
DETERMINATION OF PARAMETERS AND EPIDEMIOLOGICAL
FORECASTING USING MULTI-GENERATIONAL SIR MODELING

Abstract. We use an age-dependent SIR system of equations to model the evolution of
the COVID-19, taking different social and biological traits into account. Parameters that
measure the amount of interaction in different locations (home, work, school, other) are
approximated using a random optimization scheme, and indicate changes in social activities
along the course of the pandemic. Taking previously determined parameters, we are able to
make predictions for different scenarios. We compare our predictions with data from several
locations in Brazil.

1. Introduction

Several months after the onset of the COVID-19 pandemic, it becomes clear how powerful
numerical models can be used to predict different scenarios. In particular, compartimental
epidemiological models are convenient, depending on few parameters and still capturing with
reasonable precision essential aspects of the dynamics of infectious diseases.

The Susceptible-Infected-Recovered SIR modeling in its simplest form depends on two
parameters, the average number of adequate contacts (those sufficient for transmission) and
the mean waiting period in which the patient is infectious. It assumes that the population
is homogeneous both in terms of behavior and biological susceptibility. It also assumes, in
its simplest instance, that demographic aspects as age structure, natality and death rates do
not matter for the dynamics of the disease.

Some of the above assumptions appear to hold well in the case of the COVID-19 pandemic.
Demographic changes appear to be of less importance due to difference in time scales, com-
pared with the evolution of the pandemic. Also, the period that one is infectious seems
to be independent of age, to some reasonable extent. However, dropping the homogeneity
hypothesis allows a more realistic model because age and location are certainly important
in undertanding the dynamics of the disease.

Mathematical epidemiology has a somewhat long history, with Hamer (1906); M’Kendrick
(1925); Kermack et al. (1927) being among the earliest contributions. See Brauer (2017);
Hethcote (2000) for a thorough review of mathematical modeling of infectious diseases,
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and Klepac and Caswell (2011); Klepac et al. (2009); Iannelli and Milner (2017); Li et al.
(2020); Sun (2010); Towers and Feng (2012) for multi-group models. Some other mod-
els consider spatial aspects of infectious diseases, as Bertaglia and Pareschi (2020); Lang
et al. (2018); Paeng and Lee (2017); Peixoto et al. (2020); Takács and Hadjimichael (2019);
Viguerie et al. (2020). Theoretical aspects of models are covered in Kuniya and Wang (2018);
Wen et al. (2018); Wu and Zou (2016). For the control related models for COVID-19 see for
instance Perkins and España (2020) and references therein.

After the onset of the COVID-19 pandemic, a massive amount of articles related to the
topic materialized. Several articles considered compartimental models to forecast different
scenarios, as in Atkeson (2020); Prem et al. (2020); Komatsu and Menezes-Filho (2020);
Viguerie et al. (2020); Walker et al. (2020).

Socio-economic costs of imposing social distancing are combined with compartimental
models in Acemoglu et al. (2020); Alvarez et al. (2020); Atkeson (2020), and the inter-
play between economics and individual decisions are considered in Borelli and Góes (2020);
Brotherhood et al. (2020); Eichenbaum et al. (2020). See Kremer (1996); d’Onofrio and
Manfredi (2020); Funk et al. (2015); Manfredi and d’Onofrio (2013); Perrings et al. (2014);
Soofi et al. (2020) for a description of behavioral- and economic- epidemiology ideas. Also,
macro-economic aspects of the pandemic appears, e.g., in Guerrieri et al. (2020).

Population heterogeneity and its influence on herd immunity is considered in Aguas et al.
(2020); Britton et al. (2020); Cui et al. (2019); Gomes et al. (2020). Vaccination is considered
in, for instance, d’Onofrio and Manfredi (2020); González and Villena (2020); Jia et al. (2020);
May and Anderson (1984).

Finally, alternative approaches, as agent-based and statistical models and a combination of
these techniques with compartimental models (specially to gather data), are also commonly
employed, as in Bendtsen Cano et al. (2020); Calvetti et al. (2020); Donnat and Holmes
(2020); Ferguson et al. (2020); Roda et al. (2020).

