December 13, 2021

Unifying Mathematical Models, Artificial Intelligence and Digital Interactive Tools in the Fight Against COVID-19

Introduction

INTERESSE AMPLIADO

As 10 nações que mais apareceram em publicações científicas relacionadas à pandemia*

* SEGUNDO DADOS CONTABILIZADOS EM 16 DE NOVEMBRO FONTE LITCOVID

SP Covid-19 Info Tracker

• What is this project about

• The availability of a free, interactive tool created to track the Covid-19's progress in São Paulo State and Brazil.

- What have we been working on?
 - Daily updates on Info Tracker platform (<u>www.spcovid.net.br</u>).
 - Database that gathers data at municipal and regional levels.
 - Mathematical models and AI-based algorithms for forecasting scenarios of virus spreading.
 - Press collaboration, scientific reports, and research papers.

Info Tracker Team

Research team members:

Academia Brasileira de

Ciências

CeMEAI-USP

Info Tracker: SP Subregions

Info Tracker Page

Nota 1: Projeções obtidas a partir de Modelos Matemáticos Inteligentes de Epidemiologia, que combinam a dinâmica de contágio do novo coronavirus com técnicas de Intelégência Artificial. Ven http://www.innai.usb.ph/se=245330 e Estudo Gentiño Publicado para detables.

Nota 2: Tava de transmissão do Estado calculada a partir do sumário das cidades acompanhadas pela plataforma devido à niño atualização dos casos confirmados de Covid-19 desde meados de Setembro-2021, na base oficial do Governo do Estado. Detalhes em https://orticia.uol.com.br/saude/ubimaenoticias/setacard/2011/UU/10/verovero-os-doriar.covid-19-dedos.htm

Nota 3: A taxa de transmissão do município de São Paulo pode não corresponder aos dados mais em Novembro-2021, em razão da interrupção momentánea das atualizações dos casos pela prefeitura: nome prefeitura na exocultação da interrupção momentánea das atualizações dos casos pela prefeitura:

Projeções de Casos Ativos (Infectados Ativos) e do Total de Óbitos

Projeções de Recuperados e Número Efetivo de Reprodução do Vírus (Taxa de Contágio)

Info Tracker: International Collaboration

Team: members abroad (Belgium)

Thibault Magnini UCLL

"CEPID-FAPESP CeMEAI: App Pandemic Stats BE é desenvolvido com apoio dos pesquisadores do CEPID-FAPESP CeMEAI" (Jully 23, 2021) Link:

http://www.saocarlos.usp.br/app-pandemic-stats-be-e-desenvolvido-com-apoio-dos-pesq uisadores-do-cemeai/

Computing time-series forecasts and assessing the vaccination progress in Brazil

Paper available at: https://ieeexplore.ieee.org/abstract/document/9535477

The Proposed Epidemiological Model

In our mathematical approach a normalized total population (N = S+I+R+D = 1) is taken in the ODE system

The Proposed Epidemiological Model

Notation	Description
S(t)	Number of susceptible at time t
$I_s(t)$	Number of infected from susceptible subgroup at time t
$I_{v,j}(t)$	Number of infected from subgroup V_j , $j = 1, 2$ at time t
I(t)	Sum of all subgroups I_j at time t
$R_j(t)$	Number of recovered from subgroup $j = s, v_1, v_2$ at time t
$\hat{R}(t)$	Sum of all subgroups R_j at time t
D(t)	Number of deaths at time t
$\overline{V}_{\cdot}(t)$	Number of vaccinated but not yet immunized at
$V_i(t)$	time t , i = 1,2 doses
$V_i(t)$	Number of immunized at time t , i = 1,2 doses
eta(t)	Transient transmission rate
$\beta_{\rm net}(t)$	Prediction for the transmission rate at time t
γ_r	Rate of recovered
γ_d	Rate of mortality
ν_1 and ν_2	First and second dose vaccination rates, respectively
θ_1 and θ_2	First and second dose efficacies, respectively
α_i	Time delay for vaccine dose effectiveness, $i = 1,2$ doses
$R_t(t)$	Time-dependent effective reproduction number

Pipeline overview of the SIR-inspired model (a SIR variant).

