λ)

3(2µ+ λ)
ω2(x, y),

θ1(x, y) = y3(y − 1)3x2(x− 1)2(2x− 1), θ2(x, y) = x3(x− 1)3y2(y − 1)2(2y − 1),

solves (2) inΩ = (0, 1) × (0, 1) with

g =
4(µ+ λ)µ

3(2µ+ λ)
{12y(y − 1)(5x2 − 5x+ 1)[2y2(y − 1)2 + x(x− 1)(5y2 − 5y + 1)]

+ 12x(x− 1)(5y2 − 5y + 1)[2x2(x− 1)2 + y(y − 1)(5x2 − 5x + 1)]}.

In our numerical simulations we set the Lamé coefficientsλ = µ = 1.
Implementing the DG method described above in the PZ environment (Devloo, 1997), we

proceed to check the convergence of the scheme (14) for the symmetric (λ1 = λ2 = 1), and
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Figure 1: Errors inω (top), andθ (bottom), with respect to the refinement levelL. At the left we consider
theL2 norm, and at the right theH1(Th) norm. All the results are for the symmetric formulation. We
consideredp = 2, 3, 4 andǫ = 10−1, 10−3, 10−6.



non-symmetric (λ1 = λ2 = −1) cases. In both cases, we pickσα = σβe
= 10. We used

Θh = Sp,h(Kh) × Sp,h(Kh). As noted in Remark 5, the converge rates obtained in Theorem4
are still valid under this choice.

We successively divide the domain using22L+1 triangles. Thus, ifeL denotes the error at
the level of refinementL, the rate of convergence for such level is given by

rL = log

(

eL

eL−1

)

/ log(0.5).

Figure 1 shows the error of the symmetric method for the vertical displacement at the top,
and for the rotation at the bottom, as a function of the refinement level for several approximation
ordersp and for different values ofǫ. The errors were in theL2 norm at the left column, and the
H1 norm at the right column. The non-symmetric version of the method yields similar results.
We observe that in theH1 norm, the errors for all approximation orders exhibit similar behavior
for ω andθ, confirming that in fact the constant in bound (26) does not depend on thicknessǫ.
Note that, in theH1 norm, the errors of approximation of vertical displacementis almost the
same for all thickness, for a given approximation order, andthe rotation error is less uniform
in ǫ, since the method approximates better the rotation for thicker plates. The errors in theL2

norm are significantly better than in theH1 norm and exhibit a similar behavior in respect toǫ.
We stress that the results are locking free.

Table 1: Numerical convergence with the symmetric formulation and triangles

eω with L2(Th) eω with H1(Th) eθ with L2(Th) eθ with H1(Th)
p L\ε 10−1 10−3 10−6 10−1 10−3 10−6 10−1 10−3 10−6 10−1 10−3 10−6

2 2.4 1.0 1.0 1.5 0.8 0.8 2.1 0.8 0.8 1.3 0.6 0.6
2 3 3.2 1.0 1.0 1.9 0.9 0.9 3.1 0.9 0.9 1.8 0.6 0.6

4 3.3 1.6 1.4 1.9 1.5 1.3 3.3 1.5 1.3 1.9 1.0 1.0
2 4.0 2.8 2.7 2.6 2.2 2.2 3.8 2.2 2.1 2.4 1.3 1.2

3 3 4.2 3.2 3.1 2.9 2.9 2.8 4.1 2.9 2.8 2.8 1.8 1.7
4 4.1 3.9 3.6 3.0 3.5 3.3 4.0 3.5 3.3 2.9 2.1 2.1
2 4.2 3.5 3.5 3.0 3.0 3.0 4.6 3.0 3.0 3.5 2.0 2.0

4 3 4.8 5.0 4.8 3.8 4.0 3.9 4.8 4.1 3.9 3.8 2.9 2.8
4 4.7 5.8 5.4 3.9 4.3 4.2 3.8 4.4 4.2 2.9 3.2 3.1