In the present paper, we consider a modification of the age-structured SIR model used
by Towers and Feng (2012). As in Prem et al. (2017), we allow for age-dependent probabilities
of one being sub-clinical or clinical, and use their contact matrices which differentiates not
only age but also location. Random searches approximate some key parameters that are
related to social distancing in diferent locations, computing their values for some Brazilian
regions. Following the approximation of those parameters, we are able to forecast best/worst
case scenarios. To gauge the efficiency of the scheme, we compare with available data.
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2. The model

In the spirit of compartimental modeling, we divide the whole population among suscepti-
ble (S), infected (I), removed (R). Due to the short time scale of the disease, we can assume
that demographic changes are not relevant, and deaths are estimated from the removed, R.
The above quantities are 16-dimensional vectors, stratified by age, running from 0-4 (first
components), 5-9 (second components), etc, up to 75-above (16th components). There are
Pi individuals for each age group, and the total population P =

∑16
i=1 Pi is constant.

The equations governing the dynamics of the disease is as follows1, for i = 1 . . . , 16 and
t ∈ N:

(1)

Si(t+ 1) = Si(t)− βi(I)Si(t),

Ii(t+ 1) = Ii(t) + βi(I)Si(t)− γIi(t),

Ri(t+ 1) = Ri(t) + γIi(t),

plus initial conditions. The model is “conservative” in the sense that Si + Ii + Ri = Pi is
constant for all ages i.

The term βiSi is the rate of new infections of the i-population, and we remark that β
depends on the number of infected of all ages, making the model nonlinear. Those infected
are removed from their condition at rate γIi (they either recover or die). We further divide
the infected into two groups, those that are asymptomatic or sub-clinical Isc

i = (1− ρi)Ii in
the sense that they do not require medical care. The clinical group Ic

i = ρiIi corresponds
to those that get ill, requiring medical attention. The age-dependent fractions of those who
become sub- or clinical are ρi ∈ [0, 1].

To fully describe the model, we ought to define β and the other parameters.

(i) the components of the incidence function β are given by the formula

βi(I) =
16∑
j=1

αscIsc
j + αcIc

j

Pj
Ce
i,j =

16∑
j=1

(
αsc(1− ρj) + αcρj

) Ij
Pj
Ce
i,j,

where Ce is an effective contact matrix that measures the number of contacts between
age groups. It depends on the amount and choices of lock-down imposed, as we describe
further ahead. The age-independent parameters αsc and αc correspond to the fraction
of those infected that have the potential to infect others, due to social behavior or
biology. For convenience, we also write the vector β(I) = CeDI, where D is a diagonal

1Note that we are not using the Einstein’s summation convention of summing up repeated indices.



4 EPIDEMIOLOGICAL FORECASTING WITH MULTI-GENERATIONAL SIR MODELING

matrix defined by

Djj =
αsc(1− ρj) + αcρj

Pj
.

(ii) The time dependent effective contact matrix Ce is defined by

(2) Ce(t) = βh(t)C
home + βw(t)C

work + βs(t)C
school + βo(t)C

other,

where the exogenous data Chome, Cwork, Cschool, Cother are 16× 16 matrices, where C`
ij

indicates the average number of different people from the age group j that someone
from the age group i contacted per day at ` ∈ {home, work, school, other}, as compiled
by Mossong et al. (2008); Prem et al. (2017). The parameters β` control the fraction
of contacts that are “adequate”, in the sense that they lead to infections.

(iii) Each component of ρ indicates whether an infected individual will become a sub-clinical
or a clinical case. Since COVID-19 symptoms are more aggressive for older patients, ρi
grows with i.

(iv) γ = 1− e−1/dI indicates the daily probability that someone stays infected, where dI is
the average duration of infection, as in Prem et al. (2017).

(v) The contagious parameters αsc and αc correspond to fractions of sub-clinical and clinical
infected patients that still spread the virus.

In Acemoglu et al. (2020), a SIR model that takes into account age is also used, and three
groups are considered. The authors include the possibility of using a family of scalings for
the incidence function β, but none of them reproduces our own choice.

