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Abstract. This work presents a family of stable finite element methods for two- and three-

dimensional linear elasticity models. The weak form posed on the skeleton of the partition

is a byproduct of the primal hybridization of the elasticity problem. The unknowns are

the piecewise rigid body modes and the Lagrange multipliers used to relax the continu-

ity of displacements. They characterize the exact displacement through a direct sum of

rigid body modes and solutions to local elasticity problems with Neumann boundary con-

ditions driven by the multipliers. The local problems define basis functions which are in

a one-to-one correspondence with the basis of the subspace of Lagrange multipliers used

to discretize the problem. Under the assumption that such a basis is available exactly, we

prove that the underlying method is well posed, and the stress and the displacement are

super-convergent in natural norms driven by (high-order) interpolating multipliers. Also, a

local post-processing computation yields strongly symmetric stress which is in local equi-

librium and possesses continuous traction on faces. A face-based a posteriori estimator is

shown to be locally efficient and reliable with respect to the natural norms of the error.

Next, we propose a second level of discretization to approximate the basis functions. A

two-level numerical analysis establishes sufficient conditions under which the well-posedness

and super-convergent properties of the one-level method is preserved.

1. Introduction

When modeling elasticity in solid mechanics, the quantity of primary interest is often the

stress variable, which should be symmetric and in equilibrium with respect to internal and

external forces. Ideally, finite element methods should preserve those fundamental physical

properties. However, very few schemes are able to do so and still maintain simplicity in

terms of the nature and the quantity of the basis functions and degrees of freedom. A few

finite elements satisfying both requirements have been created by either using nested meshes

to approach the stress variable [8], augmented spaces [22, 26], or adopting the same mesh for

both displacement and stress variables with the price of having to deal with many degrees

of freedom [9, 1, 5]. Recently, a promising methodology closely related to mimetic methods

was proposed in [11].
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The common approach taken by researchers has been to relax symmetry, local equilibrium,

or conformity. These options have been actively researched, each with a volume of work

dating from the eighties [2, 7, 33] to the present day [20, 6]. The former idea uses Lagrange

multipliers to impose weak symmetry while localizing problems so that local equilibrium is

preserved. In other approaches, strong symmetry is achieved by relaxing the conformity of

the approach, which leads to the loss of local equilibrium.

We present a new family of finite elements that uses a small number of degrees of free-

dom. The strategy was introduced for the transport equation in [24, 23] and is based on

a hybridization scheme [28], which relaxes the continuity of the displacement on element

boundaries using Lagrange multipliers. The next step is to decompose the displacement

space into a direct sum between the space of local rigid body modes and its orthogonal

complement. With such a decomposition we reformulate the original problem in a set of

independent, element-wise elasticity problems plus a coupling global system posed on the

skeleton of the partition. The unknowns are the piecewise rigid body modes and the La-

grange multipliers used to relax the continuity of displacements. The displacement and stress

variables are recovered from them. The local problems are driven by the Lagrange multi-

pliers, which impose traction boundary conditions on element boundaries. Also, the global

weak form may be interpreted as the mixed formulation of the original elliptic elasticity

problem with a modified right-hand side.

Under the assumption that basis functions are computed exactly, a whole family of stable

finite element methods arises from the choice of interpolating space for the Lagrange mul-

tipliers. Face and element degrees of freedom define the discrete Lagrange multiplier and

the rigid body modes, respectively, in association with the basis functions obtained from

the local elasticity problems. The approximation of the stress tensor results from a simple

post-processing of the discrete displacement, with strong symmetry being a natural conse-

quence. This strategy leads to H(div; Ω) conformity for the stresses, and can be interpreted

as a H1-non-conforming well-posed finite element method. It also preserves local equilibrium

and strong symmetry, achieves error optimality for the stress and the displacement, and may

easily incorporate multiscale or high-contrast aspects of the model.

Such a hybrid-mixed strategy shares some similarities (and the same goals) with other

approaches as the Discontinuous Petrov-Galerkin (DPG) method [12, 21] or the Hybrid

Discontinuous Galerkin (HDG) method [17, 29, 32]. However, the primal hybridization of

the elasticity model selected as the starting point in this work as well as the nature of the

solution decomposition leads to different global-local family of methods compared to the

ones proposed in the mentioned papers, with fewer degrees of freedom and basis functions.
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Recently a DPG method has been also proposed for the elliptic Laplace problem [18] dif-

fering from [24] in its construction and form. When applied to multiscale or heterogeneous

material models, the present method may be seen as a member of the family of multiscale

finite element methods [10]. Indeed, it shares a similar structure and the same goals with

the multiscale methods proposed in [16, 4], for instance. Thereby, it has been called Mul-

tiscale Hybrid-Mixed method (MHM for short). Furthermore, the local computations are

completely independent of one another, thereby easily taking advantage of high-performance

parallel computing environments.

The impact of second level discretization on the basis functions is also investigated. We

provide a sufficient condition for the two-level methods to keep the main features of their

one-level counterpart. In fact, properties such as the robustness with respect to the physical

coefficients (locking) and local equilibrium are completely locally expressed in terms of the

choice made to approximate the local problems with an immediate impact in the global

method. In this work, we propose a general framework to analyze such two-level methods

and illustrate it using the simplest and cheapest method at the second level, namely, the

standard Galerkin method on classical continuous polynomial spaces applied to the solution

of the elasticity model in its primal form. This natural choice turns out to be enough to

preserve most of the properties of the one-level method. It is important to stress that care

should be taken at the second level discretization to preserve some of the nice properties of

the method, in particular H(div; Ω) conformity for the stresses. However, local equilibrium

holds in the sense of Remark 8. We leave both the study of the use of mixed methods in

the second level and the important question of robustness of the proposed method for nearly

incompressible materials for forthcoming works.

The main theoretical results of this work are summarized as follows: weak formulation (9)

and its discrete version, the face-based MHM method (17), are proved to be well-posed in

Theorem 3. We then present a best approximation result showing that the error only depends

on the quality of the approximation on faces (Lemma 4). This is used to prove that the MHM

method provides super-convergent numerical approximations to the displacement and stress

variables in natural norms (Theorem 8). Furthermore, an a posteriori error estimator (see

Equations (60)-(62)), established in terms of the jump of the displacement variable on the

faces, is shown to control the natural norms of the displacement and stress variables (Theorem

9). The two-level version of the MHM method (68) is shown to be well-posed in Theorem

11 under the space compatibility condition (70). We also measure the impact of the second-

level discretization, which is related to a consistency error. This is highlighted in Lemma 12.

Some local spaces fulfilling the local space compatibility assumption are presented in (79)



4 C. HARDER, A. L. MADUREIRA, AND F. VALENTIN

and analyzed in Lemmas 14 and 15. Convergence estimates for these are proved in Lemma

16.

The paper is outlined as follows: the remainder of this section presents the necessary steps

towards hybridization. An equivalent global-local form of the hybrid formulation and its

variants are left to Section 2, while statement of the method is in Section 3. Its well-posedness

and best approximation properties are addressed in Section 4. Section 5 is dedicated to a

priori and a posteriori error estimates. The two-level version of the method is presented

and analyzed in Section 6. Conclusions follow in Section 7 and some complementary results

in the Appendix.

1.1. Statement and preliminaries. In what follows, let Ω ⊂ Rn, n ∈ {2, 3}, be an open

bounded domain with polygonal boundary ∂Ω. We consider the elliptic problem to find the

displacement u : Ω→ Rn such that

(1)

{
−divAE(u) = f in Ω,

u = g on ∂Ω,

where g ∈ H1/2(∂Ω) and f ∈ L2(Ω) are given functions with values in Rn. As such,

problem (1) has a unique solution u ∈ H1(Ω), where the spaces have their usual meaning.

The linearized strain tensor is given by the symmetric part of the gradient

E(u) :=
1

2

(
∇u+∇Tu), i.e.,

(
E(u)

)
ij

:=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Above, and throughout the paper, the indices i, j run from 1, . . . , n, even when not explicitly

mentioned. The fourth-order rigidity tensor A acts on the space Rn×n
sym of n × n symmetric

matrices. If τ ∈ Rn×n
sym , then σ := A τ ∈ Rn×n

sym is such that

σij :=
n∑

k,l=1

Aijkl τkl.

The rigidity tensor is quite general, possibly depending on x ∈ Ω and embedding multiple ge-

ometrical scales. However, it satisfies the usual symmetry properties Aijkl = Aklij = Ajikl =

Aijlk, and is uniformly positive definite and bounded, i.e., there exist positive constants cmin

and cmax such that

(2) c2
min|τ |2 ≤ A τ : τ ≤ c2

max|τ |2 for all τ ∈ Rn×n
sym ,

for almost every x ∈ Ω. Here, τ : σ :=
∑n

i,j=1 τij σij denotes the inner product between the

matrices τ , σ, and |τ | := (τ : τ)1/2. Finally, for a given matrix σ, the row-wise divergence

div σ is defined by (div σ)i :=
∑n

j=1 ∂σij/∂xj.
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It follows from (1) that the stress tensor σ := AE(u) ∈ H(div; Ω), again with the space

taking its usual meaning. However, instead of working directly with this form of the prob-

lem, we adopt the following perspective: we seek u as the solution of the elliptic elasticity

equation in a weaker, broken space which relaxes continuity, localizes computations, and

allows reconstruction of a symmetric stress tensor which preserves equilibrium. Ultimately,

the approach allows for the construction of u and σ using local problems. This feature is par-

ticularly attractive in the presence of heterogeneous coefficients since fine-scale contributions

may be upscaled in parallel.

