A new discontinuous Galerkin method for the Reissner—Mindin plate model
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Abstract. Recently, ap interior penalty discontinuous Galerkin finite element Inoet for the
biharmonic equation was introduced and analysed by thedirdithird authors. We now extend
such ideas in a nontrivial way for the Reissner—Mindlin platodel. The extension is such that,
as the plate thickness tends to zero, we recover the methalkefdiharmonic problem. Our
present scheme does not introduce shear as an extra unkraowingdoes not need reduced
integration techniques. We present hereaapriori error analysis of these methods and prove
error bounds inkh which are uniform with respect to the plate thickness. Nuraktests are
presented.
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1. Introduction

The Reissner—Mindlin model for plates is not only a good nhéatdinearly elastic plates,
but also it brings in computational challenges that requigenious numerical methods. The
reason is that the system depends in a nontriviallypthe half-thickness of the plate. As
the plate become thinner, the Reissner—Mindlin solutigragches the Kirchhoff-Love, bihar-
monic solution. Thus, for smadl, naive numerical schemes fail, since they do not approx@mat
well solutions of fourth order problems in general. This é&sdribed as aumerical locking

This is all well known and there are in the literature finiteraknt schemes that avoid
locking altogether, see (Falk, 2008) and references théoea comprehensive review. Recently
some authors started to take advantage of the flexibilitysfahtinuous Galerkin (DG) finite
element methods to design new, locking free, plate modeisqld et al., 2005; Brezzi and
Marini, 2003; Chinosi et al., 2006; Lovadina, 2005). Wedollthe same philosophy.

The discontinuous Galerkin method for fourth order elkpquation was introduced and
analyzed by (Baker, 1977). Ap version of interior penalty discontinuous Galerkin meth-
ods have been considered in (Mozolevski and Bosing, 20@zad\évski and Sili, 2003; Mo-
zolevski et al., 2007; Suli and Mozolevski, 2007), whereadlithors analyse and obtaimpriori
error bounds for variants of the method. Such Dg-scheme for the biharmonic equation was
our motivation in this present work. We propose here a metbiothe Reissner—Mindlin system
that, as: tends to zero, “converges” to the scheme for the biharmdne.prove convergence
in a natural energy norm, and provide numerical tests thafirco our predictions.

Let 2 be a convex and polygonal two-dimensional domain with bemnd$). Consider
a homogeneous and isotropic linearly elastic plate ocagpye three-dimensional domain
2 x (—e, €). Assume that such a plate is clamped on its lateral side, adera transverse load
of density per unity area’g that is symmetric with respect to its middle surface. Undghs
pure bending regime, there are two popular two-dimensiodatsdxor the plate’s displacement.

In the Kirchhoff-Love model, the displacement(at z3) € Q x (—¢, €) is approximated

by (—z3 V¢ (x), ¢ (x)), where

DA’y =g inQ,
1
w:a—wzo onoxY, @)
on

andD = 4u(p+ N)/[3(2p + N)]. Here,p and\ are the Lamé coefficients.
The simplest Reissner—Mindlin model approximation (Ateslrini, 1996) is given by
(—230(z), w(z)), where

—divCe(0) + e *u(@ —Vw)=0 inQ,
e ?udiv(id —Vw)=g inQ, (2)
0=0, w=0 onoQ.

We denote by (0) the symmetric part of the gradient 8f and

Ce(0) = % [21e(0) + A\ divO ],
with \* = 2u\/(21+ ), and! is the identity matrix. Let\, A; be positive constants such that
Aof e(0)] < [Ce(B) : e(0)] < Auf e(0)], ©)

wherer : 0 = ijzl 7;;0:; denote the inner product between two matriceand o, and

7| = (1 : 7)Y



In the weak formulationg € ﬁl(Q) andw € () are such that

a(@,m) + e 2u(0 — Vw,m) =0 forallge H (),

. 4)
—e2u(@ - Vw,Vv)=(g,v) forallve H(Q),

where(-, -) denotes the inner product it¥ () and L*(€2), and

a(@,n) = /QC e(0) : e(n)dx.

