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Background
I Currently facing serious global crisis, with COVID-19 fast
spreading across the world

I Crisis threatens our health and livelihoods
I With many infectious diseases, possible to manage through
pharmaceutical interventions

I Antivirals increase the rate of recovery
I Vaccines increases individual and population immunity

I Until recently, these tools not available for COVID-19



Background
I Non-pharmaceutical interventions (NPIs) that induce social
distancing include

I Quarantines, self-isolation
I Closure of schools, work places, entertainment venues
I Restrictions on international travel etc.

I These interventions have in common that they influence
contact rates in population

I Reduced contact influences progression of epidemic
I Many NPIs very costly, socially and economically
I Treatment and vaccines are low-cost way of allowing
reductions in NPIs

I What are optimal treatment and vaccination rollout policies?
I How does social distancing react to unanticipated
announcement of pharmaceutical innovation?

I How do such interventions influence behaviour?



Background
I Vaccine rollout in Brazil



Literature
I Hethcote and Waltman (1973),...

I Traditional non-economic analysis

I Francis (1997)
I Equilibrium vaccine decisions socially optimal

I Chen and Toxvaerd (2014)
I Summarise economic approach and literature

I Toxvaerd and Rowthorn (2021)
I Behaviour fixed, vaccine decisions endogenous

I Makris and Toxvaerd (2021)
I Vaccine decisions fixed, behaviour endogenous



Traditional approach
I Need to understand SIR dynamics
I Need to define concept of herd immunity
I Traditional public health/epi approach inconsistent with
cost-benefit analysis

I Will contrast economic approach to this



What do vaccines do?
I Reduce probability that healthy become infected
I Reduce probability that infected become ill
I Reduce probability that infected transfer infection to others

Prevention of infection: 19.2%
Prevention of transmission: 84.7%
Prevention of serious illness (15-34): 74.0%
Prevention of serious illness (35-70): 49.3%
Prevention of fatality when seriously ill: 92.9%



What do vaccines do?
I Vaccines have external effects
I In general, social and private values differ
I Thus role for public intervention
I Nature of externalities depends on context
I Do people change behaviour?
I If not, can analyse vaccination decision in isolation
I If it does, need to analyse interaction between vaccines and
behaviour

I Similar issues hold for treatments



What do treatments do?
I Increase speed of recovery
I Reduce probability that infected become ill
I New antiviral from Merck reduces deaths and hospitalisations
by 50%



Mechanics of vaccines and immunity
I Consider simple SIR model:

Ṡ(t) = −βI (t)S(t)

İ (t) = I (t) [βS(t)− γ]

Ṙ(t) = γI (t)

S(t) = 1− I (t)− R(t)
S(0) = S0 > γ/β, I (0) = I0, S0 + I0 = 1

I Note that S(t) always decreases, R(t) always increases
I But I (t) initially increases, peaks at S(t) = γ/β and then
tends to zero

I Known as herd immunity threshold



Mechanics of vaccines and immunity
I Simple SIR dynamics:



Mechanics of vaccines and immunity
I Why does infection suddenly decrease?
I Over time, fewer and fewer susceptible people left
I They are either recovered (immune) or infected
I Remaining indirectly protected by the immune
I How can we create this outcome artificially?
I By reducing S(t) via vaccination of fraction v
I Dynamic equation becomes

İ (t) = I (t) [(1− v)βS(t)− γ]



Mechanics of vaccines and immunity
I Have İ (t) < 0 when

v > 1− γ

βS(t)

I Assume that S(0) ≈ 1 so condition becomes

v > 1− γ

β
= 1− 1

R0
I Here R0 ≡ β/γ is basic rate of reproduction
I The higher R0 is, the higher required fraction of vaccinated
I Measles: 94%
I COVID-19: 60-70%



Mechanics of vaccines and immunity
I Fundamental problem: targeting herd immunity threshold
incompatible with cost-benefit analysis

I For trivial diseases, not worthwhile to vaccinate at all even if
possible (athlete’s foot?)

I For serious diseases, best to vaccinate everyone
I Herd immunity threshold interesting as descriptive concept
I Not useful per se to guide policy
I Policy should look to balance costs and benefits → use
economics

I Also interested in equilibrium → intervention warranted?



