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REsuMoO. Estas notas de aula sdo relativas ao curso de Analise I da Escola de Pos-Graduagao
em Economia da Fundagao Getulio Vargas (EPGE-FGV) e do Laboratorio Nacional de Com-
putagao Cientifica (LNCC). Estas notas devem servir de apoio, e certamente nao eliminam
a necessidade de se usar os ja classicos, aprimorados e varios livros didaticos. Mencionamos
alguns deles na biliografia.

Neste curso apresento alguns topicos de analise que, espero, sejam Tuteis. Na verdade, o
que eu espero mesmo € apresentar o rigor matematico aos alunos, e mostrar como este deve
ser utilizado em conjunto com a intuigao matematica. Minha experiéncia diz que os alunos
do EPGE e do LNCC tém a intuicao mais desenvolvida que o rigor.

Planejo discutir os seguintes tépicos:

e Os nimeros reais e topologia em R"
Fungoes; Conjuntos finitos, infinitos, contaveis; Propriedades dos reais;
Espagos Vetoriais; Conjuntos abertos e fechados; Vizinhangas; Teorema de Bolzano-
Weierstrass;
Conjuntos Compactos; Teorema de Heine-Borel,;
e Sequéncias e Convergéncia;
Sequéncias, Subsequéncias;
Teorema de Bolzano-Weierstrass; Sequéncias de Cauchy
Sequéncias Contrateis e pontos fixos de contracoes; Caracterizacao de abertos e
fechados;
Sequéncias monotonas (em R); limsup, liminf;
Fungdes Continuas
Propriedades Locais e Globais
Preservacao de Compacidade e Continuidade Uniforme
Sequéncia de fungoes
Convergéncia pontual e uniforme; Trocas de limites
Equicontinuidade
Diferenciabilidade
Fungoes de uma variavel; Derivadas parciais; Diferenciabilidade
Regra da cadeia; Teorema de Taylor;
Teorema da funcao implicita e da fungao inversa;
Aplicacoes: Minizagao com restricoes de igualdade e desigualdade

A referéncia basica é o livro The elements of Real Analysis, de Robert Bartle [3]. Outras
referéncias importantes sdo os ja classicos [10,[17], bem como o novo |20|. Para topicos
especificos em uma dimensao, pode-se ler [41/9,|19]. Finalmente, idéias mais abstratas sao
apresentadas em [11,[18].
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CAPIiTULO 1
Pré-requisitos

E|Neste capitulo, exemplificamos duas técnicas de demonstracoes, e recordamos defini¢oes
e notagoes béasicas sobre conjuntos e fungoes.
Supomos aqui que as propriedades basicas de conjuntos sao conhecidas. Em particular,
sao de grande importancia os conjuntos
N={1,2,3,4,...} (ntmeros naturais),
7Z=40,1,—-1,2,—-2,3,-3,...} (ntmeros inteiros),
Q={m/n:mneZ n+#0} (nameros racionais),

além é claro do conjunto dos niimeros reais, que denotaremos por R.

1.1. Demonstragao por indugao e contradicao

Primeiro revemos aqui, através de um exemplo, como é possivel demonstrar alguns fatos
usando argumentos indutivos.
Considere a afirmativa

(1.1.1) Zi:g(n—i—l)

para todo n € N.

Para demonstrar que (|1.1.1)) vale para todos os inteiros positivos, comegamos observando
que para n = 1, a afirmativa é obviamente verdadeira. Suponha entao que seja
verdade para n = N*, i.e,

N* N*
1.1.2 ) = N*+1).
(112) ;z 5 (V" +1)
Paran = N* + 1 temos
N*+1

N*
D i=N4+1+) i
i=1 i=1
Usamos a hipotese indutiva ((1.1.2)) obtemos
N*+1 .

;z’:N*Jrle]\;

N*+1
2

(N*+1) = (N* +2),

e podemos concluir que (|1.1.1)) vale para n = N* 4 1, e portanto vale para todos os inteiros
positivos.

10ltima Atualizagao: 31/01/2025



2 1. PRE-REQUISITOS

Um exemplo interessante de demonstracao por indugao mostra que todo ntimero inteiro
n > 2 é primo ou produto de primos [1]. De fato, considere a proposi¢ao para n > 2 inteiro:

P(n): todo inteiro 4, tal que 2 < i < n, é primo ou produto de primos

Entao P(2) é verdadeiro, pois 2 é primo. Suponha agora que P(N*) seja verdadeiro para
algum inteiro dado N*. Para n = N* + 1, temos que se N* + 1 for primo, entdo P(N* + 1)
é verdadeiro. Se N* + 1 nao for primo, entao ele é divisivel por algum inteiro p > 1. Logo,
existe ¢ € N tal que N* 4+ 1 = pg. Entao tanto p como ¢ sao menores que N* + 1, e entao,
pela hipotese indutiva P(N*), tanto p como ¢ sao primos ou produtos de primos. Portanto
N* 41 é primo ou produto de primos. Logo P(N* + 1) vale.

Um dos passos fundamentais, e algumas vezes esquecido, da demonstracao por indugao
é mostrar que o resultado vale para algum valor inicial (na demonstragao acima, n = 1). De
fato, sem isto, podemos erroneamente “provar’ que

(1.1.3) 2n é sempre impar para todo n € N,

com uma argumentacao obviamente falsa. De fato supondo que 2N* é fmpar, temos que
2(N*+ 1) = 2N* 4+ 2 também é pois 2N* é impar por hipotese, e somando 2 a um impar
obtemos um impar. O problema desta demonstra¢ao é que nao se mostrou ([1.1.3) para
nenhum ntmero natural.

A demonstragao por contradi¢ao segue os seguintes principios logicos: se queremos mos-
trar que uma afirmativa implica noutra, podemos simplesmente negar este fato e tentar
chegar numa contradi¢ao. Considere a afirmativa

(1.1.4) () C A para qualquer conjunto A.

Talvez uma demonstragao “direta” nao seja tao facil. Mas suponha que seja falso.
Entao existe algum conjunto A tal que § ¢ A. Portanto existe algum elemento no conjunto
vazio que nao estd em A. Mas isto é um absurdo, pois o vazio nao contém nenhum elemento.
O que se vemos é que negar (1.1.4) (afirmar que ([.1.4) é falso) nos leva a concluir um
absurdo, e portanto (|1.1.4]) s6 pode ser verdade.

1.2. Funcgoes

Um dos conceitos mais importantes em Matematica é o de funcoes. Esta “entidade
matematica”’ é definida rigorosamente no Apéndice que trata de conjuntos, ver a pagina[117]
Para nossos propositos entretanto, a “definicao” abaixo basta.

Considere A e B dois conjuntos. Uma funcao é uma regra que associa a cada elemento
x € A, um elemento f(x) € B. Chamamos o conjunto A de dominio da fungdo f e o
denotamos por D(f). Chamamos o conjunto B de contradominio da fungao f. Escrevemos
f: A— B, ouainda

f:A—B
Se E C A, chamamos de imagem de E ao conjunto

f(E) ={f(x): z e E}.
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Similarmente, dado um conjunto H, chamamos de imagem inversa de H o conjunto
fHH) = {a: f(x) € H}.
Se f(A) = B dizemos que f é sobrejetiva (ou simplesmente sobre). Dizemos que f é

injetiva (ou biunivoca ou um a um ou 1-1) quando, dados a, @’ € D(f), se f(a) = f(a)
entdo a = a’. Numa forma mais compacta, escrevemos que para todo a, a’ € D(f) temos

fla) = f(d) = a=d.

Se f é injetiva e sobre, a chamamos de bijetiva ou de uma bijecao.

Dado f: A — B, e um subconjunto A" C A, podemos definir a fung¢ao restrigao g = f|a
onde g : A" — B é dada por g(a’) = f(a’) para todo a’ € A'.

Dizemos que g : B — A é fungdo inversa de f se

g(f(x)) =x paratodo z € A, flg(y)) =y paratodo y € B.

Quando esta existir, denotamos a inversa de f por f~!.

OBSERVACAO. Note que a definicao de imagem inversa independe de existir ou nao a
fungdo inversa. Por exemplo, a funcio f : R — R dada por f(z) = z? nao tem inversa.
Entretanto f~'(R) = R.

EXEMPLO 1.1. Seja
f:0,4) - R
T T

Entdo o dominio é (0,4) e a imagem ¢ (0,2). Note que f nao é invertivel pois f néo é
sobrejetiva. Entretanto as imagens inversas

FH2) =04, d2h={4} [(=20)=0  [0)=0

sao bem-definidas.

1.3. Conjuntos finitos, infinitos, enumeraveis

Um conjunto B é finito se é vazio ou se existe uma bijecao entre B e {1,2,--- , N} para
aleum N € N. Caso B nao seja finito, o dizemos infinito. Se B é finito ou se existe uma
bijecao entre B e N, dizemos que B é enumerdvel.

OBSERVACAO. Existe aqui uma diferenca entre os termos usados em inglés no livro do
Bartle [3|, e suas tradugoes diretas em portugués. Seguindo Elon [9], usamos o termo
enumerdvel para equivaler ao inglés countable. Ja as expressoes enumerable ou denumerable
sao usadas quando existe bijecao com N, i.e., exclui os conjuntos finitos. Por sua vez,
Rudin 17| define os termos de uma terceira forma.

EXEMPLO 1.2. O conjunto {2,3,4,5} ¢é finito pois a func¢ao ¢ : {1,2,3,4} — {2,3,4,5}
dada por ¢(1) = 2, ¢(2) = 3, ¢(3) = 4, ¢(4) = 5 é uma bijegao. Como o conjunto é finito,
ele é enumeravel.

EXEMPLO 1.3. P ={2,4,6,---} é enumeravel pois ¢ : N — P definida por ¢(n) = 2n é
uma bijegao entre P e N.
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EXEMPLO 1.4. O conjunto Z é enumeravel pois
7= {07 17 _1727 _2737 _37 U }a

e ¢ : N — Z dada por ¢(i) = (—1)"[i/2] ¢ uma bijegao entre N e Z. A fungao [[]: R — Z ¢
tal que [z] é a parte inteira de x, i.e., o maior inteiro menor ou igual a . Em outras palavras,

se 1 for par,

(1)

i—1 - :
= se for fmpar.

(—1)i[5/2] = {_

EXEMPLO 1.5. Q é enumerével pela “contagem diagonal:

0,

L _L 27 _27 37 _37
1/2, —1/2, 2/2, —2/2, 3/2, —3/2,
1/3, —1/3, 2/3, —2/3, 3/3, —3/3,

e podemos contar pois

1 11 1
={0,1,-1,-,2,—=,=, =2, —=, -+ .
@ {77 7277 2737 737 }

EXEMPLO 1.6. O conjunto de ntimeros reais R nao é enumeravel. Para mostrar isto,
usaremos uma demonstragao por contradi¢do. Mostraremos na verdade que I = {x € R :
0 <z <1} nao é enumeravel.

Usando a base decimal, todo elemento x € I pode ser representado pelos digitos x =
0,aiaza3---, onde a; € {0,...,9}. Note que esta representa¢do nao é tnica; por exemplo
1,0000--- = 0,9999.... Os numeros da forma ¢ x 107%, para algum ¢, k € N, possuem
exatamente duas representacoes possiveis. Os demais nimeros tém somente uma represen-
tagao [19].

Suponha agora que I é enumeréavel. Entao existe uma enumeracao 1, s, ..., Ty, ... dos
elementos de I tal que

r1 = 0,a11a12a13 - . .,
To = 0, a01a99a93 . . .,
x3 = 0, az1a320a33 . . .,
-
onde a;; € {0,...,9}. Seja agora y = 0,b1bsbs - - - onde
bi:{l se a; # 1

2 se Q3 = 1.

Logo, por construcdo, y nao ¢ da forma ¢ x 107* onde ¢, k € N, e portanto y possui
representagao tnica. Como y € I e b; # a; para todo ¢ € N, entdao y # x, para todo
n € N. Isto contradiz a afirmacao que x1,2o,...,x,,... é uma enumeracao dos elementos
de I. Portanto, I nao é enumeravel.
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1.4. Exercicios
EXERCICIO 1.1. Mostre por indugao que n < 2" para todo n € N.

EXERCICIO 1.2. Prove que, para todo inteiro n > 1 tem-se que

1 1 1 1
14 =14 =+ —t-+—>Vn
A ARV AR Rl

EXERCICIO 1.3. Mostre por indugao a desigualdade de Bernoulli: se x > —1, entao
(1+x)™ > 1+ nx para todo n € N.
EXERCICIO 1.4. Mostre que 2" + 1 é divisivel por 3 para todo ntimero fmpar n.

EXERCICIO 1.5. Seja a fungao x : N — R definida da seguinte forma. Defina x(1) =1 e
x(k) = z(k — 1) x k, para todo inteiro k£ > 1. Mostre que z(k) = k!.

EXERCICIO 1.6. Seja A < 1 e n € N. Mostre que
1 o )\k: n+1

S-S

para todo inteiro k£ > n.

EXERcicIO 1.7. Usando inducao, mostre que existe J € N tal que j2 — 105 > 0 para
todo inteiro j > J.

EXERcCICIO 1.8. Mostre usando contradicao que v/2 nao é racional.

EXERCICIO 1.9. Mostre usando contradicao que se pq, ..., p, sao todos os niimeros primos
menores ou iguais a p,, entao p; X - - - X p,+1 nao é divisivel por p; paranenhum i € {1,...,n}.

EXERCIcIO 1.10. Mostre usando contradicao que existem infinitos ntimeros primos.

EXERcCIcIO 1.11. Sejam A, B e C conjuntos e f : A — B, g : B — C bijecoes. Mostre
que a fungiao composta go f : A — C dada por go f(z) = g(f(z)) é bijegao. Se f~ e g*
forem as fungoes inversas de f e g, quem é (g o f)~1? Justifique suas conclusoes.

EXERCICIO 1.12. Mostre que uma funcao tem inversa se e somente se ela é uma bijecao.

EXERCICIO 1.13. Seja A um conjunto e f : A — B injetiva. Mostre que a fungao
g:A— f(A) tal que g(x) = f(z) para todo x € A ¢é bijecao.

EXERCICIO 1.14. Sejam os conjuntos A infinito e B # () finito, e considere uma funcao
f: A — B. Mostre que existe b € B tal que f~*({b}) ¢ infinito.

EXERcCICIO 1.15. Sejan € Ne I, = {1,...,n}. Mostre quese A C I, e f: I, > Aé
bijecao, entao A = I,,.

Dica: por indugao, mostre para n = 1 (facil), e suponha verdade para I,,. Para mostrar
com I,.1, sejaa = f(n+1) € A. A seguir, divida em dois casos; se a = n + 1 considere a
restrigao f|;, e use hipotese de indugao. Caso contrario seja p € I,,41 tal que f(p) =n+1e
defina a fungao ¢ : 1,11 — A tal que g(p) =a, g(n+1) =n+1e g = f nos outros pontos.
Mostre que g7, ¢ bijec@o e use a hipdtese indutiva.
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EXERCIcIO 1.16. Usando o exercicio [1.15], mostre que
(1) se ¢ : I, — I, for bijegao, entdo m = n.
(2) dado um conjunto X, se ¢ : I,, = X e ¢ : I, = X forem bijegoes, entao m = n.
(3) seja X finito e Y C X. Entao nao existe bije¢ao entre X e Y.

EXERCICIO 1.17. Sejam A e B finitos e disjuntos dois a dois. Mostre que AU B ¢é finito.
Generalize o resultado para um ntmero finito de conjuntos.

EXERCICIO 1.18. Sejam A e B finitos. Construa uma bijegao entre {1,2,...,|A||B|} e
A x B, onde |A| denota o ntimero de elementos de A (o mesmo para |B| e B).

EXERCICIO 1.19. Mostre que todo conjunto infinito contém subconjunto infinito enume-
ravel.

ExERrcicio 1.20. Conclua usando o problema que um conjunto X ¢ infinito se e
somente se existe uma bije¢ao entre X e uma parte propria de X.

Dica: seja A = {aj,as,...} € X infinito enumeravel e Y = X\A; contrua bijegao
¢: X =Y talque ¢p(z) =x em Y e ¢(a,) = ag, em A.

EXERcIcIO 1.21. Mostre que N x N é enumeravel da seguinte forma: mostre que ¢ :
NxN—T={(m,n): n>m}, onde ¢(m,n) = (m,m+n — 1), & uma bijecdo. A seguir
mostre que a fungao definida de 7" em N por (m,n) — (1/2)n(n+1) —n+m é também uma
bijecao. O esquema das bije¢oes é como abaixo:

o(1,1) o(1,2) ¢(1,3) ¢(1,4) o(1,5)

0(2,1) #(2,2) ¢(2,3) ¢(2,4)
?(3,1) #(3,2) #(3,3)
o(4,1) ¢(4,2)

(1,1) (1,2) (1,3) (1,4) (1,5) 124 7 11

(2,2) (2,3) (2,4) (2,3) --- 35 8 12

- (3,3) (3,4) (3,5) ---— 6 9 13

(4,4) (4,5) - 10 14

EXERCICIO 1.22. Sejam A e B conjuntos enumeréveis. Mostre que o produto cartesiano
A x B é enumeravel. Conclua assim que Z enumeravel implica em Q enumeravel.

EXERCICIO 1.23. Porque nao se pode argumentar como no exemplo [I.6] e concluir erro-
neamente que os racionais nao sao enumeraveis.

EXERCICIO 1.24. Para ¢ € N, seja A; conjunto infinito enumeravel. Mostre que o produto
cartesiano infinito [[;°, A; ndo é enumeravel.

EXERCICIO 1.25. Para i € N, seja A; = {0,1}. Mostre que o produto cartesiano infinito
H;’il A; nao é enumeravel.

EXERCICIO 1.26. Considere o conjunto S em que cada elemento de S é uma sequéncia
da forma (ay, as, as,...) com a; € {0,1}, i.e.,

S:{(al,ag,ag,...): a; € {0,1},Z€N}
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Decida se S é ou nao enumeravel, e prove sua afirmativa.

EXERCICIO 1.27. Mostre que, para todo N € N, se Aq,..., Ay sao enumeraveis, entao
Ay X -+ X Ay é enumeravel. (dica: usar o resultado do exercicio [1.22]).

EXERcCICIO 1.28. Seja A enumeravel e suponha que exista uma funcao f : A — B
sobrejetiva. Mostre que B é enumeravel.

EXERcIcIO 1.29. Considere a base decimal, e mostre que os niimeros da forma ¢ x 107,
para algum /¢, k € N, possuem exatamente duas representacoes possiveis. Mostre também
que os demais nimeros tém somente uma representacao.

EXERcICIO 1.30 (Existéncia do elemento minimo). Mostre que dado um conjunto nao
vazio X C N, existe a € X tal que a < x para todo = € X.






CAPITULO 2

Os nuimeros reais e o R"

E| Neste capitulo, falaremos sobre niimeros reais. Suporemos aqui que 0s nimeros reais
e as operagoes neles definidas sao bem definidos e “existem”, sem entrar em detalhes sobre
a construcao deste corpo. A idéia é apenas apresentar propriedades que os reais satisfazem.
A seguir, falaremos sobre abertos e fechados nos reais.

2.1. Os numeros Reais

2.1.1. Propriedades dos Reais. Para discutir uma importante propriedade dos niime-
ros reais, introduziremos o conceito de cotas. Para tal usaremos o fato de que R é ordenado,
i.e., existe uma relagao de ordem denotada por < indicando se um elemento é menor que
outro. Usaremos também os simbolos >, <, >/ indicando se um elemento é maior, menor
ou igual, maior ou igual, respectivamente.

DEFINICAO 2.1.1. Considere um conjunto A C R. Dizemos que ¢* € R € cota superior
de A se a < c* para todo a € A. Analogamente, dizemos que ¢, € R € cota inferior de A
se ¢, < a para todo a € A. Se um conjunto tem cota superior dizemos que ele € limitado
por cima ou superiormente. Se um conjunto tem cota inferior dizemos que ele € limitado
por baixo ou inferiormente. Se um conjunto tem cota superior e inferior, dizemos que ele €
limitado.

Note que nem todos os conjuntos possuem cotas superiores e/ou inferiores. Por exemplo
N C R nao possui cota superior, apesar de possuir cota inferior. Segue-se da defini¢ao que
se um conjunto possui cota superior, entao ele possui infinitas cotas superiores:

¢* cota superior de A = ¢* + 1 cota superior de A.

Observagao anédloga vale para as cotas inferiores.

EXEMPLO 2.1. O conjunto R™ = {z € R: 2 < 0} é limitado superiormente mas nao
inferiormente. De fato qualquer ntimero nao negativo é cota superior de R™, pois se b > 0,
entao x € R~ implica que x < 0 < b. Por outro lado, nenhum ntmero a € R pode ser
cota inferior pois sempre existe y € R~ tal que y < a. Concluimos portanto que R™ nao é
limitado.

EXEMPLO 2.2. Usando argumentos como acima, vemos que R nao é limitado nem supe-
riormente nem inferiormente.

EXEMPLO 2.3. Seja [ = {z € R: 0 < z < 1}. Entao qualquer nimero b > 1 é cota
superior de I, e todo nimero a < 0 é cota inferior de I. De fato, nestes casos teriamos
a < x < b para todo x € I. Logo, por defini¢ao, I é limitado.

101tima Atualizacao: 31/03/2025
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EXEMPLO 2.4. Note que qualquer ntimero ¢é cota inferior e superior do conjunto vazio.

DEFINICAO 2.1.2. Se um conjunto A € nao vazio e limitado superiormente, chamamos de
supremo de A ou simplesmente sup A a menor de suas cotas superiores. Analogamente, se
um conjunto A € nao vazio e limitado por baixo, chamamos de infimo de A ou simplesmente
inf A a maior de suas cotas inferiores.

Logo, se s* = sup A, entao

(1) a < s* para todo a € A.
(2) Se existe v € R tal que a < v para todo a € A, entao s* < v.

OBSERVACAO. Segue-se da defini¢ao a unicidade do supremo e do infimo, se estes existi-
rem, ver Exercicio [2.5]

O resultado a seguir nos da uma forma equivalente para determinar o supremo de um con-
junto.

LEMA 2.1.3. Seja A nao vazio e s* cota superior de A. Entao s* = sup A se e somente se
para todo € > 0 existir a. € A tal que s* — € < a,.

DEMONSTRAGAO. (=) Seja s* =supA e € > 0. Como s* — e < s*, entdao s* — € nao é
cota superior de A. Logo, existe um elemento a, € A tal que a, > s* — e.

(<) Seja s* cota superior de A. Suponha que para todo € exista a. € A tal que s*—¢ < a.
Vamos entao mostrar que s* = sup A.

Seja ¢* cota superior de A com ¢* # s*. Se ¢* < s*, definimos € = s* — ¢* e entao € > 0
e existe a. € A tal que a, > s* — e = ¢*. Isto é uma contradi¢ao com o fato de ¢* ser cota
superior. Logo temos obrigatoriamente ¢* > s*, e s* é a menor das cotas superiores, i.e.,
s* = sup A. O

EXEMPLO 2.5. I ={z € R: 0<x <1} temsup/ =1einf] =0. Note quesupl € [ e
infl €1.

EXEMPLO 2.6. U ={z € R: 0 <z <1} temsupU =1 e infU = 0. Note que neste
casosupl ¢ U einfl ¢ U.

Uma propriedade fundamental dos reais, que o distingue por exemplo dos racionais, é
dada a seguir.

Propriedade do supremo de R: Todo conjunto nao vazio em R limitado superiormente
tem um supremo em R.

Da propriedade acima, obtemos o seguinte resultado.

LEMA 2.1.4 (Propriedade arquimediana). Para todo = € R, existe n € N tal que n > x.

DEMONSTRAGAO. (Por contradi¢ao.) Seja € R e suponha que nao exista n tal que
n > x. Portanto, x é cota superior de N C R. Pela Propriedade do supremo de R, entao
N tem um supremo s. Logo existe m € N tal que s — 1 < m. Mas entao, s < m + 1, uma
contradicao, pois m + 1 € N e s deveria ser cota superior de N. U

OBSERVAGAO. Densidade de Q em R: Se z, y € R e x < y, entdo existe r € Q tal que
x <r <y. Da mesma forma, existe r € R\Q tal que z < r < y.
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2.1.2. Valor absoluto e Intervalos. Para um ntmero real a, o valor absoluto (ou
modulo) de a é dado por
a se a > 0,
la| =

—a sea<0.

EXEMPLO 2.7. Por defini¢éo |5| =5, e | — 5| = —(—5) = 5.

LEMA 2.1.5. Algumas propriedades dos nimeros reais:

(1) | — a| = |a|] para todo a € R.

(2) |ab| = |al||b|] para todo a, b € R.
(3) Dados a, k € R temos que |a| < k se e somente se —k < a < k.
(4) —la|] < a < |a| para todo a € R.
DEMONSTRAGAO. (1) Sea =0, entao [0 =0=|—0]. Sea >0, entdo —a < 0 e
logo | —a|=—(—a) =a=|al. Sea <0, entdo —a>0e|—a|=—a=|al

(2) Exercicio.
(3) Exercicio.
(4) Tome k = |a| no item (3) do lema. Entao |a| < |a] = —|a| < a < al.

LEMA 2.1.6 (Desigualdade Triangular). Para todo a, b € R temos
la +b| < |a| + [b].

DEMONSTRAGAO. Sabemos que —|a] < a < |a| e —|b] < b < |b]. Logo, —|a|] — |b] <
a+b < la| +|b|. Pelo item (3) do Lema temos que |a + b| < |a| + |b|, como queriamos
demonstrar. O

Dentre os mais importantes conjuntos reais estao os intervalos. Sejam a,b € R. Chama-
remos de intervalo quaisquer conjuntos dos seguintes tipos:

(1) (a,b) ={zxr €eR: a<x<b}

(2) [a,b] ={reR: a<xz<b}
(3) [a,b) ={zr €eR: a<x<b}
4) (a,b)) ={zreR:a<xz<b}
(5) [a,+00) ={zeR:a<a}
(6) (a,400) ={r€eR: a<zx}
(7) (—o00,b] ={r e R: z <b}
(8) (—o0,b) ={x eR: x < b}
(9) (—o00,+00) =R

(10) 0

Os quatro primeiros intervalos acima sao limitados. O primeiro é fechado, o segundo aberto,
o terceiro fechado a esquerda e aberto a direita, o quarto aberto a direita e fechado a esquerda.
Os intervalos (5-10) sao semi-retas, onde (5) é fechada & esquerda, etc. Note que se a > b
entdao (a,b) = [a,b] = [a,b) = (a,b] = 0. Se a = b entdo (a,b) = [a,b) = (a,b] = 0 e
la,b] = {a}. Estes intervalos sao ditos degenerados.
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OBSERVACAO. Alguns autores nao listam o conjunto vazio como intervalo, e/ou impdem
a < b nas defini¢oes acima. Outros autores chamam alguns intervalos particulares de seg-
mentos. Finalmente, a notagao | e [ é por vezes utilizada no lugar de ( e ); por exemplo
la, b= (a,b), etc [39L]17].

A definicao de alguns intervalos particulares é imediata usando-se o médulo:

(a—dya+d)={zeR: |z —a| <d}, la—dya+d ={zreR: |z —a|] <d},

Uma importante propriedade dos niimeros reais, intrinsicamente ligada & sua propria
definicao, ¢ dada por intersecoes de intervalos encaixantes, nocao que discutimos a seguir.

DEFINICAO 2.1.7. Dizemos que uma sequéncia de intervalos I, é encaizante se

LoL2oI32---21,2...

Nos dois exemplos abaixo, ilustramos o fato de que intersecoes de intervalos encaixantes
podem ser vazias ou nao. Entretanto, quando os intervalos forem fechados e limitados, o
Teorema dos intervalos encaixantes abaixo garante que estas intersegoes sao sempre nao
vazias.

EXEMPLO 2.8. Se I, = [0,1/n] entdo N2, 1, = {0}. De fato, 0 € Iy para todo n € N
e portanto 0 € N ,1,,. Por outro lado, para z € R nao nulo a Propriedade arquimediana
(Lema [2.1.4]) garante a existéncia de n € N tal que = ¢ I,,. Logo x ¢ N, I,,.

EXEMPLO 2.9. Usando novamente a Propriedade arquimediana (Lema [2.1.4]) temos que
se I, = (0,1/n) entdao N2, I, = ().

TEOREMA 2.1.8 (Teorema dos intervalos encaixantes). Sejam I, = [ay,b,] intervalos
fechados, limitados, nao vazios e encaixantes. Entao existe £ € R tal que & € N2, 1,. Além
disto, se inf{b, — a, : n € N} =0, entao £ € o unico elemento da interse¢ao.

DEMONSTRACAO. Segue-se das hipoteses que para todo n € N temos
(211) QApy1 2 Qp,s bn+1 S bn> G, S bn

Temos by > a, para todo n pois I, C I. Seja & = sup{a, : n € N}. Logo £ > a, para
todo n. Queremos mostrar agora que £ < b, para todo n. Suponha o contrario, i.e., que
exista by < & para algum k. Logo by < a,, para algum m. Seja p = max{k,m}. Entdo
ap > Qm > by > by, uma contradicao com . Logo a, < & < b, para todon € N e
portanto & € I,, para todo n € N.

Supondo agora que inf{b, — a, : n € N} = 0, definimos n = inf{b, : n € N}. Entao
n > a, paratodon € Nen > ¢ Como 0 <n—¢ <b, —a, para todo n € N, temos n = ¢
pois inf{b, — a, : n € N} = 0 (ver exercicio [2.14). Finalmente, seja z € N2, 1,. Como
r>&=nex<n=¢ entao v =& =n é o tnico ponto em N>, 1,. U

2.2. Espacos Vetoriais e o R”

O exemplo mais comum e intuitivo de espaco vetorial ¢ o R”. Entretanto, uma defini¢ao
mais geral é de grande utilidade. A menos que explicitamente mencionado, neste texto nos
restringiremos a espagos vetoriais sobre o corpo dos reais.



2.2. ESPACOS VETORIAIS E O R" 13

DEFINICAO 2.2.1. Um espaco vetorial V' sobre os reais € um conjunto cujos elementos
chamamos de vetores, com duas operacoes bindrias, soma vetorial e multiplicacao por escalar
tais que

(1) x+y=y+X, para todo x,y € V

(2) (x+y)+z=y+ (x+2), para todo x,y,z € V

(8) Existe um elemento 0 € V tal que 0+ x = x, para todo x € V
(4) Para todo x € V, existe um elementoy € V tal que y + x =0
(5) 1x = x, para todo x € V

(6) (o + B)x = ax + Bx, para todo o, 5 € R e para todo x € V
(7) a(px) = (af)x, para todo o, 5 € R e para todo x € V

(8) a(x+y) =ax+ ay, para todo « € R e para todo x,y € V

Alguns resultados podem ser obtidos imediatamente:

LEMA 2.2.2. Seja V um espago vetorial sobre os reais. Entao temos que

(1) O vetor zero ¢é tnico

(2) Todo elemento de x € V tem um tnico negativo dado por (—1)x
(3) 0x = 0 para todo x € V'

(4) @0 = 0 para todo a € R

DEMONSTRAGAO. Demonstraremos apenas a primeira afirmativa. As demais ficam como
exercicios. Para demonstrar (1), suponha que 0y e 0y sejam dois zeros de V. Logo

0; =02+ 07 = 07 + 03 = 09,

onde usamos que a hipotese de que 0; ¢ zero e a propriedade (3) da Definigao [2.2.1] seguida
da propriedade (1). Na ultima igualdade usamos a hipdtese de que 01 é zero e novamente a

propriedade (3) da Defini¢ao de O

EXEMPLO 2.10. O espacgo das matrizes m X n reais denotado por R™*™ é um espaco
vetorial com a definigao usual de soma de matrizes e multiplicacao por escalar.

O exemplo usual de espago vetorial é o R™, como definido abaixo.
DEFINICAO 2.2.3. Seja R™ o conjunto das n-iplas ordenadas de nimeros reais, i.e,
R"={x=(z1,...,2,): ¥ ER parai=1,... n}.
Definimos entao as operagoes produto por escalar e soma da sequinte forma:

O[X:(Oél'l,...,aﬂfn), X+y:($1+y17---7$n+yn)a

onde x = (x1,...,2,) €y = (Y1,-..,Yn) estio em R", e a € R. Pode-se checar que R" ¢é
espaco vetorial com as operacgoes acima descritas.
Parai € {1,...,n} sejae; onde o vetor com a iésima coordenada valendo um e as demais
coordenadas com valor zero, i.e.,
e; = (1,0,0,...,0), ey =1(0,1,0,...,0), ... e,=1(0,0,...,0,1).

Chamamos este vetores de vetores da base canonica. Note que podemos escrever um ponto
x = (21,%2,...,%,) € R" como x = x1€] + x9€5 + -+ - + x,€,. Definimos entio a matriz
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coluna X € R dada por

X
X2

(2.2.1) X =
T

como sendo as coordenadas de x na base canonica.

Note que eziste uma identificacio natural dos pontos em R™ com suas coordenadas na base
canonica. Usaremos neste texto a notacao indicada acima. Para cada x € R™, indicaremos
por X € R q matriz coluna das coordenadas na base canénica como em ([2.2.1)).

EXEMPLO 2.11. O espago F das funcoes de R em R, com as operacgoes

(u+v)(z) = u(x) + v(z) para todo = € R e todas u,v € F,
(au)(z) = au(z) para todo z € R, toda u € F e todo a € R,

é espaco vetorial.

Duas importantes ferramentas matematicas quando se trabalha em espagos vetoriais sao
produtos internos e normas.

DEFINICAO 2.2.4. Seja V' espago vetorial sobre os reais. Um produto interno € uma
fungao de V xV — R, denotado por x,y — x -y e tal que

(1) x-x> 0 para todox € V comx # 0

(2) x-y =y-X para todo x, y € V

(3) (ax) -y = a(x-y) para todo o € R e todo x, y € V
(4) (x+y)-z=x-z+Yy- -z para todox,y,zeV

Note que da definicao acima concluimos imediatamente que para todo x € V,
0-x=(00)-x=0(0-x)=0.

EXEMPLO 2.12. Em R? se x = (x1,232), e y = (y1,¥2), 0 produto interno canoénico é
dado por

ST -

Xy =Xy =n1y + T2y
Em R", para x = (21,...,2,), e y = (11 Yn), definimos
"y = 5” T1y1 + -+ Tln-

EXEMPLO 2.13. Em R2?, a operacao

2 -1
(@1, 22) - (Y1,92) = (xl xz) (_1 4 ) (Z;) = 2r1y1 — T1Y2 — T2y1 + 4T2y2

define um produto interno. De fato, a primeira propriedade (positividade) é verdadeira pois
(21, 22) - (21, 20) = 207 — 2129 + 423 = 2[(21 — 29/2)* + T23/4] > 0,

se (z1,29) # (0,0). As outras propriedades do produto interno sdo mais faceis de serem
checadas.
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FIGURA 1. Conjunto {x € R?: ||x| = 1}.

EXEMPLO 2.14. Considere o espago vetorial das fungoes continuas em [0, 1], com as
operacoes de multiplicacao por escalar e soma como no Exemplo [2.11, Entao a operacao
dada pela integral de Riemann

1
frg= [ ragt)ds
0
define um produto interno deste espaco.

Introduzimos agora a nogao de norma. Num espaco vetorial, uma boa forma de se medir
distancias entre vetores ¢ através de normas. Em particular, o conceito normas ajuda na
definicao canoénica de conjuntos abertos e fechados, como veremos a seguir.

DEFINICAO 2.2.5. Dado um espago vetorial V', uma norma € uma func¢ao de V em R,
denotada por x — ||x]|, e tal que

(1) [|[x+yl| < ||x|| + |ly]| para todo x, y € V' (desigualdade triangular)
(2) |lax|| = |al||x]| para todo x € V', e para todo o € R
(3) ||x]| > 0 para todo x € V tal que x # 0

Quando um espago vetorial V' tem uma norma associada, dizemos que é um espaco

normado.
(21, @) || = \/af + 23

EXEMPLO 2.15. Em R2,
define uma norma. Na Figura [I| temos que o conjunto de pontos x tais que ||x|| = 1 é dado
por um circulo. No caso mais geral, em R",
(21, ... x| =/ 23+ + a2
também define uma norma.
EXEMPLO 2.16. Outra norma em R" ¢ dada por

(21, 2n)||eo = max |2,

Na Figura[2] vemos que o conjunto de pontos x tais que ||x||s = 1 ¢ dado por um quadrado.
Compare com a Figura[I]

O resultado abaixo ¢ importante pois mostra que todo produto interno induz uma norma.
TEOREMA 2.2.6. Seja V' um espaco vetorial com produto interno. Entao
Ix]] = vx-x
define uma norma em V. Além disto, vale a desigualdade de Cauchy-Schwartz

(2.2.2) Ix-y| < |Ix]|||¥]] para todo x,y € V.
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FIGURA 2. Conjunto {x € R?: ||x||« =1}

DEMONSTRAGAO. Sejam x, y vetores de V. Seja f : R — R dada por
fit)=(x+ty) (x+ty) =x-x+2x -y +t’y-y.
Como f(t) > 0 para todo t € R, entao o discriminante da equagado de segundo grau é nao
positivo, i.e.,
4(x-y)® =4y -y)(x-x) <0,
Tirando raizes, |x -y| < ||x/|||ly]-

Uma demonstracao alternativa é a seguinte. Como o produto interno garante que sempre
teremos x - x > 0, entdo a operacao acima esta bem definida. Mostraremos primeiro (2.2.2)).
Sejaz =x — (x-y)y/|ly|*>. Entao

Xy
z:y=xy— =5y y=0,
[yl
¢ 2 Xy
0<|z]*=2z-z=2z-x=x-X— 5X Y.
Iyl
Logo

(- y)* < [xIPlly .

e (2.2.2)) vale.

