A multigenerational SIR model: some estimates and immunization strategies

Alexandre L. Madureira www.lncc.br/~alm

Topics in Empirical Analysis and Economic Modeling Related to COVID-19

26 de novembro de 2020

Coautores:

Eduardo Campos (FGV EPGE, ENCE/IBGE) Rubens Cysne (FGV EPGE) Gelcio Mendes (INCA)

Contents

Modelagem SIR para a COVID-19

Entendendo o passado

Prevendo o passado

Vacinação?

Aspectos econômicos

Conclusões

Contents

Modelagem SIR para a COVID-19

Objetivos e Ressalvas Modelagem SIR Estimando parâmetros

Entendendo o passado

Prevendo o passado

Vacinação?

Aspectos econômicos

Conclusões

Objetivos e Ressalvas

Nossos objetivos são

- apresentar uma modelagem tipo SIR para a COVID-19, baseada em faixas etárias e atividades heterogêneas
- propor uma forma de se conduzir previsões baseada em comportamentos passados
- discutir impactos de possíveis estratégias de vacinação

Ressalvas

as opiniões emitidas nesta apresentação são de minha responsabilidade, e as simulações apresentadas não têm a finalidade de prever de forma fidedigna a evolução da COVID-19, mas tão somente de entender o comportamento da doença e apontar possíveis futuros cenários, de forma qualitativa.

Modelagem SIR

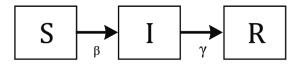


Figure: população $\mathcal{N} = \mathcal{S} + \mathcal{I} + \mathcal{R}$

Compartimentos

- Suscetíveis S
 - ficam doentes ao contactar $\beta \times$ infectados
- 2. Infectados \mathcal{I}
 - ightharpoonup se recuperam a uma taxa γ
- 3. Recuperados \mathcal{R}
 - não voltam a ficar doentes
 - incluem os mortos

SIR basicão (slide mais importante)

Para os dias t = 1, 2, 3, ...,

$$S_{t} = S_{t-1} - (\beta/\mathcal{N})\mathcal{I}_{t-1}S_{t-1}$$
$$\mathcal{I}_{t} = \mathcal{I}_{t-1} + (\beta/\mathcal{N})\mathcal{I}_{t-1}S_{t-1} - \gamma\mathcal{I}_{t-1}$$
$$\mathcal{R}_{t} = \mathcal{R}_{t-1} + \gamma\mathcal{I}_{t-1}$$

- ▶ conhecendo-se S_0 , I_0 e R_0 , o sistema está determinado
- β "mede" contatos: difícil de determinar, mas "controlável"
- ▶ a taxa de recuperação $\gamma \sim 1/d$, onde d é a duração da infecção, é fácil de determinar, mas "fora de controle"

Como parar a doença?

- fazer $\mathcal{I}_t < \mathcal{I}_{t-1}$, i.e., $R_t := (\beta/\gamma)(\mathcal{S}_{t-1}/\mathcal{N}) < 1$
- ightharpoonup como $S_{t-1}/\mathcal{N} < 1$, basta ter $R_0 := \beta/\gamma < 1$
- $ightharpoonup R_t < 1$ determina a *imunidade de rebanho*
- único controle: β

Vida...modelos...nada é tão simples

Limitações do SIR basicão

- contatos dependem da idade e de atividades
- não permite propor políticas de afastamento/vacinação por faixas etárias ou atividades.

Sofisticações

- dividir a população em faixas etárias (de 5 em 5 anos)
- dividir infectados em subclínicos e clínicos
- determinar parâmetros
- impor políticas de imunização por faixa etária

SIR multigeração

Para faixa etária $i = 1, \dots, 16$

$$S_i(t+1) = S_i(t) - \beta_i(\mathcal{I})S_i(t)$$

$$\mathcal{I}_i(t+1) = \mathcal{I}_i(t) + \beta_i(\mathcal{I})S_i(t) - \gamma \mathcal{I}_i(t)$$

$$\mathcal{R}_i(t+1) = \mathcal{R}_i(t) + \gamma \mathcal{I}_i(t)$$

Observações (para faixa etária i = 1, ..., 16)