2.1. Reproduction and replacement numbers. The basic reproduction number R0 is
understood as the secondary cases produced by an infected individual introduced in a totally
susceptible population, see Barril et al. (2020); Delamater et al. (2019); Diekmann et al.
(1990); Hethcote (2000). Hence, suppose that the whole population with distribution P is
susceptible (S = P ), and we represent the infected individual by Î, a vector belonging to the
canonical basis {e1, . . . , e16}. The number of infected individuals in the first day belonging
to the i-th is

16∑
k=1

δikβk(Î)Pk =
16∑

k,j,`=1

δikPkCkjDjlÎ l =
16∑

m,j,`=1

PimCmjDjlÎ l

where δik indicates the Kronecker delta, which equals one if i = j and zero otherwise, and
we define P as the diagonal matrix such that Pkk = Pk. Let A = PCD. Then the vector
containing the contamineted individuals in the first day is AÎ, and we can bound its Euclidian
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norm as

(3) ‖AÎ‖2 ≤ λmax‖Î‖2 = λmax,

where λmax is the largest eigenvalue of A. Note that only the fraction (1 − γ)d−1Î of the
infected outsider remains infected on the d-th day. Those individuals infect less than (1 −
γ)d−1λmax, as in (3), and adding up all days, we gather that the total number of infected
agents is bounded by the basic reproduction number

(4) R0 :=
∞∑
d=1

(1− γ)d−1λmax =
1

γ
λmax.

Reasoning in a similar fashion, we define the replacement number

(5) Rt :=
1

γ
λmax(t),

where λmax(t) is defined as the maximum eigenvalue of the matrix SCD and S is the diagonal
matrix with the diagonal given by Sj for j = 1, . . . , 16.

The above definitions of R0 and Rt rely on the Euclidian and spectral norms. However, if
one is interested in considering age-dependent quarantine or vaccination policies, it might be
interesting to consider the infinity norm. In this case, note that the total number of infected
individuals on the first day is

(6) β(Î) · P = CeDÎ · P =
16∑

i,j=1

Ce
ijDjjIjPi ≤ ‖P TCD‖∞,

where ‖v‖∞ = max{|vi| : i = 1, . . . , 16} for a vector v of size 16. The above estimate holds
since all quantities involved are non-negative. We remark that the estimate is sharp since, for
at least one vector of the canonical basis, the inequality (6) becomes an identity. As before,
adding up the days and considering that at the jth day there will be a fraction (1− γ)d−1Î
of infected outsider, we gather that the total number of infected agents is bounded by
(7)

R0,∞ :=
∞∑
d=1

(1− γ)d−1‖P TCD‖∞ =
1

γ
max

{
(αsc(1− ρj) + αcρj)

Pj

16∑
i=1

Ce
ijPi : 1 ≤ j ≤ 16

}
.

Similarly, we define the corresponding replacement number

(8) Rt,∞ :=
1

γ
max

{
(αsc(1− ρj) + αcρj)

Pj

16∑
i=1

Ce
ijSi : 1 ≤ j ≤ 16

}
.
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Figure 1. Probability of being clinical among infected patients ρ (left) and
lethality weight wd (right).

2.2. Modeling the lethality. Mortality is not part of the dynamics2, resulting from the
number of infected patients. We postulate that only those clinically infected die, at an age-
dependent rate. So, among the “recovered” patients, d(t) = γµ(t)wd · Ic(t) die, where wd

is the lethality weight of the disease and the letality strength µ captures how letality varies
with time. We assume that age-related lethality might vary across different regions and with
time, but the proportion between different ages is constant.

2.3. Data. The transmission parameters αsc and αc are such that the transmission rate of
asymptomatic is 60% larger than those symptomatic. This ad hoc choice is based on the
assumption that symptomatic patients are more likely to quarantine themselves.

We stipulate that the proportion of symptomatic patients are as in Figure 1 (left), assum-
ing that the proportion of symptomatic patients follows the same pattern of the infected that
were hospitalized, as reported in Verity et al. (2020). However, the proportion of asymp-
tomatic infected patients is far from being settled, with estimates ranging from 5% to 80%,
as described in Heneghan et al. (2020).

Similarly, we assume that the lethality rates are as Figure 1 (right), and we assume that
the proportions follow Brazeau et al. (2020); Verity et al. (2020).

The contact matrices Chome, Cwork, Cschool, Cother are from Prem et al. (2017), and pop-
ulation data, as seen in Figure 2 is from the Instituto Brasilerio de Geografia e Estatística
(IBGE). The average number of days dI that a patient is infectious is set to 12.

