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Abstract. We modify the usual biharmonic model, still frequently used in the engineering

community to model linearly elastic plates. In its traditional form, the biharmonic model

diverges in general, since it does not incorporate shear effects. Our changes make it conver-

gent for all loads, under a usual assumption on how the loads depend on the thickness. The

idea is to add “higher order” terms that appear in the asymptotic expansion of the exact

solution. The changes can be readily incorporated to engineering codes, without degrading

the computational performance.

Introduction

The use of dimension reduction is quite common in the modeling of thin, three-dimensional

elastic structures. This reduction consists in posing a two-dimensional problem, which so-

lution is somehow extended to the three-dimensional domain. The extended solution is

expected then to be close to the original solution.

One of the best known model for linearly elastic plate bending is the biharmonic model,

also known as Kirchhoff or Kirchhoff–Love. It first appeared around 1850, but a proof of

convergence, although under certain load restrictions, came only in 1959, with the work of

Morgenstern [10]. Twenty years latter, Ciarlet and Destuynder [2] showed that in general,

and in a proper sense, the biharmonic model is the asymptotic limit of the three-dimensional

linearly elastic plate equations. See also [1, 7].

Although successful, the biharmonic model suffers several criticisms from the engineering

community. It is regarded as suitable for “very thin” plates, but not so performing for

“moderately thin” plates [1, p. 86]. In the latter case, models of Reissner–Mindlin type are
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usually preferred. In fact, the biharmonic model does not consider shear effects, and gives

no information concerning the boundary layer.

The absence of shear is often mentioned as the main drawback of the biharmonic model.

In most cases, shear introduces a negligible effect in the bending of a plate. It is indeed

much easier to bend a plate by applying a transverse traction than by applying a constant

horizontal shear inducing traction. Nevertheless, in some situations, shear is important and

even dominant.

In this paper, we aim to incorporate this and other effects in the biharmonic model, by

adding extra terms that make the model always convergent, in a sense that we make clear

further below. Which terms to add is a nontrivial question, but the answers come from the

asymptotic expansion for the exact solution. Remarkably, in most practical situations (the

exceptions being when the body forces present a non-polynomial behavior in the transverse

direction!), the changes can be easily incorporated in existing computer codes. As in the

Kirchhoff–Love model, there is only one biharmonic equation to solve, thus there is no loss

in the computational performance.

Consider a three-dimensional, homogeneous, isotropic, linearly elastic plate P ε = Ω ×
(−ε, ε), where Ω ⊂ R2 is a smoothly bounded domain. A typical point in P ε is given

by x = (x∼, x3), where x∼ ∈ Ω and x3 ∈ (−ε, ε). The plate lateral boundary is given by

∂P ε
L = ∂Ω× (−ε, ε) and its top and bottom by ∂P ε

+ = Ω× {ε} and ∂P ε
− = Ω× {−ε}.

The plate is subjected to possibly nonzero body force density f ε : P ε → R3, and surface

force densities g+,ε : ∂P ε
+ → R3 and g−,ε : ∂P ε

− → R3, and is clamped along its lateral

boundary. The displacement uε : P ε → R3 and stress σε : P ε → R3×3
sym satisfy then the

following mathematical problem:

(1)

σε = C e(uε), − div σε = f ε in P ε,

uε = 0 on ∂P ε
L, σεn =







g+,ε on ∂P ε
+,

g−,ε on ∂P ε
−.

Here, the rigidity tensor and the infinitesimal strain tensor are given by

C e(uε) = 2µ e(uε) + λ div uε δ, e(uε) =
1

2

(

∇+∇T
)

uε,

where µ, λ are the Lamé coefficients, and δ the identity matrix.

It is sensible to pause now, and explain the notation employed in this paper. We use

underbars to indicate tensors in three variables, a first-order tensor (or 3-vector) is written

with one underbar, a second-order tensor (or 3× 3 matrix) with two underbars, etc. We use

undertildes in the same way for tensors in two variables, and so a 3-vector can be decomposed
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into a 2-vector giving the in-plane components and a scalar for the transverse component.

Thus,

v =

(

v∼
v3

)

.