- $ightharpoonup \mathcal{I}_i^{ extsf{sc}} = (1ho_i)\mathcal{I}_i$ são *infectados subclínicos*, assintomáticos
- $ightharpoonup \mathcal{I}_i^{c} =
 ho_i \mathcal{I}_i$ são *infectados clínicos*, com fortes sintomas
- $ightharpoonup eta_i$ depende de $\mathcal{I}^{ ext{sc}}$ e $\mathcal{I}^{ ext{c}}$, e "mistura" as diversas idades
- ightharpoonup a recuperação γ independe da idade

Pequena revisão bibliográfica

Trabalhos anteriores:

- W.H. Hamer; The Lancet, 1906
- A.G. M'Kendrick; Proceedings of the Edinburgh Mathematical Society, 1925
- W.O. Kermack, A.G. McKendrick, G.T. Walker; Proceedings of the Royal Society of London, 1927
- S. Towers, Z. Feng; Mathematical Biosciences, 2012
- ▶ K. Prem et al.; The Lancet Public Health, 2020
- B.K. Komatsu, N. Menezes-Filho; Insper, 2020

Interação social

vetor de contato:

$$\boldsymbol{\beta}_{i}(\boldsymbol{\mathcal{I}}^{\mathrm{sc}}, \boldsymbol{\mathcal{I}}^{\mathrm{c}}) = \sum_{j=1}^{16} C_{ij}^{e} (\alpha^{\mathrm{sc}} \mathcal{I}_{j}^{\mathrm{sc}} + \alpha^{\mathrm{c}} \mathcal{I}_{j}^{\mathrm{c}}) / \mathcal{N}_{j},$$

- $ightharpoonup \alpha^{sc}$, α^{c} : fração dos infectados transmitindo o vírus
- matriz efetiva de contatos:

$$C^{e} = \beta_{h}(t)C^{\mathsf{home}} + \beta_{w}(t)C^{\mathsf{work}} + \beta_{s}(t)C^{\mathsf{school}} + \beta_{o}(t)C^{\mathsf{other}}$$

- ▶ matrizes C^{home} , C^{work} , C^{school} , C^{other} mensuram contatos pré-pandemia da faixa i com a faixa j, em cada localidade
- $ightharpoonup eta_h,\,eta_w,\,eta_s,\,eta_o$ modelam interação social e taxa de contágio

Matrizes de contato:

- J. Mossong et al.; PLOS Medicine, 2008
- K. Prem, A.R. Cook, M. Jit; PLOS Computational Biology, 2017

Números de reprodução

Definition (Número Básico de reprodução \mathbb{R}_0)

É o número de contaminações produzidas pela presença de um indivíduo contaminado numa população totalmente suscetível

Depois de algumas contas:

$$\mathbb{R}_0 := \frac{1}{\gamma} \lambda_{\mathsf{max}}, \qquad \mathbb{R}_t := \frac{1}{\gamma} \lambda_{\mathsf{max}}(t)$$

onde λ_{\max} e $\lambda_{\max}(t)$ são os maiores autovalores das matrizes $\mathcal{P}C^eD$ e $\mathcal{S}C^eD$.

Outros parâmetros

- ho_i indica se paciente da faixa i se tornará infectado subclínico ou clínico
- lacktriangledown mortos: $\gamma \mu(t) oldsymbol{w}_d \cdot oldsymbol{\mathcal{I}}^{\mathbf{c}}$, onde $\mu(t) oldsymbol{w}_d$ é a *letalidade*

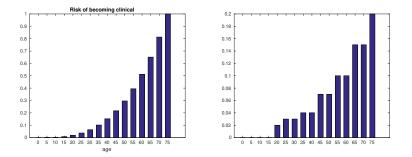


Figure: probabilidade ho de se tornar clínico (esq) e letalidade w_d (dir)

Achando parâmetros

Dois tipos de parâmetros precisam ser determinados:

1. Na matriz efetiva de contatos:

$$C^{e} = \beta_{h}(t)C^{\text{home}} + \beta_{w}(t)C^{\text{work}} + \beta_{s}(t)C^{\text{school}} + \beta_{o}(t)C^{\text{other}},$$

2. Na letalidade: $\mu(t)w_d$

Simplificações:

- (i) Escolas fechadas: $\beta_s = 0$
- (ii) Contato em casa não muda: β_h constante
- (iii) Não identificabilidade: $\beta_w(t) = \beta_o(t)$
- (iv) Cálculo de $\mu(t)$ via número de mortos (dados) e de infectados (SIR)