The Proposed Epidemiological Model

- The parameters γ_r and γ_d account for the rates of recovered and mortality, respectively.
- In our formulation, we assume that the transmission rate has a transient trajectory, i.e., $\beta = \beta(t)$. As a consequence, we get a time-dependent reproduction number on the form:

$$egin{aligned} R_t(t) &= rac{eta(t)}{\gamma_r+\gamma_d}S & ext{(SIRD Model)} \ R_t(t) &= rac{eta(t)}{\gamma_r}ig[ar{V}_1+(1- heta_1)(V_1+ar{V}_2)+(1- heta_2)V_2ig]+rac{eta(t)}{\gamma_r+\gamma_d}S & ext{(SVIRD Model)} \end{aligned}$$

• The so-called effective reproduction number, $R_t(t)$, is an important epidemiological metric that quantifies the average number of new infections arising from a primary infected individual in the population.

- Since the actual expression of $\beta(t)$ is unknown, we use a neural network for estimating it
- The training process determines this function by tuning the neural network weights

• The neural network for estimating $\beta(t)$ is a function

 $egin{aligned} eta_{net}(t) &= f_2(\mathbf{W}^{(2)}\mathbf{f}_1(\mathbf{W}^{(1)}t+\mathbf{b}))\ f_1(x) &= rac{1}{1+e^{-x}} ext{ (Sigmoid function)}\ \mathbf{f}_1: \mathbb{R}^N o \mathbb{R}^N, [x_i] \mapsto [f_1(x_i)]\ f_2(x) &= 0.001 + \max\{0,x\} ext{ (adpted ReLU)}\ \mathbf{W}^{(1)}, \mathbf{b} \in \mathbb{R}^{N imes 1}, \mathbf{W}^{(2)} \in \mathbb{R}^{1 imes N} \end{aligned}$

• The NN weights {**W**⁽¹⁾, **W**⁽²⁾, **b**} are optimized alongside other equation parameters so the numerical solution fits the real data

• Once the weights are defined, we can use a numerical solver for estimating the variables

$$egin{aligned} rac{dS}{dt} &= -eta(t)SI, \ \hline & & & & & \\ rac{dI}{dt} &= eta(t)SI - (\gamma_r + \gamma_d)I, \ \hline & & & & & \\ rac{dR}{dt} &= \gamma_r I, \ \hline & & & & & \\ rac{dD}{dt} &= \gamma_d I. \end{aligned}$$

• In our implementation we used the LSODA solver implemented in python

Parameter Calibration

$$rgmin_{W,b,\gamma_r,\gamma_d} \,\, \mathcal{L}(eta_{ ext{net}}(t),\gamma_r,\gamma_d),$$

Onde

$$egin{aligned} \mathcal{L}eta eta R_{net}(t), \gamma_r, \gamma_d,
u_1,
u_2eta) &= \sum_{l \in L} l, \ L = \{l_I, l_R, l_D, l_{v1}, l_{v2}, l_{sum}\}, \ l_I &= rac{1}{M} \sum_{i=0}^M [\log(I_i) - \log(ilde{I}_i)]^2, \quad l_R = rac{1}{M} \sum_{i=0}^M [\log(R_i) - \log(ilde{R}_i)]^2, \ l_D &= rac{1}{M} \sum_{i=0}^M [\log(D_i) - \log(ilde{D}_i)]^2, \quad l_{v1} = rac{1}{M} \sum_{i=0}^M [\log(V_{1,i}) - \log(ilde{V}_{1,i})]^2, \ l_{v2} &= rac{1}{M} \sum_{i=0}^M [\log(V_{2,i}) - \log(ilde{V}_{2,i})]^2, l_{sum} = rac{1}{M} \sum_{i=0}^M [\log(ilde{T}_i)]^2 \end{aligned}$$

Dealing with ill-behaved data portions

• Improving the data fitting capability x ill-behaved data portions

(Left) The selected ill-behaved training periods (discarded trainings) and (Right) training results that have passed the error criteria for good training.