The first step is to partition the domain Ω with a family of regular meshes {Th}h>0

into elements K, where h is a characteristic length of Th. The mesh can be very general,

composed of heterogeneous element geometries. Without loss of generality, we shall use here

the terminology usually employed for three-dimensional domains. As such, each element K

has a boundary ∂K consisting of faces F , and we collect in Eh the faces associated with Th.
Let ED be the set of faces on ∂Ω, and E0 = Eh \ ED be the set of internal faces. To each

F ∈ Eh we associate a normal n, taking care to ensure this is facing outward on ∂Ω. For

each K ∈ Th, we further denote by nK the outward normal on ∂K, and let nKF := nK |F for

each F ⊂ ∂K. Also, the space of displacements V consists of

V :=
{
v ∈ L2(Ω) : v |K ∈H1(K), K ∈ Th

}
,

and the space of tractions Λ is formed as follows

Λ :=
{
σnK |∂K : σ ∈ H(div; Ω), K ∈ Th

}
.

The definition of the norms for theses spaces is postponed to Section 4. For now, we denote

(., .)Th and (., .)∂Th the summation of the respective inner (or dual) products, for all K ∈ Th,
over the sets K and ∂K, respectively, namely,

(w,v)Th :=
∑
K∈Th

∫
K

w · v dx and (µ,v)∂Th :=
∑
K∈Th

(µ,v)∂K ,

where w, v ∈ V and µ ∈ Λ, and (·, ·)∂K is the dual product involving H−1/2(∂K) and

H1/2(∂K) defined as follows

(µ,v)∂K :=

∫
K

div σ · v dx+

∫
K

σ∇v dx .

We consider the hybrid formulation of problem (1): Find (u, λ) ∈ V ×Λ such that

(3)

{
(AE(u), E(v))Th + (λ,v)∂Th = (f , v)Th for all v ∈ V ,

(µ,u)∂Th = (µ, g)∂Ω for all µ ∈ Λ .
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In formulation (3), the displacement belongs a priori to a larger space than the solution

of the original problem (1). However, the space of Lagrange multipliers Λ imposes H1(Ω)-

conformity on the solution and the boundary condition u = g. Also, problem (3) has a

unique solution (u,λ) ∈ V ×Λ where u ∈H1(Ω) is also the solution of problem (1). Such

results are summarized next.

Lemma 1. Assume that (u,λ) ∈ V×Λ. Therefore, (u,λ) is the solution of (3) if and only

if u ∈H1(Ω) solves (1). Furthermore, for all K ∈ Th, it holds

λ = −AE(u)nK on ∂K .

Proof. Following closely the proof of Theorem 1 in [31] the results follow. �

2. A global-local formulation

Rather than selecting a pair of finite subspaces of V×Λ at this point, we rewrite (3) in an

equivalent form which is suitable to reduce the statement to a system of locally- and globally-

defined problems. Such an approach will guide the definition of stable finite subspaces. The

key to the approach is the operator-driven decomposition

V = Vrm ⊕ Ṽ.(4)

Here, Vrm is the finite dimensional subspace of V composed of those functions vrm ∈ V such

that (AE(vrm), E(v))Th = 0 for all v ∈ V, and Ṽ is its L2-orthogonal complement in V. In

fact, Vrm is the space of piecewise rigid body modes, i.e.,

Vrm := {v ∈ V : v|K ∈ Vrm(K), K ∈ Th} , Vrm(K) := {v ∈ V : E(v) |K = 0} .

Using decomposition (4), problem (3) is equivalent to: Find (urm + ũ,λ) ∈ (Vrm ⊕ Ṽ)×Λ

such that {
(λ,vrm)∂Th = (f ,vrm)Th for all vrm ∈ Vrm ,

(µ,urm + ũ)∂Th = (µ, g)∂Ω for all µ ∈ Λ ,
(5)

(AE(ũ), E(ṽ))Th + (λ, ṽ)∂Th = (f , ṽ)Th for all ṽ ∈ Ṽ .(6)

Notice that (6) implies that ũ can be computed in each element from f and from λ once

the latter is known. In fact, we find from (6) that ũ = T λ + T̂ f , with T : Λ → Ṽ and

T̂ : L2(Ω) → Ṽ being bounded linear operators (see Lemmas 17 and 18 in the Appendix)
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defined, on each K ∈ Th, by(
AE(T µ), E(ṽ)

)
K

= −(µ, ṽ)∂K for all ṽ ∈ Ṽ,(7) (
AE(T̂ q), E(ṽ)

)
K

= (q, ṽ)K for all ṽ ∈ Ṽ ,(8)

for µ ∈ Λ and q ∈ L2(Ω). We substitute this decomposition ũ = T λ + T̂ f in (5) to yield

the problem: Find (urm,λ) ∈ Vrm ×Λ such that

(9)

 (λ,vrm)∂Th = (f ,vrm)Th for all vrm ∈ Vrm ,

(µ,urm + T λ)∂Th = −(µ, T̂ f)∂Th + (µ, g)∂Ω for all µ ∈ Λ .

As a result, the weak formulation (3) is analogous to the coupled system (7)-(8) (with µ = λ

and q = f) and (9). We use the unknowns urm and λ of the latter problem to reconstruct

the displacement u ∈ V and the stress tensor σ ∈ H(div; Ω) as follows:

u = urm + T λ+ T̂ f , σ = AE(T λ+ T̂ f) .(10)

2.1. From hybrid to mixed. Next, we detail the procedure to translate (5) into a mixed

formulation. To this end, we rewrite (7) and (8) in strong form. For that, suppose µ ∈ Λ

and define the (unique) rigid body mode Rµ
K ∈ Vrm(K) in each K ∈ Th by,

(11) (Rµ
K , v

rm)K = (µ, vrm)∂K for all vrm ∈ Vrm(K) .

From problem (7), we conclude that T µ is the unique solution of the local elasticity problem

(in a distributional sense)

(12)

{
−divAE(T µ) = Rµ

K in K,

AE(T µ)nK = −µ on F ⊂ ∂K .

Following the same procedure, we may also use (8) to rewrite

(13)

−divAE(T̂ q) = q − ΠK(q) in K,

AE(T̂ q)nK = 0 on F ⊂ ∂K ,

where ΠK(.) is the L2-orthogonal projection onto Vrm(K).

Now, hidden in the statement of the global problem (9) is a mixed form of the elliptic

problem (1). To highlight this, we use equations (11) and (12) to first establish that for each

vrm ∈ Vrm(K),

(14) (µ,vrm)∂Th = (Rµ
K ,v

rm)Th = −(div σµ,vrm)Th ,

where we defined σµ := AE(T µ), µ ∈ Λ, and used vrm ∈ Vrm(K). Next, we choose

(arbitrarily, and without loss of generality) to lift µ from ∂K into K by using problem (7).
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This choice conveniently yields a form of (9) which is completely defined in terms of integrals

on element interiors rather than their boundaries. From (7), (14) and (8) with the fact

T λ+ T̂ f ∈ Ṽ, it holds that(
µ,urm + T λ+ T̂ f

)
∂Th

=−
(
AE(T µ), E(Tλ+ T̂ f)

)
Th
− (div σµ,urm)Th(15)

=− (AE(T λ), E(T µ))Th − (f , T µ)Th − (div σµ,urm)Th .

Finally, we gather (14) and (15) and substitute them into the global problem (9) to propose

the following equivalent weak mixed form: Find (λ,urm) ∈ Λ×Vrm such that

(16)

{
(A−1σλ, σµ)Th + (urm,div σµ)Th = −(f , T µ)Th − (µ, g)∂Ω for all µ ∈ Λ ,

(div σλ,vrm)Th = −(f ,vrm)Th for all vrm ∈ Vrm ,

where A−1 is the compliance tensor.

3. The Multiscale Hybrid-Mixed (MHM) method

We have not introduced any discretization up to this point, although global problem (9)

involves the finite-dimensional space Vrm. Since λ uniquely determines T λ (see (7)), it is

enough to pick a finite element space Λh in order to fully discretize problem (9). In this

case, we find the discrete method: Find (urm
h ,λh) ∈ Vrm ×Λh such that

(17)

 (λh,v
rm)∂Th = (f ,vrm)Th for all vrm ∈ Vrm ,

(µh,u
rm
h + T λh)∂Th = −(µh, T̂ f)∂Th + (µh, g)∂Ω for all µh ∈ Λh ,

where T and T̂ are as in (7) and (8), respectively. We use the unknowns of this problem to

construct approximations to u and σ given in (10), namely,

uh := urm
h + T λh + T̂ f , σh := AE(T λh + T̂ f) .(18)

Remark 1. Observe we may recast the MHM method (17) in the same mixed form (16),

i.e, find (λh,u
rm) ∈ Λh ×Vrm such that

(19)

{
(A−1σλh , σµh)Th + (urm,div σµh)Th = −(f , T µh)Th − (µ, g)∂Ω for all µh ∈ Λh ,

(div σλh ,vrm)Th = −(f ,vrm)Th for all vrm ∈ Vrm .

Note that the second equation in (19) imposes the weak local equilibrium of σλh. Moreover,

the stress σh in (18) satisfies the equilibrium equation exactly, almost everywhere, in each

element K. Indeed, for each K, from (18) and (13),

div σh + f = div
(
AE(T λh + T̂ f)

)
+ f = −Rλh

K + ΠK(f) = 0 ,

since Rλh
K = ΠK(f) using (17) and (11). �
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It is instructive to consider T λh in more detail as it plays a central role in (17) or (19).