Note that the Poincaré’s and Korn’s inequalities hold, itkere exists am-independent
constant such that

o 1 o
Inllio < ca(n.n), lwloe <clVwlog  forall (n.w) e (H (Q) x H'(Q)).

The existence and uniqueness of solutions for ReissnediMifollow since (0, w) is the
unique minimum of the functional

a(0,0) + e 0 - Vw8 —-Vw) —(g,w)

in (' (), H'(2)).

The relation between the Kirchhoff-Love and Reissner—Ninohodels becomes clear
since, ag — 0, the sequence of solutiorid, w) converges tdV ¢, v)), wherey solves (1),
and minimizes

a(Vv,Vv)—I(g,v)

in POI?(Q). This is an instance of a more general result of (Chenais andker, 1994).

The contents of this paper are as follows. In the next secti@nintroduce a formulation
for the Reissner—Mindlin system, and in Section 3., we dafurescheme and state continuity
and coercivity results. Sections 4. and 5. contain the agevee and numerical results.

We now introduce some notation used in this paper. For a gipen se®, the set’?(9)
contains the square integrable function®inFor a non-negative H*(9) is the corresponding
Sobolev space of ordér The notation for its inner product, norm and semi-nornf-is), g,
|- .o and| - |, . We write vectors, and vector spaces in bold, and we denotesbgeneric
constant (not necessarily the same in all occurrences)witdependent of.

2. Weak formulation in broken Sobolev space

Let £, = {K} be a shape-regular partition 6f into non-overlapping triangles. The
numberhy denotes the diameter of an eleménte C;,, andh is the maximum ofix, for all
K € K. Let&, be the set of all open facesf all elements inC,, andh, the length ofe. The
set&, will be divided into two subsets; (the set of interior faces) artef’ (the set of boundary
faces), defined by

E={ee€&:eCQ}, El={ec& : eC N}
In addition, we definég® = {zx € e: e € £} andl’ = I'° U 0N. Let
H'(Kp) ={v e L*(Q): vk € H(K), forall K € Ky}

be the space of piecewise Sobolg{-functions and denote its inner product, norm and semi—
normby(-, )¢ 1, ||-||+.» and|-|; . For simplicity denoteH " (KC;,) = H'(K;,) x H'(KC;,). Similarly,
for any open subset C I let denote by(-, -), and|| - ||, the inner product and norm ib?(y).



For any K € K, let ng be the outer normal to the boundady’. Let K~ and K* be
two distinct elements ok, sharing the edge = K~ (K™ € & . We define the jump of
¢ € H'(Ky) by

(¢l =¢ 0" +¢'n",
where¢® = ¢|x+ andn® = ng-. For an vector functio® ¢ H'(K},), define
0] =60 -n" +6"-nt, [6] =6 Gn +60" ©ont,

where® ®n = (6n” + nf”’)/2. Note that the jump of a scalar function is a vector, and for
a vector functiord, the jump|[@] is a scalar, while the jump@] is a symmetric matrix. The
average of scalar or vector functignis defined by

L, -
O =500 +x7).
On a boundary facese< £ () 9K with outer normah, define the jumps and averages as

(0] = élkn, 0] =08lx-n,  [0]=6lx©On,  {x} =Xk
Then, the following identities hold (Arnold et al., 2005y ®mooth@ andr:

Z/@Ko-nw:z {6} - [v], (5)

Keky, ecéy €
Z / g -1 = Z {7} : [n]. (6)
Kek, VoK ec& V€

From the shape-regularity, there exists a constauich that on any facee &, (0K
he < hi < che.
Thus, the following multiplicative trace inequality hol{lBhomée, 1997).