In this paper we consider the case of pure bending, i.e., we assume

f∼
ε odd in x3, f ε3 even in x3,

g∼
ε(x∼) := g∼

+,ε(x∼, ε) = −g∼
−,ε(x∼,−ε), gε3(x∼) := g+,ε

3 (x∼, ε) = g−,ε3 (x∼,−ε).

In this case, it is easy to check that u∼
ε is odd, and uε3 is even in x3.

An approximation to uε is

(2) uB(x) =

(

−x3∇∼ ζ
0(x∼)

ζ0(x∼) + λ(x2
3/2− ε2/6) ∆ ζ0(x∼)/(2µ+ λ)

)

,

where ζ0 solves the biharmonic equation

(3)

Dε3 ∆2 ζ0 = lK in Ω,

ζ0 =
∂ζ0

∂n
= 0 on ∂Ω,

and D = 8µ(µ+ λ)/[3(2µ+ λ)]. Also,

lK(x∼) =

∫ ε

−ε
f ε3 (x∼, x3) dx3 + 2gε3(x∼) +

∫ ε

−ε
x3 div f∼

ε(x∼, x3) dx3 + 2ε div g∼
ε(x∼).

Morgenstern [10] studied the convergence of the approximation to uε defined by (2), in

the energy norm. Such norm is defined by

‖v‖E(P ε) =

(∫

P ε
| e(v)|2 dx

)1/2

.

He ingeniously used the Prager–Synge Theorem to prove convergence for a class of problems

where the traction vanishes identically and the body forces act in the transverse direction

only, and are constant in each vertical fiber. Although not explicitly mentioned in his paper,

a bound of O(ε1/2) for the relative error follows.

It is easy though to see that the biharmonic approximation given by (2) cannot converge

to the exact solution in all situations. Consider for instance that there is no body force, that

is, f ε = 0, and that the traction is horizontal and constant, that is, g∼
ε is nonzero, constant,

and gε3 = 0. In this case, it follows from (3) that ζ0 = 0, and

‖uε − uB‖
‖uε‖

= 1.

in any norm.
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The remedy for this particular situation is surprisingly simple. The displacement

uB +
x3

µ

(

g∼
ε

0

)

converges to the exact solution in relative energy norm as O(ε1/2) when the plate is subject

to an arbitrary, pure traction loads (no body force). See Theorem 2 further ahead for a

precise statement.

In the example above, it would be easy to modify an existing computer code to add the

extra term, since it involves no further computation. The extra term is the one with “highest

energy” in the asymptotic expansion for the exact solution uε, for that particular loading.

The choice of terms to add depends on a careful analysis of the asymptotic expansions under

different situations. A similar analysis of these “higher order responses” was performed in [4],

where the authors considered the expansion in a scaled, ε-independent domain.

In a more general setting, if f∼
ε(x) = x3f̌∼

ε(x∼), and f ε3 is independent of x3, then we define

the approximation

(4)

(

−x3∇∼ ζ̄(x∼)

ζ̄(x∼) + λ(x2
3/2− ε2/6) ∆ ζ̄(x∼)/(2µ+ λ)

)

+
1

µ

(

x3g∼
ε(x∼) + (ε2x3 − x3

3/3)f̌∼
ε(x∼)/2

(−x2
3/2 + ε2/6)f ε3 (x∼)/(2µ+ λ)

)

,

where ζ̄ solves the biharmonic equation

(5)

Dε3 ∆2 ζ̄ = lK + lextraK in Ω,

ζ̄ =
∂ζ̄

∂n
= 0 on ∂Ω,

and

lextraK (x∼) =
2λ

2µ+ λ
∆

[∫ ε

−ε
x2

3f
ε
3 (x∼, x3) dx3 + ε2gε3(x∼)

]

.

Our main result states that under some scaling assumptions for f ε and gε, see (6), the

approximation defined above converges to the exact solution, in relative energy norm. Again

the convergence rate is O(ε1/2).