Dealing with ill-behaved data portions

Computing geometric mean w.r.t. well-behaved predictions (left) as the definitive prediction (right plot).

Results and Simulations

Predicting COVID-19 in São Paulo

The Transient Behavior of Transmission Rate

The spread for different data set

Simulating vaccination campaigns

- I. General goal: Measuring the impact of the vaccination roll-out, focusing on different vaccines and immunization speed rates.
- 2. Regions/countries studied:
 - I. Israel,
 - 2. Serrana (São Paulo State's town)
 - 3. São Paulo State
 - 4. Brazil

Validation with real vaccination data

Serrana's town scenarios results

Parameters adopted to run the simulations

Vaccine	Efficacy Dose 1	Efficacy Dose 2	Efficacy Delay
Coronavac (Sinovac)	$ heta_1=5.98\%$	$ heta_2 = 66.48\%$	$\alpha = \frac{1}{14}$
Pfizer (BioNTech)	$ heta_1 = 52.00\%$	$ heta_2 = 95.00\%$	$\alpha = \frac{1}{21}$
AstraZeneca (Oxford)	$ heta_1=64.00\%$	$ heta_2 = 70.40\%$	$\alpha = \frac{1}{14}$

Efficacy adopted for specific vaccine types (For details about the selected vaccine efficacies, see the full paper).

Vaccination scenarios by varying the vaccine efficacy

Coronavac	AstraZeneca	Pfizer	Resultant Efficacy	Color
80%	20%	0%	$egin{array}{l} heta_1=18\%\ heta_2=59\% \end{array}$	blue (baseline)
40%	30%	30%	$egin{array}{l} heta_1=37\%\ heta_2=72\% \end{array}$	orange
100%	0%	0%	$ heta_1=6\% \ heta_2=56\%$	purple
0%	100%	0%	$\begin{array}{l} \theta_1=64\%\\ \theta_2=70\% \end{array}$	red
0%	0%	100%	$egin{array}{l} heta_1=52\%\ heta_2=95\% \end{array}$	green

Mixed vaccine proportions and their resultant effectiveness used to run the experiments.

Vaccination scenarios by varying the vaccine efficacy

Coronavac	AstraZeneca	Pfizer	Resultant Efficacy	Color	
80%	20%	0%	$ heta_1=18\%$	blue	
	2070	0 /0	$ heta_2 = 59\%$	(baseline)	
40%	30%	30%	$ heta_1 = 37\%$	orange	
+070	5070	5070	$\theta_2 = 72\%$	orange	
100%	0%	0%	$ heta_1=6\%$	purple	
10070	070	070	$\theta_2 = 56\%$	purple	
0%	100%	0%	$\theta_1 = 64\%$	red	
	10070	070	$\theta_2 = 70\%$		
0%	0%	100%	$ heta_1=$ 52%	green	
	0 /0	100/0	$ heta_2=95\%$	Breen	

Mixed vaccine proportions and their resultant effectiveness used to run the experiments.

Comparing vaccine efficacies by assuming the baseline scenario observed in Brazil during March 2021

	Efficacy	Cases		Deaths	
Forecast Period:	Encacy	São Paulo	Brazil	São Paulo	Brazil
• Abril – June 2021	Baseline	1,395,106	4,217,642	66,339	191,676
-	$\theta_1 = 37\%$ $\theta_2 = 72\%$ (Orange)	1,241,105 (-11.0%)	3,955,485 (-6.2%)	62,326 (-6.0%)	186,396 (-2.8%)
PFIZER	$egin{aligned} & heta_1=52\%\ & heta_2=95\%\ & ext{(Green)} \end{aligned}$	1,137,064 (-18.5%)	3,783,811 (-10.3%)	59,605 (-10.2%)	182,920 (-4.6%)
ASTRAZENECA	$egin{array}{l} heta_1=64\%\ heta_2=70\%\ ({ m Red}) \end{array}$	1,113,243 (-20.2%)	3,713,921 (-11.9%)	58,743 (-11.5%)	181,273 (-5.4%)
CORONAVAC	$egin{aligned} heta_1 &= 6\% \ heta_2 &= 56\% \ (ext{Purple}) \end{aligned}$	1,474,225 (+5.7%)	4,353,357 (+3.2%)	68,407 (+3.1%)	194,424 (+1.4%)