Social optimality of equilibrium
I Francis (1997) found interesting result
I In simple economic-epidemic model, equilibrium vaccine
uptake is socially optimal

I Thus no need to encourage or mandate vaccination
I Chen and Toxvaerd (2914): this result not robust
I Optimality results depends on following assumptions:

1. No spontaneous recovery

2. Vaccination confers instant and perfect immunity

3. Individuals ex ante homogeneous

4. Vaccination completely flexible

5. Individuals infinitely lived

I If any of these violated, equilibrium not socially optimal



Social optimality of equilibrium
I Intuition is as follows
I Each individual compares costs and benefits of vaccination
I Cost is constant but benefits proportional to disease
prevalence

I This determines infection risk
I With vaccination a zero-one decision, choice is bang-bang
I Vaccination optimal when threshold I ∗ reached
I Before this happens, no-one wants to vaccinate
I After it happens, all vaccinate so no-one unvaccinated
afterwards

I As vaccine is perfect, no externalities on anyone and
equilibrium socially optimal



Vaccination and treatment in SIR model

Figure: Perfect vaccines and treatments in SIR model



Vaccination and treatment in SIR model
I Turn model into economic setting
I Health states yield different payoffs with πS ≥ πR ≥ πI
I Future discounted at rate ρ > 0
I Treatment τ(t) ∈ [0, 1] yields recovery at rate τ(t)αT + γ

I Here αT > 0 is effi ciency of treatment
I Treatment costs cT > 0 per instant per individual
I Vaccination v(t) ∈ [0, 1] yields immunity at rate αV v(t)
I Here αV > 0 is effi ciency of vaccine
I Vaccination costs cV > 0 per instant per individual



Socially optimal treatment
I Planner’s problem is:

max
τ(t)∈[0,1]

∫ ∞

0
e−ρt [S(t)πS + I (t) (πI − τ(t)cT )+R(t)πR]dt

I Dynamic constraints are:

Ṡ(t) = −βI (t)S(t)

İ (t) = I (t) [βS(t)− αT τ(t)− γ]

Ṙ(t) = I (t) [αT τ(t) + γ]

S(t) = 1− I (t)− R(t)
S(0) = S0 > γ/β, I (0) = I0 ≈ 0, S0 + I0 = 1



Socially optimal treatment
I Properties of optimal treatment policy:
I Treatment most valuable early in epidemic but value falls over
time

I At most one switch from full treatment to no treatment
I Three possible cases

I Always treat
I Never treat
I First treat and then switch to no treatment

I Treatment yields positive externalities on susceptibles
I But susceptibles decrease over time and so does value of
treatment



Socially optimal treatment
I Simulated paths

Figure: Controlled versus non-controlled dynamics under treatment



Socially optimal vaccination
I Planner’s problem is:

max
v (t)∈[0,1]

∫ ∞

0
e−ρt [S(t)(πS − v(t)cV )+ I (t)πI +R(t)πR]dt

I Dynamic constraints are

Ṡ(t) = −S(t) [βI (t) + αV v(t)]

İ (t) = I (t) [βS(t)− γ]

Ṙ(t) = γI (t) + S(t)αV v(t)

S(t) = 1− I (t)− R(t)
S(0) = S0 > γ/β, I (0) = I0 ≈ 0, S0 + I0 = 1



Socially optimal vaccination
I Properties of optimal vaccination policy:
I Value of vaccination akin to value of lockdowns
I Vaccines moderate transmission from infected to susceptible
I When very few infected, value low
I When very few susceptible, value low
I This creates possibility of non-monotonicity
I Optimal policy can have up to two switches
I Possible sequence: no vaccination, full vaccination, no
vaccination



Socially optimal vaccination
I Simulated paths

Figure: Controlled versus non-controlled dynamics under vaccination



Equilibrium treatment and vaccination
I Treatment
I Qualitatively different from optimal treatment
I Infected individual’s choice independent of aggregates
I Treatment only sought if cost low enough
I Vaccination
I Qualitatively similar to optimal vaccination
I But because of externalities, less than optimal vaccination



Pre-innovation behaviour and policy
I Let’s consider phase before pharmaceutical innovations
available

I Matt Hancock, UK Health Secretary, October 1, 2020:
I “Our strategy is to suppress the virus, protecting the economy,
education and the NHS, until a vaccine can make us safe”

I Donald Trump, US President, November 13, 2020 (after
announcing Pfizer vaccine):

I “[. . . ] this administration will not go, under any
circumstances – will not go to a lockdown, but we’ll be very
vigilant, very careful. [. . . ]. We ask all Americans to remain
vigilant, especially as the weather gets colder and it becomes
more diffi cult to go outside and to have outside gatherings”