Suppose {ψi}
dim Λh
i=1 is a basis for Λh. We define the set {ηi}

dim Λh
i=1 ⊂ Ṽ with ηi := T ψi, and

then ηi |K satisfies

(20)
(
AE(ηi), E(w̃)

)
K

= −
(
ψin · nK , w̃

)
∂K

for all w̃ ∈ Ṽ ,

or equivalently,

(21)

{
−divAE(ηi) = Rψi

K in K,

AE(ηi)n
K = −ψin · nK on F ⊂ ∂K ,

where Rψi

K ∈ Vrm satisfies (Rψi

K ,v
rm)K = (ψi,v

rm)∂K , for all vrm ∈ Vrm. Taking λh =∑dim Λh

i=1 βiψi in Λh, the linearity of (7) implies we can uniquely write

T λh =

dim Λh∑
i=1

βi Tψi =

dim Λh∑
i=1

βi ηi.

It then follows that

uh = urm
h +

dim Λh∑
i=1

βi ηi + T̂ f .(22)

In this sense, the method can be seen as a nonconforming method to find an approximation

of u in a finite dimensional subspace of V * H1(Ω). On the other hand, the stress tensor

σ is approximated by σh given by

σh =

dim Λh∑
i=1

βiAE(ηi) +AE(T̂ f) ∈ H(div; Ω) ,(23)

and, then, the method is conforming with respect to the variable σ. Also, the post-processed

stress σh is strongly symmetric.

Note that heterogeneous and/or high-contrast aspects of the media automatically impact

the design of the basis functions as they are driven by the local problems (20) (equiva-

lently (21)) and the choice of Λh. Also, embedded interfaces are naturally taken care of by

these local problems, which easily accommodate edge-crossing interfaces thanks to the local

boundary conditions. Furthermore, the strategy allows the present methodology to address

multiscale aspects of the solution should they still persist inside of each local problem (7)-(8)

for T λ and T̂ f . Indeed, the current framework may be used recursively on the elliptic local

problem, thereby incorporating multiple scales into problem (9).

For practical purposes, closed formulas are not available in general for Tψi and T̂f . This

prevents (17) or (19) to be solved exactly, though some cases exist for which exact solutions

are known. For instance, observe that T̂ f = 0 if f ∈ Vrm. Thereby, we propose a two-level
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methodology such that the functions T λh (e.g. T ψi) and T̂ f taking part in (17) (or (19))

are replaced by their locally approximated counterparts Th λh (e.g. Thψi) and T̂h f .

It is important to note that in either case, method (17) (or (19)) consists of the same num-

ber of degrees of freedom, with the local approximation appearing as a pre-processing step

which is easily parallelized. The two-level computations may be based on primal Galerkin

methods, their mixed counterpart obtained from the recursive procedure mentioned in the

previous paragraphs, or even adopting a classical mixed method [14], which preserves local

H(div;K) conformity. In a broad sense, the two-level MHM method starts by selecting Th

and T̂h, and looking for (λh,u
rm
h ) in Λh ×Vrm as the solution of the following problem

(24)

 (λh,v
rm)∂Th = (f ,vrm)Th for all vrm ∈ Vrm ,

(µh,u
rm + Th λ)∂Th = −(µh, T̂h f)∂Th + (µh, g)∂Ω for all µ ∈ Λh .

It is worth mentioning that the choice of method at local level will impact the qualitative

features of the global method. In Section 6, we detail and analyze a two-level strategy which

makes the MHM method effective from a practical viewpoint. Particularly, we propose a

compatibility condition between finite dimensional subspaces of Ṽ and Λh such that the

two-level approach (24) preserves the key features of method (17) (or (19)).

Remark 2. We can view the MHM method (17) as penalizing jump terms. To see this,

we first observe that given µh ∈ Λh with property µh|F ∈ H−1/2(F ) (this space having its

usual meaning, see [34] for instance), the decomposition (µh,u)∂K =
∑

F⊂∂K(µh,u)F , has

meaning for all u ∈H1(K) . From this, the following identity holds

(25) (µh,u)∂Th =
∑
F∈Eh

(µh ⊗ n, JuK)F ,

where

JvK |F := vK1|F ⊗ nK1
F + vK2|F ⊗ nK2

F ,(26)

and (v ⊗ n)ij = vinj, and vKi indicate the restriction of function v to either of the two

elements sharing F ∈ Eh. Also, upon selecting K1 such that nK1
F = nF , we set

(27) µh |F = µK1
h |F

Using identity (25) in (17), we have that (urm
h ,λh) ∈ Vrm ×Λh satisfies

∑
F∈Eh

(λh ⊗ n, Jvrm
h K)F = (f ,vrm)Th for all vrm ∈ Vrm ,∑

F∈Eh

(µh ⊗ n, Jurm
h + T λhK)F = −

∑
F∈Eh

(µh ⊗ n, JT̂ fK)F + (µh, g)∂Ω for all µh ∈ Λh ,
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which emphasizes that the MHM method works as a penalization on jumps. �

Summarizing the algorithm for computing an approximation to (3), we get:

(i) compute T̂f from (8) and the basis {ηi}
dim Λh
i=1 from (20) as a local, completely paral-

lelizable preprocessing step;

(ii) compute the degrees of freedom of (urm
h ,λh) from (17) (or (19)), noting that T λh

expands in terms of {ηi}
dim Λh
i=1 using the degrees of freedom for λh;

(iii) bring the results together to build the approximated stress σh from (23) and the ap-

proximated displacement uh from (22).

Recall that for the two-level method (24), it is enough to replace T and T̂ by Th and T̂h

above, respectively.

4. Well-posedness and best approximation

We preserve conformity by selecting Λh such that

(28) Λrm ⊆ Λh ⊂ Λ .

The well-posedness of method (17) and its best approximation result rely on the space Λrm.

Indeed, a central result of this section shows (see Theorem 3) that Λrm set as

Λrm := {µ ∈ Λ : µ|∂K ∈ Λrm(K), K ∈ Th} ,(29)

where

Λrm(K) := {vrm|F : vrm ∈ Vrm(K) , F ⊂ ∂K} ,

ensures that an inf-sup condition between the spaces Λrm and Vrm holds. Henceforth, C

represents a positive constant independent of h which can differ in each occurrence and have

a possible dependence on A.

Let us define the bilinear forms a : Λ×Λ→ R and b : Λ×V→ R

a(λ,µ) := (µ, T λ)∂Th , b(µ,v) := (µ,v)∂Th ,

where we recall that the linear operator T is defined in (7). It is convenient to rewrite

problem (9) by adding both equations and proposing the formulation in the following way:

Find (λ,urm) ∈ Λ×Vrm such that

B(λ,urm;µ,vrm) = F(µ,vrm) for all (µ,vrm) ∈ Λ×Vrm ,(30)
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where

B(λ,urm;µ,vrm) := a(λ,µ) + b(µ,urm) + b(λ,vrm) ,

F(µ,vrm) := (f , vrm)Th − (µ, T̂ f)∂Th + (µ, gD)∂Ω .

Note that B(., .) is symmetric due to (7). Similarly, we rewrite the MHM method (17) as:

Find (λh,u
rm
h ) ∈ Λh ×Vrm such that

B(λh,u
rm
h ;µh,v

rm) = F(µh,v
rm) for all (µh,v

rm) ∈ Λh ×Vrm .(31)

Our analysis requires the norm on Λ×Vrm

‖(µ,vrm)‖Λ×V := ‖µ‖Λ + ‖vrm‖V ,(32)

where each contribution reads (here dΩ stands for the diameter of Ω)

(33)

‖µ‖Λ := inf
σ∈H(div;Ω)

σn=µ on ∂K,K∈Th

‖σ‖div, ‖σ‖2
div :=

∑
K∈Th

(
‖σ‖2

0,K + d2
Ω‖div σ‖2

0,K

)
,

‖v‖2
V :=

∑
K∈Th

(
d−2

Ω ‖v‖
2
0,K + ‖E(v)‖2

0,K

)
.

Denote by Π the global L2 projection onto Vrm such that Π |K = ΠK . From standard

stability result of projections and (33), it holds for all v ∈ V

‖Πv‖V ≤ ‖v‖V .(34)

Also, from trace inequality (92), the property Πvrm = vrm and Korn inequality (90), we get

(35) ‖v − ΠK v‖0,∂K ≤ C h
1/2
K ‖ E(v)‖0,K for all v ∈ V .

Before heading to the analysis of the MHM method, we must first characterize the space

Λrm defined in (29) through the action of an interpolation operator. To be precise, let us

define the local interpolation IK on functions in L2(∂K) with value in Λrm(K), such that

for each F ⊂ ∂K, it holds

(36)

∫
F

IKµvrmds =

∫
F

µvrmds for all vrm ∈ Vrm(K) .

Observe that conditions (36) imply unisolvence in Λrm(K) and the following local stability

result holds

(37) ‖IKµ‖0,∂K ≤ ‖µ‖0,∂K .