Achando parâmetros

Problema de otimização: buscar $\beta_h \in \mathbb{R}$, $\beta_w \in P_0[0,T]$ (espaço das funções constantes a cada 10 dias) minimizando

$$J(\mathcal{I}^{\mathsf{SIR}}) = \frac{\|\mathcal{I}^{\mathsf{SIR}} - \mathcal{I}^{\mathsf{data}}\|_{L^2(0,T)}}{\|\mathcal{I}^{\mathsf{data}}\|_{L^2(0,T)}}$$

onde

- (i) \mathcal{I}^{SIR} : infectados clínicos calculado por SIR
- (ii) \mathcal{I}^{data} : número de infectados (Ministério da Saúde)

Método: otimização randômica:

- Dado parâmetro inicial x, ache y adicionando "ruído"
- ightharpoonup Se J(y) < J(x) faça x = y.
- Itere

Contents

Modelagem SIR para a COVID-19 Objetivos e Ressalvas Modelagem SIR Estimando parâmetros

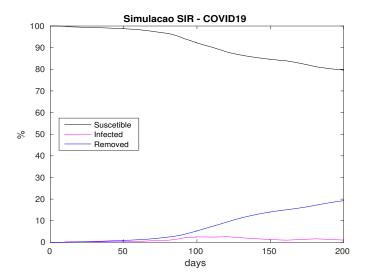
Entendendo o passado

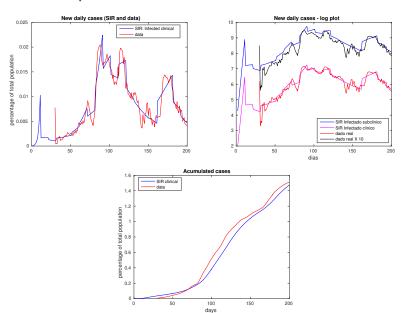
Prevendo o passado

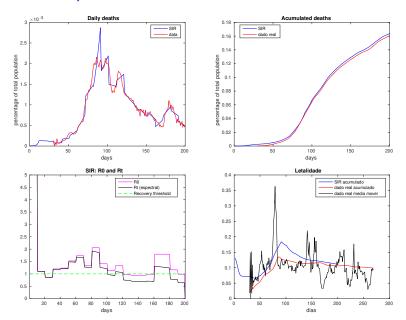
Vacinação?

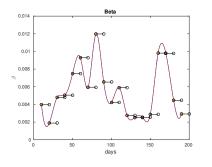
Aspectos econômicos

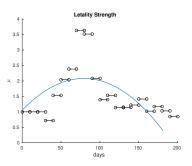
Conclusões











Contents

Modelagem SIR para a COVID-19
Objetivos e Ressalvas
Modelagem SIR
Estimando parâmetros

Entendendo o passado

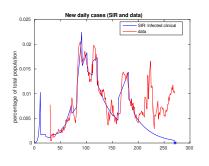
Prevendo o passado

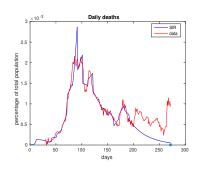
Vacinação?

Aspectos econômicos

Conclusões

Como prever algo assim?

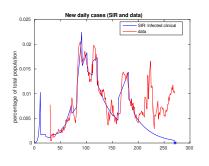


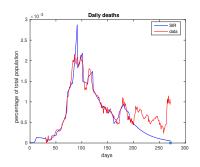


Explicação (Marinho Chagas):

"Posso resumir a derrota do Botafogo em duas palavras: A ZAR."

Como prever algo assim?





Explicação (Marinho Chagas):

"Posso resumir a derrota do Botafogo em duas palavras: A ZAR."