Lemma 1 For a shape regular partitioriC;,, there exists a constantsuch that
1
[v]|§ ox < C(h_HUH?),K + hk\vﬁ,K) forallv e H'Y(K),and all K € Kj,. (7)
K

For the biharmonic equation (1), the following symmetrisatintinuous Galerkin formulation
(Suli and Mozolevski, 2007) defines, € H*(K;,) such that

By(Yn, ¢) = (9,¢) forall ¢ € H'(Ky), C))
where the bilinear fornB, (v, ¢) = By, (¥, ¢) + Br (¥, ¢) + By(1, ¢), and

By, (¥, 0) = (A, Ad)p,
Br(v,¢) = > _[{VAQ}, [8)e + (W], {V A¢})e — ({A Y}, [V ¢])e

- ([V w]’ {A ¢})e] )
Bi(1h,6) = Y [ae([¥], [8])e + Be([V ¢, [V 6])e].

ecéy,



The positive stabilization parametessand 3 with valuesa,, 5. for e € &,, are fixed at
Lemma 3, to weakly impose the boundary conditions and iefiament continuity, and to sta-
bilize the method.

We next derive a discontinuous Galerkin formulation for Reissner—Mindlin problem
that “recovers” (8) as — 0. For smooth(8, w), multiplying both sides of the first equation in
(2) byn € H?(K;) and integrating by parts over an eleméntwe get

ar(0,m) + € *u(0 — Vw,mx — (Ce(@)n,m)ox =0, (9)
whereax (0,1) = [,.Ce(0) : e(n)dx. In the same way, from the second equation in (2), for
anyv € H'(KC;) we obtain

200 —Vw, Vi) +e?u((0 —Vw) -n vk = (9,0)k.
To eliminated — V w in the second term of the above equation, we use the firstieguat(2),
and
(0 = Vw, Vi)g + (divCe(0) -n,v)ox = (9,V)k. (10)
Summing (9), (10) over the elements, and from (5), (6), ik that

an(0,m) + €210 = Vwn)+ Y —(C{e(0)}, [n]). =

ecéy

a6 — Vo, V), + Y ({divCe(9)}. [v]). = (9.v),

ecé

wherea,(60,m) = (C e(0) : e(n)),. Adding the symmetrization and penalization terms,

an(0,m) + (0 — Vw, )t > —(C{e(0)}, [n]). — (161, C{e(m)}).

ece&y

+ ([w], {divCe(m)})e + Be([6], [n])e = O, (11)
a6 = Vo, Vo + Y ({divCe(0)}, [V])e + ac(w], [V])e = (9.v).

ecéy

The system (11) corresponds to the critical point of

Santnm) + 32 (€ el InDe + (Il InD). + (1) {div € e(m))).

ece&y

+ 5 (L)) + € Puln = Vvn = Vv, = (g.v).

Ase — 0,

i&h(Vl/ Vv)+ Z ({Ce(Vv)} [V r])e + e([[v V], [V v])e

ecéy,
ae

?([V]’ [V])e] - (gal/)'

The variational formulation characterizing the minimunttut functional is

+ ([v],{divC e(V)}). +

an(Vw, Vv)+ > [~({Ce(Vw)} [V = ([Vw].{Ce(V1)})e

ecéy,

+ Be([V W], [V V])e + ({divC e(Vw)}, [V])e + ([w], {div C e(V v)})e + ae([w], [V])]
= (9,v). (12)



After integrating by parts, it follows that (12) recoversas- 0, a variant of the formulation
for the biharmonic equation from (Suli and I. Mozolevskd(?).

We now consider a more general, possibly non-symmetrioyditation, depending oh;,
Ao € [—1,1]. Let (0,w) € H*(K;,) x H'(K;,) satisfy

A0, w;n,v) = (g,v), forall (n,v)c H*(K,) x H'(K},), (13)

where

A(eaw; mn, V) - ah(eu T’) + 6_2M(0 - va n-— \Y% V)h + >\1A1("77W) + Al(eu V)
- "42(07 77) - >‘2A2("77 0) + Aa(w7 V) + A,@(eu T’)?

and

Ai(m,w) =) (W AdivCem})e,  As(0,m) = Y (C{e(0)}, [n]).,

Aa(wv V) - Z ae([w]v [V])67 Aﬁ(ev 77) - Z ﬂe([[O]L [[77]]>e‘

In case\; = )\, = 1, the above formulation is symmetric.