The global interpolation I acts on the trace of functions in [H1(Ω)]n×n (with its usual

meaning) with values in Λrm, and is fully defined assuming I|K = IK . To investigate the

stability of I in the ‖.‖Λ norm (33), we first observe that from (37) and (35) we get
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b(Iµ,v − Πv) ≤
∑
K∈Th

‖IKµ‖0,∂K‖v − ΠK v‖0,∂K

≤ C
∑
K∈Th

‖µ‖0,∂K h
1/2
K ‖ E(v)‖0,K

≤ C
[ ∑
K∈Th

‖µ‖2
0,∂K hK

]1/2

‖v‖V .(38)

In what follows, we make consistent use of the following equivalence of norms (see Lemma 19

in the Appendix)

(39)

√
2

2Ckorn
‖µ‖Λ ≤ sup

v∈V

b(µ,v)

‖v‖V
≤ ‖µ‖Λ ,

where Ckorn is a positive constant independent of h. Above and hereafter we lighten the

notation and understand the supremum to be taken over sets excluding the zero function.

Next, from (39), (36), the definition of the norm ‖.‖Λ in (33), and (38) the operator I is

stable as follows

‖Iµ‖Λ ≤ C sup
v∈V

b(Iµ,v)

‖v‖V
≤ C

(
sup
v∈V

b(Iµ,Πv)

‖v‖V
+ sup
v∈V

b(Iµ,v − Πv)

‖v‖V

)
≤ C

(
sup
v∈V

b(µ,Πv)

‖Πv‖V
+
[ ∑
K∈Th

‖µ‖2
0,∂K hK

]1/2)
≤ C

(
sup
v∈V

b(µ,v)

‖v‖V
+
[ ∑
K∈Th

‖µ‖2
0,∂K hK

]1/2)
≤ C

(
‖µ‖Λ +

[ ∑
K∈Th

‖µ‖2
0,∂K hK

]1/2)
.(40)

We are ready to prove that the operator associated with the linear form b(., .) is surjective.

Hereafter the domain Ω is assumed to be a simply connected polygon.

Lemma 2. Given vrm ∈ Vrm, there exists C such that

C ‖vrm‖V ≤ sup
µrm∈Λrm

b(µrm,v
rm)

‖µrm‖Λ
.

Proof. Assume vrm ∈ Vrm. From the assumption on Ω, observe that there exists a symmetric

matrix function σ? ∈ [H1(Ω)]n×n (see [9] for instance) such that

div σ? = vrm and ‖σ?‖1,Ω ≤ C ‖vrm‖0,Ω .(41)
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Take µ? ∈ Λ such that µ? |∂K := σ?nK |∂K , K ∈ Th. From (40), and the definition of norm

‖.‖Λ in (33) and (41), and observing that from a scaling argument (c.f. [15, page 111]) we

get [ ∑
K∈Th

‖µ?‖2
0,∂K hK

]1/2

≤ C ‖µ?‖Λ ,

we arrive at the following result

‖Iµ?‖Λ ≤ C ‖µ?‖Λ ≤ C ‖σ?‖div ≤ C ‖vrm‖V .(42)

Next, from (41)-(42) and (36) it holds

dΩ ‖vrm‖V =
(div σ?,vrm)Th
‖vrm‖V

=
(µ?,vrm)∂Th
‖vrm‖V

=
(Iµ?,vrm)∂Th
‖vrm‖V

≤ C
(Iµ?,vrm)∂Th
‖Iµ?‖Λ

,

and the result follows taking the supremum. �

Hereafter, we will make use of the following tensor norm on A

(43) ‖A‖ := ess sup
x∈Ω

max
|ξ|=1

(A(x) ξ, ξ)1/2, ξ ∈ Rn×n
sym ,

which from (2) satisfies cmin ≤ ‖A‖ ≤ cmax. We are ready to prove the well-posedness result.

Observe that the proof is unchanged for any finite dimensional space Λh ⊂ Λ under the

condition (28). Therefore, the following result applies to the MHM formulation (31) as well.

Theorem 3. Suppose (λ,urm), (µ,vrm) ∈ Λ×Vrm. Then, there exists C such that

B(λ,urm;µ,vrm) ≤ C ‖(λ,urm)‖Λ×V ‖(µ,vrm)‖Λ×V .(44)

Moreover, there exists a positive constant β, independent of h, such that

sup
(µ,vrm)∈Λ×Vrm

B(λ,urm;µ,vrm)

‖(µ,vrm)‖Λ×V

≥ β ‖(λ,urm)‖Λ×V for all (λ,urm) ∈ Λ×Vrm .(45)

Also,

B(λ,urm; µ,vrm) = 0 for all (λ,urm) ∈ Λ×Vrm =⇒ (µ,vrm) = (0,0) ,(46)

for all (µ,vrm) ∈ Λ×Vrm. We conclude problem (30) is well-posed.

Proof. The proof follows closely [3]. First, we prove (44). Since by definition a(λ,µ) =

b(µ, Tλ), it follows by the equivalence result (39) and Lemma 17 in the Appendix, and
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definition of norm (32) that

B(λ,urm;µ,vrm) = b(µ, T λ+ urm) + b(λ,vrm)

≤ sup
w∈V

b(µ,w)

‖w‖V
‖T λ+ urm‖V + sup

w∈V

b(λ,w)

‖w‖V
‖vrm‖V

≤ ‖µ‖Λ(‖T λ‖V + ‖urm‖V) + ‖λ‖Λ‖vrm‖V

≤ (C2
korn + π2)cmax

π2c2
min

‖µ‖Λ‖λ‖Λ + ‖µ‖Λ‖urm‖V + ‖λ‖Λ‖vrm‖V ,

and (44) follows immediately.

Next, we prove a coercivity condition for −a(., .), for which we require the following

nullspace

(47) N := {µ ∈ Λ : b(µ,vrm) = 0 , ∀vrm ∈ Vrm}.

Assume µ ∈ N and first note that problems (7) and (14) imply that divAE(T µ) = 0.

Using (7) and (2), it holds

−a(µ,µ) = (A−1AE(T µ),AE(T µ))Th

≥ 1

cmax

‖AE(T µ)‖2
0,Ω

=
1

cmax

‖AE(T µ)‖2
div

≥ 1

cmax

‖µ‖2
Λ,

since AE(T µ)nK = µ on ∂K for all K ∈ Th. We conclude −a(., .) is coercive on the

subspace N . This result, along with the inf-sup condition for b(., .) from Lemma 2, are the

requirements of the abstract setting in [3] (see also [19, p. 101]) from which (45)-(46) hold

with a positive constant β independent of h. �

We close this section by showing the MHM method produces the best approximation,

where the convergence of both λh and urm
h is governed by the approximation properties of

Λh. Indeed, observe that the accuracy of urm
h approaching urm depends on how well Λh

approximates Λ. In consequence, optimal convergence for uh and σh given in (18) in the

natural norms is expected to rely only on the capacity of λ to be optimally interpolated by

λh on faces. This is established in the next lemma.
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Lemma 4. Let (λ,urm) and (λh,u
rm
h ) be the solutions of (30) and (31), respectively. Under

the assumptions of Theorem 3, it holds that

(48) B(λ− λh,urm − urm
h ;µh,v

rm) = 0 for all (µh,v
rm) ∈ Λh ×Vrm.

Moreover, there exists C such that

‖(λ− λh,urm − urm
h )‖Λ×V ≤ C inf

µh∈Λh

‖λ− µh‖Λ .(49)

Proof. The result (48) follows immediately from (30) and (31). Next, from standard argu-

ments using Theorem 3 and (48), there is C such that

‖(λ− λh,urm − urm
h )‖Λ×V ≤ C ‖(λ− µh,urm − vrm)‖Λ×V ,

which is valid for all (µh,v
rm) ∈ Λh × Vrm. Thereby, selecting (µh,v

rm) = (µh,u
rm) in

Λh ×Vrm, the result follows by taking the infimum. �

Observe that the approximate solution fulfills the local equilibrium constraint exactly as

shown in the next result. Hereafter, we shall consistently use the characterization of u and

σ, and uh and σh given in (10) and (18), respectively.

Corollary 5. Let (λ,urm) and (λh,u
rm
h ) be the solutions of (30) and (31), respectively. The

following result holds

div σh = div σ in Ω .(50)

Proof. See Remark 2. �

We shall make use of the assumption that problem (1) has smoothing properties in the

sense of [19, Definition 3.14].

Lemma 6. Let (λ,urm) and (λh,u
rm
h ) be the solutions of (30) and (31), respectively. Under

the assumptions of Theorem 3, it holds

‖σ − σh‖div ≤ C inf
µh∈Λh

‖λ− µh‖Λ ,(51)

‖u− uh‖0,Ω ≤ C inf
µh∈Λh

‖λ− µh‖Λ .(52)

Furthermore, if problem (1) has smoothing properties, it holds

‖u− uh‖0,Ω ≤ C h inf
µh∈Λh

‖λ− µh‖Λ ,(53)

‖urm − urm
h ‖0,Ω ≤ C h inf

µh∈Λh

‖λ− µh‖Λ .(54)
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Proof. The proof closely follows the one presented in [3] for the Laplace equation. We revisit

and adapt it here for sake of clarity. First, Lemma 17 implies ‖A E(u−uh)‖div ≤ C ‖λ−λh‖Λ
so that result (51) follows from (49) in Lemma 4. Again using Lemma 17, (10) and (18),

and triangle inequality, we get

‖u− uh‖0,Ω ≤ ‖urm − urm
h ‖0,Ω + C ‖λ− λh‖Λ ,

and estimate (52) results from Lemma 4.

