ANÁLISE III – FGV TERCEIRA LISTA

Prof. Alexandre Madureira

Data de entrega: 02 de maio de 2018

Exercício 1. Considere a coleção $\mathcal{F} = \{F_{\lambda} : \lambda \in \Lambda\}$ de subconjuntos dum espaço métrico M, onde Λ é um conjunto de índices. Diz-se que \mathcal{F} tem a propriedade da interseção finita se toda subcoleção finita de \mathcal{F} tem interseção não nula. Mostre que as propriedades abaixo são equivalentes:

- (1) Se \mathcal{F} tem a propriedade da interseção finita então $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$
- (2) M é compacto.

Exercício 2. Seja (\mathbf{x}_k) sequência num compacto K limitada, e tal que toda subsequência convergente converge para $\mathbf{x} \in K$. Mostre que (\mathbf{x}_k) converge para \mathbf{x} . O que vale se muda se trocarmos "compacto" por "espaço métrico"?

Exercício 3. Seja M espaço métrico, $F \subset M$ um compacto não vazio, e seja $\mathbf{y} \notin F$. Mostre que existe $\mathbf{x}^* \in F$ tal que $\|\mathbf{x}^* - \mathbf{y}\| = \inf\{\|\mathbf{x} - \mathbf{y}\| : \mathbf{x} \in F\}$. E se F for apenas fechado em M?

Exercício 4. Sejam K_1 e K_2 dois conjuntos compactos, e $A = \{\|\mathbf{x}_1 - \mathbf{x}_2\| : \mathbf{x}_1 \in K_1, \mathbf{x}_2 \in K_2\}$. Mostre que A é compacto.

Exercício 5. Diga se as afirmativas abaixo são verdadeiras ou falsas, provando suas afirmações. Em todos os casos, K_1 e K_2 são subconjuntos de um espaço métrico M, e $A = \{\|\mathbf{x}_1 - \mathbf{x}_2\| : \mathbf{x}_1 \in K_1, \mathbf{x}_2 \in K_2\}$.

- (1) K_1 e K_2 fechados implica em A compacto.
- (2) K_1 e K_2 fechados implica em A fechado.
- (3) K_1 compacto e K_2 fechado implica em A fechado.

Exercício 6. Suponha que $\{K_j\}$ seja uma coleção de conjuntos não vazios, compactos, com $K_1 \supseteq K_2 \supseteq K_3 \supseteq \ldots$ Mostre que $\cap_{j=1}^{\infty} K_j$ é compacto e não vazio.