The outline of the paper is as follows. In Section 1 we recall the main aspects of the

asymptotic expansion for the solution of the elasticity problem (1), and then, in Section 2,

we use the information gathered from the asymptotic expansion to construct our improved

model, in the energy norm. In Section 3 we briefly consider other two norms of interest, the

L2(P ε) and H1(P ε) norms. We finally conclude with some remarks and a numerical test in

Section 4.
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1. The Asymptotic expansion

As we mention in the introduction, to find out the suitable modifications to the biharmonic

model, it is essential to look at the asymptotic expansion for the exact solution uε. The

complete description of such expansion is beyond the scope of this paper, we mention only

the underlying ideas, and also how some terms are defined. The interested reader can find

the details at [5] for clamped plates, and [6] for other boundary conditions. A fundamental

step to obtain the asymptotic expansion is to redefine and consider the original problem in

a domain that is independent of the small parameter ε. Hence we define the new coordinate

x̂3 = ε−1x3. We also introduce the functions

(6)
f∼(x∼, x̂3) = ε−1f∼

ε(x∼, x3), f3(x∼, x̂3) = ε−2f ε3 (x∼, x3),

g∼(x∼) = ε−2g∼
ε(x∼), g3(x∼) = ε−3gε3(x∼).

We assume that f and g are independent of ε. The exact scaling of f ε and gε is immaterial,

since the equations governing the problem are linear, and we shall consider errors in relative

norms.

The asymptotic expansion for uε is then

(7) uε(x) ∼

(

0

ζ0(x∼)

)

+ εu1(x∼, ε
−1x3) + ε2[u2(x∼, ε

−1x3) + w2(x∼, ε
−1ρ, ε−1x3)]

+ ε3[u3(x∼, ε
−1x3) + w3(x∼, ε

−1ρ, ε−1x3)] + · · · .

We proceed to explain the terms present in the expansion. The uk are ε-independent func-

tions defined in the domain Ω× (−1, 1), and can be further decomposed as

uk(x∼, x̂3) = ůk(x∼, x̂3) +

(

−x̂3∇∼ ζ
k−1(x∼)

ζk(x∼)

)

,

where ζk are defined in the domain Ω, and

(8)

∫ 1

−1

ůk(x∼, x̂3) dx̂3 = 0 for all x∼ ∈ Ω.

There are also the boundary correctors wk. These correctors represent the boundary

layers present in the exact solution, and decay exponentially fast to zero with ε−1ρ, where

ρ = dist(x∼, ∂Ω) is the distance of x∼ to the boundary ∂Ω.
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The computation of each term in the series (7) depends on previously computed terms.

The equations determining ůk3 for instance are as follows.

(9)

2µ+ λ

µ

∂2

∂x̂2
3

ůk3(x∼, x̂3) = −∆2D u
k−2
3 (x∼, x̂3)− µ+ λ

µ

∂

∂x̂3

div u∼
k−1(x∼, x̂3)− 1

µ
δ4,kf3(x∼, x̂3),

∂

∂x̂3

ůk3(x∼, x̂3) = − λ

2µ+ λ
div u∼

k−1(x∼, x̂3) + x̂3
1

2µ+ λ
δ4,kg3(x∼) for x̂3 ∈ {−1, 1}.

Above, and throughout this section, we use the operator ∆2D = ∂2/∂x2
1 + ∂2/∂x2

2 to avoid

confusion with the three-dimensional laplacian.

To compute ů∼
k, it is necessary to solve the following equations.

(10)
∂2

∂x̂2
3

ů∼
k(x∼, x̂3) = −∆2D u∼

k−2(x∼, x̂3)− µ+ λ

µ
∇∼ (div u∼

k−2 +
∂

∂x̂3

ůk−1
3 )(x∼, x̂3)− 1

µ
δ3,kf∼(x∼, x̂3),

∂

∂x̂3

ů∼
k(x∼, x̂3) = −∇∼ ů

k−1
3 (x∼, x̂3) +

1

µ
δ3,kg∼(x∼) for x̂3 ∈ {−1, 1}.