To prove result (53), we employ a duality argument. Define

e := u− uh = urm − urm
h + T (λ− λh)

and suppose that (γ,wrm) ∈ Λ×Vrm satisfies

B(µ,vrm;γ,wrm) = (T µ+ vrm, e)Th for all (µ,vrm) ∈ Λ×Vrm.(55)

The problem of finding such a (γ,wrm) is the adjoint problem of(30) with homogeneous

Dirichlet boundary condition prescribed on ∂Ω, and the right-hand side rewritten using (7)

and (8). Furthermore, define (γrm,w
rm
h ) ∈ Λrm × Vrm by the finite-dimensional adjoint

problem

B(µrm,v
rm;γrm,w

rm
h ) = (T µrm + vrm, e)Th , for all (µrm,v

rm) ∈ Λrm ×Vrm.(56)

Both (55) and (56) have unique solutions by Theorem 3 and the symmetry of the problem

statements. Under the assumption that problem (1) has smoothing properties, we observe

that the solution w := wrm + T γ + T̂e has extra regularity since e ∈ L2(Ω), and there

is a positive constant C (depending only on Ω) such that ‖w‖2,Ω ≤ C
cmin
‖e‖0,Ω. From this,

Lemma 4, and the interpolation estimate (59) we find

inf
µrm∈Λrm

‖γ − µrm‖Λ ≤ C h ‖w‖2,Ω ,

and we then use (49) to show

‖(γ − γrm,w
rm −wrm

h )‖Λ×V ≤ C h‖w‖2,Ω ≤
C

cmin

h ‖e‖0,Ω .
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Therefore, by (55), the consistency result of Lemma 4, the continuity result of Theorem 3,

and the best approximation result of Lemma 4, we find

‖e‖2
0,Ω = (e, e)Th

= (T (λ− λh) + (urm − urm
h ), e)Th

= B(λ− λh,urm − urm
h ;γ,wrm)

= B(λ− λh,urm − urm
h ;γ − γrm,w

rm −wrm
h )

≤ C ‖(λ− λh,urm − urm
h )‖Λ×V‖(γ − γrm,w

rm −wrm
h )‖Λ×V

≤ C h inf
µh∈Λh

‖λ− µh‖Λ‖e‖0,Ω ,

which establishes (53). As for (54), using the triangle inequality, the local inequality (91)

and Lemma 17, it holds

‖urm − urm
h ‖0,Ω ≤ ‖u− uh‖0,Ω + C h ‖λ− λh‖Λ ,

and the result follows from (53) and Lemma 4. �

5. Convergence results

5.1. A priori estimates. Note that the result in Lemma 4 holds for any discrete space Λh

under the assumption Λrm ⊂ Λh. As such, method (31) achieves optimal convergence rates

for any finite element subspace Λh with known best approximation properties. To illustrate,

we use the polynomial space Λl

Λh ≡ Λl :=
{
µ ∈ Λ : µ |F ∈ [Pl(F )]n, F ∈ Eh

}
,(57)

where Pl(F ), l ≥ 1, stands for the space of piecewise polynomials of degree less than or equal

to l on F , and µ |F was defined in (27). We closely follow the proof of a result in [30] to

show that Λl has the desired approximation properties.

Lemma 7. Suppose w ∈ Hm+1(Ω) with 1 ≤ m ≤ l + 1 and l ≥ 0, and let µ ∈ Λ be such

that µ := E(w)n |F for each F ∈ Eh. There exists C such that

inf
µl∈Λl

‖µ− µl‖Λ ≤ C hm‖w‖m+1,Ω ,(58)

where Λl is given in (57). Moreover, it holds

inf
µrm∈Λrm

‖µ− µrm‖Λ ≤ C h ‖w‖2,Ω .(59)



A HYBRID-MIXED METHOD FOR ELASTICITY 19

Proof. Assume w ∈ Hm+1(Ω), set µ = E(w)n |F for each F ∈ Eh and denote by Πl the

orthogonal projector in L2(F ) upon [Pl(F )]n, l ≥ 0. Defining µl := Πl µ, using the regularity

of the mesh, and following closely the proof of Lemma 9 in [30] for each component of w,

and for each K ∈ Th, we get

(µ− µl,v)∂K ≤ C hmK |w|m+1,K |v|1,K for all v ∈H1(K) .

Summing up over K ∈ Th it holds

b(µ− µl,v) = (µ− µl,v)∂Th ≤ C hm|w|m+1,Ω |v|1,Th ≤ C hm‖w‖m+1,Ω ‖v‖V ,

which immediately leads to

sup
v∈V

b(µ− µl, v)

‖v‖V
≤ C hm‖w‖m+1,Ω .

The result (58) follows using the equivalence of norms in Lemma 19, and (59) follows using

that Λ0 ⊂ Λrm and (58). �

With the choice of Λl in (57), we are then ready to present rates of convergence.

Theorem 8. Let (λ,urm) ∈ Λ × Vrm and (λl,u
rm
h ) ∈ Λl × Vrm be the exact and the

approximate solution of (9) and (31), respectively, where Λl is given in (57). Assuming

u ∈Hm+1(Ω), there exist C such that

‖(λ− λl,urm − urm
h )‖Λ×V ≤ C hm ‖u‖m+1,Ω ,

‖u− uh‖0,Ω + ‖σ − σh‖div ≤ C hm ‖u‖m+1,Ω .

Furthermore, if problem (1) has smoothing properties, the following estimates hold

‖urm − urm
h ‖0,Ω + ‖u− uh‖0,Ω ≤ C hm+1 ‖u‖m+1,Ω ,

where 1 ≤ m ≤ l + 1 and l ≥ 1 is the degree of polynomial functions in Λl.

Proof. The results follow using Lemmas 4, 6 and 7. �

Remark 3. Estimates in Theorem 8 point out that the errors in the natural norms for the

displacement and the stress are super-convergent. For instance, if one adopts linear polyno-

mial interpolation (l = 1) on faces to approximate the Lagrange multiplier, then Theorem 8

shows that ‖∇(u− uh)‖0,Th = O(h2) and ‖u− uh‖0,Ω = O(h3). �

Remark 4. At this point, it is interesting to count the number of local degrees of freedom

necessary to approximate the variables using the space Vrm(K) × Λl(K) in the case of a

simplicial mesh, where Λl(K) stands for the space of functions in Λl restricted to K. First,
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dim Vrm(K) =
(
n+1
n−1

)
, where we recall that n ∈ {2, 3} is the dimension of Ω. Now, on a

particular face, there are n
(
l+n−1
n−1

)
degrees of freedom for Λl(K) if l ≥ 1. Therefore, since

there are n + 1 faces belonging to K, dim Λl(K) = n(n + 1)
(
l+n−1
n−1

)
, for l ≥ 1. Therefore,

the total number of local degrees of freedom is(
n+ 1

n− 1

)[
1 + 2

(
l + n− 1

n− 1

)]
, l ≥ 1 .

As for the simplest element, i.e., the pair of spaces Vrm(K) × Λrm(K), the total number

of local degrees of freedom is (
n+ 1

n− 1

)
(n+ 2) .

As such, there are 12 degrees of freedom total in 2D, while in the 3D case there are 30 degrees

of freedom per element. Also, Theorem 8 holds (with m = 1) if one replaces Λl by Λrm from

Lemmas 4 and 6, and from (59). �

5.2. A posteriori estimates. Now, we turn to a posteriori error estimates. With the

definition of uh given in (18), we propose the residual on faces as follows

(60) rF :=

{
1
2
JuhK, F ∈ E0

g − uh, F ∈ ED ,

where we recall J.K is given in (26), and we set

ηF :=
cmin

h
1/2
F

‖rF‖0,F .(61)

The estimator η is given by

η :=
[ ∑
K∈Th

η2
K

]1/2

with η2
K :=

∑
F⊂∂K

η2
F .(62)

It will be also useful to adopt the following norm on H(div; Ω)

‖σ‖2
div,h :=

∑
K∈Th

(
‖σ‖2

0,K + h2
K‖div σ‖2

0,K

)
,(63)

and the local norm

‖v‖2
V,ωF

:=
∑
K∈ωF

(
h−2
K ‖v‖

2
0,K + ‖E(v)‖2

0,K

)
,(64)

where ωF corresponds to the set of elements sharing the face F ∈ Eh. We are ready to

establish the following a posteriori error estimate.
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Theorem 9. Let (λ,urm) and (λh,u
rm
h ) be the solutions of (30) and (31), respectively.

Then, there exist positive constants C1 and C2, independent of h, such that

cmin‖u− uh‖V + ‖σ − σh‖div,h ≤ C1 η ,

ηF ≤ C2 cmin‖u− uh‖V,ωF
.

Moreover, if we suppose smoothing properties, there exists C such that

cmin

(1

h
‖u− uh‖0,Ω + ‖ E(u− uh)‖0,Th

)
+ ‖σ − σh‖div,h ≤ C η .

Proof. We shall adapt the technique proposed in [3]. To first establish the lower bound, we

use the definition of B(., .) and follow closely[3, Theorem 5.2] (in its vectorial version), to

get

B(λ− λh,urm − urm
h ;µ,vrm) = B(λ− λh,urm − urm

h ;µ,0)

= (µ,u− uh)∂Th
= −(µ,uh)∂Th + (µ, g)∂ΩD

≤ C ‖µ‖Λ η .

We therefore find from Lemma 17 and Theorem 3 that

cmin‖u− uh‖V + ‖σ − σh‖div,h ≤ C ‖(λ− λh,urm − urm
h )‖Λ×V

≤ C sup
(µ,vrm)∈Λ×Vrm

B(λ− λh,urm − urm
h ;µ,vrm)

‖(µ,vrm)‖Λ×V

≤ C η .