Qualitative results: cumulative cases and deaths in Brazil

ASTRAZENECA

CORONAVAC

Cumulative Confirmed - Brazil Cumulative Deceased - Brazil 1e7 1.7 500.000 1.6 450,000 1.5 400,000 1.4 1.3 350,000 1.2 Real data — θ1: 52%, θ2: 95% Real data — θ₁: 52%, θ₂: 95% 300.000 $\theta_1: 18\%, \theta_2: 59\%$ $\theta_1: 18\%, \theta_2: 59\%$ — θ₁: 64%, θ₂: 70% --- $\theta_1: 64\%, \theta_2: 70\%$ 1.1 — θ₁: 6%, θ₂: 56% $\theta_1: 37\%, \theta_2: 72\%$ $\theta_1: 6\%, \theta_2: 56\%$ $\theta_1: 37\%, \theta_2: 72\%$ Training Test Training 250.000 03/03/2021 04/01/2021 05/02/2021 06/01/2021 07/01/2021 03/03/2021 04/01/2021 05/02/2021 06/01/2021 07/01/2021

PFIZER

Data

Figure: Assessing different vaccine efficacies concerning Covid-19 cases (left) and deaths (right) in Brazil (period:April to June 2021)

Data

The impact of increasing the immunization rate

- Simulations with different vaccination rates vs. the real immunization roll-out as observed in March 2021 in the State of SP and Brazil:
 - Significant reductions were found in the number of new cases and deaths during

Campanhas de Vacinação	Casos Confirmados Covid-19		Óbitos por Covid-19	
	Estado de SP	Brasil	Estado de SP	Brasil
Referências para as comparações	1,395,106	4,217,642	66,339	191,676
(campanhas atuais, de SP e Brasil, com			Real: 56.793	Real: 189,505
dados de vacinação compilados de			MAPE: 16,81%	MAPE: 1,15%
janeiro – março de 2021)				
Campanhas com projeções (velocidade	925,808	3,303,194	36,511	135,479
de vacinação aumentadas em relação à	(-33,6%)	(-21,7%)	(-45%)	(-29,3%)
campanha descrita acima, isto é,	(casos	(casos	(óbitos	(óbitos
aplicando-se em torno de 2.2 milhões de	evitados no	evitados no	evitados no	evitados no
doses diárias por dia – Brasil –, e 296 mil	período:	período:	período:	período:
doses diárias no Estado de SP)	469,298)	914,448)	29,828)	56,197)

Table: Comparison of vaccination campaigns (simulations) in Brazil and State of SP considering a three-month projection period (April – June 2021).

Increasing the immunization rate vs vaccine types

Eficácia resultante	Casos Confirmados Covid-19		Óbitos por Covid-19	
(ver Tabela 5)	Estado de SP	Brasil	Estado de SP	Brasil
Referência p/ comparações	1,395,106	4,217,642	66,339	191,676
(campanha atual, SEM aumentar				
a velocidade de vacinação				
$ heta_1 = 18\%$	925,808	3,303,194	36,511	135,479
$\theta_2 = 59\%$	(-33,6%)	(-21,7%)	(-45%)	(-29,3%)
(campanha atual, mas com veloc.	20.000 20.0			(vidas salvas:
de <u>vac</u> . aumentada)				56,197)
$\theta_1 = 52\%$	538,536	2,404,922	30,648	124,115
$\theta_2 = 95\%$	(-61,4%)	(-43%)	(-53,8%)	(-35,2%)
(somente Pfizer, com veloc. de				vidas salvas:
vac. aumentada)				67,561)
$\theta_1 = 64\%$	610,734	2,549,897	31,348	125,126
$ heta_2 = 70\%$	(-56,2%)	(-39,5%)	(-52,7%)	(-34,7%)
(somente AstraZeneca, com				vidas salvas:
veloc. de <u>vac</u> . aumentada)				66,550)
$\theta_1 = 6\%$	1,026,201	3,524,649	38,043	138,380
$ heta_2 = 56\%$	(-26,4%)	(-16,4%)	(-42,7%)	(-27,8%)
(somente <u>Coronavac</u> , com veloc.	2010/20 101 1.14	6466 - 61 ¹ - 117	1991 - 1995 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 -	vidas salvas:
de <u>vac</u> . aumentada)				53,296)

Table: Comparisons of different vaccines in Brazil and São Paulo State considering a fast vaccination roll-out (period: April-June 2021).