It is a long but somewhat straightforward computation to check that the compatibility

conditions of equations (9) and (10) hold if and only if

(11) D∆2
2D ζ

k =

∫ 1

−1

[

λ∗

4
x̂2

3 ∆2D(∆2D ů
k
3 +

∂

∂x̂3

div ů∼
k+1) +

3

2
Dx̂3 ∆2D div ů∼

k+1

+
λ

2(2µ+ λ)
x̂2

3δk,2 ∆2D f3 + δk,0(x̂3 div f∼+ f3)

]

dx̂3 +
λ

2µ+ λ
δk,2 ∆2D g3 + 2δk,0(div g∼+ g3),

where λ∗ = 2µλ/(2µ+ λ).

It is clear from (9) and (10) that, in general, ůk do not vanish on the lateral boundary. We

introduce then the boundary correctors wk, which satisfy wk = uk on the lateral boundary.

Also, wk decay to zero as long as the traces of ζk and ∂ζk−1/∂n on ∂Ω are defined properly.

There is actually a unique, nontrivial way to define such traces, and hence not only wk are

well-defined, but also the ζk can be determined from the biharmonic equation (11).

We do not attempt here to rigorously define the boundary correctors, since the many tech-

nicalities involved would overshadow our main goal. The following properties are nonetheless

important.

(12) Given ůk
∣

∣

∂Ω×(−1,1)
, then ζk

∣

∣

∂Ω
,
∂ζk−1

∂n

∣

∣

∣

∣

∂Ω

, and wk are well-determined.

(13) If ůk
∣

∣

∂Ω×(−1,1)
≡ 0, then ζk

∣

∣

∂Ω
,
∂ζk−1

∂n

∣

∣

∣

∣

∂Ω

, and wk vanish identically.
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Remark. In practice, an accurate computation of the boundary correctors is exceedingly

expensive. If there is interest in the boundary layer properties of the solution, it is just

better to use a direct 3D approach, or, preferably, hierarchical models, which can capture

with arbitrary precision the boundary layer part of the solution. See [8, 11] and references

therein.

All the terms in the asymptotic expansion are now uniquely determined. Indeed, from

equations (8), (9) and (10), we see that ů0 = 0. Hence, from (8) and (13), w0 = 0 and

ζ0|∂Ω = 0. Next, from (8), (9), (10), ů1 = 0, and then w1 = 0 and ζ1|∂Ω = ∂ζ0/∂n|∂Ω = 0.

We can now compute ζ0 using (11), or equivalently, (3). Proceeding one step further, (8)

and (9) imply that ů2
3(x∼, x̂3) = λ∆ ζ0(x∼)(x̂2

3/2 − 1/6)/(2µ + λ), and (8), (10) imply that

ů∼
2 = 0. Since ů2 does not necessarily vanish on ∂PL, a boundary corrector is necessary. So,

based on property (12), we determine w2, ζ2|∂Ω, and ∂ζ1/∂n|∂Ω, and these are nontrivial

functions in general. Using (11) again, we find ζ1. Next we determine ů3
3 as a quadratic

polynomial in x̂3 that depends on ζ0. If the in plane volume load varies linearly with the

transverse variable, i.e., f∼(x∼, x̂3) = x̂3f̌∼(x∼), then

(14)

ů∼
3(x∼, x̂3) =

1

3(2µ+ λ)

[

4µ+ 3λ

2
x̂3

3− (6µ+ 5λ)x̂3

]

∇∼ ∆ ζ0(x∼) +
1

µ
x̂3g∼(x∼)− 1

2µ

(1

3
x̂3

3− x̂3

)

f̌∼(x∼).

This procedure goes on indefinitely, and the general trend is that, given ů0, · · · , ůk−1,

ζ0, · · · , ζk−2, and w0, · · · , wk−1, we use (8), (9), (10) to determine ůk, and then find wk,

ζk|∂Ω, and ∂ζk−1/∂n|∂Ω. Finally, from (11) we compute ζk−1.

We rewrite the asymptotic expansion (7) in a more convenient form:

(15) uε(x) ∼ u0
KL(x) + εu1

KL(x) + ε2[u2
KL(x) + ů2(x∼, ε

−1x3) + w2(x∼, ε
−1ρ, ε−1x3)]

+ ε3[u2
KL(x) + ů3(x∼, ε

−1x3) + w3(x∼, ε
−1ρ, ε−1x3)] + · · · ,

where

ukKL(x) =

(

−x3∇∼ ζ
k(x∼)

ζk(x∼)

)

.