Now, we prove the upper bound. Let µ∗ ∈ Λ such that µ∗ |F = rF and µ∗ |F ′ = 0 for all

F ′ 6= F ∈ E0, hence we get

‖rF‖2
0,F = 2 (rF , Ju− uhK)F ≤ 2 ‖rF‖0,F‖Ju− uhK‖0,F .

Therefore, using the triangle inequality and trace inequality (92), and the mesh regularity it

holds

‖rF‖0,F ≤ 2 ‖Ju− uhK‖0,F

≤ C
∑
K∈ωF

[
h−1
K ‖u− uh‖

2
0,K + hK‖ E(u− uh)‖2

0,K

]1/2
≤ C h

1/2
F ‖u− uh‖V,ωF

.
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As for F ∈ ED, we observe that ‖rF‖0,F ≤ ‖u − uh‖0,F and, then, the above estimate also

holds following an analogous argument. The last result follows from Lemma 6 and following

closely the arguments presented in [3, Corollary 5.3] (in its vectorial version). �

6. Two-level analysis

We establish first in this section the conditions under which the two-level version of the

MHM method (24) remains well-posed and keeps its best approximation property. There

is a great deal of flexibility in the choice of the local finite dimensional spaces and in the

second-level numerical method. Here, we keep the two-level approach as simple as possible,

and select a conforming second-level finite dimensional space Ṽh(K) ⊂ Ṽ(K), where Ṽ(K)

stands for the functions in Ṽ restricted to K ∈ Th, and define

Ṽh := ⊕K∈ThṼh(K) ⊂ Ṽ .

We include the impact of the second-level discretization in the MHM method by replacing

the bilinear form a(·, ·) in (30) with

ah(µh,λh) := (µh, Th λh)∂Th ,(65)

where Th : Λ→ Ṽh is such that Thµh |K satisfies

(AE(Thµh), E(ṽh))K = −(µh, ṽh)∂K for all ṽh ∈ Ṽh ,(66)

and (µ, T̂ f)∂Th is replaced by (µ, T̂h f)∂Th , where T̂h : L2(Ω) → Ṽh is such that T̂h q |K
satisfies

(AE(T̂h q), E(ṽh))K = (q, ṽh)K for all ṽh ∈ Ṽh .(67)

The problems above are the standard Galerkin method set over Ṽh restricted to each K ∈ Th.
The goal is to approximate the solutions of elliptic problems (7)-(8).

The corresponding two-level MHM method reads: Find (λh,u
rm
h ) ∈ Λh ×Vrm such that

Bh(λh,u
rm
h ;µh,v

rm) = Fh(µh,v
rm) for all (µh,v

rm) ∈ Λh ×Vrm ,(68)

where

Bh(λ,u
rm;µ,vrm) := ah(λ,µ) + b(µ,urm) + b(λ,vrm) ,

Fh(µ,v
rm) := (f , vrm)Th − (µ, T̂h f)∂Th + (µ, gD)∂Ω .

Observe that the invertibility of the matrix associated with Bh(·, ·) comes down to invert-

ibility of the symmetric form ah(., .) on the nullspace

(69) Nh := N ∩Λh ,
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where N is given in (47) and Λh satisfies (28) (we have already dealt with the other con-

stituents in the previous analysis). Such a result will be achieved by showing the form

−ah(., .) is coercive on Nh with respect to the norm ‖.‖Λ. Overall, this relies on the choice

of the space Ṽh. A sufficient condition for Ṽh is proposed in the next lemma.

Lemma 10. Let ah(·, ·) be given in (65), and assume that it holds

µh ∈ Nh, (µh, ṽh)∂K = 0 for all ṽh ∈ Ṽh and K ∈ Th ⇒ µh = 0 .(70)

Then, there exists C such that

−ah(µh,µh) ≥ C ‖µh‖2
Λ for all µh ∈ Nh .(71)

Proof. First notice that (70) implies Th is injective on Nh. In fact, if Thµh = 0, then from

(66) it holds, for all K ∈ Th,

0 = (AE(Thµh), E(ṽh))K = −(µh, ṽh)∂K for all vh ∈ Ṽh,

and from (70) we get µh = 0. As a result, dim Nh = dim Th(Nh), where Th(Nh) ⊂ Ṽh is

the image of Th restricted to functions in Nh, and ‖Thµh‖V turns out to be a norm over

the space Nh. To establish the aforementioned coercivity result, we first prove that such a

result holds with respect to the norm ‖Thµh‖V. In fact, let λh = µh ∈ Nh in (65). Using

(66), there is C such that

−ah(µh,µh) = −(µh, Thµh)∂Th

= (AE(Thµh), E(Thµh))Th

≥ cmin‖ E(Thµh)‖2
0,Th

≥ C cmin‖Thµh‖2
V ,(72)

where we used the Korn inequality. Next, observe that from (70) there exits a C such that

sup
ṽh∈Ṽh

(µh, ṽh)∂Th
‖ṽh‖V

≥ C sup
ṽ∈Ṽ

(µh, ṽ)∂Th
‖ṽ‖V

for all µh ∈ Nh ,(73)

as the left-hand side above turns out to be a norm over Nh. The independence of C with

respect to h follows from a standard scaling argument (see [15, page 111], for instance).

Inequality (73) is also found in [30, Lemma 10] with minor differences but used for a different

purpose. Now, from (73) and since ‖ṽ‖V ≤ ‖v‖V for all v ∈ V, and recalling that b(·, ·) =

(·, ·)∂Th , we get from (39) that

sup
ṽh∈Ṽh

(µh, ṽh)∂Th
‖ṽh‖V

≥ C sup
v∈V

(µh,v)∂Th
‖v‖V

≥ C ‖µh‖Λ for all µh ∈ Nh .
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The previous inequality, (66) and the Cauchy-Schwarz inequality together imply,

C ‖µh‖Λ ≤ sup
ṽh∈Ṽh

(µh, ṽh)∂Th
‖ṽh‖V

= sup
ṽh∈Ṽh

−(AE(Thµh), E(ṽh))Th
‖ṽh‖V

≤ C cmax‖Thµh‖V .

We conclude that, for µh ∈ Nh, there exists a positive constant C such that

‖µh‖Λ ≤ C cmax ‖Thµh‖V ,(74)

and consequently, we arrive at the required result for ah(., .), i.e.,

−ah(µh,µh) ≥ C
cmin

cmax

‖µh‖2
Λ for all µh ∈ Nh .

�

Notice that the operators Th and T̂h are bounded, e.g., there are constants C such that

‖Thµ‖V ≤ C ‖µ‖Λ and ‖T̂h q‖V ≤ C ‖q‖0,Ω for all µ ∈ Λ, q ∈ L2(Ω) .(75)

The inequality for Th follows from (91), (66) and Lemma 19, and for T̂h from (91), (67)

and Cauchy-Schwarz inequality. Now, using (75) and Lemma 10, and following the proof of

Theorem 3, we conclude the well-posedness of the two-level MHM method (68) in the next

theorem.

Theorem 11. Suppose (λh,u
rm), (µh,v

rm) ∈ Λh ×Vrm. Then, there exists C such that

Bh(λh,u
rm;µh,v

rm) ≤ C ‖(λh,urm)‖Λ×V ‖(µh,vrm)‖Λ×V .(76)

Moreover, assuming that (70) holds, there exists a positive constant α, independent of h,

such that

sup
(µh,v

rm)∈Λh×Vrm

Bh(λh,u
rm;µh,v

rm)

‖(µh,vrm)‖Λ×V

≥ α ‖(λh,urm)‖Λ×V ,(77)

for all (λh,u
rm) ∈ Λh ×Vrm. Hence, problem (68) is well-posed.

Now, let us quantify the impact of the two-level approach on approximation results. To

this end, observe that the two-level discretization impacts the consistency of MHM method

(17). This can be measured through the following best approximation result, which is an

incarnation of the first Strang lemma.
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Lemma 12. Let (λ,urm) and (λh,u
rm
h ) be the solutions of (30) and (68), respectively. It

holds that there exists C such that

‖(λ− λh,urm − urm
h )‖Λ×V ≤ C

(
inf

µh∈Λh

‖λ− µh‖Λ + ‖(T − Th)λ+ (T̂ − T̂h)f‖V
)
.

Proof. Choose arbitrary µh ∈ Λh. By (39) and (44), for all (γh,w
rm) ∈ Λh ×Vrm, there is

a constant C such that

Bh(µh − λh,urm − urm
h ;γh,w

rm) = Bh(µh,u
rm;γh,w

rm)− Fh(γh,w
rm)

= Bh(µh,u
rm;γh,w

rm) + (F(γh,w
rm)− Fh(γh,w

rm))− F(γh,w
rm)

= (γh, (Th − T )µh − (T̂h − T̂ )f)Th + B(µh − λ, 0;γh,w
rm)

≤ (‖(Th − T )µh + (T̂h − T̂ )f‖V + C ‖µh − λ‖Λ)‖(γh,wrm)‖Λ×V

≤ (‖(Th − T ) (λ− µh)‖V + ‖(Th − T )λ+ (T̂h − T̂ )f‖V

+ C ‖µh − λ‖Λ)‖(γh,wrm)‖Λ×V

≤ (‖(Th − T )λ+ (T̂h − T̂ )f‖V + C ‖µh − λ‖Λ)‖(γh,wrm)‖Λ×V ,

where we used the stability result for T and Th from Lemma 17 and (75), respectively.

