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Abstract. We discuss the numerical integration of polynomials times
exponential weighting functions arising from multiscale finite element
computations. The new rules are more accurate than standard quadra-
tures and are better suited to existing codes than formulas computed by
symbolic integration. We test our approach in a multiscale finite element
method for the 2D reaction-diffusion equation.

Standard finite elements usually fail to accurately solve equations with multi-
scale behavior. This can happen if coefficients are oscillatory or if a small param-
eter multiplies some of the terms in the equation. A strategy to overcome these
difficulties is to use special spaces instead of the space of piecewise polynomial
functions [1, 2]. However, for polynomial basis functions, standard quadratures
are exact and this is not the case for more complicated spaces. We investigate
quadratures to integrate elementwise products of polynomials and exponential
basis functions. Such integrals appear when developing enriched methods for
reaction-advection-diffusion equations [2], but also in other contexts [3]. Quadra-
ture formulas are simpler to implement into existing finite element codes than
results of symbolic integrations.

We define an N -point weighted quadrature in [a, b] with weighting function

w by a set of integration weights Al and integration points xl ∈ [a, b] such that

∫ b

a

q(x)w(x) dx ≈

N∑
j=1

Alq(xl) (1)

for a given function q. The Newton-Cotes rule, one of the simplest quadratures
of degree of precision n, is defined by choosing xl = a+ (l − 1)(b− a)/n and

Al =

n+1∏
i=1
i6=l

∫ b

a

(x− xi)

(xl − xi)
w(x) dx, l = 1, . . . , n+ 1 . (2)

The Gaussian quadrature uses integration weights defined as in (2), but the
integration points are the roots of the n-th degree polynomial p satisfying

∫ b

a

p(x)q(x)w(x) dx = 0 ∀ q of degree ≤ n . (3)



The Gaussian quadrature has the optimal degree of precision 2n− 1. However,
Gaussian quadratures may not be the best choice when performing weighted
integrals in finite element codes, since the quadrature points may change from
element to element. Newton-Cotes rules are sub-optimal, but allow one to fix
the quadrature points and re-calculate only the quadrature weights.

We employ one-dimensional quadratures to approximate weighted integrals
over quadrilateral regions. Using isoparametric maps, such integrals can be trans-
formed into integrals in the reference square [−1, 1]2. Assuming that w(x, y) =
wx(x)wy(y) and that f(x, y) is a polynomial function of degree at most 2N − 1
in both x and y, we have that

∫ 1

−1

∫ 1

−1

f(x, y)w(x, y) dxdy =
N∑

j=1

N∑
k=1

Ax
jA

y
kf(xj , yk) , (4)

where xl and Ax
l are the integration points and weights for the 1D Gaussian

quadrature with respect to wx (similarly for y). The above rule is referred to as a

product rule. For instance, let φ̂1(x) = (1−x)/2 andwx(x) = exp[−ax(1−φ̂1(x))],
ax > 0. The integration weights Ax

j for the nine-point Newton-Cotes rule with

x1 = y1 = −1/3, x2 = y2 = 0, x3 = y3 = 1/3 , (5)

are found by replacing (5) and w(x) = exp[−ax(1−φ̂1(x))] into (2). In particular,

Ax
3 = 6

12 − ax(7 − 2ax) − (12 + ax(5 + ax))e−ax

a3
x

.

Replacing ax by ay in the equations above yields the definition of Ay
j . The

Gaussian rule with similar degree of precision has two points in either direction
(a total of four points); the orthogonal polynomial that generates the integration
points associated to the weight function wx(x) is

p2(t) = 8 + a2
− 8at+ a2t2 − 2a

a(8 + a2 − 2at) − 2(4 − at) sinh(a)

2 + a2 − 2 cosh(a)
.

For the sake of illustration, we plot the point locations as we vary ay, keeping
ax = 10. We choose w(x, y) = wx(x)wy(y). We plot in Fig. 1 the Gaussian points
for ay = 1, 10, 100. We also plot the points of the Newton–Cotes quadrature,
which do not depend neither on ax, nor on ay.