Gerando cenários

Algoritmo melhor cenário

- ▶ fixe dia=200; escolha $j \ge 0$
- Fixe β_w e μ como os menores dos últimos j "betas" e "mus" anteriores
- use o SIR para fazer previsões

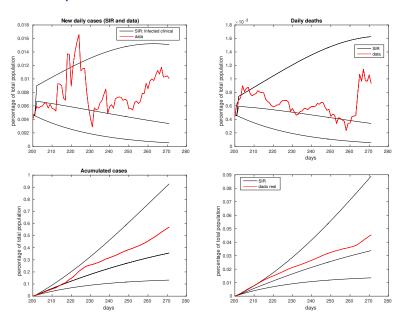
Algoritmo pior cenário

fixe β_w e μ como os maiores dos últimos j betas e mus anteriores

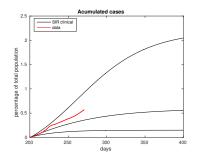
Algoritmo cenário intermediário

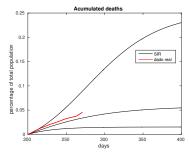
fixe β_w e μ como a média dos melhor/pior casos

Previsões para o Rio

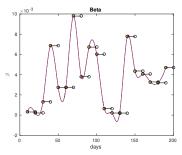


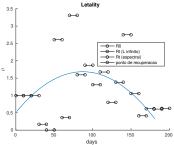
Previsões a longo prazo para o Rio

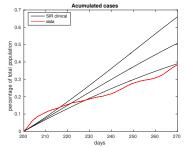


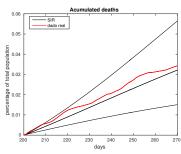


Petrópolis

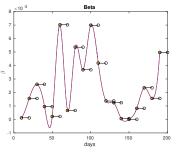


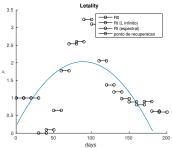


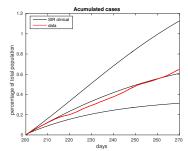


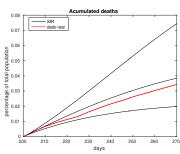


Estado de Rio de Janeiro

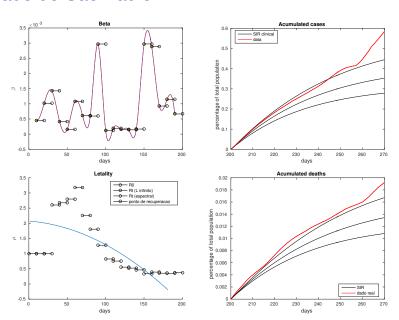




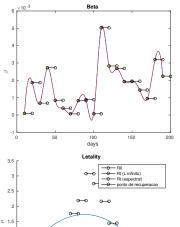


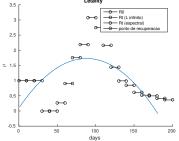


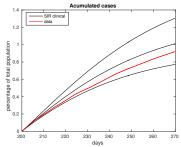
Cidade de São Paulo

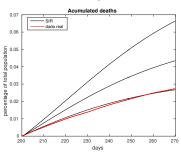


Estado de São Paulo

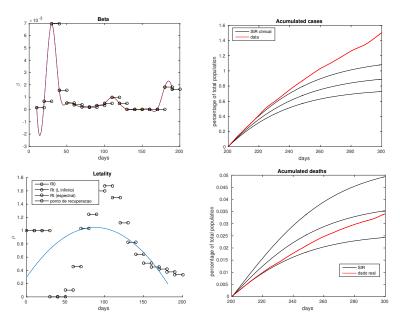








Brasil



Contents

Modelagem SIR para a COVID-19
Objetivos e Ressalvas
Modelagem SIR
Estimando parâmetros

Entendendo o passado

Prevendo o passado

Vacinação?

Aspectos econômicos

Conclusões

Reproduction and replacement numbers

Definition (A new basic reproduction number $\mathbb{R}_{0,\infty}$)

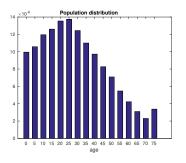
Is the *largest* number of secondary cases *in each age group* produced by an infected individual introduced in a totally susceptible population.

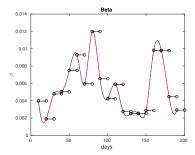
After some algebra:

$$\mathbb{R}_{0,\infty} := \frac{1}{\gamma} \| \boldsymbol{P}^T C D \|_{\infty}, \qquad \mathbb{R}_{t,\infty} := \frac{1}{\gamma} \| \boldsymbol{S}^T C D \|_{\infty}$$

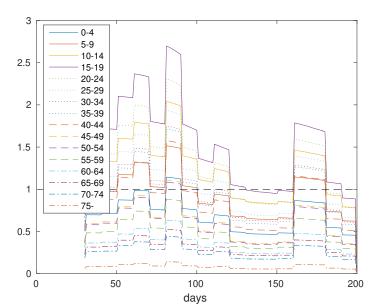
The above idea allows finding the most contagious age groups.