Para mostrar a propriedade (1) da definicdo de norma, note que
Ix+y[? = (x+y) - (x+y) =x-x+2x-y+y-y < [[x|>+2]x[[[ly [+ Iy]* = ([l + 1)

e assim temos (1). As propriedade (2) e (3) seguem-se imediatamente da definigdo e das

propriedades do produto interno. O
OBSERVAGAO. Note pela demonstragao acima que a igualdade |x - y| = [|x||||y]| vale se
e somente se X = oy para algum « € R. Ver exercicio 2.21]
detA
det A

Dados dois espacos vetoriais V; e V5, dizemos que uma funcao T : V7 — V5 é uma funcao,
transformacao ou aplicacao linear se

T(x+ay)=T(x)+ aT(y) para todo x, y € V; e todo a € R.
Note que em particular, para toda aplicacao linear linear temos 7'(0) = 0, pois
T(0) =T(00) =07(0) = 0.

Seja L(V1,V2) o espago das aplicagoes lineares T': V; — V5 para as quais existe M € R
tal que

(2.2.3) 1Txlv, < MlJx[|vs,
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E possivel definir operagoes canodnicas de multiplicagao por escalar e soma em L£(V3,V5) de
tal forma que este seja um espago vetorial, ver exercicio[2.20] Se V; for espago normado com
norma || - [|y;, e V5 for espago normado com norma || - ||y,, é possivel induzir uma norma em

L(V1,V3), que é chamada norma dos operadores (exercicio [2.23)), dada por
(2.2.4)

||T||E(V1,V2) = sup

Il _ {110
xeVy ||X||V1
x#0

: xEVl,XyéO} para T € L(V1,V3).
[1%[lv2

Neste caso, para y € Vi, sempre vale a desigualdade

1Ty llve < TN 2eva vz Iy llva -
De fato, para y = 0 vale a igualdade. Para y # 0 temos que

1Tyllv, 7]y
ITyllv, = “[lyllv < sup “ylve = ITleqaamllyllva-
lyllv: << %12

O exemplo tipico de transformacao linear é dada por matrizes, da seguinte forma. Seja
A uma matriz com n linhas e m colunas, e T4 : R™ — R"™ definida por

T4(x) =y, ondey = AX,

onde usamos a notacao da Definicao [2.2.3] Neste caso denotamos a norma de operadores
|74 || £(rm ) simplesmente por ||Al|. Vale portanto a importante desigualdade

(2.2.5) | Ta(x)||re < [|A]|]|%]| R para todo x € R™,

onde || - [[gr € || - ||gm s@0 normas em R™ e R™ respectivamente.

2.3. Conjuntos abertos e fechados em R”

Como ja foi comentado, para definirmos conjuntos abertos e fechados no R", utilizaremos
o conceito de distancia definida por uma norma. No caso, escolhemos a norma definida por

(21, .. x| = /22 + - + 22.

E importante ressaltar que esta escolha de norma nao implica em nenhuma “escolha de
topologia”, pois em espagos de dimensao finita, todas as normas sao equivalentes, i.e., se ||| - |
define uma norma em R", entao existem contantes c e C' tais que

clllxlll < il < Clillll,

para todo x € R™. As contantes ¢ e C' dependem apenas de n (dimensao do espago).
Para definirmos o que é um conjunto aberto necessitamos das chamadas bolas em R".
Dizemos que a bola aberta de raio r e centro x é dada por

B(x) ={y e R": [x -y <r}.

De forma similar, chamamos de bola fechada de raio r e centro x, e de esfera de raio r e
centro x os conjuntos

{yeR": [x-yl<r}, A{yeR":[x-yll=r}



18 2. OS NUMEROS REAIS E O R"

EXEMPLO 2.17. Em uma dimensao, para x € R temos B,.(z) = (x —r,x + ). A bola
fechada de raio r e centro em x é dada por [x — r,x + 7], e a esfera de raio r e centro z é
simplesmente o conjunto {z — r,x + r}.

Podemos agora definir conjuntos abertos em R".

DEFINICAO 2.3.1. Um conjunto A C R™ € aberto em R™ se para todo x € A existe € > 0
tal que B.(x) C A. Em geral chamaremos conjuntos abertos simplesmente de abertos.

EXEMPLO 2.18. () é aberto por “vacuidade”.

EXEMPLO 2.19. R é aberto nos reais pois para todo x € R, temos B;(z) = (z—1,2+1) C

R. Note que tomamos ¢ = 1. Da mesma forma, R™ também é aberto pois para todo x € R,
tem-se B;(x) C R™.
EXEMPLO 2.20. O conjunto I = [0,1] € R nao ¢ aberto. De fato 0 € I, e para todo
e >0, a bola B.(0) = (—¢,¢) € I, pois, por exemplo, —¢/2 € B.(0) mas —¢/2 & I.
EXEMPLO 2.21. O conjunto (0,1) é aberto em R. De fato para qualquer z € (0,1),
seja € = min{x/2,(1 — x)/2}. Entdo B.(z) = (v — ¢,z +€¢) C (0,1). De forma analoga,
B(0) ={x e R": ||x|| < 1} é aberto em R™.

EXEMPLO 2.22. O subconjunto de R? dado por
A=(0,1) x {0} ={(x,0) e R?: z € (0,1)}
nao é aberto em R?. De fato, seja z € (0,1) e x = (z,0) € A. Para todo € > 0 temos
que B.(x) Z A, pois, por exemplo, (z, —€/2) € B.(x) mas (z,—€/2) ¢ A. Compare com o
exemplo 2.21]
LEMA 2.3.2. Duas propriedades fundamentais de conjuntos abertos sao
(1) A unido arbitraria de abertos é aberta.
(2) A intersegao finita de abertos é aberta.

DEMONSTRAGAO. Para mostrar (1), seja A um conjunto de indices, e {G : A € A} uma
familia arbitraria de abertos, e seja
G = UxeaGa
e x € G. Entao x € G, para algum \g € A. Como G, é aberto, entao existe € > 0 tal que
B.(x) C G),. Logo
B(x) CUyeaGr =G
e entao G é aberto.

Para mostrar (2), sejam Gy, --- ,G}, abertos e G = N¥_,G;. Seja x € G. Logo x € G;
para todo i € N. Como G; ¢é aberto, seja ¢; > 0 tal que B, (x) C G;. Definindo ¢ =
min{e;, -, €}, temos € >0 e B(x) CG;N---NGr=G. Logo G ¢ aberto. O

EXEMPLO 2.23. Em uma dimensao, seja I, = (0,1 —1/n) onde n € N. Entao I,, é aberto
e UX I, =(0,1) também o é.

EXEMPLO 2.24. A intersecao infinita de abertos pode nao ser aberta. Por exemplo,
G, = (0,141/n) é aberto em R, ao contrario de N ,G,, = (0,1]. Da mesma forma, Bj,(0)
¢ aberto, mas N7, By /,(0) = {0} nao ¢ aberto. Qual o passo da demonstragao do Lemam
que nao seria correto para este exemplo?
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Um outro importante conceito é o de conjuntos fechados, e temos a seguinte defini¢ao.

DEFINIGAO 2.3.3. Um conjunto F C R™ € fechado em R™ se seu complemento
C(F)=R"\F={xeR": x¢F}
€ aberto.

Para mostrar que um conjunto G é aberto em R", basta mostrar que para todo x € GG
existe € > 0 tal que B.(x) C G. Para mostrar que F' ¢é fechado, basta mostrar que para todo
x ¢ F existe e > 0 tal que B.(x) N F = 0.

EXEMPLO 2.25. [0, 1] é fechado em R pois C([0, 1]) = (—00,0) U (1,00) é aberto em R.
EXEMPLO 2.26. (0, 1] ndo é aberto nem fechado em R.

EXEMPLO 2.27. Os conjuntos R" e ) sao fechados em R™, pois seus complementares
C(0) =R" e C(R") = () sdo abertos em R".

EXEMPLO 2.28. Para todo x € R" e r > 0, as esferas e as bolas fechadas de centro x e
raio r sao conjuntos fechados em R".

COROLARIO 2.3.4. Como consequéncia do Lema temos:

(1) A intersegao arbitraria de fechados ¢é fechada.
(2) A unido finita de fechados é fechada.

DEMONSTRACAO. Utilizamos nas duas demonstracoes a regra de De Morgam .
(1) Seja {Fy : A € A} uma colegao de fechados em R"™, e seja F' = NyepaF)\. Entéo
C(F) = Uyea C(F)) € uma uniao de abertos. Logo C(F') é aberto e, por definigao, F
é fechado.
(2) Se Fi,..., F, sao fechadosem R" e F' = FyU- - -UF,,, entao C(F') = C(Fy)N---NC(F,).
Como a intersegao finita de abertos é aberta, e C(F;) sdo abertos, entdao C(F') é
aberto. Logo F' é fechado.

U
EXEMPLO 2.29. F,, = [1/n,1] é fechado em R, mas U° , F,, = (0, 1] nao o é.

2.3.1. Outras caracterizagoes de conjuntos abertos e fechados. Outras nogoes
que podem ser uteis quando precisamos caracterizar conjuntos abertos ou fechados vém a
seguir.

DEFINICAO 2.3.5. Sejam x € R", e A C R™. Dizemos entao que
(1) uma vizinhanga aberta de x é um conjunto aberto que contenha X.
(2) x é ponto interior de A se existe uma vizinhanc¢a aberta de x contida em A.
(3) x € ponto de fronteira de A se toda vizinhanga aberta de x contém ponto de A e do
complementar C(A).
(4) x € ponto exterior de A se existe uma vizinhanga aberta de x contida em C(A).

Observe que das defini¢oes acima, dados um ponto x € R”, e um conjunto A C R", entao
x é ponto interior, exterior, ou de fronteira de A, sendo as opg¢oes mutuamente exclusivas.

EXEMPLO 2.30. Seja U = (0,1). Se a € U, entao U ¢ vizinhanca aberta de a. De forma
anédloga, qualquer conjunto aberto é vizinhanga aberta de seus préprios pontos.
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As seguintes propriedades podem ser usadas para se definir se um conjunto é ou nao
aberto.

LEMA 2.3.6. Seja G C R". As afirmativas abaixo sao equivalentes.
(1) G é aberto.
(2) Todo ponto de G é ponto interior.
(3) G nao contém nenhum de seus pontos de fronteira.

DEMONSTRAGAO. ((1) = (2)) Supondo (1), seja x € G. Como por hipétese G é aberto,
temos que G é vizinhanca aberta de x. Logo x é ponto interior de G. Como x é arbitrario,
obtemos (2).

((2) = (3)) Se todo ponto de G ¢é interior, entdao nenhum de seus pontos é de fronteira.

((3) = (1)) Suponha que G nao contenha nenhum de seus pontos de fronteira. Se G
é vazio, entao é aberto. Suponha entao que G seja nao vazio. Seja x € G. Como G nao
contém pontos de fronteira, logo x é ponto interior e existe vizinhanca aberta U de x tal que
U C G. Logo G é aberto. OJ

COROLARIO 2.3.7. Seja FF C R". Entao F é fechado se e somente se contém todos os
seus pontos de fronteira.

Finalmente concluimos esta se¢ao com o conceito de ponto de acumulagao.

DEFINICAO 2.3.8. Um ponto x € R™ € um ponto de acumulacao de A C R" se toda
vizinhanca aberta de x contém pelo menos um ponto de A diferente de x.

Em uma dimensao, um ponto x € R é de acumulacao de A C R se e somente se para
todo € > 0 existir £ # z tal que £ € (x — e,z +€) N A.

Note que um ponto pode ser de acumulagao de um certo conjunto mesmo sem pertencer
a este conjunto. De fato veremos varios exemplos abaixo em que tal situagao ocorre.

EXEMPLO 2.31. Se A = (0, 1), entao todo ponto em [0, 1] é ponto de acumulagao de A.
EXEMPLO 2.32. O conjunto N x N C R? nao tem ponto de acumulacao.
EXEMPLO 2.33. O tnico ponto de acumulacao de {1,1/2,1/3,1/4,...,1/n,...} é0 0.

EXEMPLO 2.34. ([0, 1] x [0, 1]) N Q? tem como pontos de acumulagao o conjunto [0, 1] x
[0, 1].

EXEMPLO 2.35. Seja A C R limitado superiormente e u = sup A. Se u ¢ A, entao u é
ponto de acumulacao de A, pois para todo € > 0 existe = € A tal que = € (u — €,u + ¢).

Uma caracterizagao 1til de fechados utiliza o conceito de pontos de acumulacao, como o
resultado a seguir indica.

TEOREMA 2.3.9. Um subconjunto de R™ € fechado se e somente se contém todos os seus
pontos de acumulacao.

DEMONSTRAGAO. (=) (Por contradigao) Seja F' um fechado em R™, e x ponto de acu-
mulagdo de F. Temos que mostrar que x € F. De fato, se x ¢ F, entdao x € C(F). Mas
como C(F') é aberto, entdao existe € > 0 tal que B.(x) C C(F). Logo B.(x) N F = e x nao
¢é ponto de acumulagao de F', uma contradi¢cao. Portanto x € F.
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F1GURA 3. Conjunto A.

(<) Supomos agora que F' contém todos os seus pontos de acumulagao. Considere entao
um ponto y € C(F'). Entdo y nao é ponto de acumulacao de F', e portanto existe ¢ > 0 tal
que B.(y) C C(F). Logo C(F) ¢ aberto, e concluimos que F' ¢é fechado. O

EXEMPLO 2.36. Em R? o conjunto
A=10,1) x {0} ={(z,0) e R*: 2 €[0,1)}

representado na figura [3) ndo é nem aberto nem fechado. Para mostrar que A néo é fechado,
considere os pontos z, € A dados por x, = (1 — 1/n,0). Entdo ||x, — (1,0)]] = 1/n e
(1,0) é ponto de acumulagao. Como (1,0) ¢ A, entdo A ndo contém um de seus pontos de
acumulagao, logo A nao é fechado. Para mostrar que A nao é aberto, note que toda bola
de raio € e centro em (0,0) contém pontos em A e no complementar de A. Compare com o

exemplo 2.22]

2.4. Celas encaixantes e o Teorema de Bolzano—Weierstrass

Uma importante e imediata generalizagdo do Teorema dos intervalos encaixantes (Teo-
rema [2.1.8]) para o R™ ¢é descrita a seguir. Antes de mais nada, chamamos de cela fechada
ao conjunto dado por

[al,bl] X [ag,bg] X - X [an,bn] = {X cR": a; S Z; S b“’L = 1,...,n},
onde a; < b; parai = 1,...,n. Dizemos que uma sequéncia de celas (C}) é encaixante se
CiDCyD2C3D---DC,D---.

Finalmente, dizemos que um conjunto A C R"™ é limitado se existe uma constante ¢ tal que
para todo x € A tem-se ||x|| < c.

TEOREMA 2.4.1 (Teorema das celas encaixantes). Seja (Cy) uma sequéncia de celas fe-
chadas, limitadas, nao vazias e encaizantes. Entao existe & € R™ tal que & € N2, CY.

DEMONSTRAGAO. Para k € N, e a;; < by; para¢=1,...,n, suponha que
Cy = {X e R": Qi <z; < bkﬂ}

Fixando ¢ € {1,...,n} e aplicando o Teorema dos intervalos encaixantes (Teorema [2.1.8])
para Iy ; = [ak, b ], temos que existe & € N2, I ;. portanto & = (&1,...,&,) € N2, C,. O

Uma importante aplicagao do Teorema das celas encaixantes é na demonstracao do resul-
tado a seguir, o Teorema de Bolzano—Weiertrass. Damos a demonstragao em uma dimensao,
e a demonstracao em R"™ é andloga. Uma outra maneira de se mostrar este resultado é
baseada na nog¢ao de compacidade que discutiremos a seguir, ver o exercicio [2.65]
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TEOREMA 2.4.2 (Bolzano—Weiertrass no R™). Todo subconjunto de R™ infinito e limitado
tem pelo menos um ponto de acumulacao.

A seguir damos uma idéia da demonstragao em uma dimensao, antes de proceder formal-
mente. Os passos sao os seguintes:
Seja A C R infinito e limitado.

(1) AC I := [a,b] para algum a < b € R, pois A é limitado.

(2) Seja I, um dos conjuntos [a, (a+b)/2] ou [(a+b)/2,b], tal que I contenha infinitos
pontos de A. Note que I, C I;.

(3) Divida Iy em dois subconjuntos fechados de mesmo comprimento e defina I3 como
sendo uma das partes tal que que contenha infinitos pontos de A. Por definigao,
I3 C .

(4) Prossiga assim definindo Iy, ..., I,, tais que I,, C --- C Iy C I, e que I,, seja fechado
e contenha infinitos pontos de A.

(5) Usando Teorema dos intervalos encaixantes, seja x € NS, [,,.

(6) Mostre que z é ponto de acumulagao.

DEMONSTRAGAO. (do Teorema [2.4.2] versdo unidimensional). Seja A C R infinito e
limitado. Como A ¢ limitado, existe I; = [a,b] C R tal que A C I;. Note que [a, (a+b)/2]/2
ou [(a+b)/2,b] contém infinitos pontos de A, e chame de I, tal intervalo. Da mesma forma,
decomponha I, em dois subintervalos fechados, e denomine por I3 um dos subintervalos tal
que 13N A contenha infinitos pontos. Assim procedendo, obtemos uma sequéncia encaixante
I, C---C I, CI. Pelo Teorema dos intervalos encaixantes, existe & € N2 1,,.

Temos agora que mostrar que ¢ é ponto de acumulagao. Note que o comprimento de
I, =b,—a, = (b —a)/2"'. Dado € > 0, seja V = (£ — ¢, + ¢€). Seja n tal que
(b—a)/2" ! < e. Entao I, CV, pois se = € I, entao

e —¢&| <b,—a,<e = xeV.

Logo V' contém infinitos pontos de A, e ¢ é ponto de acumulagao. 0

2.5. Conjuntos Compactos

Um importante conceito em analise é o de conjuntos compactos. Em espagos de dimensao
finita, estes conjuntos sao na verdade conjuntos fechados limitados, e a nocao de compacidade
ajuda apenas nas demonstracoes, tornando-as mais diretas. Entretanto, em dimensao infi-
nita, nem todo fechado limitado é compacto, e algumas propriedades que continuam valendo
para compactos, deixam de valer para fechados limitados.

Antes de definirmos compactos, precisamos introduzir a nocao de cobertura aberta.
Abaixo, e no restante do texto, iremos denotar por A um conjunto de indices, que pode
ser ou nao enumeravel. Exemplos comuns serao A = R" e A = N.

DEFINICAO 2.5.1. Seja A CR", e A um conjunto de indices. Chamamos G = {G,: a €
A} de cobertura aberta de A se para todo o € A temos G, conjunto aberto, e A C UyenGo.
Dizemos que a cobertura € finita se A € finito.

EXEMPLO 2.37. Como (0,1) C U, (1/i,1), entao G = {(1/i,1) : i € N} é uma cobertura
aberta de (0,1).
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EXEMPLO 2.38. Se para = € R, temos G, = (x — 1,z + 1), entdo G = {G, : x € R} ¢é
uma cobertura aberta de R.

DEFINICAO 2.5.2. Dizemos que um conjunto K C R™ € compacto se toda cobertura
aberta de K possuir uma subcobertura finita de K, i.e., se G = {G, : a € A} € cobertura
aberta de K, entao existem Gy, Gay,...,Go, € G tais que K C U}]:lGaj.

Note que para mostrar que um determinado conjunto é compacto precisamos provar que
para toda cobertura aberta existe subcobertura finita. Para mostrar que nao é compacto
basta achar uma cobertura que nao possui subcobertura finita.

EXEMPLO 2.39. Seja K = {x1,2s,...,2;} conjunto finito em R eseja G = {G, : o € A}
colecao de conjuntos abertos em R tais que K C UyeaGy, i.e., G é uma cobertura aberta
de K. Para j = 1,...,J, seja G; € G tal que z; € G, (tal conjunto sempre existe pois
G é cobertura de K). Entao Gy,...,G; geram uma subcobertura finita de K. Logo K é
compacto, e concluimos que todo conjunto finito é compacto.

EXEMPLO 2.40. O conjunto (0, 1) ndo ¢ compacto. De fato (0,1) C U,Gj, onde G =
(1/4,1). Mas se existisse {Gn,, ..., Gy, } tal que (0,1) € U_ Gy, entao (0,1) € (1/N*,1),
onde N* = max{ny,...,n,} > 0, um absurdo.

Como apontado anteriormente, a nocao de compacidade é extremamente importante
pois permite generalizar alguns resultados em espacos mais gerais que o R™. Nos espagos
de dimensao infinita, existem outras formas equivalentes de caracterizar os compactos. Em
espagos de dimensao finita fica mais simples, e os compactos sdo (surpreendentemente?)
os fechados e limitados. Apesar desta caracterizacao simples, a introdugao da nocgao de
compacidade é importante pois torna mais direta algumas demonstragoes.

O importante resultado abaixo mostra que todo compacto é fechado e limitado, inde-
pendente da dimensao do espaco, e que no R™ todo conjunto fechado e limitado é também
compacto.

TEOREMA 2.5.3 (Heine-Borel). Um conjunto em R™ é compacto se e somente se é fechado
e limitado.

DEMONSTRAGAO. (=) Suponha K C R" conjunto compacto. Entao K C U, B,,(0).
Como K é compacto, a cobertura acima possui subcobertura finita e portanto existe M € N
tal que K C By(0). Logo K é limitado.

Para mostrar que é também fechado, sejax € C(K) e G; = {y € R" : |ly—x]| > 1/i} para
i € N. Logo G; ¢ aberto e R"\{x} = U, G;. Mas como x ¢ K, entao K C U°,G;. Usando
agora que K é compacto, extraimos uma subcobertura finita e temos K C UN,|G; = Gy~
para algum N* € N. Portanto K N By/y«(x) = ) e concluimos que By/n+(x) C C(K). Logo
C(K) é aberto e K ¢é fechado.

(«<)(Contradigao) Suponha K fechado e limitado. Entao existe uma cela

C={xeR": aq;<z;<b;, parai=1,...n}

tal que K C C. Seja d =Y., (b; — a;)?]"/%. A fim de obter uma contradigdo, suponha que
exista um recobrimento aberto {G,} de K que nao contenha nenhuma subcobertura finita
de K. Seja ¢; = (a; + b;)/2. Entéo [a;, ¢;] e [c;,b;] determinam 2" celas cuja unido é C.
Pelo menos uma destas celas contém pontos da parte de K que nao tem subcobertura finita.
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Chame de C esta cela. Subdividindo C; desta mesma forma, obtemos uma sequéncia de
celas fechadas {C};en tal que

(1) C12C, 203D ...,
(2) C; contém parte de K que nao tem subcobertura finita,
(3) se x,y € Cj, entao ||x —y|| < 277d.

Pelo Teorema das celas encaixantes (Teorema , existe £ € C}, para todo j € N. Como
C; N K é infinito, entao £ é ponto de acumulacao de K (porqué? Ver Exercicio . Mas
K fechado implica que £ € K. Portanto £ € G, para algum a. Como G, é aberto, entao
existe r tal que

(2.5.1) ly =&l <r = y € G,.
Seja J € N tal que 27/d < r, e y um ponto arbitrario de C';. Por (3) acima,
I€ -yl <277d <

Por (2.5.1)), concluimos que y € G,, e portanto, todo ponto de C; pertence a G,. Logo,
C; C Gy, e G, € uma cobertura de C;, uma contradigdo com (2). O

Uma outra demonstracao que apresentamos abaixo como curiosidade vale no caso uni-
dimensional e pode ser usada para mostrar que um conjunto fechado e limitado em R é
compacto.

TEOREMA 2.5.4. Um conjunto fechado e limitado em R € compacto.

DEMONSTRAGAO. Parte (i) Primeiro provamos o resultado para um conjunto do tipo
[—a,a], onde a > 0, ¢ G = {G,} cobertura aberta de [—a,a]. A seguir mostraremos o caso
geral. Seja

Co = {x € [—a,a] : [—a,z] pode ser coberto por finitos abertos de G}.

Entao C, é nao vazio, pois —a € C,, e é limitado. Seja s* = sup C,. Entéo s* € [—a, a], pois
se s* > a terfamos a como cota superior de C'; menor que o supremo, um absurdo.

Seja entao G5 elemento de G tal que s* € G5. Sabemos que tal G existe pois G é
cobertura de [—a,al e s* € [—a,al.

Primeiro afirmamos que s* € C,, pois caso contrario suponha {G,,...,G,, } subcober-
tura finita de C,. Entao teriamos {G,,,...,G,,,Gs} subcobertura finita de [—a, s*].

Queremos mostrar agora que s* = a. Supondo s* < a, e como G5 é aberto entao existe
e tal que s* +€ € Gy, e s* + € < a, logo s* + € € C,, uma contradicao com a defini¢ao de
supremo.

Parte (ii) Consideramos agora o caso geral, onde K C R é fechado e limitado, e G =
{G,} ¢ cobertura aberta de K. Como K ¢ fechado, entdo C(K) ¢ aberto, e como K &
limitado, entao existe a € R™ tal que K C [—a,a]. Logo {Ga,C(K)} geram uma cobertura
aberta de [—a, a]. Pela Parte (i), existe uma subcobertura {G,,, ..., Ga,,C(K)} de [—a,a],
e portanto também de K pois K C [—a,a]. Como K NC(K) = (), entdao {Ga,,...,Ga,} €
uma cobertura finita de K. O
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2.6. Exercicios

EXERCICIO 2.1. Mostre que todo intervalo da reta nao degenerado contém infinitos ele-
mentos.

EXERCICIO 2.2. Prove a afirmativa do exemplo [2.4]
EXERCICIO 2.3. Se A C R é um conjunto nao vazio e limitado, entdao A C [inf A, sup A].

EXERCICIO 2.4. Seja A C R e as fungoes f: A - Reg: A — R sejam tais que os
conjuntos f(A) e g(A) sejam limitados superiormente. Defina a fungao f +¢g: A — R por
(f+9)(x) = f(x)+ g(x). Mostre que sup(f +¢g)(A) < sup f(A)+supg(A). Dé um exemplo
em que a desigualdade ¢ estrita.

EXERCICIO 2.5. Seja A C R conjunto limitado. Mostre que inf A e sup A sao tnicos.

EXERCICIO 2.6. Enuncie e demonstre o resultado andlogo ao Lema [2.1.3| no caso do
infimo.

EXERCICIO 2.7. Suponha que A e B sejam dois conjuntos de ntimeros reais limitados
superiormente, e que toda cota superior de A seja cota superior de B. Mostre que sup A >
sup B.

EXERCICIO 2.8. Sejam A e B dois conjuntos nao vazios de R limitados superiormente, e
seja o conjunto C ={a+b: a € A, b € B} formado pela soma dos elementos de A com os
elementos de B. Mostre que sup C' = sup A + sup B.

EXERCICIO 2.9. Seja A C R™ nao vazio, e f : R® — R dada por
Fx) = inf{lx — vl : y € A},

Mostre que f estd bem definida. Construa entretanto um exemplo onde nao exista y € A
tal que f(x) = ||x — y||, para algum x € R".

EXERCICIO 2.10 (Densidade dos racionais nos reais). Mostre que dados z, y € R com
r <y, exister € Q tal que x <r < y.

EXERCICIO 2.11. Demonstre os itens (2) e (3) no Lema [2.1.5
EXERCICIO 2.12. Faga os detalhes do exemplo [2.9]

EXERcCICIO 2.13. Mostre que intervalos encaixantes nao limitados podem ter intersecao
vazia.

EXERCICIO 2.14. Usando a notagdo do Teorema [2.1.8, mostre que inf{b, — a, : n €
N} = 0 se e somente se inf{b, : n € N} =sup{a, : n € N}.

EXERCICIO 2.15. Aponte na demonstragdo do Teorema quais o(s) argumento(s)
que nao é (sao) valido(s) se considerarmos uma sequéncia encaixante de intervalos abertos.

EXERCICIO 2.16. Mostre como exemplo uma sequéncias de fechados F; C R™ nao vazios
tais que Fjq C Fj e N2 F; = 0.

EXERCICIO 2.17. Mostre que a propriedade do supremo de R (ver pagina é equivalente
aos seguintes resultados:
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(1) teorema dos intervalos encaixantes (Teorema [2.1.8))
(2) teorema de Bolzano—Weiertrass em R (Teorema [2.4.2))

(Ver Exercicio [3.16])
EXERCICIO 2.18. Demonstar os itens (2), (3) e (4) do Lema

EXERCICIO 2.19. Seja V' espago vetorial com norma || - || induzida por produto interno.
Mostre que vale a lei do paralelograma, i.e., para todo x, y € V tem-se

e+ ¥l + llx = yII* = 2(l=]” + [Iy[%).

EXERCICIO 2.20. Defina operagoes de multiplicac¢ao por escalar e soma em L£(V7, V3), tais
que este seja um espaco vetorial com estas operagoes.

EXERCICIO 2.21. Dado um espago vetorial com produto interno x -y e norma ||x|| =

(x - x)'2, mostre que |x - y| = ||x]|||y|| se e somente se x = ay para algum « € R.
EXERCICIO 2.22. Mostre que || - || definido no Exemplo de fato define uma norma
no R™. Analise cada uma das propriedades de norma para ||(z1, ..., Z,)|lnf = mini <<, |2;]-

Conclua que esta operagao nao define uma norma.

EXERCICIO 2.23. Mostre que (2.2.4) define uma norma.

EXERCICIO 2.24. O conjunto {x = (x1,...,2,) € B1(0) : x; € Q} é aberto? Prove a
sua afirmacgao.

EXERCICIO 2.25. Responda a pergunta do Exemplo [2.24]
EXERCICIO 2.26. Mostre que B;(0) é aberto.

EXERCICIO 2.27. Mostre que se A C R e B C R sao abertos em R, entao o conjunto
C = A x B é aberto no R

EXERCICIO 2.28. Seja I C R nao vazio, fechado e limitado. Mostre que sup I € I.

EXERCICIO 2.29 (Ver Exercicio 4.17). Dizemos que duas normas || - || e ||| - ||| de uma
espago vetorial V' sao equivalentes se existem constantes positivas ¢; e ¢y tais que

allvil < vl < ellvil

para todo v € V. Mostre que normas equivalentes geram “os mesmos abertos”, i.e., um
conjunto é aberto usando-se a norma || - || se e somente se ele for aberto usando-se a norma

ExERcic1O 2.30. Um conjunto pode ser aberto em R™ como na Defini¢ao [2.3.1] mas
também pode ser aberto em outro conjunto (aberto relativo). Dizemos que U é aberto em
V se para todo x € U existe € > 0 tal que B.(x) NV C U. Mostre que todo conjunto do R"
¢ aberto nele mesmo.

EXERCICIO 2.31. Assim como no exercicio [2.30, um conjunto F' é fechado em V' se V\F
(o complementar de F' em relagao ao V') é aberto em V. Mostre que todo conjunto do R™ é
fechado nele mesmo.

EXERCICIO 2.32. Seja A C R" e x € R". Mostre que uma, e apenas uma, das afirmativas
abaixo ¢é verdadeira:
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(1) x é ponto interior de A
(2) x & ponto exterior de A
(3) x é ponto de fronteira de A

EXERCICIO 2.33. Seja A C R conjunto nao vazio e limitado superiormente. Mostre que
se © = sup A, entao x é ponto de fronteira de A. E que se x é ponto interior de A, entao
x # sup A.

EXERCICIO 2.34. Apresente um exemplo para cada uma das situagoes abaixo:

(a) Um conjunto fechado, nao vazio, e sem pontos de acumulac¢ao. Por que isto nao contradiz

o Teorema [2.3.97
(b) Um conjunto nao enumerével, tal que todo ponto dele é ponto de fronteira
(¢) Um conjunto nado fechado que seja uniao de fechados

EXERCICIO 2.35. Seja A C R", e denote por interior de A o conjunto A° de pontos
interiores de A. Mostre que
(1) (A%)° = A°
(2) (ANB)°=A°NB°
(3) Se BC A e B ¢é aberto, entdao B C A° (i.e. A° é o “maior” aberto contido em A)

EXERCICIO 2.36. Sejam A, B C R". Mostre que A°NB° = (ANB)° e A°UB° C (AUB)°.

EXERCICIO 2.37. Seja A C R™. Chamamos de fecho de A, e denotamos por A, a inter-
secao de todos os fechados que contenham A. Mostre que x € A se e somente se x é ponto
de interior ou de fronteira da A.

EXERCICIO 2.38. Seja A C R™. Mostre que A ¢ fechado se e somente se A = A.

EXERCICIO 2.39. Seja A C R™. Dizemos que x é ponto aderente a A se para todo € > 0

tem-se B.(x)N A # (). Mostre que o conjunto de pontos aderentes a A é dado por A, o fecho
de A — ver Exercicios e[3.20

EXERCICIO 2.40. Apresente exemplos que mostrem que os seguintes conceitos sao dis-
tintos: pontos de acumulacgao, de fronteira e aderente. Justifique sua resposta.

EXERCICIO 2.41. Seja A C R" e A’ conjunto dos pontos de acumulacao de A. Mostre
que A’ ¢ fechado. Seja A o fecho de A, ver Exercicio 2.37 Mostre que A =AU A" Mostre
que (A) = A’, isto é, o conjunto dos pontos de acumulac¢ao de A e A sdo iguais.

EXERCICIO 2.42. Demonstre o Corolario

EXERCICIO 2.43. Apresente dois subconjuntos do R™ em que o conjunto dos pontos de
fronteira seja vazio. Mostre que nao existe nenhum outro subconjunto do R™ com estas
caracteristicas.

EXERCICIO 2.44. Mostre que um ponto x € R" é ponto de acumulagao de A C R", e
a,...a; € A, entdo x é ponto de acumulagao de A\{ay,...ax}.

EXERCICIO 2.45. Mostre que um ponto x € R” é ponto de acumulagao de A se e somente
se toda vizinhanca aberta de x contém infinitos pontos de A.
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EXERCICIO 2.46. Mostre que todo ponto de
{1/n: neN}
é ponto de fronteira, e que 0 é o tinico ponto de acumulacao.

EXERCICIO 2.47. Sejam A, B C R", e x ponto de acumulagdao de AN B. Mostre que x
é ponto de acumulagao de A e de B.

EXERCICIO 2.48. Seja A; C R” conjunto aberto para todo ¢ € N. Decida se as afirmativas
abaixo sao verdadeiras ou falsas, e prove sua resposta:
(1) Se x é ponto de acumulagao de N;enA;, entdo x é ponto de acumulagao de A; para
todo ¢ € N.
(2) Se x é ponto de acumulagao de U;enA;, entao x é ponto de acumulagdo de A; para
algum ¢ € N.

EXERCICIO 2.49. Seja x € R". Mostre que se F' # () é fechado em R", e inf{||x — y|| :
y € F} =0, entao x € F.

EXERCICIO 2.50. Mostre que se x # y sao pontos em R", entao existem vizinhangas
abertas U de x e V de y tais que UNV =0 (i.e., o R" é um espaco de Hausdorff)

EXERcCICIO 2.51. Mostre que se U e V sao vizinhancgas abertas de x € R", entao U NV
¢é vizinhanca aberta de x.

EXERCICIO 2.52. Dizemos que um conjunto aberto A C R" é conexo se ele nao é a uniao
de dois conjuntos abertos disjuntos nao vazios. Mostre que R é conexo. Conclua a seguir
que o R™ é conexo.

EXERCICIO 2.53. Generalize para o R" as idéias apresentadas na demonstracao unidi-
mensional do Teorema de Bolzano—Weiertrass (Teorema [2.4.2)).

EXERCICIO 2.54. Decida se o Teorema de Bolzano—Weiertrass (Teorema [2.4.2)) pode ser
generalizado da seguinte forma:

Todo conjunto de Q infinito e limitado tem ao menos um ponto de acumulacao
(em Q).

Em caso afirmativo, prove a generalizagao ou dé um contra-exemplo em caso negativo.

EXERCICIO 2.55. Para cada um dos conjuntos abaixo, ache, se for possivel, uma cobertura
de abertos que nao contenha subcobertura finita.
(1) R
(2) {1,1/2,1/3,1/4,...}
(3) {0,1,1/2,1/3,1/4,...}
EXERCICIO 2.56. Mostre sem usar o Teorema de Heine-Borel que {0,1,1/2,1/3,1/4,...}
é compacto.

EXERCICIO 2.57. Mostre sem usar o Teorema de Heine—Borel que a bola aberta B;(0) C
R™ nao é compacta.

EXERCICIO 2.58. Seja A C R" conjunto nao limitado. Sem usar o Teorema de Heine—
Borel, mostre que A nao é compacto.
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EXERCICIO 2.59. Decida se os conjuntos abaixo sao ou nao compactos. Prove suas
afirmativas sem utilizar o Teorema de Heine—Borel.

(a) A CR", A finito.
(b) B C R" tal que B nao contém ao menos um de seus pontos de acumulagao.

EXERCICIO 2.60. Na demonstragdo do Teorema de Heine-Borel (Teorema [2.5.3)), mostre
que & é de fato ponto de acumulagao de K.

EXERCICIO 2.61. Seja K conjunto compacto, e seja € > 0. Mostre que existem J € N e
pontos X1, ..., X; pertencentes a K tais que

K C UL, B.(x;).

EXERCICIO 2.62. Mostre, sem usar o Teorema de Heine—Borel, que se K é compacto e
F' C K é fechado, entao F' é compacto.

EXERcCICIO 2.63. Usando o teorema dos intervalos encaixantes, mostre que R nao é
enumeravel. (Sugestao: considere F = {x1,xs,...} C [0,1], e construa um intervalo do tipo
I = [a1,b1] tal que z; ¢ I. Indutivamente, construa intervalo I; = [a;,b;] C I;_; tal que
z; ¢ I;. Conclua entao que [0, 1] ndo é enumeravel).

