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Overview
I What is appropriate framework to model COVID-19?
I Common model is SIR: susceptible-infected-recovered
I Some add disease-induced mortality
I Implicit simplifying assumptions of SIR model:
I No demographics: births and natural deaths
I Immunity is perfect and permanent
I For very short run analysis, perhaps defensible
I For medium and long run analysis, may be inappropriate
I Will consider effects on dynamics and social distancing of
relaxing these assumptions



Main results
I Adding births radically change dynamics, even with no waning
immunity

I Dynamics has two steady states, one disease-free, one endemic
I For COVID-19 parameters, dynamics display damped
oscillations as system approaches endemic steady state

I Optimal policy depends on parameters and associated path
can lead to asymptotic eradication or endemic steady state

I If eradication suboptimal, optimal policy follows underlying
dynamics but dampens and postpones waves

I If immunity wanes, qualitative features unchanged but
periodicity of oscillations changes

I If immunity wanes fast, the periodicity higher



Model
I We use SEIRS model that features

I Pre-symptomatic (exposed) state
I Births into susceptible class
I Natural mortality
I Disease-induced mortality
I Possibly waning immunity

I This setup nests standard SIR, SIS and SI models
I Stocks and flows of the model are:



Model
I Planner’s problem to choose d(t) ∈ [0, 1] to maximize∫ ∞

0
e−ρt

(
S(t)πS + E (t)πS + I (t)πI + R(t)πR −

θd(t)2

2

)
dt

I Constraints:

Ṡ(t) = ν− (1− d(t))β (I (t) + εE (t))
S(t)
N(t)

+ αR(t)− µS(t)

Ė (t) = (1− d(t))β (I (t) + εE (t))
S(t)
N(t)

− (κ + µ)E (t)

İ (t) = κE (t)− (γ+ δ+ µ) I (t)

Ṙ(t) = γI (t)− (α+ µ)R(t)

Ṅ(t) = ν− µN(t)− δI (t)

Ḋ(t) = δI (t) + µN(t)

N(t) = S(t) + E (t) + I (t) + R(t)

S0 > γ/β, S0 + E0 + I0 + R0 = N0



Benchmark dynamics: permanent immunity
I Without demographics:



Uncontrolled dynamics: waning immunity
I Consider case of immunity waning in one year (α = 1/52)
I In this case, susceptible pool replenished as people lose
immunity

I Steady state is endemic
I Approach to steady state has damped oscillations
I Over time, pool of susceptibles build up, creating conditions
for new wave



Uncontrolled dynamics: waning immunity
I First six years:



Uncontrolled dynamics: waning immunity
I First 300 years:



Uncontrolled dynamics: permanent immunity
I Consider case of permanent immunity
I In this case, still damped oscillations...
I Susceptible pool not replenished through waning immunity,
but there are still births

I As immunity permanent, build-up of susceptible pool much
slower

I So waning immunity not cause of oscillations → influences
periodicity



Uncontrolled dynamics: permanent immunity
I First six years:



Uncontrolled dynamics: permanent immunity
I First 300 years:



Controlled dynamics: waning immunity (one year)



Controlled dynamics: permanent immunity



Controlled dynamics: sensitivity to infection fatality rate



Controlled dynamics: sensitivity to speed of waning



Summary
I Population turnover and waning immunity can both yield
dynamics with

I Endemic steady state where disease not eradicated
I Damped oscillations as steady state approached

I Optimal social distancing mirrors underlying dynamics
I Faster waning of immunity similar to increased fatality rate
I Both cause increase in social distancing
I For suffi ciently high fatality/fast waning, optimal to switch to
asymptotic eradication

I Consequences for social cost-benefit analysis
I Ignoring possibility of waning immunity can severely
underestimate cost of inaction
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