No caso do Rio:





No caso do Rio ($\mathbb{R}_{t,\infty}$):



Algumas especulações

Quem deve ser vacinado?

- ▶ Jovens entre 15-19 anos (~ 464 k vacinas)
 - grande redução do contágio
 - baixo risco de morte
 - fora do mercado de trabalho
- ▶ Adultos 20-39 (~ 2.053 k vacinas)
 - boa redução do contágio
 - algum risco de morte
 - economicamente ativos
- ▶ Adultos 40-59 (~ 1.636 k vacinas)
 - moderada redução do contágio
 - moderado risco de morte
 - economicamente ativos
- ▶ Adultos 60- (~ 910 k vacinas)
 - baixa redução do contágio
 - alto risco de morte
 - fora do mercado de trabalho

Simulação hipotética

Considere:

- população igual à do Rio
- interação social $(\beta(t))$ igual à do Rio
- letalidade constante
- grupos sendo vacinados a partir do dia 1
- vacinas 100% eficientes: bloqueiam contágio
- distribuição 100% eficiente: todos do grupo são vacinados

Casos

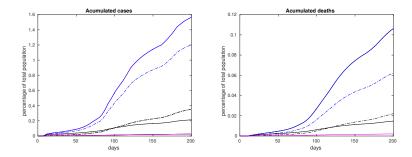


Figure: azul continuo: sem vacinas; azul tracejado: >60; preto tracejado: 40-59; preto contínuo: 15-20; magenta: 20-39

Contents

Modelagem SIR para a COVID-19 Objetivos e Ressalvas Modelagem SIR Estimando parâmetros

Entendendo o passado

Prevendo o passado

Vacinação?

Aspectos econômicos

Conclusões

Custo da pandemia: desemprego

Mão de obra

- suscetíveis: S_i
- doentes (mas não sabem): $\alpha^{\text{sc}}\mathcal{I}_i^{\text{sc}}$
- ightharpoonup ex-doentes (mas não sabem): $lpha^{
 m sc}R_i^{
 m sc}$
- ► clínicos testados: $(1 \alpha^{sc})\mathcal{I}_i^{sc} + \mathcal{I}^{c}$
- ightharpoonup recuperados testados: $(1-lpha^{
 m sc})R_i^{
 m sc}+R_i^{
 m c}$

Custo do desemprego: $\int_0^{+\infty} e^{-(r+\nu)t} w U \ dt$ onde $U = \sum_{i=5}^{13} U_i$ é o desemprego e

$$U_i = (1 - \alpha^{\text{sc}}) \mathcal{I}_i^{\text{sc}} + \mathcal{I}_i^{\text{c}}.$$

Custo das mortes: $\int_0^{+\infty} e^{-(r+\nu)t} D dt$

Políticas de vacinação

Grupos vacinados	# vacinas	Custo desemprego	Custo mortes
nenhum	0	1.122 k	2.752
15-19	464 k	179 k	448
20-39	2.053 k	12 k	67
40-59	1.636 k	335 k	553
60-	910 k	1.032 k	1.619
45-	2.106 k	506 k	322

Contents

Modelagem SIR para a COVID-19 Objetivos e Ressalvas Modelagem SIR Estimando parâmetros

Entendendo o passado

Prevendo o passado

Vacinação?

Aspectos econômicos

Conclusões

Finalmente

- Modelos epidemiologicos apontam cenários a serem evitados, capturando aspectos qualitativos
- Usamos modelo tipo SIR incorporando faixas etárias, diferenciando comportamentos, gravidade da doença
- O modelo indica melhores/piores cenários. Mas os resultados têm que ser analisados com cautela.
- Políticas de vacinação podem ser exploradas de forma preliminar. O modelo aponta que vacinar os jovens pode ser melhor que vacinar os mais velhos.
- O modelo n\u00e3o leva em conta mudan\u00e7as de comportamentos devido \u00e0 pr\u00f3pria exist\u00e8ncia da vacina.
- A política de vacinação foi estática, não levando em conta vacinação ao longo do tempo.
- Claro que este tipo de modelagem não é conclusivo. Estratégias de vacinação têm que levar em conta aspectos logísticos, éticos, políticos, sociais, etc.

Obrigado!!