EXERCICIO 2.64. Sem usar a parte do Teorema de Heine-Borel que diz que todo fechado
e limitado é compacto, mostre que a intersegao arbitraria de compactos é compacta e que a
uniao finita de compactos é compacta.

EXERCICIO 2.65. Sem usar o Teorema de Bolzano-Weiertrass no R" (Teorema [2.4.2)),
mostre que se K é compacto e A C K é infinito, entao existe pelo menos um ponto de acu-
mulagao de A. Obtenha como corolario o Teorema de Bolzano—Weiertrass (Teorema [2.4.2)).
Este ponto de acumulacao necessariamente pertence a A? Necessariamente pertence a K7

EXERCICIO 2.66. Seja A C R™ conjunto aberto com fronteira nao vazia. Mostre, sem
usar Heine-Borel, que A nao é compacto.

EXERCICIO 2.67 (Limitacao Total). Dizemos que um conjunto A é totalmente limitado
se dado r € R positivo, existirem indice J € N e pontos x;,...,x; € A tais que A C
Uj=1..sBr(x;). Mostre que um conjunto no R™ é limitado se e somente se é totalmente
limitado.

2.6.1. Sessao Topoldgica. Seja X um conjunto. Uma topologia para X é uma cole¢ao
T de subconjuntos de X tal que

()0, XeT
(2) UniGes arbitrarias de conjuntos de 7 pertencem a T
(3) Intersegoes finitas de conjuntos de T pertencem a T

Os elementos de T sao chamados de conjuntos abertos de X, e chamamos (X, 7) de espago
topoldgico. Quando é clara qual é a topologia utilizada, escrevemos simplesmente X.

Como exemplo temos que os conjuntos definidos como abertos e fechados na Secao
caraterizam uma topologia. Entretanto, como vemos abaixo outras possibilidades sao possi-
veis.
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EXERCICIO 2.68. Seja X um conjunto. Mostre que {X, (0} é uma topologia para X (esta
é a topologia trivial). Mostre que a colegdo formada por todos os subconjuntos de X é
também uma topologia (chamada de topologia discreta).

EXERCICIO 2.69. Seja T uma topologia para X, e A C X. Mostre que {UNA: U e T}
define uma topologia para A. Esta é chamada de topologia relativa.

EXERCICIO 2.70. Seja 7 uma topologia para X. Entao uma conjunto B C X é fechado
se seu complemento X — B 4 aberto, i.e., se X — B € T. Mostre () e X sao fechados, que a
uniao finita de fechados é um conjunto fechado, e que a intersecao arbitraria de de fechados
¢ um conjunto fechado.

EXERCICIO 2.71. Dizemos que um espaco topologico (X,7T) é de Hausdorff se dados
dois pontos x, y € X, existem abertos disjuntos A,, A, € T tal que x € A,, y € A,. Um
espago de Hausdorff é um espaco que “separa pontos”. Mostre que num espago de Hausdorff,
todo conjunto finito é fechado.

EXERCICIO 2.72. Dizemos que um espaco topoldgico X é conexo se os tinicos conjuntos
simultaneamente abertos e fechados sao () e X. Mostre que um espaco topoldgico é conexo
se e somente se ele nao é a uniao de dois conjuntos disjuntos, abertos e nao vazios. Mostre
que se A é subconjunto de espaco topologico X, e A tem fronteira vazia, entao A = X ou

A=0.
EXERcIcIO 2.73. Defina compactos para espagos topologicos.

EXERCICIO 2.74. Diz-se que um espago topologico tem a propriedade da intersegao finita
se tem a seguinte propriedade: dada uma colecao F de fechados tal que toda subcolecao
finita de F tem intersecao nao nula, entao a intersecao de conjuntos de F é nao vazia. Em
outras palavras, se F satisfaz (1) abaixo, entao satisfaz (2):

(1) sejam finitos fechados Fi, ..., Fy, € F. Entao FiN---NF, £

(2) mFe}‘F 7é Q)
Mostre que um espaco topolégico é compacto se e somente se tem a propriedade da intersecao
finita.

2.6.2. Sessao Meétrica. Um espago métrico (X, d) é um conjunto X munido de uma
métrica d(-,-), que é uma fungado d: X x X — [0, +00) tal que para todo z, y, z € X,
(1) d(x,y) = 0 se e somente se x =y
(2) d(z,y) = d(y, x)
(3) d(z,y) < d(x,z) +d(z,y)
A propriedade (3) acima é chamada de desigualdade triangular.
Note que em qualquer conjunto X podemos definir a métrica

0 sex=y

2.6.1 d(z,y) = ’

(2.6.1) (z,9) {1 sz 4y
EXERCICIO 2.75. Seja V' um espago vetorial. Mostre que se || - ||y € uma norma em V,

a fungao d : V x V — R dada por d(x,y) = ||x — y||v define uma métrica. Por outro lado,
mostre que se V' tem mais que um elemento, a métrica dada por (2.6.1)) ndao define uma
norma em V.
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EXERCICIO 2.76. Seja (X, d) espago métrico. Definina a bola de dentro x e raio r > 0
por B.(x) = {y € X : d(y,x) < r}, e os conjuntos abertos como em Mostre que
a colecao destes conjuntos abertos é uma topologia. Caracterize a topogia definida pela

métrica (2.6.1)).

EXERcCICIO 2.77. Mostre que todo espago métrico é de Hausdorff.

EXERCICIO 2.78. Mostre que, em espagos métricos, se K é um compacto, entao K é
limitado e fechado.

EXERCICIO 2.79. Mostre que um espaco métrico é completo se e somente se a intersecao
de uma sequéncia de bolas fechadas encaixantes com raios tendendo a zero é nao vazia. Além
disto, se o espaco for de fato completo, a intersecao se reduz a somente um ponto.






CAP{TULO 3

Sequéncias

3.1. Definigao e resultados preliminares

Uma sequéncia em R" é simplesmente uma funcao de N em R". Portanto X : N —
R™ indica uma sequéncia de nimeros reais, que escrevemos também como (xi), ou ainda
(x1,X2,X3,...). Para indicar o k-ésimo valor da sequéncia escrevemos simplesmente X.

EXEMPLO 3.1. z, = (—1)* define a sequéncia (—1,1,—1,1,—1,1,—1,...) em R.

EXEMPLO 3.2. A sequéncia de Fibonacci é definida recursivamente por z; = 1, x5 = 1,
e Tpy1 = T + Tx—1 para k > 2. Portanto temos (z;) = (1,1,2,3,5,8,...).

Podemos realizar com sequéncias varias das operagoes que realizamos com niimeros reais,
como por exemplo somar, subtrair, etc. Sejam por exemplo (x;) e (yx) duas sequéncias em
R™ e ¢ € R. Entao definimos

(k) + (yr) = (%% + y&), (xk) = (V&) = (X — ¥&), c(xp) = (ex).
Podemos da mesma forma definir produtos internos de sequéncias em R"™ por (xy) - (yx) =
(Xx - y&)-

EXEMPLO 3.3. Se xp = (2,4,6,8,...) e (yx) = (1,1/2,1/3,1/4,...), entdo (zx) - (yx) =
(2,2,2,--).

A primeira pergunta que surge quando tratamos de sequéncias é quanto a convergéncia
destas, isto ¢, se quando k aumenta, os termos z; se aproximam de algum valor real. Note
que para isto, nao importa o que acontece com finitos termos da sequéncia, mas sim seu
comportamento assintético com respeito a k. Em outras palavras queremos determinar o
comportamento das sequéncias no “limite”.

DEFINIGAO 3.1.1. Dizemos que x € R™ ¢ limite de uma sequéncia (xy), se para toda
vizinhanga aberta U de x existir K* € N tal que x; € U para todo k > K*. FEscrevemos
neste caso que X, — X, ou que X = lim Xy, ou ainda

X = lim xy.
k—o0

De forma equivalente, x, — x se para todo € > 0, existe K* € N tal que x;, € B.(x) para
todo k > K*.
Se uma sequéncia tem limite, dizemos que ela converge ou que € convergente, e se nao
tem limite dizemos que ela diverge ou que € divergente.
10ltima Atualizagao: 31/03/2025
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O lema abaixo é consequéncia da definicao de convergéncia, e portanto na maioria dos
exemplos a seguir nos restringimos ao caso unidimensional.

LEMA 3.1.2. Toda sequéncia (x;) em R" converge se e somente se a sequéncia das i-ésimas
coordenadas ((xz)k) converge em R parai=1,...,n.

DEMONSTRAGAO. Exercicio. OJ

EXEMPLO 3.4. Se x;, = 1, entao limx;, = 1. De fato, dado ¢ > 0, para todo k£ > 1 temos
|.Tk — 1| =0<e.

EXEMPLO 3.5. lim(1/k) = 0. De fato, dado € > 0, seja K* tal que 1/K* < €. Logo, para
todo k > K* temos |1/k— 0| =1/k <1/K* <.

Observe que diferentes situacoes ocorrem nos exemplos acima. Em a sequéncia é
constante, e a escolha de K* independe de €. Ja no exemplo [3.5 temos que K* claramente
depende de €.

A seguir, no exemplo [3.6 0 objetivo é mostar que um certo valor x ndo é o limite da
sequéncia (xg). Mostramos entdo que existe pelo menos um certo € > 0 tal que para todo
K*, conseguimos achar k > K* tal que |z, — x| > €. Note que o que fazemos é negar a
convergeéncia.

EXEMPLO 3.6. (0,2,0,2,0,2,0,2,...) ndo converge para 0. De fato, tome ¢ = 1. Entao
para todo K* € N temos 2K* > K* e xox+ = 2. Portanto |xex« — 0] =2 > e.

Talvez a segunda pergunta mais natural em relacao aos limites de sequéncias é quanto
a unicidade destes, quando existirem. A resposta é afirmativa, como mostra o resultado
abaixo.

TEOREMA 3.1.3 (Unicidade de limite). Uma sequéncia pode ter no mdzximo um limite.

DEMONSTRAGAO. Considere que (x;) é uma sequéncia tal que x; — X e x;, — X/, com
x # x'. Sejam € = ||x — x'||/2 > 0, e sejam K* ¢ K’ € N tais que ||x; — x|| < € para todo
k> K* e ||x; —x'|| < € para todo k > K'. Logo, se k > max{K*, K'}, entao

Ix = x| < lx = x| + [Jxr — x| < 2e = [lx = X]].

Como um ntimero nao pode ser estritamente menor que ele mesmo, temos uma contradicao.
Portanto x = x’ e o limite é tnico. O

Outro resultado importante trata de limites de sequéncias que sao resultados de operagoes
entre sequéncias. Por exemplo, dadas duas sequéncias convergentes, o limite da soma das
sequéncias é a soma dos limites. E assim por diante.

LEMA 3.1.4. Seja (xx) e (yx) tais que limx, = x e limy, = y. Entao

(1) lim(xx + yx) =x+Y.

(2) lim(xy, —yr) =x —y.

(3) lim(cxy) = ex, para ¢ € R.

(4) Em R, temos que lim(ziyx) = y.

(5) Em R, temos que se y; # 0 para todo k e y # 0, entao lim(zy/yx) = z/y.
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DEMONSTRAGAO. (1) Dado € > 0, seja K* € N tal que [|x; —x|| <€/2 ¢ |lyr —y| < €/2
para todo k > K*. Logo

Ixe +ye — (x+y)|| < [Jxx —x|| + ||yx —y|l <€ paratodo k > K*.

(2) A demonstragao é basicamente a mesma de (1), tomando-se o devido cuidado com os
sinais.

(4) Para todo k € N temos

|[wrye — wyl < lzeyr — 2ryl + oy — 2yl = |zellye — yl + yllze — 2.
Seja M € R tal que |xx| < M e |y] < M. A existéncia de tal constante M é garantida pelo
Teorema pelo fato de (xy) convergir. Agora, dado € > 0, seja K* tal que |yp — y| <
€/(2M) e |z, — x| < €/(2M) para todo k > K*. Logo,
|rye — 2yl < Mlyr — yl + |z, — 2] <,

para todo k > K*.

Deixamos (3) e (5) como exercicios para o leitor. O

OBSERVACAO. Os resultados do lema acima continuam validos para um numero finito de
somas, produtos, etc.

As vezes, uma sequéncia se aproxima de algum valor em R” de forma mais lenta que
alguma outra sequéncia de reais que converge para (. E possivel assim garantir convergéncia,
como o resultado a seguir nos mostra.

LEMA 3.1.5. Seja (ax) sequéncia em R convergente para 0. Se para (x;) sequéncia em
R™ existir ¢ > 0 tal que

|xx — x|| < clax| paratodo k € N,
entao x5 — X.

DEMONSTRAGAO. Como (a) converge, dado € > 0, seja K* € N tal que |ax| < €/c para
todo k > K*. Logo

|xr — x| < clax| < € paratodo k > K™,
e limx;, = x. O

COROLARIO 3.1.6. Seja (ax) sequéncia em R convergente para 0. Se para (xj) sequéncia
em R" existir ¢ > 0 e K* € N tal que

|lxx — x|| < clax| para todo k > K*,
entao x; — X.
EXEMPLO 3.7. Seja xy, = (2/k)sin(k). Entao

2

Como 1/k — 0, podemos usar o lema acima para garantir que lim[(2/k) sin(k)] = 0.
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EXEMPLO 3.8. limy_, ((2k 4 1)/k) = 2. De fato,

%;1 —(2)+ (%)

Como limy_,00 2 = 2 € limy 00 (1/k) = 0, n6s obtemos o resultado.

EXEMPLO 3.9. limy_,o (2k/(k* + 1)) = 0, pois
2k 2/k
k241 1+1/k%

Como limg_,o0(2/k) = 0 e limy_500(1 + 1/k*) = 1 # 0, podemos aplicar o resultado sobre
quociente de sequéncias.

EXEMPLO 3.10. A sequéncia

converge. Primeiro note que

k
k> +k
1.1 ) — .
(3.1.1) > i=

Para k = 1 o resultado (3.1.1) é trivial. Suponha (3.1.1)) vedadeiro para k = k*. Temos

entao que

F O L ()2 43k +2 (K +1)2+ (k" +1)

i=1
e portanto férmula é verdadeira. Temos entao que

R4k 1 - 1
TRT o T2 2%

Logo (z) é soma de duas sequéncias convergentes, (1/2 e (1/2)(1/k) e

li lim - 4 lim =
o T D TN 2k T 2

Uma outra nogao importante é o de limitacao de uma sequéncia. Neste caso, mesmo
quando a sequéncia nao converge, podemos conseguir alguns resultados parciais, como vere-
mos mais a seguir.

DEFINIGAO 3.1.7. Dizemos que uma sequéncia (Xy) € limitada quando existe um nimero
real C' tal que ||xx|| < C para todo k € N.

Um primeiro resultado intuitivo é que toda sequéncia convergente é limitada. De fato,
¢é razoavel pensar que se a sequéncia converge, ela nao pode ter elementos arbitrariamente
grandes em norma.

TEOREMA 3.1.8. Toda sequéncia convergente é limitada
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DEMONSTRAGAO. Seja (xj) sequéncia convergente e seja x seu limite. Seja e = 1. Como
(xx) converge, existe K* tal que ||[x—xy|| < 1 paratodo k > K*. Logo, usando a desigualdade
triangular temos

Ixel] < |lxx — x| + ||x|| <1+ ]x|| paratodo k > K*.
Falta agora limitar os K* primeiros termos da sequéncia. Seja entao
C = max{|[x |, 2|, lIxsl], ..., <], L+ [Ix]]}-

Portanto ||xx|| < C para todo k € N. O

EXEMPLO 3.11. A sequéncia (k) em R diverge pois ndo ¢ limitada.

EXEMPLO 3.12. Seja Sy =1+4+1/24+1/3+1/4+---+ 1/k. Mostraremos que (Sy) nao é
limitada, e portanto divergente. Note que

1 /1 1 1 1 1 1 1 1
spo=1+-+ |-+ |+ |c+z+c+z )+ + |7+ "+

2" \3 "4 56 78 ok—14 1 ok
. L T 2 ' L L G
= = - = > = - — —
+2+;Z+Z5Z+ +1_2kzl+1 +2+;4+;8+ +l_2kzl+l .
P I SRS S .
27979 9 9

Logo (Sk) nao ¢ limitada, e portanto diverge.
Outra forma de ver que a sequéncia acima diverge é por inducao. Quero mostrar que
Sor > 14 k/2. Note que Sy = 1+ 1/2. Supondo que Sor-1 > 1+ (k —1)/2 temos
1 1 (k—1) 1 k
Sk = Sor_ e — > —>14=
ok 2k1+2k—1+1+ +2k + 5 +2 +2,
como querfamos demonstrar. Mais uma vez a conclusdo é que (Si) nao é limitada, logo
diverge.

EXEMPLO 3.13 (Sequéncia de Cesaro). Seja (x;) sequéncia convergente em R”, e seja
x € R" seu limite. Entao a sequéncia definida por

1
3(X1+X2+"'+X]‘)

converge e tem x como seu limite.

Sem perda de generalidade, supomos que (x;) converge para zero. Para o caso geral
quando (x;) converge para X basta tratar a sequéncia (x; — x).

Seja S; = (x1 +x2+ - +x;)/j. Como (x;) converge, entdo ¢é limitada. Seja M tal que
|x;| < M para todo j € N. Dado € > 0, seja K* tal que M/K* < € e |x;| < € para todo
J = K*. Entao, temos S; = Sj + Sj, onde

~ 1 A 1
S; = E(XI +Xo 4 4 Xp+), Sj = E(XK*H +Xgep1 o X).

Entdo (S;) ¢ a soma de duas sequéncias convergentes para zero. De fato para j > (K*)?,

temos
K*M M
) < —— <
J K*

< €.

- 1
19511 < = (leall + eaf) 4+ [l
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Além disso, ||S;|| < €(j — K*)/j < e. Portanto (S;) converge para zero.

Note que sequéncias convergentes convergem também no sentido de Cesaro. Entretanto
o oposto nao ocorre. Considere como exemplo (z) = (0,1,0,1,0,1,...). Entao S; como
definida acima converge para 1/2, apesar de (z;) ndo convergir.

Outro resultado importante refere-se a convergéncia das normas de sequéncias: se uma
sequéncia converge, entao a sequéncia de normas também converge. A reciproca nao é ver-
dadeira. Basta considerar como contra-exemplo a sequéncia ((—1)") Neste caso a sequéncia
diverge mas a sequéncia de seus valores absolutos converge.

LEMA 3.1.9. Seja (x;) convergente. Entao a sequéncia dada por (||x;||) também o é.

DEMONSTRAGAO. Exercicio. 0J

3.2. Subsequéncias e Teorema de Bolzano—Weierstrass
Seja (xy) sequéncia em R” e
ki <ko<hksg<---<hkj<...
sequéncia de niimeros naturais. Entao dizemos que (xj,) ¢ uma subsequéncia de (Xy).

OBSERVAGAO. Para definir subsequéncias de forma rigorosa, basta supor que k: N — N
¢ uma fungao estritamente crescente, i.e., i > j implica em k(i) > k(j). Para facilitar a
notagao, escrevemos k(i) simplesmente como k;. Note que sempre k; > i. Ver exercicio .

EXEMPLO 3.14. Se (z3) = (1,1/2,1/3,1/4,...), entdo (1,1/2,1/4,1/6,1/8,...) e (z)
sao subsequéncias de (xy).

Um primeiro resultado relacionado com subsequéncias nos diz que se uma sequéncia
converge para um determinado limite, entao todas as subsequéncias convergem e tém o
mesmo limite.

LEMA 3.2.1. Se uma sequéncia (xj) converge para X, entdo todas as subsequéncias de
(xx) sdo convergentes e tém o mesmo limite x.

DEMONSTRAGAO. Seja (xj) sequéncia convergente, e seja X = limy_,o, xx. Dado € > 0,
seja K* tal que
(3.2.1) |lx — xx|| < € paratodo k> K*.
Seja (xx,) subsequéncia de (x;). Como k; > j para todo j € N, entao j > K* implica em
k; > K* e portanto
% — x| <,

por (3.2.1)). Logo (x,;) converge para X. O

EXEMPLO 3.15. ((—1)”) diverge pois se convergisse para algum = € R, suas subsequén-
cias convirgiriam este mesmo valor. Mas

lim ((—=1)*") =1, lim ((—1)*"*') = —1.

n—o0 n—oo
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EXEMPLO 3.16. Seja (zj) sequéncia convergente para [ e tal que xg, = x2. Entao

| = lim (29) = lim z} lim 2, = [%
n—00 k—o00 k—o0

Logo Il = 0 oul = 1. Para concluirmos qual dos dois candidatos a limite é o correto,

precisariamos de mais informacoes sobre a sequéncia. Por exemplo, se z;, = a* para a < 1,

temos que [ = 0 pois a sequéncia ¢ limitada superiormente por a < 1. Entao [ = 1 nao pode

ser limite, e limy_,o,(a®) = 0. Por outro lado, se a = 1 entdo [ = 1.

LEMA 3.2.2 (Critérios de divergéncia). Seja (x;) sequéncia em R™. As afirmativas abaixo
sao equivalentes:
(1) (xx) nao converge para x € R".
(2) Existe € > 0 tal que para todo K* € N, existe k € N, com k > K* e ||x — xx|| > €.
(3) Existe € > 0 e uma subsequéncia (xx;) de (x;) tal que ||x — x| > € para todo
jeN

DEMONSTRAGAO. (1) = (2): Se (xx) ndo converge para x entdo existe € > 0 tal que
é impossivel achar K* € N tal que ||x — x;|| < € para todo k > K*. Logo, para todo K*,
existe k > K* tal que ||z — zg|| > e.

(2) = (3): Seja € como em (2). Seja k1 € N tal que ||x — xy, || > €. Para todo inteiro
J > 1, seja k; > kj_1 tal que |[x — xi,|| > e. Portanto a subsequéncia (x,) satisfaz a
propriedade (3).

(3) = (1): Se (xx) convergisse para X terfamos (xy,) convergindo para X, o que contraria
a hipotese inicial. Logo (x;) nao converge para X. 0

No exemplos abaixos temos uma aplicacao imediata do Lema [3.2.2]

EXEMPLO 3.17. Seja (xj) sequéncia em R™ tal que toda subsequéncia de (xj) contém
uma subsequéncia convergente para x. Entao (x;) converge para X.

Por contradigao suponha que (x) ndo convirja para x. Portanto existe uma subsequéncia
(xx;) e € > 0 tal que

(3.2.2) |x —x4,|| > € paratodo j € N.

Mas entao, por hipotese, (xi,) tem uma subsequéncia convergindo para x, uma contradicao
com (|3.2.2]).

EXEMPLO 3.18. Sejam (x,) e (y,) sequéncias em R" e seja (2z;) a sequéncia formada por
Z) =Xy, Zy = Y1, Z3 = X3, Zy = Yo,. .., Zoi—1 = X;, Zo; = Y;, .... Entao, se lim; ,ox; = § e
lim; o y; = &, temos que lim;_,, z; = &.

De fato, suponha que (z,) ndo convirja para £ Entao existe ¢ > 0, uma subsequéncia
(Zn,,), € um inteiro Ny tal que

(3.2.3) |zn, —&|| > ¢ para todo ng > Ny.

Isto implica que existem infinitos elementos de (z,) distando mais que € de €. Logo existem
infinitos elementos de (x,) ou de (y,) distando mais que € de £&. Mas isto contradiz o fato
de que lim,,_,x, = € e lim,, oo y,, = &.

De forma mais rigorosa, sejam Ny, N, € N tais que ||x; — §|| < € para k > N, e
lyr — &|| < € para k > Ny,. Seja N; > 2max{Ny, Nx, Ny} (a existéncia de tal nimero
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¢ garantida pois limg_, oo nr = +00). Se N; for par, entao ZNy = YN:/2 € B(&) pois
N /2 > Ny, contradi¢ao com (3.2.3)). O caso de N} impar ¢ anélogo.

A nocao de subsequéncia, combinada com o conceito de ponto de acumulagao e o Teo-
rema de Bolzano—Weierstrass (Teorema [2.4.2) pode ser aplicada como o exemplo abaixo nos
mostra.

EXEMPLO 3.19. Suponha que (xj) seja uma sequéncia limitada de elementos distintos,
e que o conjunto {x; : k € N} tenha exatamente um ponto de acumulac¢do. Entao (xj) é
convergente.

De fato, seja x o ponto de acumulagao da sequéncia. Por absurdo, suponha que (x;) nao
convirja para x. Entao existe ¢ > 0 e uma subsequéncia (xj;) tal que

(3.2.4) |x%, —x|| > ¢ para todo k € N.

Mas entao o conjunto {ij : j € N} é infinito pois os xy, sao distintos e portanto pelo
Teorema de Bolzano—Weierstrass ele tem pelo menos um ponto de acumulacao, que é diferente
de x, uma contradigdo com x ser o tnico ponto de acumulacao de {x; : k € N}.

Finalmente mostramos um importante resultado que nos garante convergéncia de alguma
subsequéncia mesmo quando a sequéncia original nao converge. E o andlogo para sequéncias
do Teorema de Bolzano—Weierstrass (Teorema [2.4.2)).

TEOREMA 3.2.3 (Bolzano—Weierstrass para sequéncias). Toda sequéncia limitada em R™
tem pelo menos uma subsequéncia convergente.

DEMONSTRAGAO. Seja (xi) sequéncia em R" e S = {x;, : k € N}. Entao S ¢ finito ou
nao. Se S for finito, entao existe pelo menos um elemento £ € S tal que § = x;, = X3, =
X, = .... para algum ki, ko, k3, ...em N. Neste caso, a subsequéncia constante (xy,) ¢
convergente (ver Exercicio [L.14).

Se S for infinito, e como este conjunto é limitado por hipodtese, entao o Teorema de
Bolzano—Weierstrass garante a existéncia de pelo menos um ponto x de acumulagao de
S. Vamos construir (Xy,), subsequéncia de (x;) convergente para X:

(1) Seja j =1 e p; = 1. Como x é ponto de acumulagao de S, entao existe ao menos
um indice k; € N tal que x;, # x e x5, € SN B, (x).

(2) Seja j =2, e py =1/2. Como x é ponto de acumulagao de S entdo também é ponto
de acumulagao do conjunto Sy = S\{x1,Xa,...,Xk,—1,Xx, } (ver Exercicio :
entao existe ao menos um indice ky € N tal que

Xi, € (S2N B,,(x)) € (SN By, (x)).

Note que xi, € S = ky > ky (porqué?).

(3) Procedemos agora de forma indutiva, i.e., suponha que dado j > 2 inteiro, os inteiros
ki < ko < --- < kj_; estejam bem definidos, e que x;, € SN B, (x) para todo i < j,
onde p; = 1/2°.

(4) Seja p; = 1/27. Como x ¢ ponto de acumulagao de S entdao também ¢ ponto de
acumulagao do conjunto S; = S\{x1,Xa,...,Xx,_,1,Xx,_,} (ver Exercicio :
entao existe ao menos um indice k; € N tal que x;, € ;N B,,(x). Note que
k;j > k;_1 (porqueé?).
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Entao, dado € > 0, para J € N tal que 277/ < € temos
|x — x| < p; <277 <27/ <e paratodo j > J.

Logo, a subsequéncia (x,;) ¢ convergente. O

3.3. Sequéncias de Cauchy

Um conceito importante tratando-se de sequéncias é o de sequéncias de Cauchy. Formal-
mente, dizemos que uma sequéncia (x;) é de Cauchy se para todo € > 0 existe K* € N tal
que

|Ixr — xm|| < € paratodo k,m > K*.

Usando os lemas a seguir, mostraremos que uma sequéncia ¢ convergente se e somente se ¢é

de Cauchy.
LEMA 3.3.1. Toda sequéncia convergente é de Cauchy.

DEMONSTRAGAO. Seja (Xj) sequéncia convergente, e x o seu limite. Entao, dado € > 0,
existe K* € N tal que ||z — xi|| < €/2 para todo k > K*. Portanto,

Itk — x| < [ = xl| + [x = Xl < € s by > K
Logo (xi) é de Cauchy. O
LEMA 3.3.2. Toda sequéncia de Cauchy ¢ limitada.

DEMONSTRAGAO. Seja (xj) sequéncia de Cauchy. Entédo, considerando € = 1, temos que
existe K* € N tal que ||xg+ — xx|| < 1 para todo k > K*. Logo, para k > K* temos

%]l < %k — xxe<|| + x5 || < 1+ || %K+
Definindo C' = max{||x1]|, ..., [|xx+—1|l, 1 +||x} ||}, temos imediatamente que ||xx|| < C para
todo k € N. Portanto a sequéncia é limitada. O

Finalmente podemos enunciar a equivaléncia entre convergéncia e o critério de Cauchy.

TEOREMA 3.3.3 (Critério de convergéncia de Cauchy). Uma sequéncia € convergente se
e somente se € de Cauchy.

DEMONSTRACAO. Ja vimos no Lema que se uma sequéncia é convergente, ela é de
Cauchy.

Suponha agora que (xj) seja sequéncia de Cauchy. Pelo Lema , a sequéncia é
limitada, e pelo Teorema de Bolzano—Weierstrass (Teorema , existe uma subsequéncia
(Xx;) convergente. Seja x = limy, o X, Quero mostrar que x = limg_o X;. Seja € > 0.
Como (xy) é de Cauchy, temos que existe K* € N tal que

(3.3.1) %K — X < % para todo k,m > K*.
Como (xy,;) é convergente, entao existe m* € {ky, ko, ...} tal que m* > K*, e

<€
2.

HX — Xm*
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Como m* > K* temos também de (3.3.1) que ||xp — Xy
Finalmente, para todo £ > K* temos

< €/2 para todo k > K*.

¢ = il < 1 = e ]+ l1me = 3] <

Concluimos que (xj) converge. O

EXEMPLO 3.20. Considere xy = 1, 25 = 2 e x; = (xj_1 + zj_2)/2 para j > 3. Entao
mostraremos que (x;) converge pois é de Cauchy. Mostramos primeiro que

(3.3.2) |z — xj| = T para j € N.
Note que (3.3.2) é valido para j = 1. Supondo também valida para j = k, i.e., que
1
(3.3.3) [Tk — Tppa| = ST
temos
1 1 1
[Tt — Tro| = |Tppa — §($k+1 +x)| = ’§($k+1 — )| = ok’

onde usamos (3.3.3)) na tdltima igualdade. Concluimos por indugao que ({3.3.2)) é valida.
Tendo ([3.3.2)) sido demonstrado, basta agora, dado €, tomar K* tal que 25 ~2¢ > 1.
Neste caso, se j > i > K*, tem-se

(334) |zj — il <l — 2yl + 251 — wjoof + |2j2 — 28| + - 4 2001 — @i

1 1 1 1 1 1 1 1
=t = + + +o 41

9j—2 " 9j-3 " 9j—4 9i—1 — 9i-1\ 9j—i-1 ' 9j-i-2 ' 9j-i-3
1 1-1/27 1
= — < —
2i—1 1_% — 9i—2

<e,

EXEMPLO 3.21. Em geral, se (x;) ¢ tal que ||xiy1 — x| < ¢, onde S; = S0 _ ¢ €

convergente, entdo (x;) é convergente. De fato, mostramos abaixo que a sequéncia é de
Cauchy, e portanto converge. Note que para ¢ > j, temos
(3.3.5)
135 =% < [l =xi- || +[|xior =X |+ -+ Ixj00 =5 ]| < i tcio - F oy = S =5
Como S; converge, entao é de Cauchy. Logo dado ¢ > 0, existe K* € N tal que ¢ > 57 > K*
implica que [S;_1 — Sj_1| < e. Logo, por temos que ¢ > j > K™ implica que
|x; — x;|| < € e (x;) é de Cauchy.

3.4. Resultados Topolégicos

O conceito de sequéncia é importante também para caracterizar conjuntos quanto a sua
topologia. Apresentamos abaixo alguns resultados nesta direcao.

Podemos por exemplo usar sequéncias para caracterizar conjuntos fechados, como o re-
sultado abaixo mostra.

LEMA 3.4.1 (Conjuntos fechados). Seja F' C R™. As afirmativas abaixo sao equivalentes.

(1) F é fechado em R".
(2) Se (xx) é sequéncia convergente, com x;, € F para todo k € N, entao limg_,, x5 € F'.
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DEMONSTRAGAO. (1)=-(2) (por contradi¢ao) Suponha F' fechado em R™, e seja (xj) se-
quéncia em F' com limg_,o, Xx = X. Suponha x ¢ F. Como C(F') é aberto, existe aberto V'
contendo x tal que VN F = (). Logo, para todo k € N, temos x;, ¢ V, uma contradigdo com
lims_, X = xX. Portanto x € F.

(1)<=(2) (por contradi¢do) Suponha que C(F') ndo seja aberto. Entao existe x € C(F)
tal que para todo k£ € N existe um ponto em x;, € By/x(x) N F. Logo (x;) ¢ uma sequéncia
em F' que converge para x. Por hipotese, temos que x € F', uma contradi¢do com x € C(F)).
Portanto C(F') ¢ aberto, e F' ¢ fechado. O

A caracterizacao de fechados dada pelo Lema ¢é util na bela aplicacao que descre-
vemos abaixo. Seja V' C R™ um subespaco vetorial do R™, i.e., V é espaco vetorial com as
operagoes “herdadas” do R™. Entao, dado um ponto x € R", pode-se perguntar se existe
algum ponto em V' que minimize a distancia entre x e V, i.e, se existe x, € V tal que

(3.4.1) Ix — x.|| =inf{|lx—y| : y € V}.

Outra pergunta natural é se x, é tnico.
Supondo que a norma || - || seja induzida por um produto interno, a resposta ¢ afirmativa
para ambas perguntas, existéncia e unicidade, como nos mostra o resultado abaixo.

LEMA 3.4.2. Seja V subespago vetorial do R" e x € R". Entao existe um tnico x, € V'
satisfazendo (3.4.1)).

DEMONSTRACAO. Vamos primeiro mostrar a existéncia. Note que V' é nédo vazio, pois
0 € V, e portanto
d=inf{lx—y[|: y eV}
estd bem definido. Para k € N, seja x;, € V tal que ||x — x¢|| < d + 1/k. Usando a lei do
paralelograma, ver exercicio [2.19, temos que

2% = xi = 31" + [Ix; — %17 = 2l|x — x[1* + 2[[x — x|,
para todo 7, j € N. Mas V' é subespaco vetorial, logo (x; + x;)/2 € V, e portanto,
2d <2||x — (x; +x5) /2] = [|12x — x; — %]
Temos entao que
(34.2) |x —x5[12 = 2lix — xal12 4+ 2]x = 5012 — [2x — x; — %,
< 2fx — Xl + 2lx — 2 — .

Mas entao, (xx) é de Cauchy, pois ||x —x;|| = d. De fato, dado € > 0, existe K* tal que para
todo k > K* tem-se ||x — xx||? — d* < €/2. Logo, por (3.4.2), ||x; — x;[|* < esei, j > K*.
Seja x, = limy_,o X;. Mas V é fechado em R"™ (por qué? ver exercicio |3.23)), e portanto
x, € V. Finalmente, para todo k € N,
d < lx = x| < lx = xp ]| + [Jxr = x4
Tomando o limite k& — oo, temos ||x — X, || = d, como querfamos.
Para mostrar a unicidade, sejay € V, com ||x —y| = d. Entéo (y +x.)/2€ V, e

d* < fx = (y +x.)/2]*
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Portanto, usando novamente a lei do paralelograma, temos
A + ly = x[* < M12x —y = x| + [ly —x[* = 2[x — v + 2[x — x.[|* = 4d*.
Logo ||y — x«|| =0 ey = x.. O

OBSERVACAO. Pode-se mostrar também que x, é o tnico vetor de V tal que x — x, €&
ortogonal a V', i.e.,

(x—=x,)-y=0
para todoy € V.

Também os conceito de fronteira de um conjunto e o de conjunto aberto pode ser dado
através de sequéncias.

LEMA 3.4.3 (Pontos de fronteira). Um ponto x é de fronteira de 2 C R” se e somente se
existe sequéncia em ) e sequéncia em C(§2), ambas convergentes para X.

LEMA 3.4.4 (Conjuntos abertos). Seja 2 C R". As afirmativas abaixo sdo equivalentes.

(1) Q é aberto em R™.
(2) Seja x € 2 e (xx) contida em R™ com x;, — x. Entao existe K* tal que

k> K" — x; €.
3.5. Sequéncias contrateis e o método das aproximacgoes sucessivas

Dizemos que uma sequéncia (xi) é contrdtil se existem ntumero real A < 1 e um natural
K* tais que
[Xrr2 = Xia || < Allxera — x]
para todo k > K*.

TEOREMA 3.5.1. Toda sequéncia contrdtil é convergente

DEMONSTRAGAO. Seja (X)) sequéncia contratil com constante A < 1. Sem perda de
generalidade, supomos nesta demonstracao que K* = 1, isto é

X2 = Xia || < Allxesa — x]
para todo k € N. Entao,
k42 = X[l < Mlxpsr —xill < Nl = x| < -0 < A% — x|
Logo, para m € N e kK > m temos
1%k = Xm | < e =Xk [l + I1%e—1 = X2l + -+ + [ Xmga — X
SN AT Ik — x| = AT AR g 1) [[xg — x|

1 — )\k’—m m—1
= Am*lﬁ”& —xfl < % = x|
Logo, dado € > 0 se K* € N é tal que
)\K*fl

%2 — x1]| <,

1—A
entdo ||xx — Xm| < € para todo m > K*, k > K*. Portanto a sequéncia ¢ de Cauchy e ¢é
convergente 0
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EXEMPLO 3.22. Seja a sequéncia definida por

1
o =a > 0, Tpi1 =1+ —.
Ty,

Queremos mostrar que (x,,) é contratil, e portanto convergente.