Although the expansion (15) is formal, the next theorem shows how to interpret it.

Theorem 1. For each positive integer N , there exists a constant c, that also depends on Ω,

and on f and g, but is independent of ε, such that

(16)
∥

∥uε − u0
KL

∥

∥

E(P ε)
≤ cε3/2,

∥

∥

∥

∥

uε −
N
∑

k=0

εk
(

ukKL + ůk
)

+
N
∑

k=2

εkwk
∥

∥

∥

∥

E(P ε)

≤ cεN+1/2.
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The above result basically says that the energy norm of the difference between the exact

solution and a truncated asymptotic expansion is of the same order in ε as the term of

highest energy norm in the remainder series. Indeed, for each nonnegative k there exists a

constant c such that

(17) ‖ukKL‖E(P ε) ≤ cε3/2, ‖̊uk‖E(P ε) ≤ cε−1/2, ‖wk‖E(P ε) ≤ c,

and the right hand sides of the inequalities in (16) are of the same order as ε2‖̊u2‖E(P ε) and

εN+1‖̊uN+1‖E(P ε).

2. An improved Biharmonic model

We next identify the leading terms of the asymptotic expansions for the solution of (1)

under several load situations. By “leading” we mean the term with highest energy norm.

Case I. We assume first that the loads are such that the right hand side of (3) is nonzero.

From (16), (17), the estimate ‖uε−uB‖E(P ε) ≤ cε2 holds, where uB is defined by (2). Under

the scaling assumption (6), the function ζ0 is independent of ε. Hence, ‖uε‖E(P ε) ≥ cε3/2

and

(18)
‖uε − uB‖E(P ε)

‖uε‖E(P ε)

≤ cε1/2.

Remark. In the case of a “periodic plate” there are no boundary layers, and therefore the

rates of convergence improve. Indeed, in this case,

uε(x) ∼ uB(x) + ε2

(

−x3∇∼ ζ
2(x∼)

ζ2(x∼)

)

+ ε3

(

ů∼
3(x∼, ε

−1x3)

0

)

+ · · · ,

and then the displacement uB converges as O(ε) in the relative energy norm. Post-processing

the displacement even further and including the contributions of ů∼
3, the convergence rate is

O(ε2) [12, 3].

Case II.Assume now that the load is such that

(19)

∫ 1

−1

[x̂3 div f∼(x∼, x̂3) + f3(x∼, x̂3)] dx̂3 + 2[div g∼(x∼) + g3(x∼)] = 0,

or equivalently, that ζ0 = 0. We also assume that f∼ and g∼ are not both identically zero.

Such situation includes the pure shear case, when f∼, f3 and g3 vanish, but g∼ is a nonzero

constant. The asymptotic expansion is as follows in this case:

uε(x) ∼ uII(x) + ε2

(

−x3∇∼ ζ
2(x∼)

ζ2(x∼)

)

+ ε3

(

−x3∇∼ ζ
3(x∼)

ζ3(x∼)

)

+ ε3w3(x∼, ε
−1ρ, ε−1x3) + · · · ,
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and the high energy term

(20) uII(x∼, x3) = ε3

(

ů∼
3(x∼, ε

−1x3)

0

)

,

where

(21)

∂2

∂x̂2
3

ů∼
3(x∼, x̂3) = − 1

µ
f∼(x∼, x̂3),

∂

∂x̂3

ů∼
3(x∼, x̂3) =

1

µ
g∼(x∼) for x̂3 ∈ {−1, 1},

∫ 1

−1

ů3(x∼, x̂3) dx̂3 = 0 for x∼ ∈ Ω.

If for instance f∼(x∼, x̂3) = f̌∼(x∼)x̂3, then, as a special case of (14),

u∼II(x∼, x3) =
1

µ
ε2x3g∼(x∼) +

1

2µ
(ε2x3 −

1

3
x3

3)f̌∼(x∼).

It follows from (16), (17) that

(22)
‖uε − uII‖E(P ε)

‖uε‖E(P ε)

≤ cε1/2.