We use the available data (number of new cases and deaths) from each location to estimate
the remaining functions βh(t), βw(t), βs(t), βo(t) used to define the effective matrix Ce in (2),
and µ(t) defined in Section 2.2. These functions are transient since not only individuals

2We assume that the recovered patients do not get reinfected.
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Figure 2. Population of the city of Rio de Janeiro.

change behavior with time, as in Brotherhood et al. (2020), but also lethality rates decay as
the medical expertise increases with time.

For a simple SIR model, the available data uniquely determines the parameters, as in Bakhta
et al. (2020). In general, that is not the case for our model, for instance if one of the four
contact matrices vanish or if Cwork = Cother. We make then some simplifying hypotheses.
First, we assume that βh is constant, as there is no reason to expect that the amount of
contacts at home varies significantly with time. The second assumption is that βs(t) is iden-
tically zero, since schools were closed during the period of data gathering. We also suppose
that βw = βo, i.e., the behaviour at work is equal to the behavior at other locations. Such
assumption aims to reduce possible indeterminations of the parameters.

Consider that data is available for the period {1, . . . , T} ⊆ N, and let and N data
I (j) and

N data
D (j) be the number of new cases and new deaths at the j -th day. For simplicity, assume

that T = Nδt where δt = 10, and consider the partition Tδt of {1, . . . , T} = ∪Nj=1Ij where

Tδt =
{
Ij : j = 1, . . . , N

}
, Ij =

{
(j − 1)δt+ 1, jδt

}
.

Let P0(Tδt) be the space of piecewise constant functions with respect to the above partition.
To determine βw we pose the problem of finding (βh, βw) that solves

(9) min
(β̂h,β̂w)∈R×P0(Tδt)

J(β̂h, β̂w), where J(β̂h, β̂w) =
‖N sir
I (β̂h, β̂w)−N data

I ‖RT
‖N data
I ‖RT

,

and ‖·‖RT is the Euclidian norm in RT . Above, N sir
I (β̂h, β̂w)(t) is the number of new infected

clinical patients that the SIR model (1) yields at the t-th day if one replaces βh and βw by
β̂h and β̂w in (2).
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The above problem has finite dimension N + 1 since any function β ∈ P0(Tδt) can be
written as

(10) βw(t) =
N∑
j=1

bjχIj(t)

for some unknown coefficients b1, . . . , bN ∈ R, where χIj(t) is the characteristic function of
Ij, which equals one if t ∈ Ij, and zero otherwise. The coefficients uniquely define a function
in P0(Tδt) and vice-versa.

To solve (9) we employ a random optimization approach

(i) Choose a initial guess (βh, βw)
(ii) While some convergence criteria is not reached

(a) Define (β̂h, β̂w) from (βh, βw) by adding noise
(b) If J(β̂h, β̂w) < J(βh, βw), then (βh, βw)← (β̂h, β̂w)

The estimation of the letality strength µ is based on the number of daily deaths data
N data
D . The total number of deaths simulated by the SIR model is given by γµ(t)wd · Ic(t).

Equating both quantities we compute

(11) µ(t) =
N data
D (t)

γwd · Ic(t)
.

3. Simulation of the dynamics of the disease

In what follows we show the results coming out of parameter estimations. We then show
results adressing how well the model predicts the number of new cases. We compare with
real daily data for new cases and deaths3. To smooth out oscillations, we present the data
using a 7-day moving average.

One of the hurdles for models as ours is the definition of initial conditions, since when
the virus started to spread and how many were the first infected individuals are not known.
As a initial condition of our model, we assume that the first infected case occurred 30 days
before the official recordings. Indeed, the first day of the official data logs 489 cases, and the
real initial condition of the system is not known; cf. Lourenço et al. (2020), who speculates
that the epidemic in Italy and UK started one month before the first reported death. We
also estipulate that there were 10 infected patients at each age group at day one.

3All data were from taken from https://covid.saude.gov.br/, an official site from the Brazilian’s
Government Department of Health.

https://covid.saude.gov.br/
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Such uncertainty of initial conditions makes the results unreliable at the initial periods of
simulations. In particular, the computation of (11) is not feasible for the lack of data. We
make then µ(j) = 1 at the initial stages.