Seja f : RT — Rdadapor f(z) = 14+1/x. Entao a sequéncia é definida por x,, 1 = f(z,),
e temos portanto que z* = (1 ++/5)/2 é a tnica solugdo em R* para a equagio = = f().
Usaremos mais tarde o fato de que x > z* implica em 22 > x + 1. Note ainda que f é tal
que

(3.5.1) x>y = [f(x) < [f(y),

e que se x, y € RT e ¢ < min{z,y}, entdo

(3.5.2) [f(x) = fy)| =

1
x

1‘ _ eyl ly—al
y zy T

A fim de utilizar (3.5.2]), mostraremos que (z,) ¢ limitada inferiormente por algum ntimero
maior que um.

Temos entao trés possibilidades: a = z*, a > 2* ou a < x*. Quando a = x*, a série é
trivialmente convergente pois temos 1 = x9 = --- = x*. Suponha entao que xqg = a > x*.
A analise para a < r* é similar.

Entao z1 = f(x¢) < f(z*) = x*. Por inducdo temos que x9, o > =* € T, 1 < x*. De
fato, como estas desigualdades sao verdadeiras para n = 1 e supondo também corretas para
n =k temos xo, = f(xor_1) > f(z*) = 2" e xopy1 = f(2or) < f(2*) = 2, como queriamos
demonstrar.

Temos entao zg = a, 1 = (a+1)/a, e

1 2a+1 a+a®

To=14+—= < = a = Xy,
2 T a+1 a+1 0

onde usamos que a + 1 < a?. Da mesma forma, z3 = 1 + 1/xo > 1 + 1/x¢ = z;. Portanto
temos que para n = 1 vale x9, < o, 2 € To,11 > To,_1. Supondo estas duas desigualdades
para n = k temos

Topro = 1+ 1/@op1 < 14 1/2951 = Ty, Toprs = 1+ 1/xopr0 > 14+ 1 /29 = Top1,

como queriamos demonstrar.
Concluimos que (x9,_1) é sequéncia nao decrescente, e que |zy,| > z* > x; para todo
n € N. Portanto (z,) ¢é limitada inferiormente por ;.

Aplicando agora (3.5.2)), temos

1
|$k+1 - xk‘ = |f(Ik) - f(xk—l)\ < ?|$k - l’k—1|‘
1

Como z1 =1+ 1/a > 1, entdo (z,) é contratil e portanto converge.
Para achar o valor limite, basta resolver z = f(x), e temos que lim,, ,,, x, = *.

Em varias apliagoes importantes é necessario achar um ponto fizos, i.e., uma solugao do
tipo x = T'(x), onde T": R™ — R" é dada. E natural perguntar-se se dado algum ponto
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inicial x, a sequéncia gerada por
X = T'(Xg-1), keN,

converge para um ponto fixo. Esta forma de determinar pontos fixos é denominada método
das aproximagoes sucessivas.

No caso de T ser uma “contragao”, (xj) sera contratil, e portanto convergente. E exata-
mente isto que mostraremos a seguir.

DEFINICAO 3.5.2. Seja A C R". Dizemos que uma funcao T : A — R"™ € uma contragao
se existir A < 1 tal que

1T(y) = T)| < Ally — ]|
para todo X, y € A.

Temos entao o seguinte resultado.

TEOREMA 3.5.3. Seja A C R"™ fechado, e T : A — A uma contra¢ao. Entao T possui
um e somente um ponto firo em A. Além disto, para qualquer xq € A, a sequéncia definida
por

(3.5.3) xp = T(Xp_1), keN,
converge para o ponto firo de T em A.
DEMONSTRACAO. Suponha que exista A < 1 tal que
IT(y) = T(x)|| < Ally — x|

para todo x, y € A.
Mostraremos primeiro a unicidade. Dados dois pontos fixos x e y de T" em A, temos que

[x =yl =lTx) =TI <Alx =yl = (1=Nlx-yll <0,

o que s6 é possivel se x =y, e portanto o ponto fixo, se existir, é tinico.
Note que (xj) é contratil pois

Ies = it | = 17 Grs) = Tox)| < Allxas — il

Logo (xj) converge, e seja x* seu limite. Como A é fechado, entao x* € A. Para mostrar
que x* é ponto fixo de T, note que para todo k£ € N, temos que

[a" = T() | < lIx* =%kl + [ = T(2) | = lIx* = x| + | T (xx-1) = T(2")]]

< [ =l + Al =27

Tomando o limite k¥ — oo dos dois lados da desigualdade obtemos que ||z* — T'(z*)|| =0, e
portanto z* = T'(x*). O
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3.6. Sequéncias em R

Véarios conceitos e propriedades de sequéncias fazem sentido em R, mas nao em R" para
n maior que um. Por exemplo, o conceito de monotonicidade, a definicao de lim sup, lim inf
nao se generalizam no R". E propriedades, como por exemplo o limite de uma sequéncia
positiva € nao negativo também nao. Este por sinal é o primeiro resultado que apresentamos
a seguir.

Outro resultado importante para se tentar achar um “candidato” a limite nos diz que se
temos uma sequéncia “sanduichadas” entre outras duas sequéncias convergentes que tém o
mesmo limite, entao a sequéncia do meio converge e tem também o mesmo limite.

LEMA 3.6.1. Seja (z) convergente com limx, = x. Se existe K* € N tal que z > 0
para todo k > K*, entao = > 0.

DEMONSTRAGAO. (por contradigdo) Suponha que = < 0. Seja entdo € = —z/2 > 0.
Como (xy) converge para z, seja K € N tal que |z, — x| < € para todo k > K. Seja
K = max{K* K}. Logo, 1 € (x — €,z +¢), isto ¢, 15z < +¢€ = /2 < 0. Obtivemos entéo
uma contradi¢do pois K > K*, e entdo % nio pode ser negativo. 0

OBSERVACAO. Note que o resultado acima nao pode ser modificado tal que
x> 0 para todo k > K™, entao lim x; > 0.
De fato, considere a sequéncia (1/k) de niameros positivos, mas com limite igual a zero.

COROLARIO 3.6.2. Se (xy) e (yx) sdo convergentes com limx, = z e limy, = y, e se
existe K* € N tal que zp > y; para todo k > K*, entao x > y.

DEMONSTRACAO. Se z, = X} — Yi, entao limz, = limzy, — limy, = x — y. O presente
resultado segue entao do Lema |3.6.1] O

LEMA 3.6.3 (sanduiche de sequéncias). Sejam (xy), (yx) e (zx) sequéncias tais que xj <
yr < zp para todo k > K*, para algum K* € N. Suponha ainda que (z) e (z;) convirjam
com lim z;, = lim z;. Entéo (yx) converge e lim y, = lim 2, = lim 2.

DEMONSTRAGAO. Seja a = limz;, = lim z;. Dado € > 0, existe K tal que |z —al <ee
|z, — a| < € para todo k > K. Logo

—e<rp—a<yy—a<zi—a<e = |y, —a|l<e
para todo k > max{f(, K*}, como queriamos demonstrar. O
EXEMPLO 3.23. limk_,oo((sin k)/k) = 0 pois como —1 < sink < 1, entao
—1/k < (sink)/k < 1/k,
e o resultado segue do lema [3.6.3

LEMA 3.6.4 (teste da razao). Seja (xj) sequéncia de ntumeros positivos tal que (xy1/2k)
convirja e limg o (zx11/7x) < 1. Entao (xy) converge e limy_,o, x = 0.
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DEMONSTRAGAO. Seja L = limy oo (2x41/xk). Entdo, por hipotese, L < 1. Seja r tal
que L <r < 1,esejae=r—L>0. Portanto existe K* tal que xyy1/zr < L + € = r para
todo k > K*. Logo,

0 <z <apr < Tp 172 < Tpor® < o < ppeerFETH para todo k > K*.

Se ¢ = -~ K7, entdo 0 < x441 < er® 1. O resultado segue do Corolario [3.1.6, pois como
r < 1, entao limy_,o 7% = 0. O

COROLARIO 3.6.5. Seja (zy) tal que xy # 0 para todo k € N e

L: hm |Ik‘+1|
k—o0 |5L’k|

existe e L > 1. Entao para todo C' € R existe K* € N tal que
k> K" = |z > C.

DEMONSTRAGAO. Basta considerar o teste da razao para y; = 1/|xy|. Neste caso,

x 1 1 1
khm |y|k+|1’ :lchm || k|| :kl' e . I <L
— — — + ] +
W Bt R S
Logo (yx) converge para zero, e para todo C' € R existe K* tal que
1
k>K — \yk|<5.
Portanto para k > K* temos |x| > C. U

OBSERVACAO. Observe que no Corolario acima, (z) nao é limitada e portanto nao
converge.

EXEMPLO 3.24. Seja (z1,) = k/2*. Entdo

) T . kE+12F 1 . 1
hm( kH) = hm(2k+1 ?) 25 lim (T) :5

k—oo® T k—o0

Pelo teste da razao temos limy_,oo(xx) =0

EXEMPLO 3.25. Note que para z; = 1/k, temos limg_,o Tp11/xx = 1 e (zx) converge.
Entretanto, para y, = k, temos limg_,o yxt+1/yx = 1 mas (yx) ndo convergente. Portanto o
teste nao ¢é conclusivo quando o limite da razao entre os termos é um.

3.6.1. Sequéncias Mono6tonas. Um classe muito especial de sequéncias é a de sequén-
cias monotonas. Uma sequéncia monoétona é tal que seus valores nao “oscilam”; i.e., eles ou
nunca diminuem ou nunca aumentam. Pode-se ver que a defini¢ao de sequéncia monotona é
restrita a uma dimensao.

DEFINIGAO 3.6.6. Dizemos que uma sequéncia (xy) € monoétona crescente, ou simples-
mente crescente se r1 < x9 < -+ < xp < ... Da mesma forma uma sequéncia (ack) é
monotona decrescente, ou simplesmente decrescente se x1 > x9 > -+ > xp, > .... Final-
mente, uma sequéncia € monotona se for crescente ou decrescente.

EXEMPLO 3.26. (1,2,3,4,...) e (1,2,3,3,3,3,...) sdo crescentes.
EXEMPLO 3.27. (1/k) ¢ decrescente.



3.6. SEQUENCIAS EM R 49
EXEMPLO 3.28. (—1,1,—1,1,—1,...) ndo é monotona.
TEOREMA 3.6.7. Uma sequéncia mondtona € convergente se e somente se € limitada.

Além disso, se (xy,) € crescente, entdo limy_,o(zx) = sup{zy : k € N}. Da mesma forma,
se (xy,) € decrescente, entao limy_,(zy) = inf{z; : k € N}.

DEMONSTRAGAO. ( =) Ja vimos que toda sequéncia convergente é limitada.

( <) Suponha (z},) crescente e limitada. Seja x = sup{z; : k € N}. Entao dado € > 0,
existe K* tal que r — € < g+ < o < = + €, pois x é o supremo. Logo, para todo & > K*
temos r — € < rg+ < 7 < x < x + €, portanto x, converge para x. Se a sequéncia for
nao-crescente, a demonstracao ¢ anéloga. 0

EXEMPLO 3.29. (a*) diverge se a > 1 pois nao ¢ limitada.

EXEMPLO 3.30. (a*) converge se 0 < a < 1 pois é mondtona decrescente e limitada.
Além disso, segue-se para a < 1 que limy_,(a*) = 0, pois inf{ay : k € N} =0.

EXEMPLO 3.31. Seja y1 = 1 e Y11 = (1 +y,)/3. Mostraremos que (y,) é convergente
e achamos seu limite. Note que y, = 2/3 < 1 = y;. Vamos mostrar por indu¢do que
0 < Yns1 < yn. Esta afirmativa vale para n = 1. Suponha verdadeira para n = k — 1, isto é
0 < yr < yp_1. Entao para n = k temos

Yer1 = (L +y)/3 < (L +yr-1)/3 = vk,

e como Yy > 0, entao yry1 > 0, como queriamos. Portanto a sequéncia é monétona nao
crescente e limitada inferiormente por zero. Portanto converge. Seja y seu limite. Entao

y = lim g,y = lim (1+4,)/3 = (1 +)/3.
Logo y = 1/2.

EXEMPLO 3.32. Sejay; = 1, e Y11 = (2y,+3)/4. Note que yo = 5/4 > y;. Para mostrar
que Y,+1 > yn em geral, usamos indugao. Note que para n = 1 o resultado vale. Suponha
agora que valha também para n = k para algum k, i.e., yrr1 > yi. Entao

1 1
Ykso = Z(ka:-',-l +3) > Z(ka: +3) = Yk

Logo, por indu¢ao, y,+1 > y, para todo n € N, e (y,) é nao decrescente. Para mostrar que
é limitada, note que |y;| < 2. Mais uma vez usamos indugao a fim de provar que em geral
|yn| < 2. Suponha que |yx| < 2. Logo,

1 1 7
|Yrt1| = 11(2% +3)| < Z(Qlyk! +3) < 1<2

Por indugao, segue-se que |y,| < 2 para todo n € N. Como (y,) é monétona e limitada,
entdo é convergente. Seja y = lim,, . (y,). Entao

y = lim (y,) = Tim ((2y, +3)/4) = ((2y + 3)/4).

resolvendo a equacao algébrica acima, temos y = 3/2.
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EXEMPLO 3.33. Seja 0 < a < b, e defina ag = a e by = b. Seja

1
ak+1 = V/ aibg, bit1 = 5(% + i),

para k € N. Entao (ax) e (b) convergem para o mesmo limite.
Vamos mostrar por inducao que

(361) Qi1 > Q4 0<a; < bi, bi+l < b; para 1= O, 1, ce

Para i = 0 temos ag = a < b = by. Logo, usando que y > x implica em /y > \/z, e que qg e
by sdo positivos, temos a; = v/aghy > ag > 0. Além disso, b = (ag + bg)/2 < by pois ag < by.
Portanto (3.6.1)) vale para i = 0. Suponha que valha também para i = k. Entao

1
O<ar<b, = 0< (\/a_— \/a)2 - apby < §(ak—|—bk) == g4+ < bk+1-

Note também que ag1 > ax > 0. Finalmente,

A1+ by
A2 = \/ App1brpr > agya, b2 = - 5 < g1

Logo (3.6.1)) vale também para ¢ = k+1. Portanto temos que (ax) € monotona nao decrescente
e limitada superiormente, enquanto (b;) ¢ monotona nao crescente e limitada superiormente.
Ambas entao convergem e sejam A e B seus limites. Neste caso teremos

A=VAB, B-= %(A—i—B).
e portanto A = B.

3.6.2. Limite superior e inferior. Uma noc¢ao importante tratando-se de sequéncias é
a de limites superiores (lim sup) e inferiores (lim inf), que nos da informagoes sobre sequéncias
limitadas mesmo quando estas nao sao convergentes.

Seja (xy) sequéncia limitada de reais, e defina

V ={v € R: existem finitos k € N tais que x; > v}.

Definimos entao
limsup x = inf V.
De forma anéaloga, se
W = {v € R: existem finitos k € N tais que z} < v},

definimos
lim inf z;, = sup W.

LEMA 3.6.8. Seja (xy) sequéncia de reais limitada. Entdo (xj) converge para z se e
somente se limsup x, = liminf z;, = z.

EXEMPLO 3.34. Seja (73) = (—1)*. Entao liminfz, = —1 e limsupx;, = 1.

(z) = ((—1)’f + (_]i)k).

Entao liminf 2z, = —1 e limsup 2z = 1.

EXEMPLO 3.35. Seja
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3.7. Exercicios

EXERCicIO 3.1. Demonstre o Lema B.1.2
EXERCICIO 3.2. Demonstrar o Lema [3.1.9

EXERCICIO 3.3. Seja C' C R™ nado-vazio,y € R", e A = {|ly — x|| : x € C'}. Mostre que
existe o infimo de A, e que

inf A = 0 <= existe sequéncia em C' convergente para y.

EXERCICIO 3.4. Seja F' um conjunto fechado em R™ nao vazio, e seja 'y ¢ F. Mostre que
existe x* € F' tal que |[x* —y|| = inf{[|x —y[| : x € F}.

EXERCICIO 3.5. Mostre que se A C R nao vazio e limitado, e s = sup A, entao existe
sequéncia em A convergindo para s.

EXERCICIO 3.6. Suponha que k£ : N — N seja uma funcao estritamente crescente, i.e.,
i > 7 implica em k(7) > k(j). Mostre entao que k(i) > 1.

EXERCICIO 3.7. Dé um exemplo de uma sequéncia (x,) em R tal que toda subsequéncia
convergente de (z,,) convirja para x, mas que (z,) nao seja convergente.

EXERCICIO 3.8. Seja (xj) sequéncia em R” limitada, e tal que toda subsequéncia con-
vergente converge para x € R™. Mostre que (xj) converge para X.

EXERCICIO 3.9. Ache uma sequéncia (z,,) de nimeros reais tal que todos os pontos de
0, 1] sejam limites de alguma subsequéncia de (x,). Esboce o motivo de seu exemplo estar
correto.

EXERCICIO 3.10 (]6]). Decida se as propriedades abaixo sao equivalentes a defini¢do de
sequéncias de Cauchy:

1) limgyoo sup{||x; — x|/ : 7 >k} = 0.
ii) para todo € > 0 existe k € N tal que

P>k = ||xi — x| <e
ExXERcCIcIO 3.11. Toda sequéncia de Cauchy é contratil?

EXERCICIO 3.12. Seja (xx) sequéncia de Cauchy contendo uma subsequéncia convergente
para x. Mostre que (xj) converge para X.

OBS: Nao pode usar que toda sequéncia de Cauchy converge.

EXERCICIO 3.13. Seja (xj) sequéncia em R™, e dj, = ||xj11 — Xx||. Decida se a afirmativa

“Se lim dj, = 0,entao (x converge”’
k‘ ) k’
k—o0

é verdadeira ou nao. Se for verdadeira, demonstre-a. Caso contrario, apresente um contra-
exemplo.

EXERCICIO 3.14. Dizemos que uma sequéncia (x;) no R” tem wvariagdo limitada se a
sequéncia (vy) de reais definida por

k
Vg = Z HXi—H - Xz“
i=1

converge. Mostre que toda sequéncia de variagao limitada é convergente.
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EXERCICIO 3.15. Seja a; sequéncia de nimeros reais, e sejam as sequéncias
n n
b, = g aj, Cp = E la;].
Jj=1 Jj=1

Mostre que se (c,,) converge, entao (b,) converge.

EXERcCICIO 3.16. Mostre que o Teorema m (toda sequéncia de Cauchy em R é con-
vergente) é equivalente aos seguintes resultados:

(1) a propriedade do supremo de R (péagina
(2) teorema dos intervalos encaixantes (Teorema [2.1.8))
(3) teorema de Bolzano—Weiertrass em R (Teorema [2.4.2)

(Ver Exercicio [2.17))
EXERCICIO 3.17. Demonstrar o Lema [3.4.3]
EXERCICIO 3.18. Demonstrar o Lema [3.4.4]

EXERCICIO 3.19. Seja S C R™. Mostre que x é ponto de acumulagao de S se e somente
se existe sequéncia de pontos (x;) em S\{x} que converge para x.

EXERCICIO 3.20. Seja A C R"™. Mostre que um ponto x* é aderente (ver defini¢do no
problema [2.39) a A se e somente se existe sequéncia convergente e contida em A, e que tenha
X* como seu limite. Mostre que o conjunto de pontos aderentes a A é fechado.

EXERCICIO 3.21. Apresente e justifique um exemplo para cada uma das situagoes abaixo:

(a) Uma sequéncia convergente (x;), mas que {x; : j € N} néo contenha pontos de acumu-
lacao.
(b) Um conjunto com infinitos pontos de aderéncia, mas sem pontos de acumulagao.

EXERCICIO 3.22. Seja (x;) sequéncia convergente de pontos distintos em R"™, e seja
X = limy_, X. Mostre que x é ponto de acumulacdo de S = {x; : k € N}. Dé um exemplo
de uma sequéncia convergente cujo limite nao é ponto de acumulacao de S.

EXERCICIO 3.23. Seja V' um subespaco vetorial de R™. Mostre que V é fechado em R”

EXERCICIO 3.24. Seja K C R"™. Mostre que as afirmativas abaixo sao equivalentes:
(1) K é compacto
(2) Todo subconjunto infinito de K tem ponto de acumulagao
(3) toda sequéncia contida em K possui subsequéncia convergente com limite contido
em K
(4) K é completo (i.e., toda sequéncia de Cauchy converge) e totalmente limitado (ver

defini¢ao do exercicio [2.67)).

OBSERVACAO. No R"™, pode-se definir compacidade usando qualquer uma das propri-
edades acima, ou mesmo definir conjuntos compactos como sendo fechados e limitados.
Um conjunto que satisfaz (3) é chamado de sequencialmente compacto. A equivaléncia
(1) & (2) & (3) « (4) vale para qualquer espago métrico. Ver Exercicio [3.50]
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EXERCICIO 3.25. No exercicio mostre que (1) & (2) & (3) < (4) sem usar o
Teorema de Heine-Borel. (Dica: mostre que (1) = (2), (2) = (3), (3) & (4), e depois
mostre que (3) + (4) = (1). Para esta ultima implicagao, mostre por contradi¢do usando
(3) que para qualquer cobertura, existe n € N tal que toda bola de raio 1/n esté contida em
algum aberto da cobertura. Extraia dai e de (4) uma subcobertura.)

EXERCICIO 3.26. Sejam K; e K, dois conjuntos compactos, e A = {||x; — xa|| : X3 €
K, x2 € K3}. Mostre que A é compacto.

EXERCICIO 3.27. Diga se as afirmativas abaixo sao verdadeiras ou falsas, provando suas
afirmagoes. Em todos os casos, K; e Ky s@o subconjuntos do R", e A = {||x; — xa|| : x1 €
Kh X9 € KQ}

(1) K; e K5 fechados implica em A compacto.
(2) K; e K, fechados implica em A fechado.
(3) K; compacto e K5 fechado implica em A fechado.

EXERCICIO 3.28. Apresente uma sequéncia (x;) em R” tal que ||xg11 —Xg|| < ||xr —Xg—1]|
para todo k£ > 1 mas que (Xj) ndo convirja.

EXERCICIO 3.29. Sejam (z,,) e (y,) duas sequéncias de nimeros reais, convergentes para
x e y respectivamente, onde z < y. Mostre que existe um nimero natural N tal que z,, < y,
para todo n maior que N.

EXERCICIO 3.30. Mostre que uma sequéncia limitada de ntimeros reais (), mondtona
nao decrescente converge para “seu supremo”, i.e., converge para sup{x, : n € N}.

EXERCICIO 3.31. Seja (¢;)jen sequéncia em R e defina

k
ar = Z lc;| para k € N.

j=1
Mostre que se a sequéncia (ax)ren € limitada entdo é convergente

EXERCICIO 3.32. Seja (z;) sequéncia monotona em R, e suponha que () contenha
subsequéncia convergente. Mostre que () converge.

EXERCICIO 3.33. Seja x1 € [0, +00), e seja a sequéncia de reais definida por

Tpi1 = \/Tp paran € N.

Determine para quais valores de z; € [0,4+00) a sequéncia (z,) converge, e para qual valor.
Demonstre suas afirmativas. (Obs: Para toda sequéncia convergente (y,), vale a propriedade

EXERCICIO 3.34 (Bartle |3]). Sejaz; = 1 e z,41 = (2+,)"/%2. Mostre que z,, ¢ mondtona
e limitada, e portanto converge. Ache seu limite.

ExXERcIcIO 3.35 (Bartle [3]). Seja a > 0 e x; > 0. Mostre que a sequéncia dada por
Tpi1 = (a4 2,)"? converge.

EXERCIcIO 3.36. Demonstre o Lema [3.6.8
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EXERcCicIO 3.37. Seja A C R™ fechado e nao vazio, e considere a funcao d : R* — R
definida por

d(x) =inf{||x — a|| : a€ A}
Mostre que d~*({0}) = A. Além disto, mostre que

(i) existe a € A tal que d(x) = ||x — a|.
(ii) este elemento a dado por (i) é tnico em geral?
(iii) o item (i) ainda é verdade se A nao for fechado?

Mostre que se (X;);en € sequéncia em R™ convergente para x, entao (d(xj))jeN converge para
d(x).

EXERCICIO 3.38. Seja (x;) uma sequéncia em R™ convergente, e seja x seu limite. Mostre
que o conjunto

S={x}U{x;: i€ N} ={x,x1,X2,X3,...}

é compacto.
EXERcIcIO 3.39. Resolva o problema sem usar Heine-Borel.

EXERCICIO 3.40 (Teorema da interse¢ao de Cantor). Suponha que { K} seja uma colecao
de conjuntos nao vazios, compactos, com K; O Ky O K3 DO .... Mostre que ﬂ‘]?‘;lKj é
compacto e nao vazio.

EXERCICIO 3.41 (Teorema da interse¢ao de Cantor). Resolva o Exercicio sem usar
Heine-Borel.

EXERCICIO 3.42. Seja G = {K; : i € N} uma cole¢do de conjuntos compactos. Suponha
que toda intersecao finita seja nao vazia, i.e.,

Ki, NK,N---NK; #0 para quaisquer i, 1z, ...4 € N.
Mostre (sem usar o Teorema da Intersegao de Cantor) que N2, K; # ().

EXERCICIO 3.43. Faga a questao (3.42)) sem usar Heine-Borel nem o Teorema da Inter-
secao de Cantor.

EXERCICIO 3.44. Dadas duas sequéncias limitadas (z) e (yx), mostre que
lim sup(zg + yx) < limsup(xy) + lim sup(yx).

EXERCICIO 3.45. Seja (zj) sequéncia em R, limitada. Se s; = sup{z; : j € N, j > i},
mostre que

limsup z, = inf{s; : i € N}.
EXERCICIO 3.46. Seja (zx) sequéncia em R, limitada, e seja L o conjunto de nimeros

reais x tais que existe uma subsequéncia de (xy) convergindo para x. Se L # (), mostre que
sup L = lim sup x.
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3.7.1. Sessao Topolégica & meétrica.

EXERCICIO 3.47. Mostre que, dado uma espago topologico, nem todo subconjunto fe-
chado é completo e que nem todo subconjunto completo é fechado.

EXERCICIO 3.48. Seja X espaco topoldgico completo e F' C X. Mostre que F' é completo
se e somente se é fechado em X.

EXERCICIO 3.49. Considere as seguintes definicoes para um espagos topologico:

(1) sequencialmente compacto: toda sequéncia tem subsequéncia convergente

(2) enumeravelmente compacto: toda cobertura aberta enumeréavel tem subcobertura
finita

(3) pseudocompacto: toda fungao real continua é limitada

(4) compacto acumulativo: toda conjunto infinito tem ponto de acumulagao

Mostre que
(1) espagos compactos sdo enumeravelmente compactos

(2) espagos sequencialmente compactos sdo enumeravelmente compactos
(3) espagos enumeravelmente compactos sao pseudocompactos

EXERCICIO 3.50. Mostre que num espago métrico, todas as defini¢bes do exercicio [3.49
sao equivalentes a definicao de compacidade.

EXERCICIO 3.51. O que muda no exercicio se considerarmos K7 e Ky como subcon-
juntos de um espaco métrico?

EXERCICIO 3.52 (]|6]). Um espago vetorial normado ¢ de Banach se for completo. Seja
co 0 espago das sequéncias em R que convergem para 0, e ||(xg)kenl|e, = sup{zr : k& € N}.
Mostre que ¢y é de Banach.






CAPITULO 4

Continuidade e Funcoes Continuas

EIUm dos mais importantes topicos de analise é o estudo de fungoes e suas propriedades,
em particular a continuidade. Seja 2 C R™. Dizemos que uma funcao f : 2 — R" é continua
em x € (), se para toda vizinhanga aberta V' de f(x) existir vizinhanga aberta U de x tal
que

yelUnQ = f(y)eV.

Ver Figura[l] Finalmente, dizemos que f é continua em ' C Q se f for continua em todos
os pontos de (7.

Dividimos o estudo de funcgoes continuas analisando primeiro propriedades locais, se-
guido das propriedades globais. A menos que seja explicitamente indicado, neste capitulo
utilizaremos a notacao acima.

4.1. Propriedades locais

Comegamos observando que a funcao f € continua em todo ponto x € 2 que nao seja
ponto de acumulacao de ). De fato, se x € {2 nao é ponto de acumulagao, existe vizinhancga
aberta U de x tal que QN U = {x}. Logo para todo vizinhanca aberta V' de f(x), temos
que

yeQNU = y=x = f(y)=fx) eV
Logo f é necessariamente continua em x.
Abaixo descrevemos outras formas de checar a continuidade de uma func¢ao num ponto.

1Ultima Atualizagio: 25/02/2025

FIGURA 1. Continuidade de f(x).
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LEMA 4.1.1. Seja f: Q2 — R, e x € Q C R". Entao as afirmativas abaixo sao equivalen-
tes.

(1) f é continua em x.
(2) Para todo € > 0 existe § > 0 tal que

yeq Ix-yl<s = [fx) - f@)l<e

(3) Se (x1) é sequéncia em Q e limy_,, X = X, entdo limy_,, f(xx) = f(x).

OBSERVAGAO. Pode-se notar que dada uma fungao continua como no Lema 0 de-
pende de € e x. Um resultado curioso afirma entretanto que esta dependancia é continua [15|.

Outro resultado importante é o seguinte critério de descontinuidade: f nao é continua
em X se e somente se existe sequéncia (xj) em  convergindo para x mas (f(x;)) nao
convergindo para f(x).

Uma nogao que pode ser util em algumas ocasioes é a de limites de fungoes. Se x for
ponto de acumulacao de €2, dizemos que p é o limite de f em x se para toda vizinhanca
aberta V' de p existir vizinhanca aberta U de x tal que

yeUunQ, y#x = f(y)eV.

Neste caso, escrevemos p = limy_,» f(y), e dizemos que f converge para p no ponto x. Uma
observacao a respeito da definicao acima é que s6 a utilizamos para pontos de acumulacao
do dominio. Note também que a nocao de limite em x independe do valor de f em x. Na
verdade, f nao precisa nem estar definida neste ponto.

As seguintes afirmativas sao equivalentes:

(1) pP= lirny—>x f(Y)
(2) Para todo € > 0 existe > 0 tal que

y € O\{x}, |y —x[| <6 = [[f(y) —pll <e
(3) Para toda sequéncia (x;) em Q\{x}, tem-se
xp — x = f(xx) — p.
OBSERVACAO. Note algumas diferencas na definicao de limite de fungao e continuidade

num ponto x:

(1) Para definir limite, a fun¢do nao precisa estar definida em x, e mesmo que esteja,
o valor nao tem importancia. Mas faz parte da definicao que x seja ponto de
acumulagao do dominio da funcao.

(2) Na definigao de continuidade, a fungao tem que estar definida em x, mas este ponto
nao necessariamente ¢ de acumulagao.

Se x € () for ponto de acumulagao de €2, entao

f ¢ continua em x <= f(x) = lim f(y).
Yy—X

EXEMPLO 4.1. g(x) = = é continua em R. De fato, para todo ¢ € R, temos lim,_,. g(z) =
c=g(c).
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FIGURA 2. Grafico de sgn(x), que é descontinua em = = 0.

EXEMPLO 4.2. Considere A € L(R™,R"), isto ¢, A : R™ — R" & aplicagao linear e a
norma || A|| est4 bem definida (ver pagina[l7). Seja f : R™ — R dada por f(x) = A(x)+c,
onde ¢ € R" é vetor constante. Entao f é continua.

De fato, dado € > 0, seja 0 = €/||A||. Logo, para todos x, y € R™ tem-se

Ix =yl <d = [[fx) = F¥)I = A=y < |A[llx =yl < A6 =

EXEMPLO 4.3. Seja A C R™ conjunto fechado, e f : A — R™ continua em A, e seja (xy)
sequéncia de Cauchy em A. Entao ( f(xk)) é sequéncia de Cauchy em R™.

Realmente, como (x;) é de Cauchy, entao converge. Seja x seu limite. Como A é fechado,
entdo x € A. Posto que f é continua em A, e portanto em x, entdo f(xy) converge para

f(x). Logo, f(xx) é convergente. Como toda sequéncia convergente é de Cauchy, temos que
f(xx) é de Cauchy.

EXEMPLO 4.4. Seja
1 se x > 0,
sgn(x) =40 sex =0,
-1 sexz <0,
como na figura [2|
Tomando-se as sequéncias (—1/n) e (1/n), ambas convergindo para ¢ = 0 mas nunca
atingindo este valor, tem-se (sgn(—1/n)) = —1 e (sgn(1/n)) = 1. Entdo esta fun¢do ndo
tem limite em ¢ = 0, pois se o limite existe, este tem que ser tnico. Portanto, a funcao
sgn(x) ndo é continua no zero, ja que nao existe lim,_,osgn(x).

EXEMPLO 4.5. Seja f: R — R dada por

f(x):{l se x € Q,

0 caso contrario,

é descontinua para todo x € R. Para mostrar isto, suponha x € Q, e uma sequéncia
(z,) em R\Q convergindo para x. Neste caso, limy o (f(zn)) = 0 # 1 = f(z). Da
mesma forma, se z ¢ Q, tomamos uma sequéncia (z,) em Q convergindo para z, e temos

limnﬁoo(f(a:n)) =1#0= f(z).
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As vezes, ¢ possivel estender uma fun¢do de forma continua. Seja x ¢ 2 ponto de
acumulacao de 2. Se existir limy_,» f(y), entao definimos f(x) como sendo este limite, ¢ f
serd continua em Xx.

EXEMPLO 4.6. Considere a fungao

z, sex € RtNQ,

[iRT =R f@) = {0 se z € RT\Q.

Entao lim, o f(z) = 0 e podemos estender f continuamente no zero definindo

f(z), sexeRH,

g: RTU{0} =R, g(z)= -
0, se x = 0.

Entao temos g continua no zero (e somente no zero).

EXEMPLO 4.7. E claro que nem sempre tal extensao continua é possivel. Por exemplo no
caso de f : Rt — R dada por f(z) = 1/x, nao se pode definir f(0) tal que f : RTU{0} - R
seja continua.

4.1.1. Composicao de fungoes. Em geral, se f e g sao continuas, entao f+g, f —g,
e no caso unidimensional, fg também o sao. Da mesma forma, se h : 2 — R ¢é tal que

h(x) # 0 para todo x do dominio, entdao f/h é continua. O proximo resultado garante que
a composicao de fungdes continuas também é continua. Denotamos a composi¢ao de uma

fungdo f com g por go f, ie., go f(x) = g(f(x)).
TEOREMA 4.1.2. Sejam Q CR™, RCR*, e f: Q = Reg: R — R. Suponha f

-

continua em x € Q e g continua em f(x) € R. Entio a composicio go f : Q — R! ¢
continua em X.

DEMONSTRAGAO. Seja y = f(x) e W vizinhanga aberta de g(y). Como g é continua
em y, entao existe vizinhanca aberta V' de y tal que

(4.1.1) yeEVNR = g(y)eW.
Como f é continua em x, entao existe vizinhanca aberta U de x tal que
xXelUNQ = f(x)eW
Logo
XelnNQ = fX)eV = f(xX)eVNR = g(fx)) eWw,
pois f(x') € R, ja que esta imagem de f. Na tltima implicagao usamos ainda (4.1.1)). Logo
g o f é continua em x. O
EXEMPLO 4.8. A fungdo g(x) = ||x|| é continua em R™. Realmente, como

19(x) =g =[x =Nyl T < lx =yl

se (x,) converge para X entao
l9(xn) = g(x¥)| < [l — x[| = lim (g(xa)) = g(x).

Portanto, se f é continua em x, entao h(x) = || f(x)|| também o ¢, pois h = go f é composi¢ao
de fungoes continuas.
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FIGURA 3. Continuidade em x = 0.

OBSERVAGAO. Note que nao podemos concluir a continuidade de f : R™ — R"™ mesmo
que || f|| seja continua. Por exemplo se f: R — R ¢é tal que

o) = {—1 se x > 0,

1 se x > 0,

entdo |f| é continua mesmo sendo f descontinua.

4.2. Propriedades globais

Algumas propriedades de func¢oes continuas nao estao restritas a apenas um ponto, mas
sim a todo o dominio. Como exemplos citamos preservacao de compacidade, e a continuidade
uniforme.

Antes de prosseguirmos com as propriedades e suas aplicagoes, temos o seguinte resultado
que caracteriza fungoes continuas em todo dominio.

TEOREMA 4.2.1 (Continuidade Global). Seja f : Q@ — R™. Entao as afirmativas abaizo
sao equivalentes:
(1) f € continua em Q
(2) Se V. C R™ € aberto, entio existe aberto U tal que UNQ = £ (V)
(8) Se H C R™ ¢ fechado, entio existe fechado F tal que FNQ = f~'(H)

DEMONSTRACAO. (1) = (2): Seja f continua em Q e V C R" aberto. Sejax € f(V).
Como é f continua, existe aberto Uy contendo x tal que
yelUinNQ = f(y)eV.
Logo U, NQ C £71(V). Seja
U - Uxeffl(V)UX'
Entdo U é aberto pois é unido de abertos, e U NQ = £~1(V).
(2) = (1): Seja x € Q e V vizinhanga aberta de f(x). Por hipotese existe um aberto

U tal que UNQ = £ (V). Mas como f(x) € V, entdo x € U e portanto U ¢ vizinhanga
aberta de x. Além disto, para todoy € U N2 tem-se f(y) € V.
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(2) = (3): Seja H C R” fechado. Entao como C(H) é aberto, temos por hipotese que
existe aberto U tal que UNQ = £ 1(C(H)). Seja F = C(U). Entao
x€EFNQ = 2¢U = f(x)¢CH) = f(x)eH = FNQC f'(H).