3. Discontinuous Galerkin finite element method

Let P,(K') be the space of polynomials with total degree less or equainads” € ;. We
introduce the global discontinuous finite element space

SPM(ICL) = {v € L*(Q) : vk € Py(K) forall K € K}

To formulate the method lgt > 2, and the finite element spac&;, = SP-V"(K;,) x
Se=D(KC), andWy, = SP(K),). We defing(8,,, wy,) € ©, x W), such that

A0y, wp;m,v) = (g,v), forall (n,v) € O, x W,. (14)

Note that this formulation is consistent with Reissner-dlfiim problems (2) that admit suffi-
ciently smooth solutions. In this case, the Galerkin orthaity

A(G — Oh,w — Wwh N, V) =0 forall (’l’], V) €0, x W, (15)

holds.
Consider the following norm fofn, v) € H?(K;,) x H'(K},):

I, v = 1l e(m)l[5 + € Zllm = Vvlg, + Vel ||r+!|f[[n]]||r

2

H\/_{dvae H\/_{Ce } ;
forp > 3, and
b ol = e+ €l — ¥ vl + VAT + I1v/BElI + H%{Cew} .

for p = 2. The bilinear formA is continuous i H?(KC;,) x H'(K;))? in respect to this norm.



Lemma 2 For a shape regular partitioriC,, there exists a positive constantsuch that for all
((8,w); (m,v)) € (H3(Ky) x H'(Ky))”,

|A(0,w;n,v)| < c|l0,w]|n, ], (16)
wherec is independent dix, K € K.
Let us prove now the coercivity of bilinear forp in discrete space.

Lemma 3 Let I, be a shape regular partition, and assume tfi&} holds. Then there exist
positive constants,,, 65 such that ife, > ,, 03 > 75, and

Oa o
0= 75 ﬂe:h—i fore € &, (17)

then there exists a positive constgrguch that
A0, w;0,w) > (||8,w|? forall (8,w) € ®) x W,. (18)

4. A priori error analysis

From the continuity and coercivity of the bilinear forsh in discrete spaces, the error
analysis follows from standard techniques. L@tw) denote the exact solution of (2), and
(65, wy,) its approximation, the solution of (14). Next, &', w*) be an interpolant ofé, w) in
©; x W;,. We start by decomposing the approximation errors as falow

0—6,=(0—-0)+(6'—0,) =cy— &, (19)

w—wp=(w—w)+ W —wp) =€, —&,. (20)
From the continuity and coercivity of the bilinear form, atind Galerkin orthogonality (15) it
follows that

€0, €all* < CA(8o, Eui €0, E0) = CA(elg — O + O, €l, — w + wp; o, &)
= CA(eZOa efm 597 Sw) - CA(O - eha W — Wh; 597 Sw) - CA(elea 63), 597 Sw)
< clleg. eLllliSe; &l
and consequentlyféq, &, || < clleb, e ||. This means that
16 — 6n;w — will < clleg, eI, (21)

and to estimate the error of the method it is enough to estiiat interpolation error.

Proceeding as in (Arnold et al., 2007) to choose appropmé&polants, let us denote by
mw the projection ofL?(Q2) ontoW), N H'(Q)). Forw € HP™(Q), letw’ = myw. It follows
then that forl0 < ¢ < p + 1, there exists a constansuch that

forallw € HPTH((Q). (22)

[l = W], < AP w0
Consider the rotated Brezzi-Douglas—Marini spBiéMjil of degreep — 1, i.e., the
space of all piecewise polynomial vector fields of degree@dtm— 1 subject to inter-element
continuity of the tangential components; obviouB)Dl\/If_1 C ©,. Letmweg denotes the
the natural projector o' () into BDMﬁfl. Note thatV W, C ©,, and the following

commutativity property of the projectors follows from igtation by parts:

w@Vw:VWWw. (23)



So, letd’ = 70 be the interpolator of € H'(Q). Definingy = ¢ 2(0 — V w) as the shear
stress vector, angl’ = ¢ 2(0' — V '), it follows that

ey =€ ‘me(0 — Vw) =c (g — Vmyw) =€ 2(0' — Vu') =~

Thus,~* interpolatesy, and with this key condition, the next results for intergma error
estimates holds (Arnold et al., 2007). FbK s <[, andl <[ <p

160 — 0|, < ch'*||0]|1 forall@ € H'(Q), (24)
v =¥ llsh < b ||¥|l,e forally € H'(). (25)

The main result of this paper is the following.