Background
I Will study arrival of treatment and vaccines under:
I Perfect foresight equilibrium → non-cooperative,
forward-looking individuals

I Social optimum → utilitarian social planner
I Literature:

I Auld (2003): behaviour before and after vaccines
I Models w. stationary arrival of innovations
I Models w. known date but no post-innovation payoffs



Model
I Continuum population, continuous time, discounted at rate ρ

I At time t individual is in health state i = S , I ,R
I Payoffs for non-infected π and for infected π < π

I Social distancing d(t) ∈ [0, 1] costs c(d(t)), c ′ > 0, c ′′ ≥ 0
I At T there is innovation: new treatment or vaccine
I Treatment and vaccine perfect and costless
I Before T , only social distancing
I After T , no need for social distancing so d∗(t) = 0 for t ≥ T
I If in state i = S , I ,R at time T , earn Vi → expected NPV



Model
I Denote date of infection by t ′

I Qualitative difference between t ′ < T and t ′ ≥ T
I Timeline is as follows:



Equilibrium behaviour
I Individual’s objective:∫ T

0
e−ρt {pS (t)[π − c(d(t))] + pI (t)π + pR(t)π} dt

+e−ρT [pS (T )VS + pI (T )VI + pR(T )VR]
I Constraints:

ṗS (t) = −(1− d(t))βI (t)pS (t), pS (0) = 1

ṗI (t) = (1− d(t))βI (t)pS (t)− γpI (t)

ṗR(t) = γpI (t)
I State var. pi (t) ∈ [0, 1] prob. of being in state i = S , I ,R



Optimal behaviour
I Planner’s objective:∫ T

0
e−ρt {S(t)[π − c(d(t))] + I (t)π + R(t)π} dt

+e−ρT [S(T )VS + I (T )VI + R(T )VR]
I Constraints:

Ṡ(t) = −β(1− d(t))I (t)S(t)
İ (t) = I (t) [β(1− d(t))S(t)− γ]

Ṙ(t) = γI (t)

1 = S(t) + I (t) + R(t)

I (0) ≈ 0, I (0) + S(0) = 1,S(0) > γ/β



Innovation is treatment
I Suppose treatment costless and yields instantaneous recovery
I When infected, can instantly secure payoff of recovered person

π through treatment
I When susceptible, no need to socially distance as when
infected, can treat immediately

I Thus the post-innovation value functions are

VS = VI = VR =
π

ρ



Equilibrium treatment



Optimal treatment



Innovation is vaccine
I Suppose vaccine costless and yields instantaneous, complete
and permanent immunity

I Any susceptible would immediately vaccinate when possible
and would not need to socially distance

I Would therefore earn payoff of recovered person π

I For infected, too late to vaccinate and so earn π until
recovery and π thereafter

I Thus the post-innovation value functions are

VS = VR =
π

ρ

VI =
1
ρ

[
ρπ

ρ+ γ
+

γπ

ρ+ γ

]



Equilibrium vaccination



Optimal vaccination



Imperfect innovations
I Imperfect vaccine that yields incomplete protection:
I After vaccination, still role for social distancing
post-innovation

I Lowers VS so less incentive for social distancing pre-innovation
I Imperfect treatment that yields recovery with delay:
I After treatment, still role for social distancing post-innovation
I Lowers both VS and VI so ambiguous total effect on social
distancing pre-innovation



Going forward
I In practice vaccination in stages b/c of limited stock
I By age, susceptibility etc.
I This introduces new interesting issues and interactions
I Suppose vaccines imperfect; they induce two types of
behavioural responses:

I Vaccinated people reduce social distancing, ceteris paribus
I Non-vaccinated also reduce social distancing, ceteris paribus
I Aggregate equilibrium effect in path indeterminate
I Also, what is socially optimal staging?



Private incentives and public objectives
I Have seen that in general, equilibrium outcomes not socially
optimal

I Can we do something to improve outcomes?
I Can implement first-best by introducing subsidies and taxes
I Two types:

I Subsidies/taxes to actions/instruments → e.g. payment for
vaccination

I Subsidies/taxes on health states → e.g. tax on being infectious

I In practice diffi cult and/or unethical to implement
I Can consider different second-best instruments
I Can also influence people’s decisions directly

I Restrict social interaction (lockdowns)
I Introduce vaccine mandates
I etc.
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