Por outro lado,
xcf Y (H) = 2¢ f'(CH) = x¢UnNQexcQ = x€ FNQ = f'(H) C FNA.

Logo f'(H) = FNQ.
(3) = (2): semelhante ao caso anterior. O

OBSERVACAO. Observe que pelas defini¢oes de abertos e fechados relativos dadas nos
Exercicios o Teorema da Continuidade Global (Teorema diz simplesmente
que uma fungao f : 2 — R™ é continua em (2 se e somente se imagens inversas de abertos
sao abertos em €) e se e somente se imagens inversas de fechados sao fechados em ).

OBSERVAGAO. Note que U aberto e f continua nao implica em f(U) aberto. Da mesma
forma, F' fechado ndo implica em f(F) fechado. Como exemplo tome f(z) = z?eU = (—1,1)
implica em f(U) = [0,1). E se F = [1,400), que é fechado, com g(x) = 1/z, entao
g9(F) = (0,1].

4.2.1. Fungoes Continuas em Conjuntos Compactos. Um resultado com varias

aplicacoes vem a seguir e garante que a compacidade é uma propriedade preservada por
fungoes continuas.

TEOREMA 4.2.2 (Preservagao de compacidade). Se K ¢é compacto, e f : K — R" ¢
continua, entao f(K) é compacto.

DEMONSTRAGAO. Seja G = {G,} cobertura aberta para f(K), i.e., f(K) C U,G,. Logo
K C Uaf YG,). Por f ser continua, pelo Teorema m para todo « existe H, aberto tal
que f1(G,) = Hy,NK. Portanto {H,} ¢ uma cobertura aberta de K. Como K é compacto,
entdo existe {H,,, ..., H,,} subcobertura finita. Logo,

K g U‘}-Ileaj ﬂ K - szlf_l(Gaj),

e entdo f(K) C U/_,G,,. Portanto, achamos uma subcobertura aberta finita para f(K), e
concluimos que f(K) é compacto. O

Uma aplicagao imediata do resultado acima é a existéncia de maximos e minimos de
funcoes continuas definidas em compactos. Em particular, estas fun¢oes sao limitadas.

DEFINIGAO 4.2.3. Dizemos que f : Q — R™ é limitada em Q se existe M € R tal que
| f(x)]| < M para todo x € ().

EXEMPLO 4.9. sinx é limitada em R pois |sinz| < 1 para todo z € R.

EXEMPLO 4.10. A fungdo 1/z ndo ¢ limitada em R*. Entretanto 1/z ¢ limitada em
(1/2,400) pois |1/z] < 2 para todo z neste intervalo.

O Teorema garante que imagens de compactos sao conjuntos compactos, portanto
pelo Teorema de Heine-Borel (Teorema [2.5.3)) fechados e limitados. O resultado abaixo é
consequéncia imediata deste fato.
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FIGURA 4. Gréfico de 1/(1 — 2?), que néo é limitada em (—1,1).

TEOREMA 4.2.4. Seja K compacto, e f : K — R" continua em K. Entao f € limitada
em K.

Uma demonstracao alternativa do Teorema que dispensa o uso de nogoes de com-
pacidade vem a seguir.

DEMONSTRAGAO. (alternativa do Teorema m por contradigdo) Suponha K fechado
e limitado e f nado limitada. Entao para todo j € N existe x; € K tal que f(x;) > j.
Como K ¢é fechado e limitado, entdo, pelo Teorema de Bolzano-Weierstrass, (X;);jen possui
subsequéncia (x;,);en convergente. Seja X = lim; o x;,. Como K ¢é fechado, entdo x € K.
Mas como f é continua, entao lim; .o, f(x;,) = f(x), e portanto a sequéncia (f(xji))z.eN
tem limite, e logo ela é limitada, uma contradigdo, pois a construcao de (x;) ey implica em
f(in) > Ji- [

Outra nogao importante ¢ o de méximos e minimos. Dizemos que f : {2 — R tem valor
méaximo em {2 se existe z* € 2 tal que f(z*) é cota superior de f(€2). De forma anéloga
dizemos que f tem valor minimo em €2 se existe z, € €2 tal que f(x.) é cota inferior de f(£2).
Chamamos z* de ponto de valor maximo e x, de ponto de valor minimo.

OBSERVACAO. Se uma funcao f como acima definida tem seus valores maximo e minimo
em €2, entao f é limitada em Q.

EXEMPLO 4.11. A funcio f: (—1,1) — R dada por f(z) = 1/(1 — 2?) (Figura[4) nio ¢
limitada em (—1,1), mas é limitada em [—1/2,1/2] por exemplo.

EXEMPLO 4.12. f(x) = z é continua e limitada em (—1, 1), mas ndo toma valor maximo
nem minimo em (—1,1). Entretanto f tem seus valores maximo e minimo em [—1, 1].
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FIGURA 5. Grafico de 1/(1+ z?), que tem seu maximo mas nao o seu minimo
em R.

EXEMPLO 4.13. A funcao h(x) = 1/(1 + 2?) (Figura [5)) é limitada em R, tem seu valor
méximo em z* = 0, mas nao tem seu valor minimo. Isto porque inf h(R) = 0 # h(x) para
todo z € R.

OBSERVAGAO. Note que pontos de méaximo e minimo nao sdo tnicos em geral. Por
exemplo, f(z) = 2? tem —1 e 1 como seus dois pontos de méximo em [—1,1].

O resultado a seguir mais uma vez é consequéncia do Teorema [£.2.2]

TEOREMA 4.2.5 (Pontos Extremos). Seja K compacto e f : K — R continua em K.
Entao f tem pelo menos um ponto de mdximo e um de minimo em K.

DEMONSTRACAO. Como K é compacto, entao o Teorema m garante que f(K) tam-
bém é compacto. Logo f(K) é limitado e portanto tem supremo, e f(K) é fechado, e
portanto o supremo pertence a f(K). Logo existe z* € K tal que f(x*) = sup f(K).

Mesmo tipo de argumento assegura que existe ponto de minimo em K. 0

A seguinte demonstragao dispensa o uso direto de compacidade.

DEMONSTRAGAO. (alternativa do Teorema Demonstraremos somente que existe
um ponto de maximo para f. O caso de valor minimo é analogo. Como K é fechado limitado,
entdo f(K) é limitado. Seja s* = sup f(K). Seja x, tal que f(x,) > s* — 1/n. Mas pelo
Teorema de Bolzano—Weierstrass, K limitado implica em existéncia de uma subsequéncia
(xy, ) convergente. Seja x* o limite de tal subsequéncia. Como K ¢ fechado, entao x* € K.
Como f é continua, entao f(x*) = lim,, o f(Xy,,). Finalmente, usamos que

1
s*— — < f(xn,) <57,
ur

e pelo Lema do sanduiche de sequéncias [3.6.3] temos que f(x*) = lim,, 00 f(Xp,) = s*. O

Outro resultado de grande importancia é o Teorema do Valor Intermediario que garante
a preservacao de intervalos por fungoes continua.

TEOREMA 4.2.6 (Teorema do Valor Intermediario). Sejam a < b e suponha f : [a,b] — R
continua. Se existe d € R tal que f(a) < d < f(b), entao existe ¢ € (a,b) tal que f(c) =d.

DEMONSTRACAO. Seja

I={z€la,b]: f(z) <d}=f"((—o0,d)).
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Logo I ¢ nao vazio pois a € I, e definimos ¢ = sup I. Entao ¢ € [a, ], pois b & cota superior
de I. Pelo Teorema da Continuidade Global (Teorema [4.2.1]), existe aberto U tal que

I=UnN]a,b) =UnN/a,b),

pois b € I. Logo, para todo = € I, existe € > 0 tal que x + ¢ € I. Portanto ¢ ¢ I, i.e.,
f(c) > d. Seja entao x,, € I tal que x,, — ¢, ver Exercicio . Por continuidade de f, temos
f(e) =limy, 00 f(z,). Como f(z,) < d, entdo f(c) < d. Portanto f(c) = d. O

COROLARIO 4.2.7 (Teorema do ponto fixo em uma dimensao). Seja f : [0,1] — [0,1]
continua. Entdo f tem um ponto fixo, i.e., existe x € [0, 1] tal que f(z) = x.

DEMONSTRAGAO. seja d : [0,1] — R dada por d(z) = f(z) — z. Portanto d é continua.
Nosso objetivo é achar raiz para d em [0, 1]. Se d(0) = 0 ou d(1) = 0, entdo nada mais ha a
fazer. Suponha que nem 0 nem 1 sejam raizes de d. Logo d(0) = f(0) > 0ed(1l) = f(1)—1 <
0 pois f(z) € [0,1]. Aplicando o Teorema do Valor Intermediario (Teorema [£.2.6), temos
que existe x € (0,1) tal que d(x) = 0, como queriamos demonstrar. O

Concluimos esta parte com uma importante consequéncia dos resultados anteriores.
TEOREMA 4.2.8. Seja I intervalo fechado limitado e f: I — R funcao continua. Entao
f(I) € intervalo fechado limitado.
4.3. Funcoes Uniformemente Continuas

Considere g(z) = 1/x, para z € (0,1). Seja ¢ € (0,1). Entéo

1 1_:13—0

9(0)—9(@:5—5— or

Para mostrarmos que ¢ é continua em c. seja € > 0. Sem perda de generalidade, podemos
supor que € < 1, e portanto ec < 1. Seja § = c?¢/2. Entao

2
|x—c|<5———>c<x+5:x+%<x+§:>g<x.
Logo
lv—c| & Fe ce
—cl <o = - =— < —=—=—<
|z =] l9(c) —g(a)l = ——— < — =5 =5 <e

onde usamos que ¢/2 < z na ultima desigualdade. Mostramos entao, usando €’s e §’s que
1/z é continua em todo ponto diferente de zero. O objetivo principal do célculo acima é
ressaltar que a escolha de § nao é uniforme em relacao ao ponto c, i.e., § depende de c.

Em outros casos, a escolha de ¢ independe do ponto em questao. Por exemplo, para
f(z) =z, dado € > 0, tomando J = € temos

lr —c| <0 = |f(z) — f(c)| <e.

Outro caso ja foi visto no exemplo [4.2l Dizemos que estas fung¢oes sao uniformemente
continuas.

DEFINICAO 4.3.1. Seja Q@ C R™ e f : Q — R". Dizemos que f ¢ uniformemente
continua em €2 se para todo € > 0, existir 6 tal que para todo X, y € €} tem-se

[x =yl <6 = [f(x) = Fy)l <e
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Note que a definicao de continuidade uniforme s6 faz sentido no dominio ou subdominio
da fungao, e nao pontualmente como na definicao de continuidade. Uma forma equivalente
de se definir uma fung¢ao uniformemente continua, é exigir que dado € > 0 exista 0 tal que
para todo x € () tem-se

y € Bs(x)NQ = f(y) € B(f(x)).

Além disto, pode-se usar o seguinte resultado abaixo para se mostar que uma fungao nao é
uniformemente continua.

LEMA 4.3.2. Seja Q CR™ e f: 2 — R". Entao as afirmativas abaixo sao equivalentes.

(1) f nao é uniformemente continua em (2.

(2) Existe € > 0 tal que para todo 6 > 0 existem pontos x, y € (2 tais que |[x —y|| < ¢
mas || £(x) — £(y)]| > e

(3) Existe € > 0 e duas sequéncias (x;) e (yx) em € tais que limg_,oo(xx —yx) = 0 e
| f(xx) — F(yr)|l > € para todo k € N.

EXEMPLO 4.14. O resultado acima pode ser usado por exemplo para mostrar que f(x) =
1/ ndo ¢ uniformemente continua em R*. Considere as sequéncias (1/k) e (1/(k + 1)).
Entao limy_ (1/k — 1/(k + 1)) =0 mas f(1/k) — f(1/(k+1)) = 1 para todo k € N.

Uma interessante propriedade da continuidade uniforme é dada abaixo, e tem aplicacao
na extensao de funcgoes, ver exercicio Seja 2 C R™ e suponha que f : Q@ — R" ¢
uniformemente continua. Entao (x;) ser sequéncia de Cauchy implica que ( f (XZ)) também
é sequéncia de Cauchy.

De fato, seja € > 0. Como f é uniformemente continua, entao existe ¢ tal que

(4.3.1) [x =yl <6 = [fx) - F)ll <e

para todo x, y € Q. Como (x;) é sequéncia de Cauchy, entao existe Ny tal que se
(4.3.2) i,j > Ny = [|x; — x| <.

Combinando (4.3.1) e (4.3.2), temos entao que
i,j > No = |[f(x:) = ()] < e

Note que isto nos da um outro critério para determinar quando uma fun¢ao nao é uniforme-
mente continua. Por exemplo, para o caso considerado no exemplo [4.14] temos que z = 1/k
é de Cauchy mas f(x;) = k nao é de Cauchy. Logo f nao é uniformemente continua em R*.

OBSERVACAO. Note que nem todas as fungdes que “preservam” sequéncias de Cauchy
2

sao uniformemente continuas. Tome como exemplo f: R — R tal que f(x) = z°.

Apesar de parecer dificil conferir se uma dada funcao é ou nao uniformemente continua,
o (surpreendente?) resultado abaixo garante que todas as fung¢oes continuas em conjuntos
compactos sao uniformemente continuas.

TEOREMA 4.3.3 (Continuidade Uniforme em compactos). Seja K C R™ conjunto com-
pacto, e f: K — R" continua em K. Entao f é uniformemente continua em K.
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DEMONSTRAGAO. Seja € > 0. Entao, para todo x € K, existe §(x) > 0 tal que
(4.3.3) Y € By (x) N K = [[f(y) — F(X)]| <e€/2.

Seja a cobertura aberta de K gerada por {B%é(x) (%) }zex. Como K é compacto, entao existe
{x1,...,x;} C K tal que {Béé(xi)<xi>}%]=1 é uma subcobertura de K. Seja

I
)= §m1n{5(xl), co0(xg) )

Sejam x, y € K tais que ||x — y|| < 0. Entao existe indice j € {1,...,J} tal que x €
Bisx,)(%5), 1, [lx = x;]| < 0(x;)/2. Portanto, usando (4.3.3) temos que [|f(x) — f(x;)[| <
¢/2. Da mesma forma,

1
Iy =501 < Iy =l + [lx = x5 <&+ 50(x5) < d(xy),

e entdo || f(y) — f(x;)|| < ¢/2. Concluimos que
x =yl <6 = [Ifx) = FOI < 1Fx) = FE)I+1Fx5) = FWIl <€

e portanto f é uniformemente continua. O

Abaixo apresentamos uma demonstragao alternativa do Teorema [4.3.3] que nao usa ar-
gumentos de compacidade.

DEMONSTRAGAO. (alternativa do Teorema [4.3.3} por contradi¢ao) Suponha que f nao
seja uniformemente continua. Como K é compacto, entao é fechado e limitado. Entao, pelo
Lema [4.3.2] existe € > 0 e existem sequéncias (x,) e (y,) em K tais que ||x, — y.|| < 1/n
e ||f(xn) — f(yn)|]| > € Como K é fechado, pelo Teorema de Bolzano-Weierstrass, existe
subsequéncia (x,,) convergente. Seja z = lim,,, ,o(x,,). Como K é fechado, entdo z € K.
Note que (y,,) também converge para z pois

(ynk - Z) = (ynk - Xnk) + (Xnk - Z)'
Como f é continua em z, entdo f(z) = lim,, o f(Xn,), € f(2) = lim,, oo f(¥n,), uma
contradigao com || f(x,) — f(yn)|| > €. Logo f é uniformemente continua. O

Outra importante situacao em que temos continuidade uniforme, mesmo com dominios
nao compactos, é quando a funcao é de Lipschitz. Seja Q2 CR™ e f : 2 — R™. Dizemos que
f ¢ de Lipschitz se existe M € R tal que

[Fx) = F¥)I < Mx -yl
para todo x, y € Q.

TEOREMA 4.3.4. SeQ CR™ e f: Q — R", e f éde Lipschitz, entao f € uniformemente
continua em ).

DEMONSTRACAO. Seja M € R tal que

1f(x) = FW)Il < M|x =]
para todo x, y € Q. Dado € > 0, seja d = ¢/M. Entao se x, y € Qe ||x—y|| < §, temos que

IF(x) = FWIl < Mlx —yll < Md = e

o que mostra que f é uniformemente continua em (2. O
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Nem toda fun¢ao uniformemente continua é de Lipschitz, como o exemplo abaixo mostra.

EXEMPLO 4.15. Seja g : [0,1] — R, tal que g(x) = y/z. Como [0,1] é compacto, e g
é continua, entdo g ¢ uniformemente continua em [0, 1]. Entretanto note que se g fosse de
Lipschitz, nos teriamos a existéncia de M € R tal que

1
Ve =lg(z)—g0)| <klz —0| = Mz = NG < M para todo z > 0,
x
um absurdo. Logo g nao é de Lipschitz apesar de ser uniformemente continua em seu dominio.

4.4. Exercicios

EXERCICIO 4.1. Determine os pontos de continuidade da fungao [z], que retorna para
cada = € R o maior inteiro menor ou igual a x. Por exemplo, [2] = 2, [2.5] =2, [-2.5] = —3.

EXERCICIO 4.2. Demonstre o Lema [4.1.1

EXERCICIO 4.3. Seja f: R™ — R continua em x € R™, e f(x) > 0. Mostre que existe
uma vizinhanca aberta de x tal que f seja estritamente positiva.

EXERCICIO 4.4. Seja f : R™ — R continua. Mostre de duas formas diferentes que o
conjunto {x € R™: f(x) = 0} é fechado em R™.

EXERCICIO 4.5. Sejam f, g : R™ — R fungoes continuas. Mostre de duas formas
diferentes que o conjunto {x € R™: f(x) > g(x)} ¢ aberto em R™.

EXERCICIO 4.6. Mostre que toda contracao é uma funcao continua.

EXERCICIO 4.7. Seja f : R — R tal que f(z +vy) = f(z) + f(y) para todo z, y € R.
Mostre que f(0) = 0 e que f(—z) = —f(x) para todo x € R. Mostre que se f é continua em
x =0, entao f é continua em todo = € R.

EXERCICIO 4.8. Dé exemplos de
(1) Um conjunto F' fechado em R e uma funcao f : F' — R continua tais que f(F') ndo
seja compacto.
(2) Um conjunto A aberto em R e uma funcao f : R — R tais que f~1(A) nao seja
aberto em R.
(3) Um conjunto 2 C R, um conjunto A aberto em R e uma fungao continua f : 2 — R
tais que f~(A) nao seja aberto em R.

EXERCICIO 4.9. Seja K C R™ conjunto compacto e f : K — R” continua, e seja (xj)
sequéncia contida em K. Mostre que a sequéncia ( f (xj)) possui subsequéncia convergente
com limite contido em f(K).

EXERcCICIO 4.10. Seja f : Q0 — R, onde 2 C R™ é aberto. Mostre que f é continua em
Q se e somente se f~!((a, +0)) e f~1((—o0,a)) sdao abertos para todo o € R.

EXERCICIO 4.11. Seja f : [0,1] — R continua tal que f(0) < 0 e f(1) > 0. Mostre que
se s =sup{z € [0,1] : f(x) < 0}, entao f(s) = 0.

EXERCICIO 4.12. Sejam 2 C R™ fechado e limitado, e f : 2 — R" continua em 2. Sem
usar Heine-Borel, mostre que f(2) é fechado e limitado.
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EXERCICIO 4.13. Seja €2 C R™ conjunto limitado. Dé exemplo de uma funcao f : 2 — R
continua e limitada que nao atinja seu méaximo.

EXERCICIO 4.14 (Ver definicdo de extremos locais na pagina . Sejam a < b reais, e
f :[a,b] — R continua em [a,b]. Sejam x; < x5 elementos de [a,b] e méaximos locais da f.
Mostre que existe ¢ € (x1,x2) que é minimo local da f.

EXERCICIO 4.15. Seja f : R — R continua em R e tal que f(z + 1) = f(z) para todo
x € R. Mostre que f é limitada.

EXERCICIO 4.16 (Ver defini¢do de extremos locais na pagina . Sejam a < b ntmeros
reais e f : [a,b] — R continua em [a, b]. Suponha que nenhum ponto interior ¢ extremo local.
Mostre que f é estritamente crescente ou estritamente decrescente.

EXERCICIO 4.17. |[Equivaléncia de normas no R"; ver defini¢ao no Exercicio [2.29] Mostre
que no R” todas as normas sao equivalentes.

EXERCICIO 4.18. Sejam V e W dois espagos vetoriais normados, e 7' : V' — W uma
aplicacao linear. Mostre que

(1) T é continua em V' se e somente se T é continua em 0
(2) T & continua em V' se e somente se T' ¢ limitada (i.e., T € L(V,W); ver (2.2.3)))

(3) se Ve W tém dimensao finita, entdo 7" é continua

EXERCICIO 4.19. Mostre que néao é possivel generalizar o Teorema do ponto fixo (Teo-
rema [4.2.7)) para o intervalo (0, 1].

EXERCICIO 4.20. Mostre quese f : R™ — Re g : R™ — R sao uniformemente continuas,
entao f + g é uniformemente continua. Mostre que, mesmo que f seja limitada, a fungao fg
nao é necessariamente uniformemente continua.

EXERcCICIO 4.21. Dé exemplo de uma funcao que preserve sequéncias de Cauchy, mas
que nao seja uniformemente continua.

EXERCICIO 4.22. Mostre que o produto de duas func¢oes uniformemente continuas e
limitadas é fungao uniformemente continua.

EXERCICIO 4.23. Seja f : [0,400) — R continua em todo seu dominio. Suponha que
exista b > 0 tal que f seja uniformemente continua em [b, +00). Mostre que f é uniforme-
mente continua em [0, +00).

EXERCICIO 4.24. Sejam a < b nameros reais, e f : [a,b] — R continua. Mostre que
dado € > 0, existem a = ag < a1 < -+ < a, = b tais que se z, y € [a;_1, ;] para algum
ie{l,...,n}, entao |f(z) — f(y)| <e.

EXERCICIO 4.25. Seja I C R um intervalo. Dizemos que uma fungao f : I — R
é absolutamente continua se para todo € > 0 existir § tal que dados K subintervalos
(x1,91), ..., (zk,yx) contidos em I e disjuntos (ie., z7 < y; < -+ < T < Yg), com

SO (i — x;) < 6 entdao S | (i) — f(x)] < e Mostre que

(1) toda fungao absolutamente continua é uniformemente continua
(2) toda fungao de Lipschitz ¢ absolutamente continua



70 4. CONTINUIDADE E FUNCOES CONTiNUAS

EXERCICIO 4.26. Dé um exemplo de uma funcao uniformemente continua que nao seja
absolutamente continua.

EXERCICIO 4.27. Suponha f : (0, 1] — R uniformemente continua em (0, 1]. Mostre que
podemos definir f(0) tal que f seja uniformemente continua em [0, 1].

EXERCICIO 4.28. Suponha f : {0 — R" uniformemente continua em ). Mostre que
podemos definir f : Q — R" tal que f seja continua em €2, e f(x) = f(x) para todo x € (2.
Neste caso dizemos que f é uma extensao continua de f.

EXERCICIO 4.29. Seja B C R™ limitado, e f : B — R" uniformemente continua. Mostre
que f é limitada em B. Mostre que esta conclusao nao é necessariamente verdadeira se B
nao for limitado.

EXERCICIO 4.30. Resolva o Exercicio usando o conceito de limitacao total (Exerci-
cio [2.67)).

EXERCICIO 4.31. Dizemos que {zg,x1,...,2,} C R é uma particio de I = a,b] se
a=2xy <z <- -+ <ux, =>b Uma funcao g é constante por partes em I se for constante
em (z;_1,x;) € tomando um dos valores limites de um lado ou outro nos pontos da particao.
Mostre que se f : I — R é continua, entao para todo € > 0 existe uma funcao constante por
partes tal g que |f(x) — g(x)| < € para todo = € I.

EXERCICIO 4.32. Seja f : [0,400) — R uma funcdo uniformemente continua. Mostre
que existem constantes a, b tais que f(z) < ax + b para todo = > 0.

EXERCICIO 4.33. Seja f: R — R dada por

f2) = 1/q se x € Q é da forma irredutivel p/q,
10 sez e R\Q.

Mostre que f é descontinua em Q e continua em R\Q.

EXERCICIO 4.34. E verdade que para toda funcdo continua f: [0,2] — R tal que f(0) =
f(2) existe z € [0,1] tal que f(z) = f(z+1)7?

EXERCICIO 4.35. Seja K um compacto e f: K — K tal que || f(x) — f(¥)]| = |lx — ¥l
para todo x, y € K. Mostre que f é bijetora.

(Dica: mostre que f é injetora e continua, e considere a sequéncia x; = f(x;_1) onde
xo ¢ f(K). Mostre que ||x; — X;4m|| = ||X0 — %], € obtenha contradigao.)

EXERCICIO 4.36. Mostre que se f : K — R" é continua e injetora, onde K é compacto,
entdo a fungio inversa f~': f(K) — K é continua.
(Dica: Considere um fechado em K e use o Teorema da Continuidade Global (Teo-

rema [4.2.1)) para f~1.)



CAPIiTULO 5
Diferenciacao

E| Neste capitulo vemos a nocao de diferenciabilidade e suas aplicacoes. Comegaremos
com o caso unidimensional, onde veremos algumas propriedades e aplicagoes particulares.

5.1. Derivada em uma dimensao
Seja f: I — R", onde I C R é um intervalo. Logo, para t € I, temos
f(t) = (fl(t)7 fQ(t)a EIR) fn(t))

Dizemos que f é diferenciavel em ¢ € I com derivada L € R™ onde dado ¢ > 0 existe
0 > 0 tal que

f(x)—f
(5.1.1) rel, O<\x—c|<5:>HM—LH<e.
r—c
Chamamos L de derivada de f em ¢, e escrevemos L = f'(c).
Note que se L = (Ly, Lo, ..., L,) for diferenciavel em ¢ € I, entao cada uma de suas
componentes L1, ..., L, sera diferencidvel no mesmo ponto. De fato para i =1,...,n fixado

e supondo que ((5.1.1)) vale, temos que se z € [ e 0 < |z — ¢| < ¢ entdo

filz) = fil©) §<Z fi(@) ~ fi(e) 2>”2:Hf<w>—f<c>_L

Tr—c , rT—c rT—c
J=1

- L; —Lj < €.

Portanto, L; é diferenciavel em c.

Se f é diferenciavel em todo ponto de I dizemos que f é diferenciavel em I. Neste caso
note que a derivada f’ é uma fun¢ao de I em R".

Existem outras formas de se definir a diferenciabilidade. De fato as afirmativas abaixo
sao equivalentes:

(1) f: I — R ¢ diferenciavel em ¢ € I, com derivada L.
(2) O limite abaixo existe e ¢ igual a L:

o F@) = 10

Tr—cC Tr — C

= L.

(3) Para toda sequéncia (zx) em I'\{c} convergindo para ¢ tem-se

fi Jw) = fle) _
k—o00 T —C

10ltima Atualizagao: 25/02/2025
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0.1

FIGURA 1. Grafico de f(x), que é diferenciavel, mas a derivada nao é continua.

(4) Existe uma funcao r tal que

h
flx)=flc)+ L(x —c)+7r(x —c) com limM = Q.
h—0 h
De forma equivalente escrevemos h = x — ¢, e entao
(5.12) Fle+h) = f(&)+ Lh-+r(h) com T 2 —g
h—0 h

Podemos também entender L como a aplicagao linear (neste caso dada por um niamero) que
torna (|5.1.2) possivel. Esta interpretacao induz de forma natural a generalizacdo da nogao
de derivada para o caso multidimensional.

OBSERVAGCAO. Seja f : D — Rec € D, onde D C R. Mesmo que D nao seja um
intervalo, é possivel definir a derivada de f em ¢, desde que ¢ seja de acumulagao [9,(19].

A seguir temos dois exemplos de fungoes diferenciaveis.

EXEMPLO 5.1. Se f(z) = 2%, entdo para ¢ € R tem-se

2 2 B
f'(c) = lim ¢ —lim w = lim(z + ¢) = 2¢.
r—=c T — C T—C Tr —C T—c

EXEMPLO 5.2. Seja

1
r?sin—, sex #0
flay={" My o7

0, se x =0,

mostrada na Figura [l Para x # 0 temos f'(z) = 2xsinl/x — cos1/x. Observe que nao
existe o limite lim, o f'(x). Em 2 = 0 usamos a definigao:

f(0) = limM = lim x sin — = 0.

z—0 x—0 z—0 €

Logo f é diferenciavel em R mas f’ nao é continua no zero.

Diferenciabilidade implica em continuidade, como nos mostra o resultado a seguir.



5.1. DERIVADA EM UMA DIMENSAO 73

o
0.8 /
/
067
049

\
\o2{ /
\ /

\\/
1708 06 -04 02 0 02 04 06 08 1

X

FIGURA 2. Gréfico de f(z) = |z|, fungao continua mas nao diferenciavel.

TEOREMA 5.1.1. Se f: I — R, onde I € um intervalo, € diferencidvel em ¢ € I, entao
f € continua em c.

DEMONSTRAGAO. Seja L = f'(¢). Dado € > 0, existe § > 0 tal que

zel, 0<|z—cl<d = |L|—e<‘M < |L| +e.
T —c

Seja 0 = min{d,¢/(|L| +¢)}. Entdo
f@) — ()

—c| < (|L o<
2L e — e < L+ < e

rel, 0<|r—c|<d = |f(x)—f(c)|:’

Logo f é continua em c. 0

OBSERVAGAO. Pelo teorema acima, diferenciabilidade implica em continuidade. O in-
verso entretanto nao é verdade em geral. Seja por exemplo f : R — R onde f(z) = ||,
representada na Figura 2] Entao f é continua em R mas nao é diferenciavel em zero pois
para x # 0 temos

T -1 sex<0.

f(x) = f(0) |z F. se x>0,

Logo o limite quando z — 0 nao existe.
Sejam f e g funcoes de I — R, onde [ é um intervalo, ambas diferenciaveis em ¢ € I.
Entao

(1) (af)(c) = af'(c), onde a € R. De fato, se x # ¢, entao
(af)(@) = (af)le) _ fla) = fle)

Tr —cC r—=cC

(2) (f +9)(c) = f'(e) + g'(c)-
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(3) Se p = fg, entao se x # ¢,
p(x) —ple) _ flx)g(x) — flc)gle) _ flx)g(x) — fc)g(x) + fc)g(x) — f(c)g(c)

Zﬂﬁif@(@+fﬂﬂ2:i@

)~ By [ 10210

r—c Tr —C T—C

RLCETE)

Tr —cC

= f'(0)g(c) + fle)g'(c).
(4) Se g(x) # 0 para todo x € I, entdo seja h(z) = f(x)/g(z). Logo se x # c,

W) —h(e) _ 38— 59 _ f@)ele) — fe)glx)
x—c T —c (z — c)g(z)g(c)
_ f@)g(d) = f(gle) | flA)gle) = f(gla) _ fla) = fle) 1 _fleo) g(z)—g(c)
(z = c)g(x)g(c) (z — c)g(x)g(c (—c) g(z) glx)glc) z—c =
Logo existe lim,_,.(h(z) — h(c))/(x —c) e
o=t M= = g - S

(
EXEMPLO 5.3. Pela regra acima temos que se f(x) = z", para n € N, entdo f é diferen-

ciavel e f'(c) = na™ 1.

Uma primeira e importante aplicacao de derivadas diz respeito a pontos extremos locais.
Dizemos que uma fungao f : I — R, onde I é um intervalo, tem um mdzimo local em x € [
se existe 0 > 0 tal que

(5.1.3) ye(x—odx+i)NI = f(y) < f(x).

Se a desigualdade em for estrita, chamamos o ponto de mdximo estrito local. Defini¢ao
andloga serve para minimo local e minimo estrito local. Chamamos um ponto de maximo
ou minimo (estrito) local de ponto extremo (estrito) local.

O resultado a seguir descreve condi¢ao necessaria para um ponto interior ser extremo
local.

TEOREMA 5.1.2 (Ponto extremo interior). Seja f : I — R, onde I é um intervalo, e c
ponto interior de I e extremo local de f. Se f € diferencidvel em ¢, entdo f'(c) = 0.

DEMONSTRAGAO. Sem perda de generalidade, suponha que ¢ seja ponto interior de ma-
ximo local. Entao, se f'(¢) > 0 temos
< e — i O S = fl0)
g T —C r—c
numa vizinhanga aberta de c¢. Logo, para x > ¢ tem-se f(x) > f(c), contradi¢do pois ¢ é
ponto de méaximo local. De forma semelhante ndo podemos ter f'(c) < 0. Logo f'(¢) =0. O
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FIGURA 3. Grafico de f(x) = x®, que tem derivada zero em z = 0, mas este
nao é ponto extremo.

FIGURA 4. Os Teoremas de Rolle e do Valor Médio versam sobre a existéncia
de derivada com valor determinado pelos pontos extremos.

Note que se a derivada de uma funcao se anula num determinado ponto, nao se pode
concluir que este seja um ponto extremo. Como exemplo temos f : R — R dada por
f(z) = 23, que tem derivada zero em x = 0 mas este nao é ponto de maximo nem minimo
local. Ver Figura [3]

A seguir apresentamos um resultado com importantes por si e por suas consequéncias.
E o Teorema do Valor Médio, que vemos a seguir na sua versao mais simples, o Teorema de
Rolle, ilustrados na Figura [4]

TEOREMA 5.1.3 (Teorema de Rolle). Sejaa <beR e f: [a,b] = R continua em [a, b]
e diferencidvel em (a,b). Suponha ainda que f(a) = f(b) = 0. Entao existe ¢ € (a,b) tal que
f'(e)=0.

DEMONSTRAGAO. Se f é identicamente nula em [a, ], entdo o resultado é verdadeiro.
Caso contréario, entdao f tem algum valor positivo ou negativo em (a,b). Sem perda de
generalidade, suponha que f tem algum valor positivo. Como [a,b] é compacto, entdo f
atinge seu maximo em algum ¢ € (a,b). Mas pelo Teorema do ponto extremo interior
(Teorema , f'(¢) = 0, como queriamos demonstrar. O
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TEOREMA 5.1.4 (Teorema do Valor Médio). Seja a < b€ R e f: [a,b] = R continua
em |a,b] e diferencidvel em (a,b). Entao existe ¢ € (a,b) tal que

f@) = fla) = f(c)(b—a).
DEMONSTRAGAO. Seja

£(b) = f(a
o) = (o) ~ fla) - =Ty )
Entao ¢(a) = ¢(b) = 0. Como f ¢ diferenciavel em (a,b), entdo ¢ também o é no mesmo
intervalo. Logo, pelo Teorem de Rolle existe ¢ € (a,b) tal que ¢'(¢) = 0. Portanto

f'(c) _ f(b; : g(a)
U

Uma primeira aplicagao do Teorema do Valor Médio garante que se uma func¢ao definida
num intervalo tem derivada identicamente igual a zero, entao a fungao é constante.

LEMA 5.1.5. Suponha que f : [a,b] — R seja continua em [a, b], onde a < b, e diferenciavel
m (a,b). Se f'(x) = 0 para todo x € (a,b), entdo f é constante em [a, b].

DEMONSTRAGAO. Seja a < ¢ < b. Pelo Teorema do Valor Médio [5.1.4} existe x € (a,c)
tal que f(c)— f(a) = f'(z)(c—a). Como f'(x) =0, temos f(c) = f(a). Como ¢ é arbitrario,
temos f constante em [a, b]. O

Observe que pelo resultado acima, se f, g sao funcoes diferenciaveis que tem a mesma
derivada, entao f e g diferem por uma constante.

A aplicacgao seguinte do Teorema do Valor Médio garante condigbes necessarias e sufici-
entes para uma funcao ser crescente num intervalo. Dizemos que uma funcao f: I — R é
crescente no intervalo [ se para x,y € I com y > x tem-se f(y) > f(z). Dizemos ainda que
f: I — R é estritamente crescente em I se para x,y € I com y > z tem-se f(y) > f(z).
Defini¢oes analogas valem para fungoes decrescentes e estritamente decrescentes.

LEMA 5.1.6. Seja [ intervalo e f : I — R diferenciavel em I. Entao

(1) f é crescente em I se e somente se f'(x) > 0 para todo = € I.
(2) f é decrescente em I se e somente se f'(z) < 0 para todo z € I.

DEMONSTRAGAO. (=) Suponha f crescente. Para z, ¢ € I,

r<couzxr>c = wz&
Portanto

z—c T —cC
(<) Suponha f’(z) > 0 para todo x € I. Sejam z1,z9 € I com x; < xo. Usando o
teorema do valor médio [5.1.4} existe ¢ € (x1,z2) tal que f(z2) — f(z1) = f'(¢)(xa —x1). O

OBSERVAGAO. E possivel modificar a demonstracio acima e mostrar que f'(z) > 0
implica em f estritamente crescente. Entretanto, mesmo funcoes que tem derivada nula em
alguns pontos podem ser estritamente crescentes, como por exemplo f(x) = 23 (Figura [3)).



5.1. DERIVADA EM UMA DIMENSAO 7

0.14

0.08

0.06

0.04

0.02 4

—0.1-0.08—0.06—0.04—0.02 0.02 0.04 0.06 0.08 0.1

.02 X

—0.04

—0.06

—0.08 A

-0.1-

FIGURA 5. Grafico de g(x), que tem ¢'(0) = 1 mas nao ¢ localmente crescente.