Note that, in general, the displacement uII does not vanish on the lateral boundary, but

its fiber average does.

Case III. In addition to (19), assume that both f∼ and g∼ are identically zero. Hence, not

only ζ0 = 0, but also ů∼
3 = 0. It follows from (19) that

(23) g3(x∼) = −1

2

∫ 1

−1

f3(x∼, x̂3) dx̂3.

Note that (23) includes the case of a vertical traction sustaining the weight of the plate.

The asymptotic expansion for uε has the form

uε(x) ∼ uIII(x) + ε4w4(x∼, ε
−1ρ, ε−1x3) + · · · ,

where

(24) uIII(x) = ε2

(

−x3∇∼ ζ
2(x∼)

ζ2(x∼)

)

+ ε4

(

0

ů4
3(x∼, ε

−1x3)

)

.

The function ζ2 satisfies

D∆2 ζ2(x∼) =
λ

2µ+ λ
∆

[∫ 1

−1

x̂2
3

2
f3(x∼, x̂3) dx̂3 + g3(x∼)

]

in Ω,

ζ2 =
∂ζ2

∂n
= 0 on ∂Ω,
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and ů4
3 is determined by

(25)

∂2

∂x̂2
3

ů4
3(x∼, x̂3) =

λ

2µ+ λ
∆ ζ2(x∼)− 1

2µ+ λ
f3(x∼, x̂3),

∂

∂x̂3

ů4
3(x∼, x̂3) =

λ

2µ+ λ
x̂3 ∆ ζ2(x∼) +

1

2µ+ λ
x̂3g3(x∼) for x̂3 ∈ {−1, 1},

∫ 1

−1

ů4(x∼, x̂3) dx̂3 = 0 for all x∼ ∈ Ω.

Again, there is a ε1/2 convergence if the high energy terms are selected as an approximation

to uε:

(26)
‖uε − uIII‖E(P ε)

‖uε‖E(P ε)

≤ cε1/2.

There is no need to consider further cases, since uB, uII and uIII are all identically zero only

if f , g vanish identically. Based on the asymptotic arguments presented in Cases I, II, and

III, we propose an approximation for uε that converges for all possible loading combinations.

Define the modified biharmonic approximation

(27) uMB = uB + uII + uIII ,

where uB is defined by (2), uII is as in (20), and uIII is as in (24). The following theorem

holds, and its proof follows from the estimates (18), (22) and (26).

Theorem 2. Let uε be the solution of problem (1), and let uMB be defined by (27). Assume

that the functions f and g defined by (6) are independent of ε. Then there exists a constant

c such that

‖uε − uMB‖E(P ε)

‖uε‖E(P ε)

≤ cε1/2.

Such constant depends on the domain Ω, and on f and g, but is independent of ε.

Remark. In the above theorem, to conclude that the constant is independent of ε, we rely on

the premise that f and g are independent of ε. This is commonly assumed in the literature to

justify dimension reduction models. As Ciarlet [1, p. xxiii] points out, “. . . the magnitude of

the components of the applied loads and of the Lamé constants must behave as appropriate

powers of the thickness. . . .” This sort of restriction was thoroughly discussed by Miara [9],

where she, in her own words, gives “a complete justification of these scalings and assumptions

on the data in the linearized case.”
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3. Convergence in other norms

Of course other norms are also of interest, and the modus operandi to construct convergent

approximations is the same. We discuss here the L2(P ε) and H1(P ε) norms. In general, to

obtain convergence in these norms, it is required to resolve the boundary layer part, and this

is not possible by simply solving equations in Ω. Nevertheless, if f = 0, it is still viable to

design convergent models. We present here the final results without going into the details

and calculations involved.

For the L2(P ε) and H1(P ε) norms, we have that

‖ukKL‖L2(P ε) + ‖̊uk‖L2(P ε) ≤ cε1/2, ‖wk‖L2(P ε) ≤ cε,

‖ukKL‖H1(P ε) ≤ cε1/2, ‖̊uk‖H1(P ε) ≤ cε−1/2, ‖wk‖H1(P ε) ≤ c.