Quadratures in Triangular Regions

Optimal quadratures for triangles rely on two-dimensional orthogonal polyno-
mials or on the solution of non-linear systems [4]. Similarly to quadrilaterals,
integrals in arbitrary triangles can be transformed into integrals in the triangle
with vertices (0, 0), (0, 1) and (1, 0). However, the limits of integration in

Iw(f) :=

∫ 1

0

∫ 1−x

0

f(x, y)w(x, y) dydx, w(x, y) = wx(x)wy(y) . (6)
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Fig. 1. Gaussian points with ax = 10. Diamonds correspond to ay = 1, crosses to
ay = 10, and squares to ay = 100. The fixed circles correspond to Newton–Cotes.

prevent the direct use of product rules. We consider next integrals of the form
(6) with w(x, y) = e−ax−by, where a and b are postive numbers.

Let us start with a three-point Newton–Cotes Rule. Each integration weight
Ak can be found by integrating the Lagrange interpolation polynomial associated
to the point pk = (xk, yk) as in (2). Given the points p1 = (1/2, 1/2), p2 =
(0, 1/2), and p3 = (1/2, 0), we have Ak = bk/(a

2(a− b)b2), where

b1 = e−a(2 + a)b2 − a2(2 + b)e−b − (a(b − 2) − 2b)(a− b),

b2 = (a− 2)(a− b)2 + (2 + b− a)a2e−b
− (a2

− a(b − 4) − 2b)be−a,

b3 = (b− 2)(b− a)2 + (2 + a− b)b2e−a − (b2 − b(a− 4) − 2a)ae−b .

The Gaussian quadrature of degree of precision one easily follows from the equa-
tion Iw(f) = A1f(x1, y1). Making f = 1 yields A1 = Iw(1); x1 and y1 follow
from choosing f = x and f = y, i.e., x1 = Iw(x)/A1, and y1 = Iw(y)/A1. If
w(x, y) = e−ax−by, then A1 = [b(1 − e−a) − a(1 − e−b)]/[a(b− a)b], while

x1 = [(a− b)2 + b((a− b)(1 + a) + a)e−a − a2e−b]/[a2(b − a)2bA1],

y1 = [(a− b)2 − a((a− b)(1 + b) − b)e−b
− b2e−a]/[a(b− a)2b2A1] .

Application: a Multiscale Finite Element

Let us consider the linear reaction-diffusion problem

−ε∆u+ σ u = f in Ω ⊂ IR2, u = 0 on ∂Ω , (7)

where σ, ε > 0. To approximate (7), we discretize Ω by a conforming and regular
partition using triangular elements K and select the finite dimensional subspace
Vh(Ω) ⊂ H1

0 (Ω) of piecewise linear polynomials. We seek uh ∈ Vh(Ω) such that

ε

∫
Ω

∇uh · ∇vh dx + σ

∫
Ω

uh vh dx =

∫
Ω

f vh dx ∀vh ∈ Vh(Ω) . (8)



The classical Galerkin method just described is inadequate if ε≪ σh2
K , where hK

denotes the characteristic length of element K. The method lacks stability, and
non-physical oscillations appear in the numerical solution. Such issue is treated
in [2] by enriching the trial space Vh(Ω) with multi-scale functions λ(x) =
sinh(αK ψ(x))/ sinh(αK), where αK ∼ hK(σ/ε)1/2 is the Peclet number, and
ψ(x) are piecewise linear shape functions. Thus we need to accurately compute

∫
K

λ(x)ψ(x) dx,

∫
K

∇λ(x)∇ψ(x) dx .

The above integrals can be written in the form presented in the previous section.
Let the domain Ω be the unit square, which we discretize by a non-uniform

mesh of 400 elements. We impose the boundary conditions u(x, 0) = u(0, y) = 0
and u(x, 1) = u(1, y) = 1. We set σ = 1, f = 0, and ε = 10−6. The three-
point Newton-Cotes rule allows us to conserve all desirable properties of the
multi-scale method unlike the classical one-point Gauss, which leads to a loss of
accuracy similar to the one observed through the Galerkin method (Fig. 2).

Fig. 2. Solutions by the new exponential-adaptative integration formula (left) and
standard (non-weighted) one-point Gauss integration (right).
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