OBSERVAGAO. Nao é verdade que se f’(¢) > 0 para algum ponto ¢ no dominio da f
implique em f crescente numa vizinhanca de c. Como exemplo considere

yz:—i—29c*zsinZ se x # 0,
g(x) = x
0 se x =0,

é diferenciavel em zero com ¢’(0) = 1, mas nao é crescente em nenhuma vizinhanga do zero,
ver Figura bl De fato, considere as sequéncias xy = 1/(2k + 1/2) e y,, = 1/(2k). Entéo
xp < yr mas g(xg) > g(yx). Para comprovar esta tltima desigualdade note que

o2k 4 1) o) — gt = 2k 2k e L) [ L2 !
— €T J— — — -
p) Wk T Gk 2) [2k+1 " (@k+ip 2%

1 1\?
:2k<2k+§) + 4k — (2k+§> =A4k* + k + 4k — (4k* + 2k +1/4) =3k —1/4 > 0
para todo k inteiro positivo.
Outra aplicacoes do Teorema do Valor Médio seguem nos exemplos abaixo.
EXEMPLO 5.4. Seja f(x) = exp(x). Entao f'(z) = exp(z). Queremos mostrar que

(5.1.4) exp(z) > 1 + x para todo x # 0.

Seja z > 0. Entao aplicando o Teorema do Valor Médio em [0, z] temos que existe ¢ € (0, z)
tal que

exp(z) — exp(0) = exp(c)(x — 0).
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Como ¢ > 0, entao exp(c) > exp(0) = 1. Logo
exp(x) > 1+ x.
Para < 0, os argumentos sdo semelhantes e portanto a desigualdade ({5.1.4) vale.

EXEMPLO 5.5 (Ponto Fixo). Seja I intervalo fechado e f: I — I diferenciavel em I tal
que | f'(z)| < ¢ para todo x € I, onde ¢ < 1. Entao a sequéncia definida por zg e x; = f(z;-1)
para i € N converge, e * = lim,,_,, =, é ponto fixo, i.e, f(z*) = z*. Além disto, este ponto
fixo ¢ tnico.

De fato, note que f é uma contracao pois

1f(y) = f()] < )|y — ] <cly —zf,

onde £ é um ponto entre y e x, e como I é intervalo, entao £ € I. Logo pelo Teorema [3.5.3]
o ponto fixo é tnico, e é o limite da sequéncia (x;) acima, pois esta é a gerada pelo método
das aproximagoes sucessivas, e portanto converge.

5.2. Teorema de Taylor em uma dimensao e Aplicagoes

Uma ferramenta poderosa em anéalise com varias consequéncias é o Teorema de Taylor,
que ¢é na verdade também uma aplicacao do Teorema do Valor Médio.

A expansao de Taylor aproxima localmente por um polinémio uma funcao que pode ser
complicada. Suponha que f: I — R onde I C R tenha k > 0 derivadas num ponto x( € I.
Defina

T — 10)? xr — zo)*
Pi(z) = f(xo) + f(zo)(x — 20) + f//<x0)(TO) S f(’“)(:zo)%,
onde escrevemos ¢\/)(c) para indicas a j-ésima deriva de g num ponto c.
Note que com a defini¢do acima, temos f)(zq) = P,gj)(xo) para j = 1,..., k. Chamamos

P, de polinémio de Taylor de ordem k para f em xg, e o resultado abaixo diz o quao boa é
a aproximagcao de uma funcao por seu polinémio de Taylor.

TEOREMA 5.2.1 (Taylor). Seja k >0 eI = [a,b], com a <b. Seja f: I — R fungao k
vezes diferencidvel em I com f*) continua em I e tal f**+Y exista em (a,b). Se xg, v € I
entao existe £ € (xg,x) U (z, ) tal que

(x — x0)k

!
+ fED()

1) = o) + £ an)x — o)+ 1"(a) T2 g 0 ag)
(x — xo)kH

(k+1)!

DEMONSTRAGAO. Sejam xg, © € I. Sem perda de generalidade, suponha x > xy. Defina
J = [zg, x] e seja F': J — R dada por
x —t)*
F() = f(@) — f0) ~ ( — ) () - — T 0,
Logo
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Definindo G : J — R por

60 =F - (2= )HIF(%),

T — X9

temos G(zo) = G(x) = 0. Pelo Teorema de Rolle (Teorema [5.1.3)) existe £ € (g, x) tal que

0= G = () + (k+ )= Pz
(z — zo)F ]
Portanto
1 (x _ $0)k+1 ) 1 (x _ Z.())k:—i—l (x _ §)k
I — _ _ (k+1)
(o) = =477 (z — €)F © =777 Goor (&)
(@ —x)™! (k+1)
= Wf (&)
0
EXEMPLO 5.6. Seja f: I — R, onde I = [a,b] C R, com a < b. Suponha que f e suas
derivadas f’, f”,..., f%**1 existam e sejam continuas em I. Se f*+Y(z) = 0 para todo
v ele flxg) = f(v0) = -+ = f*¥(x9) = 0 para algum x4 € I, entdo f(x) = 0 para todo

x € I. De fato, pelo Teorema de Taylor unidimensional (Teorema [5.2.1)), dado = € I, existe
¢ entre x e xg tal que

F(@) = Fao) + Flaa)o — 20) + (o) E g ) 0N

(x — x0)*H?

(k+1)!

Mas por hipétese, f@(zy) parai=0,...,k, e f*) =0 em I. Em particular, como & € I,
temos fF+1)(£) = 0. Portanto, f(z) = 0 para todo = € I.

+ ()

Uma aplicacao da série de Taylor refere-se a caracterizagao de extremos locais.

TEOREMA 5.2.2. Sejam a < b € R e I = [a,b]. Sejam zo € (a,b) e k > 2 nimero
inteiro. Dada f : I — R, e supondo que f',...,f* existam, que sejam continuas em I, e
que f'(zo) = --- = f*D(z9) = 0 mas f*(x0) # 0, temos que

(1) Se k € par e f®)(zy) > 0, entdo o ¢ ponto de minimo estrito local.
(2) Se k € par e f®)(zy) <0, entdo o ¢ ponto de mdwimo estrito local.
(3) Se k € impar, entdo xo nao € extremo local.

DEMONSTRAGAO. Vamos comegar por mostrar (1). Pelo Teorema de Taylor, para x € [
existe £ entre xy e = tal que

T — o 2 E—1 T — X (k=1)
f(l)?) = f(xo) + f’(;po)(a] — xo) + f”(%)% R f( )(x(])ﬁ
7O ) + 9T

k! k!
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Supondo agora que f*)(x4) > 0, como f*) é continua entdo existe § > 0 tal que f®(z) >0
para todo x € U = (29 — 6,20 + 9). Se x € U, entdo £ € U e entdo f*)(z) > 0. Se k & par,
entao para x # xy temos
k
r—x
oLl Ly,
Logo
r € U\{zy} = f(x)— f(zo) >0 = ¢ é minimo local,
e portanto (1) estd demonstrado.

Para demonstrar (2), o argumento é semelhante.

Finalmente, para mostrar (3), procedemos primeiro como no argumento acima. Note que
por hipotese, f*) ¢ continua, e f*)(zy) # 0. Entdo existe § > 0 tal que f*) ndo muda de
sinal em (z9—0, 1o+0). Nos restringindo a esta vizinhanga, se k é fmpar, entao (z—0)*/k! &
positivo para x > xy e negativo para x < xo. Logo f(x) > f(x¢) ou f(z) < f(zo) dependendo
do sinal de x — xy. Logo a proposigao (3) ¢ verdadeira. O

5.3. Diferenciabilidade para fungoes de varias variaveis

A nocao de diferenciabilidade e de derivada em dimensoes maiores simplesmente genera-
liza de forma natural a derivada unidimensional. Seja f : 2 — R"”, onde 2 C R™ é aberto e
x € ). Dizemos que f é diferencidvel em x se existe uma aplicagao linear L : R™ — R" tal

que
L FGth) — Fx) — ()|
h—0 ||

=0.

Chamamos L de derivada de f em x, e que também denotamos por D f(x) ou f'(x). No
Caso escrevemos
L(h) = Df(x)(h) = f'(x)(h).
Adotaremos neste texto a convencao que h é sempre suficientemente pequeno de tal forma
que x + h € Q.
Assim como em uma dimensao, f é diferenciavel em x se e somente se existir uma fungao
r: R™ — R” tal que

(5.3.1) f(x+h)=f(x)+ f(x)(h) +r(h) com }llli% w =0.

Note que pela identidade acima, temos imediatamente que diferenciabilidade implica em
continuidade.

A derivada de uma func¢ao num determinado ponto, se existe, é tiinica. De fato, se L,
e Ly sdo duas derivadas de f em x , entdo substituindo h = t£, com ||£]] = 1 em

concluimos que existem funcoes r; e ry tais que

Fx+16) = £(x) +tLi() + (1), Fx-+1€) = F(X) + 1La(€) + altf),
TGS N 3T

= lim P2
=0 ||t]] =0 |t]]

Logo concluimos que

(L1 — L2) (&)l =

Ira(t€) —m ()l _ lIm=(tE)ll | it
t -t t
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Tomando o limite quando t — 0 em ambos os lados da equagao concluimos que (L;—Ls)(§) =
0, para todo & € R™ com norma unitéaria. Mas isto s6 é possivel se L1 = Lo, como queriamos
demonstrar.

EXEMPLO 5.7. Podemos usar o resultado de unicidade acima descrito para encontrar
derivadas em casos simples. Como exemplo considere A : R™ — R" aplicacao linear e f :
R™ — R™ dada por f(x) = A(x)+e¢, onde ¢ € R™ é vetor constante. Entao f'(x)(h) = A(h)
para todo x, h € R™, e para mostrar tal fato vemos que se f'(x) = A entao

r(h) = f(x+h) — f(x) — f'(x)(h) = A(x+h) +c— (Ax +c) — Ah =0,

e portanto limy g ||7(h)||/||h]| = 0. A unicidade da derivada garante que f'(x)(h) = A(h).
Note que neste caso, a derivada f'(x) é na verdade independente de x.

EXEMPLO 5.8. Seja a matriz A € R™™™ ¢ ¢ = (¢q,...,c,) vetor constante. Considere
ainda f : R™ — R” tal que para x = (x1,...,2,) tem-se f(x) = (fi1(x),..., fn(X)) e

Ffx)=A%+¢& e, fi(x) = ZAijxj +c¢; parai=1,...,n.

j=1
Entdo, para h = (hy,. .., hy) tem-se f'(x)(h) =y onde ¥ = Ah, i.c.,

Yi = Z Aijhj.
j=1

Compare com o exemplo [5.7]

Uma interessante forma de analisarmos uma func¢ao em varias variaveis é restringindo
esta fungao numa direcao e usando propriedades de fungoes de apenas uma variavel. Para
tanto, sejam u € R™ com [jul| =1, e f: Q@ — R" onde @ C R™ ¢ aberto. Dado x € (2,
seja € > 0 tal que x + tu € ) para todo ¢t € (0,¢). Finalmente, seja ¢ : [0,¢) — R" para
¢ = (¢1,...,0,) dada por ¢(t) = f(x+tu). Entdo, definimos a derivada direcional de f em
x na dire¢io u como ¢'(0), quando esta existir. Note que neste caso, ¢'(0) define a aplicagao
linear de R em R™ dada por t — (t¢/(0), ...t (0)).

Noutra forma de definir, a derivada direcional é dada por L, € R" tal que

MECELUEFC

t—0

—L,=0.

Escrevemos neste caso Dy, f(x) = L.
No caso em que u = e;, entao temos a derivada parcial em relacao a iésima coordenada
€ escrevemos
of

D, £(x) = 5% (x).

E importante ressaltar que a existéncia de derivadas parciais em relacao as coordenadas
nao implica na existéncia de derivadas direcionais em geral. Considere o simples exemplo
abaixo.

EXEMPLO 5.9. Seja f : R? — R dada por

2 sey#0,
— Yy
f(z,y) {0 sy = 0.
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Entao

of of

ox Jy
mas a derivada direcional na diregdo (a,b) ndo existe se a e b sdo nao nulos, pois nao existe
o limite quando t — 0 de

f(tavtb) _ f(070) _ La

t b
A situacao muda se supusermos diferenciabilidade, como mostra o resultado a seguir.

(07 0) = (07 0) =0,

TEOREMA 5.3.1. Seja Q C R™ aberto e f : Q — R™ diferencidvel em x € Q. Seja
u € R™ com ||ul| = 1. Entao eziste a derivada direcional D, f(x), e esta é dada por

D, f(x) = f'(x)(u).

DEMONSTRAGAO. Como f é diferenciavel em x, entao para todo € > 0 existe § > 0 tal
que Bs(x) € Qe

[£(x+h) — £(x) — F(x)(b)||

heR™ 0< |h|<d = T < e
Tomando h = tu, com [t| € (0,6), temos
f(x+tu) — f(x
e m =70 gy <.
Logo
t—0 t
e portanto a derivada direcional existe e ¢ dada por f'(x)(u). O

O teorema acima ¢ importante porque podemos calcular f'(x) tomando-se derivadas nas
dire¢des das coordenadas. De fato, considerando-se f(x) = (f1(x), f2(x), ..., fu(x)), temos

que
dfr dfa 8 n
Dot = (0. 5200, ).
Usando agora a linearidade de f'(x) e que f'(x )( i) = ( ) obtemos

B i 81 32 ofn
=Y ufle) = YD s Z(@ﬁ; . S )

Em termos matriciais, definindo a matriz [f'(x)] € R™™ dada por

[of Ofh ... Of7
Ox1 Oxo OTm
/ 8fa Of2 .. Of2
[f (X)] = | 0z1  Oz2 Oxm | »
Ofn Ofn .. Ofn
_8$1 8:’62 8$m-

temos que se & = f'(x)(y) entdo € = [f'(x)]y. A matriz [f'(x)] também é chamada de
matriz jacobiana de f no ponto x.
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A existéncia de derivadas direcionais nao implica em diferenciabilidade. Para ilustrar tal

fato, considere a fungao
2
2 sey #0,
flz,y) = { y

0 sey=0.
Entao of of

mas dado (a,b) com |[(a,b)||* =a®>+0* =1 e b +# 0, temos

. 2
lim f(ta,tb) — f(0,0) _ a_)
t—0 t b

e a derivada direcional é dada por
2

(5:3.2) D f0,0)= %
Entretanto, se f fosse diferenciavel, teriamos
/ of of
D fnd _ — _— —
(a,b)f(oao) f (070)(a7b) ox (0,0)&4— ay (07O)b 07

uma contradicao com . Logo f nao é diferenciavel em (0,0) apesar de ter todas
as derivadas direcionais neste ponto. Note que f(x,7?) = 1 para x # 0, e portanto f ¢é
descontinua em (0, 0).

Apesar da existéncia de derivadas direcionais num determinado ponto nao garantir a
diferenciabilidade neste ponto, a existéncia e continuidade das derivadas parciais numa vizi-
nhan¢a dum ponto garante a diferenciabilidade, como podemos ver no resultado a seguir.

TEOREMA 5.3.2. Seja f : Q — R, onde Q0 C R™ ¢ aberto, e considere x € 2. Se
Of /Ox; existir numa vizinhanga aberta de x e for continua em x parai=1,...,m, entdo f
€ diferencidvel em Xx.

DEMONSTRACAO. Dado € > 0, seja § tal que

of of :
- gl < =

Dados x = (1,22, ..., Tm) €y = (Y1, Y2, - - -, Ym ), SEjAIM

Iy -x <6 = |

ZOZY7 Z1 :(xlay%y?n'--;ym)a Z2:(x17$27y37--'7ym)7

m—1 __ m

-y Z _(xlax%"'awmflaym% z =X

Temos entao que ||y — x|| < 0 implica em ||z* — x|| < d, para i = 1,...,m. Note que

Fy) = f(x) = f(2") = [(2") + f(2") = f(2*) + -+ (2" 7)) = [(2"™).

Sejai € {0,...,m—1}. Pelo Teorema do valor médio (Teorema [5.1.4)), existe z’ no segmento
determinado por z’ e z'~! tal que

f2h) = f(z') = (yi - wz‘)a—i(i")-
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i Of
o, %)~ g ™)

m
€
lys — 2l < —= > |y — x| <elly — x|,
m =1

onde usamos a desigualdade de Cauchy—Schwartz para obter a ultima desigualdade. Portanto
de (5.3.3) concluimos que f é diferenciavel em x. 0

COROLARIO 5.3.3. Seja f: Q© — R" onde Q C R™ é aberto. Se x € ) e 9f /0x; existir
e for continua numa vizinhanca aberta de x para ¢ =1,...,m, entao f é diferenciavel em x.

Outro resultado de grande importancia diz respeito a diferenciabilidade de composicoes
de funcoes, garantindo que se duas fungoes sao diferenciaveis, entao a composicao também
o é.

TEOREMA 5.3.4 (Regra da Cadeia). Sejam Q C R! e R C R™ conjuntos abertos. Sejam
f:Q—=>Reg: R— R" Sef é diferencidvel em x € Q e g é diferencidvel em f(x),
entao g o f € diferencidvel em x e

(gof)(x) =g (f(x) o f(x)

DEMONSTRAGAO. Seja y = f(x). Note que para h tal que x + h € Q e k tal que
y + k € R, temos

Fx+1) = £(x) + £/(x)(h) + r(h) com lim % o,
gy +10 = g(y) + g/(y)() + p(k) com lim “Zﬁi{k'ﬁ” 0.

Definindo k = f(x + h) — f(x) = f'(x)(h) + r(h), temos

a(y) +4'(y)f (x)(h) + g(h)

I
2}
<
+
lQ\
<
=
£
E
+
3.
E
_|_
]
<
»
+
E
I
=
%
I

)
onde g(h) = ¢'(y)r(h) + p(f(x + h) — f(x)). Finalmente,

Cgh) e | p(fcth)— F() L p(f(x+h) — £(x)
N Al ey Y B T N TV

Para terminar nossa demonstragdo, basta mostar que o limite em ([5.3.4) se anula. Seja
€ > 0 fixado, h € R\ {0} também fixado, e tal que x +h € Q. Duas situacoes mutualmente
exclusivas se apresentam:

(1) Se h é tal que f(x+ h) = f(x), entdo p(f(x+h) — f(x)) =0.
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(2) Caso contrario, temos

Ip(F(x+h) = £ _ Ip(£x +h) = Fx)] [1£6x +h) — £
I 1+ 1) — £ h
IOl (IF ] | r)]
§|w\( h| |wr)

Sejam ¢ > 0 e ¢ € R tais que se 0 < ||h|| < &, entao ||f(x)|| + [|=(h)||/||h] < c.
Seja 0" > 0 tal que

[P _ €
—_ < .
K[| e

Da continuidade de f temos que existe ¢” > 0 tal que
Ih|| <" = [k|| = [[f(x+h) - f(x)]| <d".
Por (5.3.5)), tem-se que para 6 = min{¢’, (5”’},

(5.3.5) k|| < & =

I <6 = k] <& — 2EOI e Ip(fe+h) - FEI _

ke i
Dos casos (1) e (2) acima, concluimos que dado € > 0 existe § > 0 tal que

Ip(fx+b) = £ _

0<|hll<d =

bl
ie.,
PG — £()
h—0 |||
Portanto, concluimos por ((5.3.4) que
lg(h)||
woo |
donde obtemos o resultado. O

EXEMPLO 5.10. Seja f : R” — R", e seja a fungao g : R” — R inversa de f, isto é,

gfx)=x,  flgly)) =y,

para todo x, y em R". Se f é diferenciavel em x € R", e g ¢ diferenciavel em y = f(x),
entdao f'(x) e g'(y) sao inversas uma da outra, isto ¢,

f(x)ogy)=g(y)of(x)=
onde I é o operador identidade I(x) = x.
De fato, seja h(x) = g(f(x)) = x. Derivando h(x) , temos h'(x) Usando a

regra da cadeia para h(x) = g(f(x)), temos h'(x) = g'(y) f ( ). Logo, g'(y)f ( )=1I. De
forma anéloga segue-se que f'(x)g'(y) = I.

Uma aplicagao imediata da regra da cadeia é dada no seguinte teorema do valor médio
para fungoes de varias variaveis. Na verdade, esta é uma aplicacao imediata do teorema
do valor médio unidimensional (Teorema quando restringimos uma funcao de vérias
variaveis a um segmento de reta.
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TEOREMA 5.3.5. Seja f: Q — R, diferencidvel em €2, onde 0 CR™ € aberto. Sejam x,
yeEQeS={x+tly—x):t€(0,1)}. SeS CQ, entio existe £ € S tal que

fy) = f(x) = F(Ey —x).

DEMONSTRACAO. Este resultado segue-se de uma aplicagao do teorema do valor médio
unidimensional (Teorema ) para a fungao ¢ : [0, 1] — R dada por ¢(t) = f(x+t(y—x)).
Note ainda que pela regra da cadeia temos que

¢'(t) = f (x+ty —x))(y —x).
O

E interessante notar que nao vale uma “generalizacao trivial” para o teorema do valor
médio quando a imagem de uma funcao estd no R”, para n > 2. Como exemplo, considere
a fungao ¢ : R — R? dada por ¢(t) = (sint,cost). Tomando-se os pontos t = 0 e t = 27,
vemos que nao existe £ € [0, 2x] tal que

0 = ¢(0) — ¢(27) = ¢(§)(2m — 0) = 27¢/(E).
pois ¢'(&) # 0 para todo &.

Existe entretanto o seguinte resultado para fungoes em R”.

TEOREMA 5.3.6. Seja f: Q — R", diferencidvel em ), onde Q2 C R™ € aberto. Sejam
Xg, X1 € §) e seja S o segmento de reta unindo estes pontos. Se S C (2, entao existe & € S

tal que
1F (x1) = F(xo)ll < [[F(€) (x1 = o)l
DEMONSTRAGAO. Seja v = f(x1) — f(x0), e ¢(x) = f(x) - v. Entao

P(x1) — P(x0) = (f(x1) — F(x0)) - v = I (x1) = F(x0)I%,
e ¢'(x)(h) = [f'(x)(h)] - v. Pelo Teorema do valor médio dado pelo Teorema [5.3.5] existe
€ € S tal que @(x;) — d(x) = @' (&) (x1 — X0), i.e.,
1£Ger) = Fxo0)I* = [£/(€) (x1 — x0)] - (F(x1) — F(x0)) < [1£'(€) (1 — x0)l[[|F (1) — F(x0) -
Finalmente, se f(x1) = f(x), o resultado ¢ trivial. Caso contrario dividimos ambos os lados

da desigualdade acima para concluir a demonstracao. 0

EXEMPLO 5.11. Seja f : B1(0) — R™ diferenciavel e com derivada limitada em B;(0).
Se (x;) ¢ sequéncia de Cauchy em B;(0), entdo (f(x;)) é sequéncia de Cauchy em R™.

Para mostrar este fato, como f tem derivada limitada, seja ¢ constante tal que || f'(x)|| <
¢ para todo x € B;(0). Dado € > 0, como (x;) é sequéncia de Cauchy em B;(0), entdo existe
N tal que

ij>N = |lx; — x| < z
Pelo Teorema do valor Médio, temos para todo x; e x; que existe &, ; € B;(0) tal que
1f(xi) = F)I < 1F (&) (i — %)) -
Logo,
1F () = F I < 1F (& )% — x4]] < ellxi — x4,

e portanto
i,j >N = [[Ffx:) — F(x)l < cllxi — x5 <e,
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e ( f (x,)) é sequéncia de Cauchy.

Encontramos na demonstracao do resultado abaixo uma outra aplicagao da regra da
cadeia, desta vez para fungoes de R em R.

TEOREMA 5.3.7 (Derivada da Funcao Inversa). Seja I intervalo, f : I — R continua e
invertivel com inversa g : J — R continua, e J = f(I). Se f € diferencidvel em ¢ € I, entdo
g € diferencidvel em d = f(c) se e somente se f'(c) # 0. Neste caso,

1 1
"(d) — _
D= 50 = Fla@)
DEMONSTRAGAO. Se y € J\{d}, entdo g(y) # c. Logo, se f'(c) # 0,

i W =9 _ . gly)—c hm(f(g(y)) - f(6)>1 _ 1
y—d y—d y—d f(g(y)) - f(c) y—d g<y) — . f’(c)’

onde usamos a continuidade de g no ultimo passo. Concluimos que g é diferenciavel em d e

g'(d) =1/f"(c).
Analogamente, se g ¢ diferenciavel em d, entao usando a regra da cadeia e que g(f(z)) =
T, temos

g (f(e)f(e) =1,
e entao f’(c) # 0. O

EXEMPLO 5.12. Seja f : RT — R* dada por f(x) = 2™, onde n € N. Entdo f tem
inversa g : Rt — R*, e g(y) = {/y. Para y > 0 temos entao

Note que g nao é diferenciavel no zero pois f'(0) =

5.4. Matriz Hessiana, Férmula de Taylor e pontos criticos

Note que a derivada de uma funcao de uma funcao de f : R™ — R num determinado
ponto x foi definida como uma aplicacao linear de R™ em R com certa capacidade de a-
proximar a funcao f no ponto x. No caso, para x fixo, terfamos f'(x) : R™ — R dada

por
of of of

al 82( )yz—l——i——(x)ym,

£0(y) = o

——(X)y +

onde y € R™.
De forma analoga, definimos a segunda derivada de f num ponto x fixado como sendo a
fungao bilinear f”(x) : R™ x R™ — R tal que

Z onde or 2 of
83:,893]‘% 7 Or;0r; Oz \Ox;)’

ey,z € R™. Uma forma mais compacta de escrever a definicao acima é usando-se a matriz
hessiana H dada por H;;(x) = 0° f(x)/0z;0x;. Logo

F'(®)(y,2) = (¥)'H(x)Z.




88 5. DIFERENCIACAO

OBSERVACAO. Um interessante resultado garante que se f for suficientemente suave num
determinado ponto x (é suficiente que as segundas derivadas existam e sejam continuas numa
vizinhanga aberta de x) teremos que nao importa a ordem em que se toma as derivadas, i.e.,
O*f |0z;0x; = 0 f /Ox;0x;, e portanto a matriz hessiana ¢ simétrica. Este tipo de resultado,
com diferentes hipoteses, ¢ atribuido a Clairaut em [20], e & Schwarz em [3,/10].

Defini¢oes para derivadas de ordem mais alta seguem o mesmo formato, sendo estas
aplicacoes multilineares. Entretanto para os nossos propoésitos, a matriz hessiana basta.

Apresentamos no teorema a seguir a férmula de Taylor, e nos restringimos ao caso par-
ticular de polinomios quadraticos. FEste teorema serd de fundamental importancia para
caracterizarmos pontos extremos.

TEOREMA 5.4.1 (Taylor). Seja Q@ C R™ aberto e f: Q@ — R duas vezes diferencidvel em
Q, com derivadas continuas. Para x € Q, e h € R™ tais que x +th € Q para todo t € [0, 1],
existe t € (0,1) tal que para & = x + th tem-se

(5.4.1) fx+h) = f() + F(x)(h) + 5 /() (b, ).

DEMONSTRAGAO. Seja ¢ : [0,1] — R dada por ¢(t) = f(x + th). Aplicando o Teorema
de Taylor em uma dimensio (Teorema [5.2.1)), obtemos que existe ¢ € (0,1) tal que

6(1) = 6(0) + ¢/(0) + 36" (7).

Note que
¢'(t) = f'(x + th)(h) = i of (x + th)h; " (t) = i k) (x + th)h;h;
i1 8:67, v i 8@8:6] e
e usando a definicao de ¢ obtemos o resultado diretamente. 0

OBSERVACAO. Note que exigindo que as segundas derivadas sejam continuas, podemos
usar o fato de que a “ordem” das segundas derivadas nao importam.

Assim como em uma dimensao, usaremos o Teorema de Taylor para estudarmos pontos
extremos de uma funcao. Dizemos que f: Q@ — R, onde €2 C R™, tem um mdzimo local em
x € (2 se existe 6 > 0 tal que

(5.4.2) y € Bs(x)NQ = [f(y) < f(x).

Dizemos que x é mdximo estrito local se valer a desigualdade estrita em (5.4.2)). Definicao
analoga serve para minimo local e minimo estrito local. Chamamos um ponto de méaximo
ou minimo local de ponto extremo local, e um ponto de méximo ou minimo estrito local de
ponto extremo estrito local.

O resultado que obtemos a seguir, relativo a pontos extremos interiores, é analogo ao
caso unidimensional, ver o Teorema [5.1.2] e diz primeiro que pontos extremos interiores sao
pontos criticos, i.e., pontos em que a derivada se anula. O resultado mostra também que
se um ponto x ¢ de minimo local, entdao a forma bilinear f”(x) é semi-definida positiva, i.e,
f"(x)(h,h) > 0 para todo h € R™. De forma analoga se um ponto ¢ de méximo local, entao
f"(x) & semi-definida negativa, i.e, f"(x)(h,h) <0 para todo h € R™.
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Em termos matriciais, f”(x) ¢ semi-definida positiva se a matriz hessiana H(x) o for,
i.e., se (h)"H(x)h > 0 para todo h € R™, e semi-definida negativa se (h)'H(x)h < 0 para
todo h € R™.

TEOREMA 5.4.2 (Ponto extremo interior). Seja f : Q@ — R, onde Q C R™ € aberto, e
x € ) ponto extremo local. Se f € diferencidvel em x, entdao x € ponto critico, i.e., f'(x) = 0.
Se além disto, f for duas vezes diferencidvel em 2, com derivadas sequndas continuas, entao
temos que

(1) se x for ponto de minimo local, entao f"(x)(h,h) > 0 para todo h € R™,
(2) se x for ponto de mdximo local, entao f"(x)(h,h) <0 para todo h € R™.

DEMONSTRACAO. Para mostrar que x é ponto critico, basta usar o Teorema [5.3.1] e
mostrar que as derivadas parciais se anulam, pois dado o vetor e; temos que a fungao ¢(t) =
f(x+te;) tem ponto extremo local em ¢ = 0. Usando o Teorema vemos que ¢'(0) = 0.
Mas entao

of

0=¢'(0) = f'(x)(e:) = oz, (x)

e concluimos que f'(x) = 0.

Suponha agora que f seja duas vezes diferenciavel com derivadas segundas continuas, e
que x seja ponto de minimo local. Entao x é ponto critico, como acabamos de mostrar, e
pelo Teorema de Taylor em varias dimensoes (Teorema [5.4.1)), temos que

2

Floc+ sw) = (x) = 5" (€)(u,u),

para todo s suficientemente pequeno e u € R™, onde £, é ponto do segmento unindo x e
x + su. Quando s — 0, temos que &, — x, e usando a continuidade de f” concluimos que

£/0) () = lim £ (€,)(, ) = 21imy 7 (x + su) — f(x)

=0 52

> 0,

pois como x é minimo local, entao f(x+su)— f(x) > 0 para todo s suficientemente pequeno.
Portanto f”(x)(u,u) > 0, como queriamos demonstrar. O

Os resultados acima nos dao condi¢oes necessarias para um ponto interior ser extremo
local, porém estas nao sdo suficientes (vide exemplo f(x) = 23 na Figura [3). Dizemos
que um ponto é de sela quando a derivada se anula mas este nao é extremo local. Um
caso interessante ¢ quando a funcao é localmente crescente na direcao de uma coordenada
e decrescente na diregao de outra. Por exemplo, f : R? — R dada por f(z,y) = 2% — 3,
ver Figura @ Ver também a sela de macaco dada por f(x,y) = 2° — 3xy?, Figura[7| (tirada
de [21]).

O resultado a seguir nos fornece algumas condigoes suficientes para um ponto ser de
maximo, minimo ou de sela. Mais precisamente, temos que se um ponto critico x de uma
fungao suave tem f”(x) positiva definida, i.e, f”(x)(h,h) > 0 para todo h € R™\{0}, entao
ele ¢ minimo estrito local. De forma analoga, se f”(x) ¢ negativa definida, i.e, f"(x)(h,h) <0
para todo h € R™\{0}, entao ele ¢ méximo estrito local. O ultimo caso ¢ quando f”(x)
¢ indefinida i.e, existem h, & em R™ tais que [f”(x)(h,h)][f"(x)(&,€&)] < 0. Af entdo x é

ponto de sela.
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FIGURA 7. Gréfico da sela de macaco dada por 2® — 3zy?, com ponto de sela em (0, 0).

TEOREMA 5.4.3. Seja 0 C R™ aberto e f : Q — R duas vezes diferencidavel, com
derivadas continuas, e X € €} ponto critico. Temos entao que

(1) se f"(x) for positiva definida entdao x é minimo estrito local,
(2) se f"(x) for negativa definida entao x é mdximo estrito local,
(3) se f"(x) for indefinida entao x € ponto de sela.
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DEMONSTRAGAO. Mostraremos apenas o caso em que f”(x) é positiva definida. Neste
caso, devido a continuidade das segundas derivadas, f”(-) é positiva definida numa vizinhanga
aberta de x. Para y € Q\{x} satisfazendo as condigbes do Teorema de Taylor no R™
(Teorema, e suficientemente préoximo de x, temos que existe € pertencente ao segmento
de reta entre y e x e tal que

1
(5:43) Fy) = 169 = 51" (E)y — X,y = x).
Portanto x é minimo estrito local pois a espressao do lado direito de (5.4.3)) é estritamente
positiva. [

Note que apesar do teorema anterior dar condicoes suficientes para determinar se um
ponto critico é ou nao extremo local, ainda é preciso descobrir se a f” é positiva ou negativa
definida ou indeterminada. Esta dificuldade é contornével, pois existem varios resultados
de algebra linear que dizem, por exemplo, quando uma matriz é ou nao positiva definida.
Por exemplo, uma matriz simétrica é positiva definida se e somente se seus autovalores sao
positivos. A referéncia |7]| apresenta este e varios outros resultados relacionados ao tema.

EXEMPLO 5.13. Seja F': R™ — R dada por

- 1
F(x)=c+b'X+ 5)_("514)_(’,

onde A € R™*™ & simétrica positiva definida, b € R™! e ¢ € R. Entdo x, é ponto de

minimo estrito de F se e somente se AX, = —b. De fato, se x, é ponto de minimo estrito
de F, entdao F'(x,) = 0. Mas a matriz jacobiana [F'(x,)] € R™*! ¢ dada por

[F'(x,)] = (%) A+ b,

e portanto A%, = —b. Por outro lado, se AR, = —b, entdo F'(x,) = 0. Como a matriz
hessiana de F', dada por A, é positiva definida, entao x, é ponto de minimo estrito de F.

EXEMPLO 5.14. No exemplo[5.13|acima, note que mesmo que A nao seja positiva definida,
vale que x, é ponto critico de F se e somente se AX, = —b. Suponha [5| que A tenha uma
autovalor negativo Ay, e outro positivo A9, sendo os respectivos autovetores x; e x,. Note
que

F(tx;) = c +tb'X| + Extlel =c+tb'% + Tlxﬁxl — —00
se t — +00 pois A\; < 0. Analogamente, F(tx3) — 400 se t — +oo. Portanto, F' nao tem
nem maximo nem minimo globais. Na verdade, F' nao possui nem extremos locais, pois a
matriz A, que é a hessiana de F', é indefinida:

>t =

X AX) = X X = M ][x1]|* <0, Xy AXy = AgX5Xo = Ao||x2||” > 0.
Logo, segundo o Teorema [5.4.3] todo ponto critico é ponto de sela.

EXEMPLO 5.15. [Método de Newton| O exemplo acima, conjuntamente com a for-
mula5.4.1|motiva a seguinte linha de raciocinio. Seja f : {2 — R uma funcao suficientemente
suave (trés vezes diferenciavel, com a terceira derivada continua) e x, € {2 ponto de minimo
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F1GURA 8. Funcao convexa.

local com hessiana positiva definida. Entao, para x € ) e h suficientemente pequeno temos
que

e AU (.
g(h) ¥ f(x) + b'h + SBUHD ~ f(x + h),

onde b e H e sao as matrizes jacobiana e hessiana de f em x. Note que nao temos uma
igualdade na expressao acima pois a hessiana ¢ calculada em X, e nao num ponto entre x e
X + h, como nos diz o Teorema de Taylor . Entao h dado por h = —H~'b ¢ minimo
local de g.

Temos entao o seguinte esquema iterativo. Seja xy € () “préximo o suficiente” de x,, e
dado x; € €1 seja x;11 € Q definido por

Xk+1 — X — Hﬁlf/(Xk»
Alguns fatos podem ser demonstrados:
(1) a sequéncia (xi) esta de fato bem-definida em Q.
(2) limg o0 X = X4, € existe constante ¢ tal que
3. = xppa ]l < ellxe —xi]1%,

i.e., a convergéncia ¢ quadrética.

O método acima descrito é o Método de Newton para localizar pontos minimos locais. Ver
mais detalhes em [2,[14].

Uma segunda aplicacdo do Teorema diz respeito a fungoes convexas definidas em
convexos. Dizemos que 2 C R™ é convexo se x, y € € implica em (1 — t)x + ty € {2 para
todo ¢ € [0,1]. Dizemos que f : 2 — R ¢é convexa em (2 se

F(A=tx+ty) < (1 —1t)f(x)+tf(y).

para todo t € [0,1]. Graficamente, uma fungao é convexa se o gréafico de f entre x e y esta
abaixo da reta que une os pontos (x, f(x)) e (y, f(y)), como ilustra a Figura [§|

Existem intiimeros resultados relacionados a convexidade. Em particular, um minimo
local é também global, e se o minimo local é estrito, segue-se a unicidade de minimo glo-

bal |13].
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TEOREMA 5.4.4. Seja 2 C R™ conjunto aberto e convero e f : 2 — R duas vezes
diferencidvel, com derivadas continuas. Entao as afirmativas abaizo sdo equivalentes:

(1) [ é convezxa
(2) f"(x) é semi-definida positiva para todo x € Q.