Led by the above estimates, we define the approximation

uM =

(

−x3∇∼ ζ
0(x∼)

ζ0(x∼)

)

+ ε2

(

−x3∇∼ ζ
2(x∼)

ζ2(x∼)

)

+
1

µ
ε2x3

(

g∼(x∼)

0

)

,

where ζ2 solves (11) with k = 2, ů2
3 = 0, ů∼

3 = (x̂3/µ)g∼, and the boundary conditions ζ2 = 0

and ∂ζ2/∂n = (g∼ · n∼)/µ on ∂Ω.

The convergence then is as follows:

‖uε − uM‖L2(P ε)

‖uε‖L2(P ε)

+
‖uε − uM‖H1(P ε)

‖uε‖H1(P ε)

≤ cε1/2.

Remark. Although the convergence of O(ε1/2) in the L2 norm looks pessimistic, it can indeed

occur. If however ζ0 6= 0, the relative error improves to O(ε).

4. Conclusions

To illustrate our arguments, we consider a thin (two-dimensional) beam with Lamé co-

efficients µ = 41.67 and λ = 27.78, and of thickness 1/10. The beam is subjected to the

traction load (−40,−0.1) at the top, and (40,−0.1) at the bottom. There is no volume load.

We show in Figure 1 a displaced strip using the elasticity equation, and the approximations

given by the usual biharmonic model and the model defined here. It is noticeable that the

solution given by the biharmonic is quite far from the exact solution, while the modified

model solution almost completely coincides with the exact one.

The traditional biharmonic model gives deceiving results in some situations and a model

of Reissner–Mindlin type is to be preferred in general. But if there is some reason to use the

biharmonic model, then some extra terms can be added to the model solution to render it

convergent in more general situations. In most practical situations (cases I and II), there is
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EXACT  SOLUTION
"USUAL"  BIHARMONIC  SOLUTION
MODIFIED  BIHARMONIC  SOLUTION%anticlipinit


Figure 1. Strip displacement

only need to include terms given directly from the load data, and no further computation is

needed to make the model convergent in the energy norm.

The technique to find out which terms to add is based on asymptotic expansions, and

is flexible enough to give satisfactory answers regardless of the norm which convergence is

sought.

References

[1] P.G. Ciarlet, Mathematical Elasticity, volume II: Theory of Plates. North-Holland (1997).

[2] P.G. Ciarlet and Ph. Destuynder, A justification of the two dimensional linear plate model. Journal de

Méchanique 18 N.2 (1979) 315–344.

[3] C. Chen, Asymptotic convergence rates for the Kirchhoff plate model. Ph.D. thesis, The Pennsylvania

State University, USA (1995)

[4] M. Dauge, I. Djurdjevic, and A. Rössle, Higher order bending and membrane responses of thin linearly

elastic plates. C. R. Acad. Sc. Paris Série I 326 (1998) 519–524.

[5] M. Dauge and I. Gruais Asymptotics of arbitrary order for a thin elastic clamped plate, I: Optimal error

estimates. Asymptotic Analysis 13 (1996) 167–197.
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tiques. Ph.D. thesis, Université Pierre et Marie Curie, France (1980).



AN IMPROVED BIHARMONIC MODEL 13

[8] A.L. Madureira, Asymptotics and Hierarchical Modeling of Thin Plates. Ph.D. thesis, The Pennsylvania

State University, USA (1999).

[9] B. Miara, Justification of the asymptotic analysis of elastic plates, I. The linear case, Asymptotic Analysis

9 (1994) 47–60.

[10] D. Morgenstern, Herleitung der Plattentheorie aus der dreidimensionalen Elastizitatstheorie, Arch. Ra-

tional Mech. Anal. 4 (1959) 145–152.

[11] C. Schwab, Hierarchic modelling in mechanics, in Wavelets, multilevel methods and elliptic PDEs, M.

Ainsworth, J. Levesley, W.A. Light and M. Marletta Eds., Oxford University Press, (1997) 85–160.

[12] J.G. Simmonds An improved estimate for the error in the classical, linear theory of plate bending.

Quartely of Applied Mathematics 29 (1971) 439–447.
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