Therefore, from (77), we get

‖(µh − λh,urm
h − urm)‖Λ×V ≤

1

α

(
‖(T − Th)λ+ (T̂ − T̂h)f‖V + C ‖λ− µh‖Λ

)
,

and from the triangle inequality

‖(λ− λh,urm − urm
h )‖Λ×V ≤ ‖(λ− µh,0)‖Λ×V + ‖(µh − λh,urm − urm

h )‖Λ×V

the result follows. �

Hereafter, we shall use the characterization of u and σ given in (10), and uh, σh redefined

by

uh := urm
h + Th λh + T̂h f , σh = AE(Th λh + T̂h f) ,(78)

where (urm
h ,λh) ∈ Vrm ×Λh is the solution of (68). A similar best approximation result of

Lemma 12 is also available adopting natural norms. This is presented next.

Corollary 13. Let (λ,urm) and (λh,u
rm
h ) be the solutions of (30) and (68), respectively.

There is a constant C such that

‖u− uh‖V ≤ C
(

inf
µh∈Λh

‖λ− µh‖Λ + ‖(T − Th)λ+ (T̂ − T̂h)f‖V
)
.
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Furthermore, if problem (1) has smoothing properties, it holds

‖u− uh‖0,Ω ≤ C h
(

inf
µh∈Λh

‖λ− µh‖Λ + ‖(T − Th)λ+ (T̂ − T̂h)f‖V
)
.

Proof. Observing that

e = u− uh = urm − urm
h + (T − Th)λ+ Th (λ− λh) + (T̂ − T̂h)f ,

the proof then follows using the stability of Th in (75) and Lemma 12 for the estimate in the

‖.‖V norm. As for the estimate in the L2 norm, we follows the same lines as the proof of

Lemma 6. �

Remark 5. Another option to approximate the functions T λh (e.g. T ψi) and T̂ f locally

is to rewrite (7)-(8) in their mixed form and adopt a well-established mixed method to solve

them. In this case, the increased complexity could be offset by a precise stress tensor σh in

H(div; Ω) post-processed from the two-level primal variable (78) or an improvement in the

robustness of the MHM method in the incompressible limiting case. This alternative deserves

further investigation and will be addressed in the future. �

6.1. Selecting Ṽh. Here we propose a two-dimensional family of spaces Ṽh that fulfills (70),

defined by

Ṽh :=
{
vh ∈ Ṽ : vh |K ∈ [Sk(K)]2, K ∈ Th

}
,(79)

where Sk(K) := Pk(K) or Qk(K), and Qk(K) stands for the space of tensor polynomial

function of order k at most in K ∈ Th. Note that it is based on a single element, and

requires no further discretization of each element. It can be seen as a p-method at the

second level.

Let Λh ≡ Λl be given in (57). Clearly, if k ≤ l then condition (70) cannot occur since

p k = dim Sk(K) ≤ p dimPl(F ) = p (l + 1), where p = 3 or p = 4 if Sk(K) = Pk(K) or

Qk(K), respectively. The following result establishes the compatibility condition between

the degrees l and k such that the condition (70) holds.

Lemma 14. Assume that l ≥ 0. Then, if k satisfies

(80)

{
k ≥ l + 1 if l is even ,

k ≥ l + 2 if l is odd ,

when Sk(K) = Pk(K) or k ≥ l + 2 when Sk(K) = Qk(K), then (70) holds.
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Proof. Assume that k ≥ l + 1 with l ≥ 0, and take µh ∈ Nh such that, for all ṽh ∈ Ṽh,

it holds (µh, ṽh)∂K = 0 for all K ∈ Th . Observe that this condition corresponds to the

assumption that each component µih of µh ∈ Nh satisfies

(µih, v
i
h)∂K = 0 for all K ∈ Th and i = 1, 2 ,(81)

where vih is the i−component of vh ∈ Vh. Now, from Lemma 4 and Lemma 7 in [30] µih

vanishes if and only if vih ∈ Pk(K), with k satisfying (80), or if vih ∈ Qk(K) with k ≥ l + 2,

and the result follows. �

Remark 6. In the case that l is odd or Sk(K) = Qk(K), Lemma 14 points out that the

minimal interpolation, namely polynomial functions of degree k = l+1, cannot be adopted to

approximate second-level solutions. In [30], Lemmas 4 and 7, it has been shown that the local

space of non-trivial polynomial functions µih satisfying (81) is one dimensional with basis of

degree l in both cases. As a result, Ṽh(K) enhanced with a polynomial function of degree

l+ 2 (resp. l+ 2 or l+ 3 depending whether l is even or odd) in each element K ∈ Th when

Sk(K) = Pk(K) (resp. Qk(K)), hereafter denoted by bK, leads condition (81) to be fulfilled

(see [30], Lemmas 6 and 8, for details). �

We may take advantage of the characterization of the non-trivial functions satisfying (81)

given in the previous remark to decrease the computational cost involved in solving the

second level problem. This is accomplished by making the minimal interpolation choice (i.e.

k = l + 1) available for the odd case if Sk(K) = Pk(K) and for the case Sk(K) = Qk(K).

To this end, we redefine the operator Th given in (66). Let us denote by BK the one-

dimensional local space generated through the function bK . The desired result is presented

next using that
∑

K∈Th [BK ]2 ∩ Ṽh = {0}.

Lemma 15. Let k = l + 1 with l ≥ 0. Assume either Sk(K) = Qk(K) or Sk(K) = Pk(K)

and l is odd. Redefine Th : Λ→ Ṽh replacing (66) by

(82)
(AE(Th λh), E(ṽh))K + (AE(P Th λh), E(ṽh))K

= −(λh, ṽh)∂K − (AE(P̂ λh), E(ṽh))K for all ṽh ∈ Ṽh ,

where P : Ṽh →
∑

K∈Th [BK ]2 and P̂ : Λh →
∑

K∈Th [BK ]2 are such that, given ṽh ∈ Ṽh and

µh ∈ Λh, they satisfy respectively,

(83)
(AE(P ṽh), E(bK ei))K = −(AE(ṽh), E(bK ei))K

(AE(P̂ µh), E(bK ei))K = −(µh, bK ei)∂K i = 1, 2 ,
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and bK ∈ BK and ei is the canonical basis in R2. Hence, Th is an injective operator when

restricted to Nh.

Proof. From [30] we have that T̄h : Nh → Ṽh ⊕
∑

K∈Th [BK ]2 satisfying

(AE(T̄h λh), E(w̃h))K = −(λh, w̃h)∂K for all w̃h ∈ Ṽh ⊕
∑
K∈Th

[BK ]2(84)

is injective. Using the (unique) decomposition

T̄h λh = ũkh + ũbh ,

with ũkh ∈ Ṽh and ũbh ∈
∑

K∈Th [BK ]2, we observe that (84) is completely equivalent to the

following system

(85)

{
(AE(ũkh), E(ṽh))K + (AE(ũbh), E(ṽh))K = −(λh, ṽh)∂K for all ṽh ∈ Ṽh

(AE(ũkh), E(bK ei))K + (AE(ũbh), E(bK ei))K = −(λh, bK ei)∂K for bK ∈ BK .

Observe that the second equation leads to the following characterization

ũbh = P ũkh + P̂λh ,

where P and P̂ are given in (83). To obtain the desired result, we substitute it into the first

equation in (85) and define Th λh := ũkh. �

Remark 7. Clearly, assumption (70) also holds if one adopts piecewise polynomial spaces

constructed on top of a sub-mesh in place of (79) (under the same constraint between the de-

grees l and k). Such an option becomes attractive in the case of highly heterogenous material

problems since the basis functions naturally upscale the multi-scale features of the media into

the numerical solution. This viewpoint makes the MHM method a member of the multi-scale

finite element family [25]. �

6.2. Error estimates. Now, let us turn to the second-level discretization from the viewpoint

of convergence. We shall demonstrate results assuming Ṽh ⊂ Ṽ is given by (79) (where the

order of the approximating polynomial is k). From these choices it is well known that,

assuming T µ+ T̂ q ∈Hm+1(Ω), 1 ≤ m ≤ k, the Galerkin method adopted locally to define

the global operators Th and T̂h delivers the following interpolation errors

(86)
‖(T − Th)µ+ (T̂ − T̂h) q‖V ≤ C hm ‖T µ+ T̂ q‖m+1 ,

‖(T − Th)µ+ (T̂ − T̂h) q‖0,Ω ≤ C hm+1 ‖T µ+ T̂ q‖m+1.

As such, using the estimates above, we are ready to present the convergence of the MHM

method with a two-level discretization which adopts space (79).
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Lemma 16. Let (λ,urm) ∈ Λ×Vrm and (λl,u
rm
h ) ∈ Λl ×Vrm be the solutions of (9) and

(68), respectively. Assuming Λl and Ṽh satisfy the conditions in (70) and u ∈ Hm+1(Ω),

then for 1 ≤ m ≤ l + 1 ≤ k with l ≥ 1, it holds that there exist C such that

‖(λ− λl,urm − urm
h )‖Λ×V ≤ C hm ‖u‖m+1(87)

‖u− uh‖V ≤ C hm ‖u‖m+1 .(88)

Furthermore, if problem (1) has smoothing properties, there exists C such that

‖u− uh‖0,Ω ≤ C hm+1 ‖u‖m+1 .(89)

Proof. From Lemma 12, the Cauchy-Schwarz and Poincaré inequalities we get

‖(λ− λl,urm − urm
h )‖Λ×V ≤ C

(
inf
µl∈Λl

‖λ− µl‖Λ + ‖(T − Th)λ+ (T̂ − T̂h)f‖V
)

≤ C hm
(
‖u‖m+1 + ‖Tλ+ T̂f‖m+1

)
≤ C hm ‖u‖m+1 ,

where we used (86) and ‖Tλ + T̂f‖m+1 ≤ ‖u‖m+1 since urm ∈ Vrm is V-orthogonal to

Tλ+ T̂f . The last two results follow analogously from Corollary 13. �

Remark 8. Note that the proposed two-level method (68) preserves some of the main features

of its one-level counterpart, like the well-posedness, the super-convergence of the error and

local equilibrium. For the latter, for all K ∈ Th, it holds from (68) that the approximate

two-level traction λh satisfies∫
∂K

λh v
rm =

∫
K

f vrm for all vrm ∈ Vrm .