3.1. Parameter estimations, and prediction analysis. We consider results for the City
of Rio de Janeiro, first presenting the computed results for all variables, adding up the values
for all ages, i.e.

S(t) =
16∑
j=1

Sj(t), Isc(t) =
16∑
j=1

Isc
j (t), Ic(t) =

16∑
j=1

Ic
j (t), R(t) =

16∑
j=1

Rj(t).

We recall the assumption that the contacts might lead to infections at home are time inde-
pendent, and the contacts at work and other locations have a similar pattern, i.e., βw = βo.
Also, schools are closed, thus βs = 0.

We display in Figure 3 the results of our parameter estimations; see the caption for a
detailed description of each individual plot. We note that the results from the model are
accurate, approximating well the data and capturing the dynamics of the desease. In par-
ticular we see that βw (top-right plot) oscillates following the “macroscopic” oscillations of
daily cases (top-left plot). Regarding the letality, we note the decrease of its strength after
day 90, in line with what was presented by Dennis et al. (2020); Horwitz et al. (2020).

Two important pieces of information that comes out of the modeling are the value of the
reproduction and replacement numbers R0 and Rt, and these computations follow easily
from (4) and (5). We display the results in Figure 4 (left figure). Note that values of R0 is
characterized only by the β’s and the data, while R0 depends also on the dynamics of the
disease through the susceptible population. That is important since even if R0 > 1, having
Rt smaller than one is enough to have a declining number of infected patients.

Another issue that is worth discussing is that we fit the number of clinically infected
patients Ic to the data. However, we discussed nothing thus far about the sub-clinical
patients Isc. It turns out that the number of subclinical patients is, in this case, roughly ten
times the number of registred patients, as shown in Figure 4 (right figure). Such difference
ressonates with often claims that there is a significant sub-notification. For instance, Havers
et al. (2020) reports that the number of cases in the US might be at least 10 times of what is
registered. It would not come as a surprise if this difference is even greater in Rio. Also, the
WHO states that 80% of infections are mild or asymptomatic4, in particular among children,

4https://www.who.int/emergencies/diseases/novel-coronavirus-2019/

question-and-answers-hub/q-a-detail/q-a-similarities-and-differences-covid-19-and-influenza

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-similarities-and-differences-covid-19-and-influenza
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-similarities-and-differences-covid-19-and-influenza
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Figure 3. Results for the City of Rio de Janeiro. On the first couple of figures
on the top we plot the new cases for each day, and the accumulated results.
The red plot corresponds to real data, and the black plot depicts clinical cases
modeled by SIR. On the top right we plot the estimated values of βw, except
for the first (that has a value roughly ten times bigger than the others). For
visualization pourposes we interpolated the discontinuous function βw using
cubic splines. The figures on the bottom are related to fatalities. The first
and the second figures show daily and accumulated cases. The third figure
displays the values of the letality strength µ, defined in (11). The blue curve
is the least square quadratic curve.

as discussed by DeBiasi and Delaney (2020); Han et al. (2020). Recall that children are often
not tested.

Next we investigate numerically if this model can make reasonable predictions. To do
so, after the day 200, we run the simulations with frozen values of βw and µ and compare
with available data. We perform experiments considering the best and worst scenarios, i.e.
lowest and highest number of cases and deaths. We do so by going back j 10-day periods
and performing simulations with the highest and lowest values of βw and µ in the period
200− 10j and 200.
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Figure 4. Reproduction and replacement numbers (left) and subclinical cases
(right) for the city of Rio de Janeiro for the City of Rio de Janeiro.

Choosing j = 4, we show in Figure 5 the predicted number of new daily and acumulated
cases and deaths with 50 days in advance. Note that, for most of the period of interest, the
data is contained between the maximum and minimum value of predicted cases. We also
plot results corresponding to the choice of βw and µ being the average of the extreme values,
yielding a more accurate prediction.

Regarding predictions for a long-term future (200 days), we plot in Figure 6 the acumulate
cases for best, worst and average scenarios. We remark that the long term predictions in
terms of number of deaths are pessimistic, since letality it is very likely that letality will
continue to decrease in the future. And, of course, we do not consider the arrival of vaccines
in our model.