Qualitative results: cumulative cases and deaths in Brazil

ASTRAZENECA

CORONAVAC

Cumulative Confirmed - Brazil Cumulative Deceased - Brazil le7 450,000 1.6 425,000 1.5 400,000 1.4 375,000 350,000 1.3 325,000 1.2 300,000 θ₁: 52%, θ₂: 95% Real data Real data θ_1 : 52%, θ_2 : 95% $\theta_1: 18\%, \theta_2: 59\%$ θ1: 64%, θ2: 70% θ_1 : 18%, θ_2 : 59% θ1: 64%, θ2: 70% 275,000 1.1 θ1: 37%, θ2: 72% $\theta_1: 37\%, \theta_2: 72\%$ $\theta_1: 6\%, \theta_2: 56\%$ $\theta_1: 6\%, \theta_2: 56\%$ Training Training Test Test 250,000 03/03/2021 05/02/2021 06/01/2021 07/01/2021 05/02/2021 06/01/2021 07/01/2021 04/01/2021 04/01/2021

PFIZER

Figure: Assessing different immunization speed rates: (left) cases and (right) deaths in Brazil (period: April to June 2021).

Concluding Remarks

I. If more people had been vaccinated more quickly, 60,000 deaths could have been avoided (period: April – June 2021).

There are no significant differences between vaccines (in terms of efficacy) since more people are getting vaccinated in a shorter time span (vaccinating faster matters more than vaccine efficacy!).

3. Our methodology can be successfully used to perform numerical investigation concerning the recent strategy of mix-and-match vaccination.

Next steps

Omicron: Three vaccine doses key for protection against variant

By James Gallagher

Health and science correspondent

③ 2 days ago ☐ Comments

Model Adaptation: Reinfection and loss of Immunity

- With the new variants and the growing reinfection cases, we suggest an adaptation of the proposed model
- Simplified variables
- More connections
- Reinforcement dose are modeled by the loss of immunity rate. Given a period after the immunization, the individual backs to a group that need take another vaccine shot

Model Adaptation: Reinfection and loss of Immunity

- Some parameters has to be estimated by the literature
- This model captures some keys dynamics of the infection
- Historical analysis can be done to compare variants impact on their detection period

Model Adaptation: Loss metric

• For dealing with zero valued variables, we changed the MSLE for the RMSE function

$$\begin{split} L &= \{l_{I}, l_{R}, l_{D}, l_{v1}, l_{v2}, l_{sum}\}, \\ l_{I} &= \sqrt{\frac{1}{M} \sum_{i=0}^{M} (I_{i} - \tilde{I}_{i})^{2}}, \quad l_{R} = \sqrt{\frac{1}{M} \sum_{i=0}^{M} (R_{i} - \tilde{R}_{i})^{2}}, \\ l_{D} &= \sqrt{\frac{1}{M} \sum_{i=0}^{M} (D_{i} - \tilde{D}_{i})^{2}}, \quad l_{v1} = \sqrt{\frac{1}{M} \sum_{i=0}^{M} (V_{1,i} - \tilde{V}_{1,i})^{2}}, \\ l_{v2} &= \sqrt{\frac{1}{M} \sum_{i=0}^{M} (V_{2,i} - \tilde{V}_{2,i})^{2}}, l_{sum} = \sqrt{\frac{1}{M} \sum_{i=0}^{M} (1 - \tilde{T}_{i})^{2}} \end{split}$$

- SP Covid-19 Info Tracker:
 - www.spcovid.com.br
 - www.spcovid.net.br