Theorem 4 Let) C R? be an polygonal convex domain, and k&t be a shape regular par-
tition on §2. Assume that the penalization parameterand 3 are so thatA(-, -; -, -) is coer-
cive (according to Lemma 3). Assume also that the solutiq@)tsatisfy(6,w) € H?(2) x
HP™1(Q), and thatp > 2. Then(6,,,w;,) € ©,, x W}, solution of discontinuous Galerkin finite
element metho(lL4), satisfy

16 — Onsw — wnll® < A2 (101 + lwlips + €[1VI-1) - (26)

wherec does not depend anor e.

Remark 5 Note that estimat€26) holds any®,, containingBDl\/IfL1 (Arnold et al., 2007).
In fact, in the proof of Theorem 4, it was enough that the mige o is well-defined and
that (23) holds. Particular choices include the case whérg has only continuous functions,
and the case of equal interpolation degree for all the unkmawe. ©,, = SP"(K;,) x SP"(Ky).
This is particularly useful since using equal order intelgdmn for all spaces might make the
computational implementation easier.

5. Numerical Results

We consider now some numerical tests that display the padonce of our method. We
start by adapting the solution given in (Chinosi et al., 20@6d it follows that

wi(z,y) = %Ig(fﬂ — 1% (y — 1)°,

wa(r,y) = y*(y — 1°(z — 1)(52” = 5z + 1) + 2’ (z — 1)’y(y — 1)(5y° — 5y + 1),
2 8(N+ )‘)

mw(%y),

Or(x,y) = y*(y — 1)°2%(z — 1)°(2z — 1), Oo(x,y) = 2°(z — 1)’y (y — 1)*(2y — 1),

solves (2) i = (0, 1) x (0, 1) with

w(x,y) - wl(‘I?y) — ¢

A(p+A)p
3(21+ )
4+ 12x(z — 1)(5y° — by + 1)[22%(z — 1)® + y(y — 1)(52? — 5z + 1)]}.

9= {12y(y — 1)(52% — 52 + 1)[24*(y — 1)* + z(z — 1)(5y° — 5y +1)]

In our numerical simulations we set the Lameé coefficients = 1.
Implementing the DG method described above in the PZ enwiegtt (Devloo, 1997), we
proceed to check the convergence of the scheme (14) for thensyric \; = \, = 1), and
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Figure 1: Errors inw (top), andd (bottom), with respect to the refinement levelAt the left we consider
the L, norm, and at the right thé/! (7;) norm. All the results are for the symmetric formulation. We
consideregp = 2, 3,4 ande = 10~*,1073,1075.



non-symmetric {\; = A\, = —1) cases. In both cases, we piek = 03, = 10. We used
Q) = SP"(Ky,) x SP"(K4). As noted in Remark 5, the converge rates obtained in Thedrem
are still valid under this choice.

We successively divide the domain usi2ig ! triangles. Thus, it; denotes the error at
the level of refinement, the rate of convergence for such level is given by

€r
rr, = log .

L—-1

) /1og(0.5).

Figure 1 shows the error of the symmetric method for the galilisplacement at the top,
and for the rotation at the bottom, as a function of the refiaentevel for several approximation
ordersp and for different values of. The errors were in thé? norm at the left column, and the
H' norm at the right column. The non-symmetric version of thehue yields similar results.
We observe that in th&! norm, the errors for all approximation orders exhibit semibehavior
for w and@, confirming that in fact the constant in bound (26) does npede on thickness
Note that, in the//! norm, the errors of approximation of vertical displacemisrdlmost the
same for all thickness, for a given approximation order, Hr@rotation error is less uniform
in ¢, since the method approximates better the rotation fokémiplates. The errors in the?
norm are significantly better than in ti#&' norm and exhibit a similar behavior in respeckto
We stress that the results are locking free.