DEMONSTRAGAO. (<) Suponha que f”(x) seja semi-definida positiva em €. Seja S o
segmento de reta unindo x ey € Q, e seja 0 < t < 1. Definindo xq = (1 — t)x + ty, pelo
Teorema de Taylor existe £, € S entre x e Xg, e &, € S entre Xy e y tais que

F6) = o) + ' (x0) O = x0) + 3 /" (E)(x — x0,% — %0),
F¥) = FOx0) + F (0)(y = x0) + 5 7€)y — %0,y — o).
Como f"(&,) e f"(&,) s@o ambas semi-definidas positivas, entao
(1 =06 +1f(y)

= f(x0)+ ' (x0)[(1 = t)x+1y —xo] +

(1-1)
2

(1-1)
2

f" (&) (x — %0, x — X0) + %f"(ég)(y — X0,y — Xo) > f(X0).

(€)%= X0, X —%0) + 2 " (62) (v — %0, ¥ — )

= f(x0) +

Logo f é convexa.
(=) Se f é convexa,

F(A=t)x+ty) < (1—=1)f(x)+1f(y)
e para t € (0, 1] temos que

S(A—t)x+ty) — f(x)
t

< fly) = f(x).

Tomando o limite ¢ — 0 obtemos f'(x)(y — x) < f(y) — f(x). Seja s = ||[x —y] e
h = (y — x)/s. Usando agora a férmula de Taylor obtemos que existe § € (0, s) tal que

1 . 1 .
§f”(x + sh)(sh, sh) = éf”(x +8h)(y —x,y —x) = f(y) — f(x) — f/(x)(y —x) > 0.
Usando a bilinearidade da aplicagao f”(x + $h), temos
f"(x+ sh)(h,h) > 0.

para todo h € B;(0). Tomando y — x temos s — 0 e portanto § — 0. Usando a
continuidade de f” concluimos a demonstragao. O

OBSERVACAO. Note que no processo de demonstracao do Teorema [5.4.4], mostramos
também que uma funcao f ser convexa implica em f'(x)(y —x) < f(y) — f(x) para todo x,

y.
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fx

F1GURA 9. Teorema da funcao inversa.

5.5. Teorema da Fungao Inversa e da Fungao Implicita

5.5.1. Teorema da Funcao Inversa. Como motivag¢ao considere primeiro o caso uni-
dimensional, e seja f : R — R “suave”. Se f'(z) # 0 para algum x € R, entdo f é localmente
invertivel, i.e, f ¢ injetiva numa vizinhanca aberta U de z e existe g = f~! : V — U, onde
U= f(V), tal que

g(f(x)) ==z, para todo x € U.

No caso a “suavidade” necessaria é que a funcao tenha derivadas continuas. Dado 2 C R™,
dizemos que uma fungio f : Q — R™ ¢ de classe C'(Q) se ¢ diferenciavel com derivadas
continuas em §2. A regularidade exigida nos garante o seguinte resultado.

LEMA 5.5.1. Seja 2 C R™ aberto, e f : 2 — R™ de classe C'(2). Suponha que D = f/(X)
seja invertivel, onde x € . Entao f'(x) ¢ invertivel com inversa continua, na vizinhanca
aberta de x dada por

1
(5.5.1) U= {x €eQ:||ID-fx)|< —}
2[| D]
DEMONSTRAGAO. Como f € C'(Q), entdo U é de fato vizinhanca aberta de x. Se f’
fosse nao invertivel para algum x € U, existiria €& € R™ nao nulo tal que f'(x)¢ = 0 (por

que?). Mas entao

IDE|| = [|D€ — £ (x)&]l < 5= | 1€]l-

2HD 'l

Finalmente,

1€l = ID~"Dg|l < [ID7H[[IDE]l < [|ID7 |H€H HEH,

2HD 'l

uma contradicdo. Logo tal x ndo existe e f' ¢ invertivel em U.
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Para mostrar que a inversa de f’ é uma fungao continua em xo € U, seja Dy = f'(xg) e
A(x) = f'(x). Usando o fato de que para cada x € U, o operador linear A(x) : R™ — R™ ¢
uma sobreje¢ao, temos que
|Dy'n — A~ (x)nl| _ |Dy ' A(x)€ — €]

(5.5.2) ||Dy' —A'(x)|= sup = sup
’ neR™, 0 [l eermezo  [[AXE]

_ €]l
< ||DgtA(x) —I|| sup =
’ germ, ¢40 ||AX)E]|

Note primeiro que

(5.5.3) X = Xg = ||DytA(x) —I|| = 0.
Portanto, basta mostrar que existe uma constante M tal que
(5.5.4) sup el < M,

germ, e20 || AX)E]|

pois por (5.5.2), (5.5.3), (5.5.4), temos que A~'(x) — Dy’ se x — xy. Portanto A~! ¢
continua em x3. Como xg é arbitrario, o resultado vale para todo ponto de U.
Para mostrar ([5.5.4)), note que para cada £ nao nulo fixo temos

e _ el e _ ||D0‘1CI|:||DO_1”_

lim = < up = up
x=xo |AX)E] [|Do&ll ~ germ ez0 [ Doll  cerm czo  IC|

Portanto, existe uma vizinhanga aberta de xy e uma constante M tal que para todo x nesta
vizinhanca, e todo £ € R™\{0},

el o,
Ao =

Tomando o supremo em £ temos (5.5.4]). O

TEOREMA 5.5.2 (Fungdo Inversa). Seja Q@ C R™ e f: Q — R™ de classe C'(2). Seja
x € Q tal que D = f'(x) € invertivel. Entio dada a vizinhanga aberta U de X definida

por (5.5.1), temos que
(1) f: U—V = f(U) € ingetiva, e V € aberto.
(2) Seja g :V — U a fungao inversa de f definida por

g(f(x)) =x para todo x € U.
Entio g € CH(V) e para y = f(X) tem-se g'(y) = [f'(X)]~".
DEMONSTRAGAO. (Rudin) Para mostrar (1) comegamos definindo

1

5.5.5 A= —.
(5:55) D]

Como f' é continua, entdao U é de fato vizinhanca aberta de X. Definindo para y € R™ a
funcao ¢ : 2 — R™ dada por

(5.5.6) P(x) =x+ D" (y — f(x)),

temos que f(x) =y se e s6 se x é ponto fixo de ¢.
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Mas ¢'(x) = [ — D71 f'(x) = D7Y(D — f'(x)), e portanto ||¢'(x)|| < 1/2 em U. Logo,
se y € U, temos pelo Teorema que

(5.5.7) 16(x) — 6] < = l1x — vl

e ¢ é contragdo. Portanto tem no maximo um ponto fixo, e f é injetiva em U (observe que
a existéncia de ponto fixo ndo esté garantida pois ¢ esta definida em €2 somente. Por que?).

Para mostrar que V' é aberto, seja yo € V. Entao yo = f(Xo) para algum x, € U.
Considere p > 0 tal que B,(x¢) € U. Mostraremos que B,x(yo) C V, para concluir que V' é
aberto. Para y € B,x(yo),

l¢(x0) — %ol = D™ (y — yo)| < [D~[lpA =

P
5

Mas entao para x € B,(xo),

[6(x) — xoll < 19(00) ~ S0l + b(ox0) —xoll < 3 x — ol + & < .

e ¢(x) € B,(xp). Portanto ¢ ¢é contracao de B,(x¢) em B,(xo), e pelo Teorema m tem

entao um tnico ponto fixo x € B,(x9) C U. Logo f(x) =y, ey € f(B,(x0)) C f(U) =V,
como queriamos demonstrar.

Mostramos agora (2). Por (1), temos que f é invertivel em U, e seja g : V — U sua
inversa. Paray, y +k € V, existem x = g(y), x + h = g(y + k). Considerando ¢ como

em ([5.5.6)), temos que
B(x +h)— $(x) =h+ D [f(x) ~ F(x+h)] =h— Dk
Por (5.5.7) temos ||h — D7'k|| < ||h||/2 e entao ||[D~'k]|| > ||h||/2. Logo
- K|l
I < 207 < L1
Mas por (5.5.5), e Lema f' & invertivel em U. Denotando esta inversa por T, temos

ls(y +1%) —g(y) =Tk|| _ |h—Tk|| _ |7(f'(x)h - k)|
K| [/ Allh]
< MNTNNFx+h) — F0) = F(x)h
oA [l '
Tomando k — 0, temos h — 0, e o lado direito acima vai zero. Portanto o lado esquerdo
também converge para zero, e ¢'(y) = T(y), que ¢ a inversa de f(x). Logo g ¢é diferenciavel.

Para concluir que g € C*(V), usamos que g'(y) = [f'(g(y))] ™", e pelo Lema f' tem
inversa continua. O

OBSERVACAO. Note que o teorema acima tem carater local. Em particular, é possivel
construir func¢oes nao injetivas em seu dominios que possuem matrizes jacobianas invertiveis
em todos os pontos. Entretanto em uma dimensao, se a derivada nao se anula em nenhum
ponto de um intervalo aberto, a funcao é globalmente invertivel.
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FIGURA 10. Conjunto {(z,y) € R*: 2% +y? = 1}.

FIGURA 11. Conjunto {(z,y) € R?: z = ¢*}.

5.5.2. Teorema da fungao implicita. O teorema de funcao inversa trata da impor-
tante questao de solvabilidade de equagoes dadas de forma implicita. A pergunta é simples:
dados os pontos (x,y) solugbes de uma equagao F(x,y) = 0, serd que é possivel escrever y
em funcao de x7

Como uma primeira motivacao, considere F(z,y) = z? +y*> — 1. Entao a curva de
nivel determinada por F'(z,y) = 0 é dada pelo circulo de raio unitario, como nos mostra a
Figura[l0] Seja (a,b) € R? tal que F(a,b) = 0. Por exemplo (0,1) e (—1,0) satisfazem esta
condi¢ao. Uma pergunta natural é se existe uma funcado ¢ tal que F(x,¢(x)) =0, e ¢(a) = b.
A resposta é globalmente, nao. Mas localmente sim, se OF/0y(a,b) # 0.

Um segundo exemplo é dado por F(z,y) = x—y?, ver Figura Para se ter F(z, ¢(x)) =
0, pode-se escolher ¢(x) = v/z ou ¢(xr) = —\/x. Entretanto nenhuma das duas fungoes esta
definida na vizinhanga de = 0. Note que 0F/Jy(0,0) = 0.

Um exemplo final, agora em dimensoes maiores. Sejam T} : R™ — R" e Ty : R — R"
transformagoes lineares, e F': R™™™ — R" dada por F(x,y) = T1x + Toy. Entao podemos
escrever a equagao F'(x,y) = 0 somente em fungao de x se Ty for invertivel. Neste caso
temos F'(x, —T2_1T1X) = 0. Note que se definirmos a aplicacao linear L : R" — R"™ dada
por L: v — F'(a,b)(0,v), teremos L = Ty. Entao a condigao de solvabilidade é de L seja
invertivel.

TEOREMA 5.5.3 (Fungao implicita). Seja Q@ C R™™™ um aberto, e (Xo,y0) € Q. Seja
F : Q — R" de classe C*(2), e tal que F(xo,y0) = 0. Se a transformagao linear de R™ em
R" definida por v — F'(X0,y0)(0,v) for invertivel, entdo existe uma vizinhancga aberta W
de Xo, e uma tinica fungio ¢ : W — R™, que é C'(W) e tal que yo = ¢p(x0) e F(x, p(x)) =0
para todo x € W.
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DEMONSTRACAO. Sem perda de generalidade, suponha xg = 0 e yo = 0. Seja H : Q) —
R™*" dada por H(x,y) = (x, F(x,y)). Entao H'(0,0) é invertivel. Pelo teorema da fungao
inversa (Teorema [5.5.2)), existe vizinhanca aberta U de (0,0) em R™™ tal que V = H(U)
¢ vizinhanca aberta em R™". Além disto existe ® : V — U inversa de H de classe C.
Escrevendo ® = (¢, ¢2), onde ¢ : V. — R™ e ¢ : V — R™, temos

(x,y) = Ho®(x,y) = H(¢1(x,y), 92(x,y)) = (¢1(%,¥), F(d1(x,¥), ¢2(x,¥))).
Logo,

(558) X = ¢1(X7 Y)a y = F(Xa ¢2(Xa y))a
para todo (x,y) € V. Entao W = {x € R™: (x,0) € V} ¢é vizinhanga aberta de x = 0 em
R™. Definindo ¢(x) = ¢2(x,0), temos ¢(0) = 0, e segue-se de (5.5.8) que F(x,¢(x)) = 0.

Como ® & de classe C', entdo ¢, e portanto ¢ também é de classe C". U

5.6. Minimizagao com restrigoes

Para problemas de minimizagao com restri¢oes, dois importantes resultados nos dao
condigoes suficientes para que um ponto seja extremo. Sao os teoremas de Lagrange e de
Kuhn—Tucker, que demonstramos abaixo. Em ambas demonstragoes que apresentamos se
faz necessario o Lema da aplicagdo aberta (ou sobrejetiva), que apresentamos abaixo sem
demonstrar [3].

LEMA 5.6.1 (aplicacdo aberta). Seja © aberto em R™, e f : Q — R” de classe C*(Q).
Suponha que f'(x) : R™ — R" seja uma sobrejegao. Entao existe U vizinhanga aberta de x
tal que f(U) ¢ aberto.

Precisamos também de alguns conceitos de algebra linear. Dizemos por exemplo que o
conjunto de vetores {vy,---, v} dum espago vetorial é linearmente dependente se existem
nimeros Ay, - - - , A\g, nao todos nulos, tais que A\;vy+-- -4+ A vy = 0. Estes mesmos conjunto
é linearmente independente se nao é linearmente dependente.

Um resultado importante de algebra linear linear nos diz que se uma aplicacao linear
A R™ — R" dada por A(x) = (vy - X,...,V, X) nao é sobrejetiva, entdao {vy,---,v,}
é linearmente dependente. De fato, como A nao é sobrejetiva, entao existe vetor nao nulo
&= (&,...,&) € R" ortogonal a A(x) para todo x € R™, i.e.,

0= (Vi X,...,Vp-X)- &= (&1v1+ -+ + & V) - X

Mas entao & vy + -+ + &, v, € R™ ¢é ortogonal a todo vetor do R™, e isto s6 é possivel se
&Svi+ -+ & v, =0, como queriamos demonstrar.

Voltemos ao problema de minimizagao com restri¢oes. Dadas fungoes reais f, g1,..., gk
definidas num aberto €2 de R™, consideramos o problema de minimizar f restrita ao conjunto
de raizes de g1,...,gr em §2. O Teorema de Lagrange nos da condigoes necessarias que um
candidato a minimo de tal problema tem que satisfazer.

TEOREMA 5.6.2 (Lagrange). Seja Q C R™ aberto, e f,q1,..., gk funcdes reais definidas
em Q de classe C'(Q). Suponha que exista um aberto U C Q e x, € U e tal que

f(xo) =inf{f(x): x€U egq(x)="-=gr(x) =0}
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Entao existem numeros pi, A1, ..., \p nao todos nulos e tais que
(5.6.1) puf (%) = Mgy (%) + -+ A+ Mg ().
Além disto, se {g}(x4),...,9r(X)} € linearmente independente, entio pode-se tomar p = 1.

DEMONSTRAGAO. Seja F : Q — R*! dada por F(x) = (f(x),g1(X),...,gk(x)). Entdo
para X € ), temos que F’(x) : R™ — R*! ¢ dada por
F()(B) = (7<) (B). g} ()(0)..... () ().
Parax € N ={x € Q: ¢1(x) = --- = gr(x) = 0}, temos que F(x) = (f(x),0,...,0).
Supondo agora que X, minimiza f restrita a N, entao F(£2) ndo contém pontos da forma
(f(x4) —€,0,...,0) para nenhum e > 0. Logo, pelo Lema da aplica¢ao aberta (Lema [5.6.1)),

F’(x,) nao ¢ uma sobreje¢ao. Temos portanto que {f'(x), g1 (X4), ..., g,(x.)} € linearmente
dependente, e vale.

Finalmente, se {g](X4),...,g.(x.)} & linearmente independente, entdo p # 0, pois caso
contrério terfamos \; = --- = Ay = 0. Logo podemos dividir os fatores da combinacao linear
por L. U

Os nimeros Ay, ..., \x acima sao conhecidos por multiplicadores de Lagrange, e em muitas

aplicagoes tém significado proprio.

Uma outra situacao de minimizacao com restri¢oes ocorre quando as restricoes sao dadas
por desigualdades, e nao mais como acima. neste caso temos o Teorema de Kuhn—Tucker,
dado abaixo.

TEOREMA 5.6.3 (Kuhn—Tucker). Seja Q@ C R™ aberto, e f,h, ..., hy funcoes reais defi-
nidas em Q de classe C' (). Suponha que exista um aberto U C Q e x, € U e tal que
f(xe) =inf{f(z) : x€ U e hy(x) >0,---, h(x) > 0}.
Entao as sequintes afirmativas sao verdadeiras:
(1) existem nimeros ji, A1, ..., \x, nao todos nulos e tais que
uf'(xe) = Ahi(x) + -+ Al (x.).
(2) sejai € {1,...,k} tal que hi(x,) > 0. Entao pode-se impor \; = 0.

(3) se conjunto V- = {h}(x.) : hi(x.) =0, onde 1 <i <k} € linearmente independente,
entao pode-se tomar p=1e Xy >0,..., Az > 0.

DEMONSTRAGAO. (1) Neste caso, a demonstragao é muito semelhante a do Teoremal5.6.2]
Seja F'(x) = (f(x), h1(x), ..., hg(x)). Entdo para x € Q,

F'(x)(h) = (f'(x)(h), ki (x)(h), ..., k. (x)(h)).
Supondo agora que X, minimiza f restrita a {x € Q : hy(x) > 0,--- , hx(x) > 0, }, entdo
F () nao contém pontos da forma (f(x.) — €, h1(X.),. .., hx(X,)) para nenhum e > 0. Pelo
Lema da aplicagao aberta (Lema [5.6.1]), F”(x,) ndo é uma sobrejegao. Temos portanto que
{f(x), h}(Xs), ..., hi(x«)} € linearmente dependente.

(2) Se hyy1(xi) > 0,..., hi(x.) > 0 entdo considere um aberto U contendo x, tal que
hpi1(%4) > 0,..., hg(x,) > 0 em U. Aplicando a primeira parte deste teorema com somente
as primeiras r restri¢oes hi(x) > 0,--- , h,(x) > 0 obtemos o resultado.
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(3) Sem perda de generalidade, considere V' = {h/(x,),...,h.(x.)}, onde r < k. Se V
¢é linearmente independente, argumentamos como na demonstracao do Teorema para

tomar = 1. Além disto, dado € > 0, existem vetores vy,...,v, € R™ tais que
1 sei =y,
hi(x.) - v = { -
€ seiF#j.

Logo existe ¢ suficientemente pequeno e # contido em (0, ), tais que
hi(%. +tv;) = hi(x. +tv;) — hi(x.) = thi(x. + tv;)(v;) > 0.
Logo f(x.) < f(x. +tv;). Concluimos entao que

f(xe +tv;) — f(x.)

0 < lim : — F)(v;) = MG ()(V) + -+ AL (%) (V)
>0
= \h (%) (v5) Z)\h’x* \2) —)\—1—62)\
i=1,1i#7] i=1,1#j]
Como € pode ser tomado arbitrariamente pequeno, necessariamente tem-se A; > 0. 0

5.7. Exercicios

EXERcICIO 5.1. Seja f: R — R dada por

{x2 sex € Q,

J(@) = 0 sexzeR\Q.

Calcule f(0).

EXERCICIO 5.2. Seja f : R — Rec € R tal que f(c) = 0. Mostre entao que g(x) = | f(z)]
é diferenciavel em c se e somente se f é diferenciavel em c e f'(c) = 0.

EXERCICIO 5.3. Seja f: R — R dada por f(z) = |z|. Note que f atinge seu minimo em
x = 0. Pode-se concluir entao que f'(0) = 07 Por que?

EXERCICIO 5.4. Seja f: R — R dada por
f(x) =) (v —c)
i=1
onde ¢; € Rparai=1,...,n,en € N. Ache um ponto de minimo local de f. Mostre que é
unico.

EXERCICIO 5.5. Dé exemplo de uma fungao uniformemente continua em [0, 1] que seja
diferenciavel em (0,1) mas cuja derivada nao seja limitada em (0,1). Mostre porque que o
seu exemplo funciona.

EXERCICIO 5.6. Sejaa < be f : [a,b] — R diferenciavel em [a, b]. Mostre que se f'(a) > 0
e f'(b) <0, entao existe x € (a,b) tal que f'(z) = 0.

EXERCICIO 5.7. Seja f : R — R fungao diferenciavel em R e tal que f'(x) # 0 para todo
x € R. Mostre que f é injetiva.
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EXERCICIO 5.8. Seja f: (0,1) — R diferenciavel em (0, 1) e tal que f'(z) # 0 para todo
€ (0,1). Mostre que existe fun(;ao inversa f~! : ((0, )) (0,1). Mostre que f~! &
continua.

EXERCICIO 5.9. Seja I um intervalo e f : I — R diferenciavel. Mostre que se f’' é
positiva em I, i.e., f’(xz) > 0 para todo = € I, entdo f é estritamente crescente.

EXERCICIO 5.10. Mostre que se I é um intervalo e f : I — R diferenciavel com derivada
limitada em I, entao f é de Lipschitz.

EXERCICIO 5.11. Sejam a < b, e xg,x1,...,xy pontos tais que a = z9 < o1 < -+ <
xy = b. Mostre que se f : [a,b] — R é diferenciavel e tem derivada continua em [a, b], entao
existe uma constante M € R independente de N tal que

Z |f(zs) — f(aiz1)] < M.

(Obs: dizemos neste caso que f tem variagdo limitada.)

EXERCICIO 5.12. Seja I C R intervalo aberto e f : I — R duas vezes diferenciavel com
a segunda derivada continua, numa vizinhanca aberta de x € I. Mostre entao que existem
constantes positivas § e ¢ tal que

@) = @)
) - 2

para todo 0 < h < §. Mostre que a constante ¢ pode ser escolhida independentemente de h.
Repita o exercicio supondo agora que f : I — R é trés vezes diferencidvel com a terceira
derivada continua, numa vizinhanca aberta de x € I, e que entao

ORI (AR (G2

As duas formas acima séo utilizadas para aproximar f’(x) computacionalmente.

< ch,

< ch?,

EXERcCICIO 5.13. Seja I C R intervalo aberto e f : I — R quatro vezes diferenciavel,
com a quarta derivada continua, numa vizinhanca aberta de x € I. Mostre entao que existem
constantes positivas d e ¢ tal que

iy - 1o =200 4 e - h)\ a2

para todo 0 < h < §. Mostre que a constante ¢ pode ser escolhida independentemente de h.
A forma acima ¢é utilizada para aproximar f”(z), quando f é suave.

EXERCICIO 5.14. Mostre que dados quaisquer x, y € R fixados, o resto da série de Taylor
com n termos da funcao cosx centrada em x e calculada em y converge para zero quando
n — +00.

EXERCICIO 5.15. Seja f : R — R suave, com minimo local em x = 0, e suponha que este
minimo nao seja global. Mostre que existe ponto critico diferente de x = 0. Note [5] que
este resultado nao pode ser generalizado para f : R? — R, por exemplo.
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EXERCICIO 5.16. Suponha que f : R — R seja suave, e possua ao menos dois minimos
locais. Mostre que f possui um ponto critico entre estes dois minimos. Novamente [5], este
resultado nao vale em geral para f : R? — R.

EXERCICIO 5.17. Seja f : A — R duas vezes diferenciavel em A, com a segunda derivada
continua, onde A C R aberto, e x € A ponto critico de f tal que f”(x) # 0 (sdo chamados de
nao degenerados). Mostre que existe uma vizinhanga aberta de x tal que x é o tinico ponto
critico.

EXERCICIO 5.18. Sejam f e A como no exercicio |5.17, Suponha que todo ponto critico
de A tem segunda derivada nao nula. Mostre que cada compacto contido em A contém um
numero finito de pontos criticos nao degenerados.

EXERCICIO 5.19. Seja f : R — R suave e tal que f'(z1) > 0 e f'(x3) > 0 para z; < x5
raizes de f. Mostre que f possui ao menos uma raiz em (xy,xs).

EXERCICIO 5.20. Sejam a < b nameros reais, e f : [a,b] — R continua em [a,b] e
diferenciavel em (a,b). Mostre que entre duas raizes consecutivas de f’ existe no méaximo
uma raiz de f.

EXERCICIO 5.21. Sejam f e g fungoes de R™ — R", diferenciaveis em x € R™. Mostre,
usando a defini¢ao de derivadas que (f + g)'(x) = f'(x) + ¢'(x). Seja h : R™ — R também
diferenciavel em x € R™. Mostre usando a defini¢ao de derivadas que (hg)'(x) = h/(x)g(x)+
h(x)g'(x).

EXERCICIO 5.22. Seja f: R? — R dada por
xy?

flry) = a2 +0 P (z,y) # (0,0),
0 para (z,y) = (0,0).

Mostre que a derivada direcional de f em (0,0) com respeito a u = (a, b) existe e que
2

b
Duf(O,O):E, se a # 0.

Mostre que f nao é continua e portanto nao é diferenciavel no (0,0).

EXERCICIO 5.23. Mostre que f : R? — R dada por

3
x
o) = g P @) 7 0.0)
0 para (z,y) = (0,0).
tem todas as derivadas direcionais em (0,0), mas que f nao é diferenciavel no (0, 0).

EXERcIcIO 5.24 (|8], Example 1.1.1). Mostre que f: R? — R dada por

- para (z,y) # (0,0).
0 para (z,y) = (0,0).

fl@y) = q (y—2?) + 2
tem todas as derivadas direcionais em (0,0) iguais a zero, mas que f nao ¢é diferenciavel no

(0,0). (Dica: considere h = (h, h?) em (5.3.1))).
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EXERCICIO 5.25. Seja f : R? — R definida por

_ [ se(wy) #(0,0),
fy) = {O se (z,y) = (0,0).

Decida se f é ou nao diferenciavel em (0,0). Prove seu resultado.

EXERCICIO 5.26. Seja 2 C R™ exey € Qtaisque S = {tx+(1—-t)y:t € (0,1)} C Q.
Seja f : 2 — R™ diferenciavel em 2 com derivadas continuas, e T € L(R™,R™). Mostre que

1F(x) = fly) =T(x=y)ll < sup 17(2) = Tl cem zm lIx =yl

EXERCICIO 5.27. Seja @@ = (0,1) x (0,1). Suponha que f: Q — R, e g: Q — R sejam
diferenciaveis em ). Mostre que se f'(x) = ¢'(x) para todo x € @), entdo existe constante ¢
tal que f(x) = g(x) + ¢ para todo x € Q.

EXERCICIO 5.28. Seja D = R2\Bl/100(0), ie, D = {X c R? : HX” > 1/100} Seja
f: D — R tal que todas suas derivadas parciais se anulem em D. Mostre que f(—1,0) =

f(1,0).

EXERCICIO 5.29. Sejam f : B — R “suave” (i.e., todas derivadas direcionais existem
e sao continuas), onde B = {x € R™ : ||x|| < 1} é fechado, e x* € B ponto de maximo.
Mostre que se x* for ponto interior de B, entdo f'(x*) = 0. Se ||x*|| = 1 (i.e., pertence &
fronteira de B), o que pode ser dito sobre o sinal da derivada direcional

D)t L0 10 = S0

t—0 t

na diregao u = —x*7

EXERCICIO 5.30. Seja 2 C R™, aberto e com a seguinte propriedade: existe x, € () tal
que para todo x € ), areta Sy = {tx+ (1 —1t)x, : t € [0, 1]} esta contida em €, i.e., Sx C Q
(dizemos que tal dominio tem formato de estrela). Seja f : 2 — R funcdo diferenciavel em
Q) e tal que todas as derivadas parciais de f(x) sdo nulas, para todo x € ). Mostre que f é
constante.

EXERCICIO 5.31. Seja €2 como no exercicio 5.30, e f : € — R” diferenciavel em (2.
Suponha que exista T € L(R™ R") tal que f'(x) = T para todo x € Q. Mostre que
f(x) =T(x) + ¢, para algum ¢ € R".

EXERCICIO 5.32. Seja B = {x € R™: [|x|| < 1} e f : B — R funcdo continua em B,
diferenciavel no interior de B e tal que f = 0 na fronteira de B. Mostre que f tem ponto
critico no interior de B.

EXERCICIO 5.33 (Minimos Quadrados). Considere para i = 1,...,n os pontos (z;,y;) €
R? e seja p : R — R dada por p(z) = ax?® + bz + ¢ tal que a, b e ¢ minimizam o erro
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S Ip(xi) — yil®. Mostre que a, b e ¢ satisfazem as equagoes
n n n n
aZx? +be? —1—02%2 - sz?yi’
i=1 i=1 i=1 i=1
n n n n
DDLTE) TS SP
i=1 i=1 i=1 i=1
n n n
aZx? +bZ:1:i +cn = Zyi.
i=1 i=1 i=1

EXERCICIO 5.34. Seja A C R™ compacto, e A° o conjunto dos pontos interiores de A.
Seja f : A — R duas vezes diferenciavel, com derivadas continuas em A°, e f continua em
A. Suponha ainda que f se anule em toda a fronteira de A, e que f” seja negativa definida
para todo ponto em A°. Mostre que f(x) > 0 para todo x € A°.

EXERCICIO 5.35. Mostre, usando o Teorema [5.4.3] que (0,0) é ponto de sela de f(x,y) =
2? — 2, e ponto de minimo estrito local de f(z,y) = 2% + 2.

EXERCICIO 5.36. Sejam as fungdes f : R — R e g : R — R duas vezes diferenciaveis,
com as segundas derivadas continuas. Suponha que o zero seja ponto de minimo estrito de
feg,eque f(0)=g(0) =1. Seja ¢ : R* — R dada por p(x,y) = f(x)g(y). O que podemos
afirmar sobre a Hessiana de ¢ em (0,0) (nada pode ser afirmado, ela é indefinida, positiva
definida, positiva semi-definida, negativa definida, etc)? O que podemos afirmar sobre o
ponto (0,0) em relagao a ¢ (nada pode ser afirmado, é ponto de méximo, de maximo estrito,
de minimo, de minimo estrito, de sela, etc)? Justifique suas respostas.

EXERCICIO 5.37. Seja f : R — R? diferenciavel e tal que ||f(¢)|| = 1 para todo ¢t € R.
Mostre entao que f'(t) - £(¢) = 0. O vetor f'(¢) é o vetor tangente da curva £ em t.

EXERCICIO 5.38. Seja (2 C R™ aberto e f : 1 — R diferencidvel em x € 2. Seja
V f(x) = (0f/0x1,...,0f/0xy)(x) € R™. Supondo que x nao é ponto critico de f, mostre
que a derivada direcional D, f(x) atinge seu maximo quando u = ¢V f(x) para algum ¢ > 0.
O vetor V f é chamado de wvetor gradiente de f, e da a direcao de “maior crescimento” da
funcao f no ponto x.



CAPIiTULO 6
Sequéncia de Funcgoes

E|Seja QCR™e f;: Q@ — R” onde i € N. Dizemos entao que (f;) define uma sequéncia
de fungoes. Note que cada x € 2 define a sequéncia (f;(x)) em R™.

6.1. Convergéncia Pontual

DEFINIGAO 6.1.1. Seja (f;) uma sequéncia de fungoes, onde f; : Q — R", e Q C R™.
Dizemos que (f;) converge pontualmente para uma funcao f: Qo — R™ em Qo C Q se para
todo x € Qq, a sequéncia (f;(x)) converge para f(x).

EXEMPLO 6.1. Sejam f;(z) = z/i e f(z) = 0. Entado f; converge pontualmente para f
em R, pois para todo x € R tem-se lim;_,, f;(x) = lim; o z/i = 0.
EXEMPLO 6.2. Sejam g;(x) = x'. Entao
(1) Se z € (—1,1), entdo lim; o gi(x) = lim; o 2 = 0.
(2) Se x =1, entao lim; oo gi(z) = lim; ,o 1 = 1.
(3) Se x = —1, entdo g;(x) = (—1)" = 1 nédo converge.
(4) Se |z| > 1, entao g;(x) nao é limitada e portanto nao converge.

Logo (g;) converge pontualmente para g em (—1, 1], onde

0 se —1<x<l,
(6.1.1) g(x) = B
1 sex=1.

Note que
0= lim g(z) = lim lim g;(z) # lim lim g;(x) = 1.

T—1— z—1— i—+00 i—+00 z—1—

Note que a definigao de convergéncia pontual pode ser escrita da seguinte forma.

DEFINICAO 6.1.2. Uma sequéncia de fungoes (f;) onde f; :  — R", e Q C R™ converge
pontualmente para uma funcao f: Qg — R™ em Qg C 2 se para dado € > 0 e x € )y, existe
Iy(x,¢€) tal que

i>Io(x,6) = [fi(x) — f(x)| <e

O que fica claro na definicdo acima é que a “escolha de Ny’ depende do ponto x em
consideragao. Considere o exemplo [6.1] e seja e = 1/10. Entdo, para z = 1 e Ip(z,€) = 10,
temos

i>Ip(z,e) =10 = |fi(z) — f(x)| = |1/i] <e.
Mas para x = 2, a escolha anterior de I, = 10 ja nao ¢ suficiente e temos que escolher
Ip(z,€) > 20.
10ltima Atualizagao: 02/04,/2014
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6.2. Convergéncia Uniforme

DEFINICAO 6.2.1. Dados Q C R™ e i € N, seja f; : @ — R"™. Dizemos que a sequéncia
de fungoes (f;), converge uniformemente para f: Q — R", se dado € > 0 eziste Iy(€) tal que

i>1y = ||fi(x) — f(x)|| < € para todo x € ().

Observe que convergéncia uniforme implica em convergéncia pontual, mas que a afirmacao
reciproca nao vale. Uma forma pratica de se mostrar que uma sequéncia de func¢oes nao
converge uniformemente é utilizando o resultado abaixo.

TEOREMA 6.2.2. Seja f; : Q2 — R"™ onde Q C R™ et € N. Entao a sequéncia de fungoes
(fi) nao converge uniformemente para f:  — R"™ se e somente se para algum € > 0 existir
uma subsequéncia (f;,) e uma sequéncia de pontos (xi) em Q tais que

| fir. (xk) — f(xx)|| > € para todo k € N.

EXEMPLO 6.3. Sejam f; : R - Re f: R — R, onde fj(x) = x/i e f(x) = 0. Tome
e=1/2, ny =k ez, = k. Entédo
| fu(2k) = fzi)| =1 > €

Logo nao ha convergéncia uniforme.

Uma forma de “medir” convergéncia uniforme é através da norma do supremo, que a cada
funcao limitada associa o valor méximo do médulo desta. Formalmente temos a seguinte
definicao.

DEFINIGAO 6.2.3. Seja f : Q — R™, onde Q C R™, fun¢ao limitada. Definimos a
norma do supremo entao por

[ fllsup.cc = sup{llf ()| : x € €2}

Portanto, uma sequéncia de fungoes limitadas (f;), onde Q2 C R™, converge para f : Q0 —
R", se e somente se lim;_,o || fi — f|lsup,0 = 0. Em particular, é possivel mostrar que o espaco
das fungoes continuas e limitadas tem propriedades interessantes (i.e., é completo) quando
se usa a norma do supremo. Ver exercicio [6.7}

EXEMPLO 6.4. Se g; : [0,1] — R ¢é tal que g;(z) = 2%, g : [0,1] — R ¢ tal que
0 sexel0,1),
(6.2.1) g(x) = _[ )
1 sex=1,

entao

19 = gllsup,jo.y = sup({z* = = € [0,1)} U{0}) =1
para todo ¢ € N. Logo g; nao converge uniformemente para ¢g. Observe entretanto no
Exemplo que ha convergéncia pontual para a funcao definida em (6.2.1]).

EXEMPLO 6.5. Se fi(z) =x/i e f(x) =0 entao
1fi = fllsup,o,1 = sup{z/i: z € 0,1]} = 1/i.

Logo f; converge uniformemente para a fungao identicamente nula.
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EXEMPLO 6.6. Suponha que f : R — R seja uniformemente continua em R e defina
filx) = f(x +1/i). Entdo f; converge uniformemente para f em R. De fato, seja ¢ > 0.
Como f é uniformemente continua, existe 6 € R tal que

lr —y| <o = |f(x) — f(y)] <e paratodo z,y € R.
Seja entao N* € N tal que N* > 1/§. Logo
i> N = [filz) = f(@)] = [f(z + 1/1) = f(z)] <e,
para todo x € R. Portanto, f; converge uniformemente para f.
TEOREMA 6.2.4 (Critério de Cauchy para convergéncia uniforme). Seja Q C R™ e, para

i €N, seja fi: Q — R™. Entao a sequéncia (f;) converge uniformemente para uma fungao
f: Q2 — R se e somente se dado € > 0, existe Ky tal que

(6.2.2) 1fi(x) = fi(x)[] <e.
para todo i, 7 > Ky, e x € ).

DEMONSTRAGAO. (=) Basta usar que

1£5(x) = fi)[ < 1f5(x) = FI + [[£(x) = fix)]]
para todo x € 2.

(<) Por hipotese, dado € > 0, existe K, tal que
. €
hj 2 Ko = |lfilx) = fix)l < 3,
para todo x € Q. Mas entao (f;j(x)) é sequéncia de Cauchy em R", e podemos definir
f(x) = lim; 4 oo fi(x). Falta agora mostrar a convergéncia uniforme de f; para f. Dado
x € (2, seja K € N tal que
€
5
Note que Ky depende somente de €, mas K depende também de x. Entdo, seja i > K, e
para cada x € €, seja j = sup{ Ky, K'}. Logo

1F() = fix)l] < 1F () = [, + [1f;(3) = fx) | < e,

e (fi;) converge uniformemente para f. O

i> K = ||filx) - f(x)]| <

Finalmente concluimos esta se¢ao mostrando que limite uniforme de funcoes continuas
é também uma funcao continua. Lembre-se que esta propriedade nao vale em geral se a
convergéncia ¢ s6 pontual.

