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EXERCÍCIO 1 (2.4) Seja A ⊆ R e as funções f : A → R e g : A → R sejam tais que os conjuntos f(A) e

g(A) sejam limitados superiormente. Defina a função f + g : A→ R por (f + g)(x) = f(x) + g(x). Mostre que

sup(f + g)(A) ≤ sup f(A) + sup g(A). Dê um exemplo em que a desigualdade é estrita.

Sol. Temos que f(A) e g(A) são limitados, logo existe sup f(A) e sup g(A). Portanto, para todo x ∈ A, temos

que (f + g)(x) = f(x) + g(x) ≤ sup f(A) + sup g(A). Dessa forma, sup f(A) + sup g(A) é cota superior de

(f + g)(A) e existe supremo de (f + g)(A). Como sup(f + g)(A) é a menor das cotas superiores de (f + g)(A),

temos sup(f + g)(A) ≤ sup f(A) + sup g(A).

Exemplo em que a desigualdade é estrita: A = [0, 1], f(x) = x e g(x) = −x. Temos que sup(f + g)(A) = 0,

enquanto sup f(A) = 1 e sup g(A) = 0.

EXERCÍCIO 2 (2.9) Seja A ⊂ Rn não vazio, e f : Rn → R dada por

f(x) = inf{∥x− y∥ : y ∈ A}.

Mostre que f está bem definida. Construa entretanto um exemplo onde não exista y ∈ A tal que f(x) = ∥x−y∥,
para algum x ∈ Rn.

Sol. Veja que o conjunto {∥x− y∥ : y ∈ A} é limitado inferiormente por 0. Portanto, possui ı́nfimo. Logo, para

todo x ∈ Rn, f(x) é não vazio. Ainda, como o ı́nfimo é único, f está bem definida.

Para ver um exemplo onde não existe y tal que f(x) = ||x − y||, para algum x ∈ Rn, considere A = B1(0) e

tome x = (1, 0, 0, ..., 0). Temos que f(x) = 0, mas não existe y ∈ A tal que f(x) = ||x− y|| = 0.

EXERCÍCIO 3 (2.27) Mostre que se A ⊆ R e B ⊆ R são abertos em R, então o conjunto C = A×B é aberto

no R2.

Sol. Para mostrar que C é aberto, Tome c ∈ A×B arbitrário. Logo c é um elemento da forma c = (a, b), para

alguma a ∈ A e algum b ∈ B. Como A e B são abertos, existem εa, εb > 0 tais que (a − εa, a + εa) ⊆ A e

(b − εb, b + εb) ⊆ B. Quer-se mostrar que existe ε > 0 tal que Bε(c) ⊆ C. Tome 0 < ε < min{εa, εb}. Vou

mostrar que Bε(c) ⊆ C = A×B. Tome x ∈ Bε(c) arbitrário. Logo x = (x1, x2), então

max{|x1 − a|, |x2 − b|} ≤
√

(x1 − a)2 + (x2 − b)2 = ∥(x1 − a, x2 − b)∥ = ∥x− c∥ < ε.

Como max{|x1 − a|, |x2 − b|} < ε ⇒ |x1 − a| < ε < εa e |x2 − b| < ε < εb, conclui-se que x ∈ C = A × B.

Portanto, como x foi arbitrário, Bε(x) ⊆ C. Logo, C é aberto.

EXERCÍCIO 4 (2.35) Seja A ⊆ Rn, e denote por interior de A o conjunto A◦ de pontos interiores de A.

Mostre que

(1) (A◦)◦ = A◦

(2) (A ∩B)◦ = A◦ ∩B◦

(3) Se B ⊆ A e B é aberto, então B ⊆ A◦ (i.e. A◦ é o “maior” aberto contido em A)



Sol. Item (1): Precisamos mostrar que (A◦)◦ ⊆ A◦ e A◦ ⊆ (A◦)◦.

(A◦)◦ ⊆ A◦: se x ∈ (A◦)◦, existe ε > 0 tal que Bε(x) ⊆ A◦. Logo, x ∈ A◦.

A◦ ⊆ (A◦)◦: Se x ∈ A◦, existe ε > 0 tal que Bε(x) ⊆ A. Quer-se mostrar x ∈ (A◦)◦, para isso vou mostrar

que Bε(x) ⊆ A◦, ou seja, x é ponto interior de A◦. Tome x′ ∈ Bε(x). Veja que para r = ε − ||x − x′||,
Br(x

′) ⊆ Bε(x) ⊆ A. Mas então x′ ∈ A◦ e, portanto, Bε(x) ⊆ A◦. Logo, x ∈ (A◦)◦.

Item (2): Precisamos mostrar que (A ∩B)◦ ⊆ A◦ ∩B◦ e A◦ ∩B◦ ⊆ (A ∩B)◦.

(A ∩ B)◦ ⊆ A◦ ∩ B◦: se x ∈ (A ∩ B)◦, então existe ε > 0 tal que Bε(x) ⊆ A ∩ B. Com isso, Bε(x) ⊆ A e

Bε(x) ⊆ B e, consequentemente, x ∈ A◦ ∩B◦.

A◦ ∩ B◦ ⊆ (A ∩ B)◦: Se x ∈ A◦ ∩ B◦, então existem εa, εb tais que Bεa(x) ⊆ A e Bεb(x) ⊆ B. Tome

ε = min{εa, εb}, então Bε(x) ⊆ A ∩B, implicando que x ∈ (A ∩B)◦.

Item (3): Suponha B ⊆ A e B aberto. Se x ∈ B, então existe ε > 0 tal que Bε(x) ⊆ B ⊆ A. Mas então x é

ponto interior de A. Logo, x ∈ A◦.

EXERCÍCIO 5 (2.45) Mostre que um ponto x ∈ Rn é ponto de acumulação de A se e somente se toda

vizinhança aberta de x contém infinitos pontos de A.

Sol.

(→) Suponha que x é ponto de acumulação de A. Suponha por absurdo que o conjunto de pontos de A em uma

dada vizinhança aberta V de x seja finito, dado por K ≡ {a1, . . . , ak}. Mas então, defina ε = mina∈K ||x− a||
e podemos encontrar 0 < r < ε tal que Br(x) \ {x} ∩ A = ∅. Mas isso gera uma contradição com x ser ponto

de acumulação. Portanto, toda vizinhanção aberta de x contém infinitos pontos de A.

(←) Suponha agora que toda vizinhança aberta de x contém infinitos pontos de A. Logo, para todo r > 0,

temos que (Br(x) \ {x})∩A ̸= ∅ pois Br(x) é vizinhança aberta de x e possui infinitos pontos de A, garantindo

que x é um ponto de acumulação de A.

EXERCÍCIO 6 (2.47) Sejam A,B ⊆ Rn, e x ponto de acumulação de A ∩ B. Mostre que x é ponto de

acumulação de A e de B.

Sol. Como x é ponto de acumulação de A ∩ B, pelo exerćıcio anterior, temos que toda vizinhança aberta de x

possui infinitos pontos de A∩B. Mas então, toda vizinhança aberta de x possui infinitos pontos de A e infinitos

pontos de B. Portanto, pelo exerćıcio anterior, x é ponto de acumulação de A e também de B.
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