Table 1: Numerical convergence with the symmetric formulation amahgles

e, With L*(7;,) e, With H(7;,) eq With L?(73,) eq With H'(7},)
p| L\e | 10°t 103 10°¢|10°* 1073 10°¢ | 107t 10°* 10°¢|10°* 10°3* 10~
2124 10 10|15 08 0821 08 08,13 06 0.6
2( 3132 10 1019 09 09|31 09 09 18 06 0.6
4 133 16 14,19 15 13|33 15 13,19 10 10
2 |40 28 27|26 22 22|38 22 21,24 13 1.2
3| 3|42 32 31,29 29 28,41 29 28|28 18 17
4 141 39 36,30 35 33|40 35 3329 21 21
2 |42 35 35,30 30 30|46 30 30535 20 20
4 3 |48 50 4838 40 39,48 41 39|38 29 28
4 | 47 58 54,39 43 42|38 44 424 29 32 31
Table 2: Numerical convergence with the non-symmetric formulaton triangles
e, With L?(7,) e, With H'(7;,) eo With L*(75,) co With H'(7,)
p| L\ |10t 107 107|107t 10°* 10°¢|10°t 103 1076 | 107! 10°* 10°°
2124 10 10|16 08 0822 08 08,14 06 06
2,330 10 10419 09 09,29 09 09 18 0.7 0.6
4 128 16 14,19 15 13|28 15 13/ 20 11 1.0
2 |40 27 27|26 21 21|38 21 215 24 13 1.2
3/ 3141 30 29|29 28 27|41 28 27|28 18 17
4 140 32 30,30 33 31|40 33 31,29 21 21
2 |42 35 34,30 30 30|47 30 30535 20 20
4| 3 |48 49 4738 41 40,49 41 40|38 29 28
4 |46 48 45139 44 42|39 44 42 30 32 31




We now investigate the convergence rates for both the adisplacements and rotations.
Table 1 contains the results for the symmetric formulatiod a0 Table 2, we display the con-
vergence rates for the non-symmetric formulation. Sineertbrm|| - ||, 5, is bounded by above
by a constant timele(-)|[ox + ||5 - ||r (See Lemma 4.6 of (Arnold et al., 2005), from the the-
oretically predicted rate of convergence for energy noritoves that the rate of convergence
of the error of rotation in théZ/! norm should to be — 1 in both formulations. This is clearly
confirmed by our numerical experiments as can be seen in gteddumn of both tables 1
and 2 that contain the results feg in H'(K;) norm. The convergence order it¥ norm for
the vertical displacement is approximatively- 1, p > 2 for symmetric version, that coincides
with the similar results for biharmonic equation (Suli andozolevski, 2007). We remark
also that for the non-symmetric version this rates are redwehen compared to the symmetric
case. For all the other cases, both formulations displaylaimesults for allp. For the sake of
comparison, we include in Table 3 some numerical resultg®symmetric formulation using
uniform quadrilateral meshes. The convergence rates hergmilar to the case of mesh with
triangles.

Table 3: Numerical convergence with the symmetric formulation amctangles

e, emL?(7) e, emH(T,) co €M L*(T},) co eMH(T})
p|r\e| 107t 1073 107%|10°t 1073 10°%|10°t 1073 1076 | 10"t 1073 10°°
2 | 37 32 32|25 23 23|31 23 23|16 12 1.2
2/ 3 |32 18 1819 15 15|29 15 15/19 06 0.6
4 131 19 19,20 19 19|30 19 19|20 09 059
2 |26 23 23|15 16 16|36 16 16| 27 09 0.8
3| 3 (39 39 39|28 28 2840 28 28|30 19 19
4 |39 40 404 30 30 30439 30 30,29 20 20
2 (492 47 47,39 38 38/ 50 38 3840 29 29
4| 3 | 48 48 48|40 40 40|41 40 40| 33 30 30
4 | 38 43 42 40 40 40|27 40 40,19 30 3.0
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