Table 2: Numerical convergence with the non-symmetric formulationand triangles

eω with L2(Th) eω with H1(Th) eθ with L2(Th) eθ with H1(Th)
p L\ε 10−1 10−3 10−6 10−1 10−3 10−6 10−1 10−3 10−6 10−1 10−3 10−6

2 2.4 1.0 1.0 1.6 0.8 0.8 2.2 0.8 0.8 1.4 0.6 0.6
2 3 3.0 1.0 1.0 1.9 0.9 0.9 2.9 0.9 0.9 1.8 0.7 0.6

4 2.8 1.6 1.4 1.9 1.5 1.3 2.8 1.5 1.3 2.0 1.1 1.0
2 4.0 2.7 2.7 2.6 2.1 2.1 3.8 2.1 2.1 2.4 1.3 1.2

3 3 4.1 3.0 2.9 2.9 2.8 2.7 4.1 2.8 2.7 2.8 1.8 1.7
4 4.0 3.2 3.0 3.0 3.3 3.1 4.0 3.3 3.1 2.9 2.1 2.1
2 4.2 3.5 3.4 3.0 3.0 3.0 4.7 3.0 3.0 3.5 2.0 2.0

4 3 4.8 4.9 4.7 3.8 4.1 4.0 4.9 4.1 4.0 3.8 2.9 2.8
4 4.6 4.8 4.5 3.9 4.4 4.2 3.9 4.4 4.2 3.0 3.2 3.1



We now investigate the convergence rates for both the vertical displacements and rotations.
Table 1 contains the results for the symmetric formulation and in Table 2, we display the con-
vergence rates for the non-symmetric formulation. Since the norm‖ · ‖1,h is bounded by above
by a constant times‖ e(·)‖0,h + ‖β · ‖Γ (see Lemma 4.6 of (Arnold et al., 2005), from the the-
oretically predicted rate of convergence for energy norm follows that the rate of convergence
of the error of rotation in theH1 norm should to bep− 1 in both formulations. This is clearly
confirmed by our numerical experiments as can be seen in the last column of both tables 1
and 2 that contain the results foreθ in H1(Kh) norm. The convergence order inL2 norm for
the vertical displacement is approximativelyp + 1, p > 2 for symmetric version, that coincides
with the similar results for biharmonic equation (Süli andI. Mozolevski, 2007). We remark
also that for the non-symmetric version this rates are reduced when compared to the symmetric
case. For all the other cases, both formulations display similar results for allp. For the sake of
comparison, we include in Table 3 some numerical results forthe symmetric formulation using
uniform quadrilateral meshes. The convergence rates here are similar to the case of mesh with
triangles.

Table 3: Numerical convergence with the symmetric formulation and rectangles

eω emL2(Th) eω emH1(Th) eθ emL2(Th) eθ emH1(Th)
p rL\ε 10−1 10−3 10−6 10−1 10−3 10−6 10−1 10−3 10−6 10−1 10−3 10−6

2 3.7 3.2 3.2 2.5 2.3 2.3 3.1 2.3 2.3 1.6 1.2 1.2
2 3 3.2 1.8 1.8 1.9 1.5 1.5 2.9 1.5 1.5 1.9 0.6 0.6

4 3.1 1.9 1.9 2.0 1.9 1.9 3.0 1.9 1.9 2.0 0.9 0.9
2 2.6 2.3 2.3 1.5 1.6 1.6 3.6 1.6 1.6 2.7 0.9 0.8

3 3 3.9 3.9 3.9 2.8 2.8 2.8 4.0 2.8 2.8 3.0 1.9 1.9
4 3.9 4.0 4.0 3.0 3.0 3.0 3.9 3.0 3.0 2.9 2.0 2.0
2 4.92 4.7 4.7 3.9 3.8 3.8 5.0 3.8 3.8 4.0 2.9 2.9

4 3 4.8 4.8 4.8 4.0 4.0 4.0 4.1 4.0 4.0 3.3 3.0 3.0
4 3.8 4.3 4.2 4.0 4.0 4.0 2.7 4.0 4.0 1.9 3.0 3.0
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