Strict conformity in H(div; Ω) and optimal error estimates to the stress σh (post-processed

from displacement (78)) in the H(div; Ω) norm should be expected only if a mixed finite

element method is adopted to approximate local problems. This will be addressed in the

future. �

7. Conclusion

We proposed a new family of H(div; Ω) conforming and stable finite elements for the

linear elasticity equation. The simplest member of this family has, per element, 12 degrees

of freedom in 2D and 30 in 3D in total, respectively. Also interesting is that the approximate

stress tensor preserves the local equilibrium property as well as the strong symmetry using

a simple post-processing of the primal variable. Our analysis provided super-convergent a
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priori error estimates in natural norms and a face-based a posteriori estimator. For the

latter, we proved that reliability and efficiency hold.

Element-wise elasticity problems with prescribed traction on faces drove basis functions.

First, the numerical analysis was done using existence of unique solutions of these problems.

Next, we used this “optimal” context to highlight how a second-level discretization influences

well-posedness and consistency of the method. In particular, a two-level analysis showed

the conditions under which the two-level MHM methods preserve super-convergent error

estimates. As a result, the solutions presented high-order precision even with simple, one-

element discretizations at the second level.

It is worth mentioning that the computation of completely independent local problems for

the basis functions is embedded in the upscaling procedure, so their solutions may be nat-

urally obtained within parallel computational environments. This is particularly attractive

when precisely handling large elasticity problems with heterogeneous coefficients on coarse

meshes.

The important question of robustness of the MHM method for the incompressible limit

case was left open. We observed that such a feature is tightly attached to the choice of

the second-level numerical method. For instance, basis functions obtained from mixed finite

element methods are expected to yield locking-free two-level MHM methods.

8. Appendix

Throughout this work, we need some auxiliary results such as the optimal local Poincaré

inequality (on convex domains) [27] and the following second Korn inequality: For ṽ ∈ Ṽ it

holds (see [14] for instance)

(90) ‖ṽ‖0,K ≤
hK
π
‖∇ṽ‖0,K and ‖∇ṽ‖0,K ≤ Ckorn ‖ E(ṽ)‖0,K ,

where Ckorn is a positive constant independent of h. Combining both previous inequalities,

we arrive at

(91) ‖ṽ‖0,K ≤ Ckorn
hK
π
‖ E(ṽ)‖0,K .

Also, combining the classical Korn inequality [13] with a local trace inequality it follows

that: Given v ∈H1(K), we obtain

(92) ‖v‖0,∂K ≤ C

(
1

hK
‖v‖2

0,K + hK‖ E(v)‖2
0,K

)1/2

,

and using (91) and (92) it holds

(93) ‖ṽ‖0,∂K ≤ C h
1/2
K ‖ E(ṽ)‖0,K ,
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for ṽ ∈ Ṽ. We shall make extensive use of the following value

(94) κ :=
cmax

cmin

.

Next, we prove some of the auxiliary results which are used in previous sections.

Lemma 17. Let µ ∈ Λ and define T : Λ→ Ṽ as in (7), i.e., for each K ∈ Th, T µ ∈ Ṽ is

the unique solution of

(A E(T µ), E(w))K = − (µ, w)∂K for all w ∈ Ṽ .

Then, T is a bounded linear operator satisfying the following bounds

‖A E(T µ)‖div ≤ max

{
κ

π

√
2C2

korn + π2,
√

2

}
‖µ‖Λ ,(95)

‖T µ‖V ≤
(C2

korn + π2)κ

π2cmin

‖µ‖Λ .(96)

Proof. First, the problem has a unique solution if and only if −divAE(T µ) = Rµ ∈ Vrm

from (12), where

(Rµ,vrm)Th =
∑
K∈Th

(µ,vrm)∂K .

By definition (33) of ‖.‖div, integrating by parts and the fact div(AE(T µ)) |K ∈ Vrm(K)

we arrive at

‖A E(T µ)‖2
div ≤

∑
K∈Th

(µ,−cmax T µ+ d2
Ω div(A E(T µ)))∂K ,

where we used (2). Therefore, since −cmax T µ + d2
Ω div(A E(T µ)) ∈ V, it follows by the

local inequality (91) and the fact div(A E(T µ))|K ∈ Vrm(K),

‖A E(T µ)‖2
div ≤ sup

v∈V

b(µ,v)

‖v‖V

[ ∑
K∈Th

(
d−2

Ω ‖cmaxT µ+ d2
Ωdiv(A E(T µ))‖2

0,K + ‖cmax E(T µ)‖2
0,K

) ]1/2

≤ sup
v∈V

b(µ,v)

‖v‖V

[ ∑
K∈Th

(
2 d−2

Ω c2
max‖T µ‖2

0,K + 2 d2
Ω‖div(A E(T µ))‖2

0,K + c2
max‖ E(T µ)‖2

0,K

) ]1/2

≤ sup
v∈V

b(µ,v)

‖v‖V

[ ∑
K∈Th

(
(2C2

korn + π2) c2
max

π2 c2
min

‖A E(T µ)‖2
0,K + 2 d2

Ω‖div(A E(T µ))‖2
0,K

)]1/2

.

Then, using definition of κ in (94), we get

‖A E(T µ)‖div ≤ Ckorn
√

2κ sup
v∈V

b(µ,v)

‖v‖V
.(97)



32 C. HARDER, A. L. MADUREIRA, AND F. VALENTIN

Now, choose arbitrary v ∈ V, and suppose that σ ∈ H(div; Ω) satisfies the property

σnK |∂K = µ for µ ∈ Λ. It follows by Green’s Theorem and the Cauchy-Schwarz inequality

that

∑
K∈Th

(µ,v)∂K =
∑
K∈Th

(σnK ,v)∂K

=
∑
K∈Th

[(div σ,v)K + (σ, E(v))K ]

≤
∑
K∈Th

[
dΩ ‖div σ‖0,K d

−1
Ω ‖v‖0,K + ‖σ‖0,K‖ E(v)‖0,K

]
≤ ‖σ‖div‖v‖V .

Then, by definition of supremum, it follows that

sup
v∈V

b(µ,v)

‖v‖V
= sup
v∈V

(µ,v)∂Th
‖v‖V

≤ ‖σ‖div .

Since σ was arbitrarily taken, the above inequality and definition of infimum imply

sup
v∈V

b(µ,v)

‖v‖V
≤ ‖µ‖Λ ,(98)

and result (95) follows immediately replacing the result above in (97). The bound (96)

follows from Korn’s inequality (91). �

Lemma 18. Let q ∈ L2(Ω) and define T̂ : L2(Ω) → V as in (8), i.e., for each K ∈ Th,

T̂ q ∈ Ṽ is the unique solution of

(A E(T̂ q), E(w))K = (q,w)K for all w ∈ Ṽ .(99)

Then, T̂ is a bounded linear operator satisfying the following bounds

‖A E(T̂ ) q‖div ≤ max {Ckorn, 1}
√

2 dΩ κ ‖q − Π q‖0,Ω ,(100)

‖T̂ q‖V ≤ max {Ckorn, 1}
2 dΩ κ

cmin

‖q − Π q‖0,Ω .(101)
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Proof. First, we establish (100). Note that (2), the fact T̂ q ∈ Ṽ, and the Cauchy-Schwarz

and the local inequality (91), and hK ≤ dΩ imply

‖A E(T̂ q)‖2
0,K ≤ ‖A‖(A E(T̂ q), E(T̂ q))K

≤ cmax (q, T̂ q)K

= cmax (q − ΠK q, T̂ q)K

≤ cmax ‖q − ΠK q‖0,K‖T̂ q‖0,K

≤ Ckorn
κ

π
dΩ ‖q − ΠK q‖0,K‖A E(T̂ q)‖0,K .

Therefore, from (13) and by definition (33) of ‖.‖div, and observing that 1 ≤ κ, we get

‖A E(T̂ q)‖2
div =

∑
K∈Th

[
‖A E(T̂ q)‖2

0,K + d2
Ω ‖q − ΠK q‖2

0,K

]
≤ 2 d2

Ω max

{(
Ckorn

κ

π

)2

, 1

}
‖q − Π q‖2

0,Ω ,

from which the bound (100) follows immediately. The bound (101) follows using the local

Poincaré inequality (90) and the result (100). �

Lemma 19. Suppose µ ∈ Λ. It follows that
√

2

2Ckorn
‖µ‖Λ ≤ sup

v∈V

b(µ,v)

‖v‖V
≤ ‖µ‖Λ.

Proof. Choose arbitrary µ ∈ Λ. The left-hand side bound follows from equation (97) (with

A as the identity matrix). The right-hand bound is inequality (98) in the proof of Lemma 17.

�
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