3.2. Other locations. We next perform the same parameter estimation and prediction
analysis for different regions. We show the respective results for the city of Petrópolis
(Figure 7), State of Rio de Janeiro (Figure 8), City of São Paulo (Figure 9), State of São
Paulo (Figure 10) and Brazil (Figure 11). Excepting for the number of cases for the whole
country, the estimates are accurate enough. We remark that for Brazil’s case, the prediction
are for 83 days in advance since more data is available.

4. Discussions and conclusion

Epidemics as the COVID-19 are hard to model, not only because of biological factors,
but also due to the unpredicability of human responses. Political, economical, social and
individual factors influence the behavior of people, leading to various degrees of risk behavior.
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Figure 5. The top figures display the number of daily new cases and deaths,
while the ones on the bottom display cumulative results. In all cases, the red
plots indicates the data and blue represents the simulation results for frozen
βw and µ correspoding to the best and worst case scenarios.

Making long term predictions is riskier than usual in biological systems, but they are crucial
for planning non-pharmaceutical interventions, allocation of resources, economical decisions,
etc.

What we propose in the work is a general form to predict possible values of crucial pa-
rameters based on their past values. The main idea shares similarities with some Value at
Risk analyses used in risk management, where the past dynamics of investiments help in
predicting the future.

Our method has two steps. Basing the dynamics of the disease on a multi-generational
SIR model, we first determine the values of some time-dependent parameters, using a ran-
dom optimization algorithm. Then, we feed the SIR model using extreme values of such
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Figure 6. Long term predictions for accumulated cases (left) and deaths
(right) in the City of Rio de Janeiro. As before, the data is on red, and the
SIR model results are in black. In both figures, the top/bottom graphs display
the worst/best case scenario. The middle graph diaplsys the results when we
take the average of the best/worst parameters.

parameters, and predict best/worst case scenarios. We are also consider a prediction that is
between the two extreme cases.

We tested the method for two different states (Rio de Janeiro and São Paulo), and their
capitals, predicting the dynamics for 50 days. In all tests, the method performed well, and
the accumulated cases and deaths stayed within or very close to the bounds. We also tested
for the whole Brazilian country for 83 days, getting good results for the accumulated deaths.
For the accumulated cases, the results are not so good. That might be due to the extended
period of prediction, or simply because the SIR model might not be appropriate for a large
contry like Brazil.

Altough we did not exploit this possibility, the SIR model used by us allows the investiga-
tion of “what-if” scenarios. For instance, what would happen if we open schools? Or what if
we isolate the elderly population? What if we vaccinate the population of a predetermined
age?

The methodology is general and can be applied to other systems and circunstances, and
might be usefull to make long-term predictions in situations where unexpected occurances
might change the behavior of the system.
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Figure 7. City of Petrópolis. Top left: new daily cases computed by SIR
(blue) and data (red). Top middle: values of βw. Top right: predictions for
acumulated number of new cases; Bottom left: daily deaths computed by SIR
(blue) and data (red). Bottom middle: µ (black) and blue curve is the least
square quadratic parabola (blue). Bottom right: predictions for acumulated
total deaths.
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Figure 9. City of São Paulo. Top left: new daily cases computed by SIR
(blue) and data (red). Top middle: values of βw. Top right: predictions for
acumulated number of new cases; Bottom left: daily deaths computed by SIR
(blue) and data (red). Bottom middle: µ (black) and blue curve is the least
square quadratic parabola (blue). Bottom right: predictions for acumulated
total deaths.
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Figure 10. State of São Paulo. Top left: new daily cases computed by SIR
(blue) and data (red). Top middle: values of βw. Top right: predictions for
acumulated number of new cases; Bottom left: daily deaths computed by SIR
(blue) and data (red). Bottom middle: µ (black) and blue curve is the least
square quadratic parabola (blue). Bottom right: predictions for acumulated
total deaths.
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Figure 11. Brazil. Top left: new daily cases computed by SIR (blue) and
data (red). Top middle: values of βw. Top right: predictions for acumulated
number of new cases; Bottom left: daily deaths computed by SIR (blue) and
data (red). Bottom middle: µ (black) and blue curve is the least square
quadratic parabola (blue). Bottom right: predictions for acumulated total
deaths.
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