TEOREMA 6.2.5 (Troca de Limites e Continuidade). Seja (f;) sequéncia de funcoes f;
Q — R" continuas em 2 C R™, convergindo uniformemente para f : € — R™. Entdao f €
continua em €.

DEMONSTRAGAO. Seja xg € 2. Dado € > 0 existe Ny € N tal que || f(x) — fn, ()] < €/3
para todo x € ). Como fy, é continua em (2, existe 6 > 0 tal que
€

X € Bs(x0) NQ = || fn (%) — fno (%0) || < 3
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Logo se x € Q e ||x — X¢|| < ¢, entdo

17 () = F (o)l < NS (%) = Fvo R+ 1o (%) = fovo (X0) [ + ([ v (%0) = F(x0) | < €.

Logo f é continua. 0

6.3. Equicontinuidade

Nesta secao discutiremos os conceitos de equicontinuidade e enunciaremos o Teorema
de Arzela—Ascoli. Nao apresentaremos demonstragoes, que podem (devem) ser conferidas
em [9], por exemplo.

Seja F' um conjunto de fungoes de 2 C R™ em R". Chamamos o conjunto F' de equicon-
tinuo em X € §2, se dado € > 0, existe § > 0 tal que

x€Q, |x—x0| <0 = ||f(x)— f(x0)|| < € para toda f € F.

Se I for equicontinuo em todos os pontos de €2, dizemos simplesmente que F' é equicontinuo.

O conceito de equicontinuidade num ponto pode ser generalizado de forma a que a escolha
de 6 nao dependa mais do ponto em consideracao i.e., seja uniforme. Dizemos entao que F
é uniformemente equicontinuo, se dado € > 0, existe § > 0 tal que

X,Xg €8, |[x—x¢| <0 = |[|f(x)— f(X0)]| < € para toda f € F.

De forma semelhante, chamamos F' de simplesmente limitado se para cada x € () existe ¢
tal que || f(x)|| < ¢ para todo f € F. Finalmente, dizemos que F' é uniformemente limitado
se existe ¢ tal que || f(x)|| < ¢ para cada x € 2 e para todo f € F.

O resultado abaixo informa que se o dominio for compacto, entao equicontinuidade e
equicontinuidade uniforme sao equivalentes. O mesmo acontece com limitacao simples e
uniforme, quando as fungoes sao continuas.

LEMA 6.3.1. Seja F' conjunto de func¢oes de um compacto K C R™ em R". Entao,
F' é equicontinuo se e somente se é uniformemente equicontinuo. Além disto, se F' for
equicontinuo, entao F' é simplesmente limitado se e somente se for uniformemente limitado.

Temos entao o Teorema de Arzela—Ascoli, que de alguma forma generaliza o Teorema de
Bolzano—Weierstrass para sequéncias de fungoes.

TEOREMA 6.3.2 (Teorema de Arzela—Ascoli). Seja F' conjunto infinito de fungoes defi-
nidas num compacto K C R™ e tomando valores em R™. Entao F ¢é equicontinuo e sim-
plesmente limitado se e somente se toda sequéncia de fungoes tem subsequéncia que converge
uniformemente.

DEMONSTRAGAO. Sejam {Xj, Xs,X3,... } = KNQ™ o conjunto dos elementos de K com
cordenadas racionais, e seja (f;) sequéncia em F. Entdo a sequéncia ( fz(xl)) é limitada
e possui subsequéncia denotada por ( fi (Xl)) convergente. Analogamente, ( fil(XQ)) possui
subsequéncia ( fl~2<X2)> convergente. De forma geral, dada a sequéncia limitada ( f _1(Xj)),
extrai-se uma subsequéncia convergente ( 7 (Xj)). Note que, para j fixado, ( fl (Xl))zl é
convergente para [ = 1,...,j. Seja ¢; = f{. Entdo, por construgao, (gi(xl)) ¢é convergente
para todo [ € N. De fato, (gl-(xl)) ¢ subsequéncia de (fll (Xl)), que converge.
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Como F' é equicontinuo num compacto, entao é uniformemente equicontinuo. Dado entao
e > 0, seja 6 > 0 tal que

x,Xg € K, |x—x%¢| <0 = |[|f(x)— f(x0)]| < % para toda f € F.

Como K é compacto, entdo existe Ny € N tal que {Bs(x;)}% é cobertura aberta de K .
Como (gi(xl)) converge para [l = 1,..., Ny, seja N1 € N tal que
. €
hj 2N = lgilx) — g;(x)ll < 5
paral=1,...,Ny.
Finalmente, tomando N = max{Ny, N1} e i, 7 > N, temos
19i(x) — g; ()| < [lgs(x) — gi(x)[| + [lgi(x1) — g5 (=) + [|g;(x1) — g;(x)[| <€
para todo x € K, onde [ € {1,..., Ny} é tal que x € Bs(x;). O resultado segue entao do
critério de Cauchy para convergéncia uniforme (Teorema [6.2.4)). O

Como aplica¢do mostramos alguns detalhes do belo exemplo apresentado em [9].

EXEMPLO 6.7. Seja F' o conjunto das fungées f : [—1,1] — [0, 1], continuas e tais que
f(=1) = f(1) = 1. Considere I(f) = f_ll f(z)dz. E possivel mostrar que nio existe f € F

tal que I(f) = minsep I(f). Considere agora
F.={f € F: f éde Lipschitz com constante c}.

Entao F,. é simplesmente limitado e equicontinuo. De fato, dado ¢ > 0, a equicontinuidade
segue se tomarmos 6 = €/c. A limita¢do uniforme vem de

[f(z) = f(=D] < clz + 1] < 2,

e portanto |f(x)] < 2c+ f(—1) =2c+ 1.
Seja entao p. = inf{I(f): f € F.}, e para cada i € N seja f; € F, tal que

1

Pelo Teorema de Arzeld-Ascoli, (f;) possui subsequéncia (f;,) uniformemente convergente
para algum f.. Pode-se mostrar que f. € F., e que I(f.) = minsep, I(f). Portanto o
problema de minimizar I(-) em F, tem solugao.

6.4. Exercicios

EXERCICIO 6.1. Mostre que || - ||sup.o, ver Definigao m, satisfaz as propriedades de
norma.

EXERCICIO 6.2. Seja a sequéncia de fungoes (f;), onde f;(x) = sin(iz)/(1 + ix). Mostre
que (f;) converge pontualmente para todo x € [0,400), uniformemente em [a,+00) para
a > 0, mas nao converge uniformemente em [0, +00).

EXERCICIO 6.3. Sejam 2 C R™ e f; : 1 — R” sejam fung¢oes uniformemente continuas.
Mostre que se (f;) converge uniformemente para f, entdo f é uniformemente continua.

EXERCICIO 6.4. Ache exemplo de sequéncia (f;) de fun¢oes que converge uniformemente
em (0, 1], mas nao em [0, 1].
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EXERCICIO 6.5. Mostre que convergéncia uniforme implica em convergéncia pontual,
mas que a volta nao vale.

EXERCICIO 6.6. Suponha que K C R™ seja compacto, e defina as sequéncias de fungoes
continuas dadas por f; : K — R" e g; : K — R". Suponha que (f;) convirja uniformemente
para f : K — R" e (g;) convirja uniformemente para g : K — R". Mostre que (f;g;)
converge uniformemente para fg. O que acontece se trocarmos K por um conjunto aberto
qualquer? Mostre que o resultado continua valido ou apresente um contra-exemplo.

EXERCICIO 6.7. Seja Cim(£2) o espago das fungdes de @ C R™ em R"™, continuas e
limitadas. Mostre que Cin(€2) é completo na norma do supremo || - ||sup., i-€., uma sequéncia
(f;) em Cym(Q2) é de Cauchy (satisfaz (6.2.2)) se e somente se existe f € Cjn(£2) tal que

1 fi = fllsup2 = 0.
EXERCICIO 6.8. Demonstre o Lema

EXERCICIO 6.9. Mostre que se K C R™ é compacto, e (f;) é sequéncia de fungdes em
Ciim(€2) (ver exercicio [6.7)) uniformemente convergente, entdao {f; : i € N} é equicontinuo.

EXERCICIO 6.10. Seja f : [0,1] — R continua, e (f,) sequéncia de fung¢oes continuas de
[0,1] em R. Prove ou apresente contra-exemplo para a seguinte afirmagao:

Se (fn) converge uniformemente para f em (0,1], entao (f,) converge uniformemente
para f em [0,1].

EXERCICIO 6.11. Seja K conjunto compacto, f : K — R continua, e (f,,) sequéncia de
fungoes continuas de K em R. Prove ou apresente contra-exemplo para a seguinte afirmacao:

Se (fn) converge pontualmente para f em K, entdao (f,) converge uniformemente para f
em K.

EXERCICIO 6.12. Mostre que f. € F, no exemplo .



APENDICE A

Uma introdugao nao tao formal aos fundamentos da matematica

B

A matematica se baseia na argumentacao logica. Outras areas do conhecimento, talvez
todas, podem também reclamar para si tal propriedade, Entretanto a matematica é o proprio
desenvolvimento da argumentagao formal, é a “logica aplicada.”

Este aspecto da matematica tem consequéncias interessantes; seus resultados independem
da época, cultura e regiao em que foram gerados. O Teorema de Pitagoras, demonstrado
por fanaticos matematicos (os pitagoricos), cerca de 500 A.C., sera valido em qualquer lugar
e época (http://mathworld.wolfram.com /PythagoreanTheorem.html).

Outras areas tém teorias “exatas” que sao na verdade aproximagoes da realidade, com
“validade” somente sob determinadas condigoes (por exemplo, teoria da relatividade versus
fisica quantica). Mesmo certas definigoes podem mudar. Como exemplo, em 1997 a unidade
de tempo segundo foi definida mais uma vez (http://en.wikipedia.org/wiki/Second). Quanto
ao pobre quilograma, bem, este ainda busca uma definicao adequada aos nossos tempos
(http://en.wikipedia.org/wiki/Kilogram).

Parece-me desnecessario comentar sobre a volatilidade de varias teorias econémicas. . .

Nestes rapidos comentarios que seguem, pretendo passear por alguns aspectos de como
a matematica funciona. Uma otima referéncia ¢ o livro do Terence Tao [19)].

A.1. Argumentacao formal

A.1.1. Afirmativas. Como funciona a argumentacao formal na pratica? Objetos fun-
damentais sao as afirmativas (ou afirmagoes ou expressoes logicas), que sempre sdo verda-
deiras ou falsas, mas nunca verdadeiras e falsas simultaneamente. Por exempl(ﬂ

(A.1.1) 1+1=2,

(A.1.2) 1=2.

Vou me adiantar afirmando que (A.1.1]) é verdadeira e (A.1.2)) é falsa. Esperando que o leitor

ja tenha se recuperado da surpresa, cabe aqui comentar que frases sem sentido como
=14+3—

nao sao afirmativas. Expressoes do tipo 3+1 também nao. Uma regra usual é que afirmativas
tém verbos.

Afirmativas podem ser combinadas com “ou” e “e” gerando outras. Por exemplo, se a é
um namero real qualquer, entdo a afirmativa (¢ > 0 ou a < 0) é verdadeira, mas (a > 0 e
a < 0) nao o é. A regra geral é que se X e Y sao afirmativas, entdo (Xe Y) s6 é verdadeira

1Ultima Atualizagao: 06/08,/2019
2Suponho, por enquanto, que as propriedades de conjuntos e dos nimeros reais sao conhecidas
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se X e Y forem ambas verdadeiras. Similarmente, (Xou Y') s6 ¢é falsa se X e Y forem ambas
falsas. Note que se apenas uma das afirmativas for verdadeira, (X ou Y') é verdadeira. Note
que esta noc¢ao pode diferir de um possivel uso corriqueiro do ou, como na frase ou eu, ou
ele ficamos. Neste caso quer-se dizer que ou eu fico, ou ele fica, mas nao ambos — este é o
chamado ou ezclusivol]

Podemos também negar uma afirmativa. Se X ¢ uma afirmativa verdadeira, entao (nao
X) é falsa. Da mesma forma, se Y ¢ uma afirmativa falsa, entao (ndo Y') é verdadeira. Negar
uma afirmativa pode ser 1til pois para concluir que uma afirmativa Z é falsa, as vezes é mais
facil provar que (nao Z) é verdadeira.

Seguramente, este papo poderia ir bem mais longe com a algebra de Boole ou booleana
(http://en.wikipedia.org/wiki/Boolean algebra).

A.1.2. Implicagoes. Os passos de uma argumentacao matemaética sao dados via im-
plicagoes. Se de um fato conhecido, por exemplo uma afirmativa verdadeira X, eu possso
concluir uma afirmativa verdadeira Y, entao eu escrevo

(A.1.3) X =Y,
e leio Ximplica Y, ou ainda se X entdo Y. Por exemplo
(A.1.4) a>0 = 2a>0.

Abstraindo um pouco mais, note que (A.1.3) e (A.1.4) também sao afirmativas. Outros
exemplos de afirmativas:

(A.1.5) 0=0 = 0=0,
(A.1.6) 0=1= 0=0,
(A.L.7) 0=1 = 0=1,
(A.1.8) 0=0 = 0=1.

As trés primeiras afirmativas acima sao verdadeiras. Somente a tltima é falsa. A primeira da
lista ¢ uma tautologia (redundancia, do grego tauto, o0 mesmo), e é obviamente correta. Ja a
segunda é correta pois de hipoteses falsas pode-se concluir verdades (multiplique ambos os
lados de por zero). A terceira é verdade pois se a hipotese é verdadeira, a conclusao,
sendo uma mera repeticao da hipotese, também o é (este tipo de argumento é usado em
demonstragoes por contradi¢ao). Finalmente, (A.1.8)) é falsa pois ndo se pode deduzir uma
afirmativa falsa partindo-se de uma verdadeira.

A argumentagao (e a demonstragdo) mateméatica baseia-se em supor que algumas hipo-
teses sao verdadeiras e em concluir resultados através de implicagoes.

Note que a implicacao nao é “reversivel”, i.e., se X = Y, nao podemos concluir que
Y = X. Realmente, v = —1 = 22 =1, mas 2> = 1 &= x = —1 (esta seta cortada ¢ o
simbolo de nao implica), ou seja, nao se pode concluir se z = —1 ou nao a partir da hipotese
22 =1.

As vezes, tanto a implicacdo como seu reverso valem. Se por exemplo X =— Y e
Y = X escrevemos simplesmente X <= Y, e lemos X se e somente se Y.

30utro termo matematico que pode ter sentido diferente do uso diario ¢ em geral. Na matemética, em
geral quer dizer sempre, enquanto no dia-a-dia quer dizer "quase sempre"
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A.1.3. Axiomas. E como comecar a construgao da matemaéatica em si, i.e., quais sao as
hipoteses bdsicas que sao necessariamente verdadeiras? Isso é importante pois, como vimos,
partindo-se de hipoteses falsas pode-se chegar a conclusoes falsas, sem comprometer a ldgica.
Aqui entram os aziomas, premissas verdadeiras consideradas “6bvias.” E uma boa idéia que
este conjunto de premissas seja o menor possivel, i.e., um axioma do conjunto nao pode ser
demonstrada a partir dos outros.

A partir dos axiomas controi-se via implicagdes toda uma matematica (mudando-se o
conjunto de axiomas, muda-se a matematica).

Um exemplo de axioma vem a seguir.

AXIOMA A.1.1 (do conjunto vazio). Existe um conjunto que nao contém nenhum ele-
mento.

Suponha que se possa definir o que é uma pessoa careca, e considere o seguinte axioma.

AXI0MA A.1.2 (do fio extra). Um careca que ganhar um fio extra de cabelo continua
careca.

Pode-se concluir entdo o seguinte resultado (tente demonstré-lo).
Se o Azioma do fio extra vale, entio todos os seres humanos sao carecas.

O alerta que o resultado acima nos fornece é que devemos ter cuidado com os axiomas
escolhidos. Resultados “patolégicos” podem advir deles. E de fato, resultados “estranhos”
permeiam a matematica. . .

A.1.4. Definigoes, lemas, teoremas. Uma das formas de se construir novos objetos
matematicos é através de definicoes. Por exemplo podemos definir o conjunto dos ntimeros
naturais como N = {1,2,3, ... }ﬁ Outro exemplo: seja

f:Z—R
x = 2.

A expressao acima define uma fungao chamada “f” que associa a cada nimero inteiro o seu
quadrado, levando-o nos reais.

E quanto a proposi¢coes dadas por lemas e teoremasﬂ? Normalmente, lemas e teoremas sao
escritos a parte, sendo compostos por hipoteses, e conclusoes explicitamente mencionadas.
Exemplos de lema e teorema vém a seguir.

LEMA A.1.3. Supondo que o Axioma do conjunto vazio vale, entao existe somente um
conjunto vazio.

4Alguns autores utilizam o stmbolo := no lugar de = em defini¢des. Esta é provavelmente uma boa idéia
pouco utilizada, e eu nao a seguirei.

5Uma dtvida comum: qual a diferenca entre os trés? Bom, normalmente proposicdo tem um carater mais
geral, sendo uma sentenca logica verdadeira (na matemética “usual”). J& um lema é proposi¢do preliminar,
que contribui na demonstragao de um resultado principal, um teorema. Muitas vezes entretanto, o lema tem
interesse proprio. Em geral, o gosto e o estilo do autor determinam o que é proposigao, lema ou teorema.
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TEOREMA A.1.4 (de Fermat). ﬂ Sejan € N, com n > 2. Entao nao existem inteiros

positivos x, Yy, 2 tais que x" + y" = 2".

A hipotese do lema é o axioma do conjunto vazio (Axioma , e a conclusao ¢é
de que s6 existe um conjunto vazio, isto é todos os conjuntos vazios sao iguais. Este ¢ um
tipico resultado de unicidade. J4 no Teorema de Fermat impondo-se hipoteses sobre
a poténcia n (ser inteiro e maior que dois), obtem-se um resultado de néao ezisténcia.

Normalmente lemas e teoremas descrevem resultados de interesse e nao triviais, i.e., as
conclusoes nao se seguem trivialmente das hipoteses. Algumas vezes entretanto casos impor-
tantes particulares sao facilmente obtidos de resultados mais gerais. Estes casos particulares
sao chamados de coroldrios. O Teorema de Fermat por exemplo é um corolario de um outro
resultado mais poderoso (chamado Teorema da Modularidade). E claro que “trivialidade”
nao é um conceito rigoroso e é certamente relativa.

A.1.5. Prova ou demonstragao. Uma prova ou demonstra¢ao sao os passos logicos
para se concluir uma proposicao. Algumas demonstracoes sao simples, outras nem tanto. Por
exemplo, a demonstragao por Andrew Wiles do Teorema de Fermat fechou com chave de ouro
a matemaética do século XX. A prova é uma intricada sequéncia de resultados publicada num
artigo de 109 paginas na mais conceituada revista de matematica, os Anais de Matemaética
de Princeton [22].

Antes da demonstracao de Wiles, o agora “Teorema de Fermat” era “somente” uma con-
jectura, um resultado que acredita-se verdadeiro mas que ninguém demonstrou. Uma ainda
conjectura famosa é a de Goldbach, que afirma que todo inteiro par maior que dois pode ser
escrito como a soma de dois niimeros primos. Para nimeros menores que 108, o resultado
foi checado computacionalmente, mas o caso geral ainda nao esté provado.

SEnunciado de Fermat, na margem do livro Arithmetica de Diophantus: Cubum autem in duos cubos, aut
quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem
i duos etusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis
exiguitas non caperet. (E impossivel separar um cubo em dois cubos, ou a quarta poténcia em quartas
poténcias, ou em geral qualquer poténcia em duas poténcias iguais. Eu descobri uma demonstragao realmente
maravilhosa disto, para a qual esta margem é por demais exigua para caber.)



APENDICE B

Uma introdugao nao tao formal & teoria de conjuntos

[

Esta parte do texto pretende apenas expor algumas dificuldades bésicas, da parte talvez
mais fundamental da matematica (excluindo-se a logica). Duas referéncias também introdu-
torias, mas muito mais completas, sao os livros do Terence Tao |19, e do Paul Halmos [12].

A primeira dificuldade encontrada é definir o que é um conjunto. Uma saida (questi-
onéavel) é simplesmente dizer que um conjunto é uma “colegao” ou familia de objetos (ou
elementos ou membros). Se um objeto z faz parte de um conjunto A, dizemos que ele per-
tence a A e escrevemos = € A (o simbolo ¢ indica que quando um elemento nao pertence a
um conjunto).

Espera-se que o uso da palavra "colegao"acima nao traga confusoes. O termo colegao
serd a seguir utilizado para conjuntos cujos elementos sao também conjuntos.

Considere agora dois conjuntos A e B.

e Dizemos que A esta contido em B e escrevemos A C B se todo elemento de A é
elemento de B. Pode-se também escrever B D A (lé-se B contém A) para indicar
AC B.

e Se A nao esta contido em B escrevemos A € B.

e Dizemos que dois conjuntos A e B sao iguais, e escrevemos A = Bse A C B e
B C A.

e Se nao forem iguais, dizemos que sao diferentes e escrevemos A # B.

e Também escrevemos A C B se A C B mas A # B. Dizemos neste caso que A esté
propriamente contido em B.

O seguinte axioma ¢ importante, nos garante que a “forma usual” de definir conjuntos é
“segura,” ou seja, quando definimos um conjunto obtemos um e apenas um conjunto (mesmo
que seja vazio).

AXIOMA B.0.1 (da especificagdo). Seja A um conjunto, e para cada = € A, seja P(x)
uma afirmativa (verdadeira ou falsa). Entao existe um tnico conjunto B composto de todos
os elementos = de A tais que P(x) é verdade.

O conjunto acima ¢é denotado por {x € A : P(z) é verdade}. Quando o conjunto A é
claro pelo contexto, podemos escrever simplesmente {x : P(z) é verdade}. Este conjunto é
formado por todos os elementos x que estejam em A e tais que a propiedade P(x) seja verda-
deira. Uma tltima forma de denotar os conjuntos é simplesmente descrever seus elementos
entre as chaves.

10ltima Atualizagao: 06/08/2019
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Por exemplo, o conjunto dos niimeros pares pode ser denotado por
{z € Z : z é divisivel por 2}.

Sendo um pouco menos formal, pode-se escrever este mesmo conjunto como {2z : x € Z}
ou ainda enumerar todos os elementos do conjunto: {...,—4,—2,0,2,4,6,...}.

Vale aqui descrever uma situacio interessante dada pelo Paradozo de Russel. E natural
perguntar-se o quao grande podem ser conjuntos. Por exemplo, existe um conjunto U tal
que todos os conjuntos existentes sejam elementos de U? Se U existe, entao, pelo Axioma
da especificagao (Axioma podemos formar

R={x€U: zé&conjunto e x ¢ x}.
Entao R ¢ U. De fato, se R € U, entdao R € R ou R ¢ R. Vamos dividir em dois casos:

(1) Se R € R, entao R ¢ R pois por defini¢ao, R é formado pelos conjuntos que nao se
autocontém.

(2) Se R ¢ R, entao R nao satisfaz as propriedades que definem R. No caso de ndo se
autoconter. Logo R € R.

Em ambas possibilidades (1) e (2) obtemos absurdos. Logo R ¢ U. Mas U ¢é exatamente o
conjunto que contém todos os outros.... Somos levados a concluir que tal conjunto U nao
pode existir.

O proximo passo é definir as operagoes usuais. Por incrivel que possa parecer, o mais
dificil é definir a uniao entre dois conjuntos, e para isto é necessario um axioma.

AXIOMA B.0.2 (da unido). Para qualquer cole¢ao de conjuntos, existe um conjunto que
contém todos os elementos pertencentes a pelo menos um conjunto da colecao.

Podemos agora definir a uniao entre dois conjuntos A e B. Para tanto, note que pelo
Axioma da unido, existe um conjunto U que contém todos os elementos de A e de B.
Definimos entdo AUB ={zx € U: z € Aoux € B}.

Observe entretanto a seguinte armadilha. O Axioma da unido nao garante que o tal
conjunto contendo A e de B é tinico, somente garante que existe. Podemos ter por exemplo
um outro conjunto U contendo A e de B. Seja agora C' = {z € U:z€eAouze B}. Para
a uniao ser definida de forma tnica, temos que garantir que C' = AU B. Isto é verdade, e
para provar basta argumentar que C C AUB e C D AU B.

Com o Axioma da especificacao, podemos definir as seguintes operagoes.

e O conjunto intersegao entre Ae Bé ANB={recA: x € B}.

e O conjunto diferenca A menos B ¢ A\B ={z € A: x ¢ B}. O conjunto resultante
também denotado por A — B e chamado de complemento de B em relacao a A.

e Quando é claro quem ¢é o conjunto A, denotamos A\ B por C(B), e o chamamos de
complemento de B.

OBSERVACAO. E facil generalizar os conceitos acima para unides e interse¢des arbitrarias
de conjuntos.

Finalmente, é 1util a regra de De Morgam, que diz que para conjuntos FE,, onde n € N,
temos que

(B.0.1) C(UienErn) = Nien C(EL), C(NienErn) = Uien C(E).
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Outro conceito 1til é o de par ordenado. Dados dois elementos, ou objetos a e b, formamos
o par (a,b), e chamamos a e b de (primeiro e segundo) componentes de (a,b). Dizemos
(definimos) que um par ordenado é igual a outro se os respectivos componentes forem iguais,
ie., (a,b) =(a,V)sea=d eb=1"0".

Do ponto de vista axiomatico, nao é claro que dados dois elementos, exista o par ordenado
formado por eles. Viveremos por enquanto com esta duvida. O importante é como pares
ordenados sao formados (por elementos de dois conjuntos) e quando sdo iguais (quando os
componentes sao iguais).

Definimos agora produtos cartesianos. Dados dois conjuntos A e B, definimos o conjunto
Ax B=1{(a,b): a€ A, be B} como sendo o composto pelos pares ordenados.

OBSERVAGAO. A extensao destes conceitos para n-iplas ordenadas e produtos cartesianos
com n conjuntos é natural.

Chamamos R de relag:dcﬂ entre A e B se R é subconjunto de A x B. Similarmente,
dizemos que a € A e b € B sdo relacionados se (a,b) € R. Uma relagio bindria num
conjunto A é um subconjunto R C A x A. Dado a, b € A, denotamos (a,b) € R por aRb, e

(a,b) ¢ R por a R b.

EXEMPLO B.1. Nos reais, =, >, <, etc definem relagoes binarias. Considere por exemplo
A=1{1,2,3}, edefina <C A x A por <=1{(1,2),(1,3),(2,3)}. Entdo 1 < 2,1 <3e2<3.

DEFINICAO B.0.3. Dizemos que uma relacao R em A é:

i) completa: para todo a, b € A tem-se a Rb oubRa
i) transitiva: para todo a, b, ¢ € A tais que a Rb e b Rc tem-se a Rc
iii) reflexiva: para todo a € A tem-se a Ra
iv) simétrica: para todo a, b € A tais que a Rb tem-se bRa
v) assimétrica: para todo a, b € A tais que a Rb tem-se b R a
vi) antissimétrica: para todo a, b € A tais que a Rb e b Ra tem-se a = b

Uma relacao € de equivaléncia se € reflexiva, simétrica e transitiva.

Da definigao de relacao vem o importante conceito de fungao. Uma fung¢ao entre A e B
nada mais é que uma relacao entre A e B, e sendo assim f C A x B. Esta relacao entretanto
satisfaz a seguinte restri¢ao: para todo a € A existe um tnico b € B tal que (a,b) € f.
Denotamos esta relagao especial por f: A — B. Dado a € A, b € B, dizemos que f(a) =b
se (a,b) € f.

Na pratica, comumente nos "esquecemos"desta definicao e tratamos fungoes de forma
mais informal e direta. Este sera o tratamento dado neste texto, a comegar no Capitulo [I]
Este pecadilho matemético nao chega a atrapalhar nossos objetivos, mas é importante ter
em mente a definicao formal.

Uma relagao de equivaléncia ~ num conjunto A é uma relagao binaria reflexiva, simétrica
e transitiva. Um exemplo trivial de relagao de equivaléncia é a relacao de igualdade =.

EXEMPLO B.2. Seja Z* = Z\{0}. Entao a relagao
(a,b) ~ (¢,d) <= ad=bc
é de equivaléncia. De fato, note que ~ é

20s conceitos de relacio de ordem, relacio de equivaléncia vém daqui.
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(1) reflexiva: (a,b) ~ (a,b) pois ab = ba.

(2) simétrica: seja (a,b) ~ (¢,d). Entao, por defini¢ao, ad = be. Entao (¢,d) ~ (a,b)
pois bc = ad.

(3) transitiva: seja (a,b) ~ (¢, d) e (¢,d) ~ (m,n). Segue-se por defini¢ao que ad = bc e
cn = dm. Quero mostrar que an = bm. Mas adn = ben = bdm. Como d # 0, temos
que adn = bdm. Portanto, (a,b) ~ (m,n).

Seja agora um conjunto nao vazio X e P(X) o conjunto das partes de X, i.e., é a colegao
contendo todos os subconjuntos de X. Dada uma relacao de equivaléncia em X e z € X,
podemos definir a classe de equivagéncia de x como sendo

2] ={te€X:&~uzx}
Denotamos o conjunto de todas as classes de equivaléncia de X por X/ ~€ P(X), onde
X/ ~=A{[z]: z € X}.
Uma colecao T C P(X) é uma parti¢io de X se
(1) D¢ X
(2) para todo A, B€ T, temos A=BouANB=10
(3) para todo = € X existe conjunto A € T tal que x € A

Por exemplo, {Rg, {0}, R>¢} define uma partigao de R.
B.1. Exercicios

EXERCICIO B.1. Mostre que
(1) {zeR: 2> >0} =R
2){zeR: >0} C{reR: 22 >0}
B) RZ{zreR: 2> 0}.

EXERCICIO B.2. Mostre a regra de De Morgam dada em (B.0.1]).
ExXERcIcIO B.3. Mostre que {a,a} = {a}.

EXERCICIO B.4. Sejam A e B dois conjuntos disjuntos, i.e., AN B = (). Seja X = AUB.
Mostre que A = X\B e B = X\A.

EXERCICIO B.5. Sejam A e B dois conjuntos, e C' = (A\B) U (B\A). Mostre que
C=(AUB)\(ANB)eque CNANB = .

EXERCICIO B.6. Seja X conjunto nao vazio e ~ uma relacao de equivaléncia em X.
Mostre que X/ ~ define uma partigao de X.
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APENDICE C
Dicas de Solucgoes de exercicios escolhidos

Sejam A = {a, : n € N} e B ={b, : n € N}. Suponha primeiro que inf{b, — a, :
n € N} = 0. Quero mostrar que inf B = sup A. Note que como para todo n € N
temos que b, é cota superior de A, entao b, > sup A. Logo sup A é cota inferior
de B, e inf B > sup A. Suponha agora por contradigao que inf B > sup A. Entao
existem ntmeros ¢ qualquer e d > 0 tais que ¢ —d > a, ¢ ¢+ d < b, para todo
n € N. Entao b, —a, > c+d— (c—d) =2d > 0. Ou seja, 2d > 0 é cota inferior de
{b,, — a,, : n € N}, contradigao com inf{b, — a, : n € N} = 0.

Suponha agora que inf B = sup A. Quero mostrar que inf{b, —a, : n € N} =0
usando a defini¢ao . Como b, — a, > 0 para todo n € N, entao zero é cota
inferior de {b, — a,, : n € N}. Seja agora ¢ > 0 e s* = inf B. Entao existe n € N tal
que s* —€/2 < apr, € s* 4 €/2 > bps. Logo, by — s < ¥+ €/2 =5 +€/2=¢, ¢
portanto, inf{b, —a, : n € N} =0.

Suponha Bj(0) ndo aberto. Entao existe x com ||x|| = o < 1 tal que B.(x) € B1(0),
para todo € > 0. Seja € > 0 tal que a + €* < 1, e 2* € Be(x) NC(B1(0)). Mas
entao

x| < [[x" = x|+ [|x]| <€ +a <1,

uma contradi¢ao com z* € C(B1(0)).

: sabendo que unioes finitas de fechados é fechada, entao, a uniao do exemplo tem que

ser infinita. Por exemplo, pode-se tomar U2, [1/i,1] = (0, 1], e (0, 1] ndo & fechado.

; Tome A = (0,1], B=[1,2).

por contradigao.

O item (2) é falso: tome A; = (1/i,1). Entao U;enA; = (0,1).

intersecao de compactos é fechada por ser intersecao de fechados. Mas um fechado
contido em compacto é compacto (exercicio . Logo a intersecao é compacta.

. Suponha que nao exista pontos de acumulagao. Entao para todo ponto de K existe

vizinhanga aberta contendo somente um ponto de S. Isto gera cobertura para K.
Extraindo-se cobertura finita para K, e portanto para .S, geramos contradi¢ao pois
algumas bolas teriam que conter infinitos de S.

Considere um ponto x na fronteira de A mas que x nao pertenca ao A. Agora
proceda de forma semelhante & demostracao de que todo compacto é fechado. Para
cada j natural, considere em torno de x os abertos dados pelos complementares
das bolas fechadas em torno de x e raio 1/j. Isto formard uma cobertura para o
conjunto A (afinal forma uma cobertura para R™\{x} e x ndo pertence ao A). Mas
nao ¢é possivel extrair desta cobertura uma subcobertura finita pois toda bola em
torno de x contera pontos de A (pois x ¢é fronteira de A).

119
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D67t para mostrar que A limitado implica em A totalmente limitado, tome A, o fecho
de A. Mostre que A é compacto (por Heine Borel: A C By (0) = A C By/(0).
Mostre depois que {B,(x) : x € A} é cobertura de A (o caso dificil ¢ x’ ponto de
acumulacao de A. Mas neste caso, esiste x € A tal que X’ € B,(x)). A seguir, use
compacidade.

3.0 Considere os racionais em [0, 1] e os enumere. Isto gera uma sequéncia de racionais
(0 &1 € o primeiro, o x5 0 segundo, etc). Agora, se vocé tomar um ponto z em [0, 1]
e tomar bolas de raio 1/j, para j natural, vocé sempre acha um racional dentro
desta bola (os racionais sdo densos nos reais, exercicio [2.10)). Assim vocé constroi
uma subsequéncia zy, formada somente por racionais e tal que lim; o, 73, = .

BIZ ler com atengao os exemplos e

B25L ver solugao em |18 Segao 2.4, pag 40|

B.26f Ver que A C R. Entao basta mostrar que é fechado e limitado. Limitado é fa-
cil. Para mostrar fechado, tome ay — « em A. Entao ap = ||x} — x;||, para
alguma sequéncia (x;) € Ki, e (x2) € Ky. Mas K; e K, compactos entao existe
subsequéncia com limites x! € K; e x? € K,. Entao

!

—x%| = lim ||x}. —x; || = lim o} = a.
j—o0 g 7 k—o0
Entao a € A e portanto A é fechado.
B2 (a) K e K5 fechados implica em A compacto. Resposta: nao, basta tomar K; =
Ky =R, e ver que A = [0,400) nao € limitado.
(b) K; e K, fechados implica em A fechado. Resposta: nao. Tome Ky = {(x,0) :
r€R} e Ky ={(z,1/z) : x > 1}, entdo a sequéncia (1/x) — 0 quando x — oo
estd em A mas 0 & A.
(¢) K; compacto e Ky fechado implica em A fechado. Resposta: sim. Para mostrar
fechado, tome oy, — o em A. Entio ay = ||x). — x3||, para alguma sequéncia
(x}) € Ku, ¢ (x2) € K. Mas |[x2] < |Ix2 — xbl| + %Ll = o + [xL]. Entao
(xi) € limitada pois ay converge e Ky é compacto. Entao existe subsequéncia
com limites x' € K, e x> € K,. Entdo

!

— 2 = i L — 2 = | =
<) = lim |, — )| = Jim oy = a.
Entao o € A e portanto A € fechado.
B3T Dado x € R", seja a(x) € A tal que ||x — a(x)|| = d(x).Para mostrar continuidade
de d(-), note que para (x;);jey — X, entao
d(x) = [la(x) = x|| < [lalx;) = x[| < flalx;) = x4l + [[x = x| = d(x;) + [[x = x|
d(x;) = [la(x;) = x5 < fla(x) = x| < [la(x) = x| + |lx = x| = d(x) + [[x = x,]]
Das desigualdades acima obtemos que |d(x) — d(x;)| < ||x — x;]|.
Pergunta: e se A nao for fechado?
B3k Ver |17, pagina 38, Teorema 2.36|
B.5IE Nada.

EI0 Seja A C R aberto. Entao basta mostrar que f~'(A) ¢ aberto. Seja x € f~1(A) e
e > 0 tal que (f(x) — ¢, f(x) +€) C A. Entao

) = e f(x) +6) = FH{(f(x) =€, +00)) N [ (=00, f(x) +¢))
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é uma vizinhanga aberta de x contida em f~'(A).

Mostre que todas as normas sao equivalentes & norma euclidiana, i.e., considere || - ||
como sendo a norma euclidiana. Para tal, comece mostrando que existe constante
c1 tal que ¢|||v]|] < ||v]| para todo v € V. Para obter a desigualdade inversa, mostre
que ||| - ||| define uma fun¢ao continua em R”. Conclua entao usando o Teorema dos
pontos extremos (Teorema de forma apropriada.

Para mostrar que se 1" é continua em V entao 71" é limitada, i.e., existe M tal que
|T(x)|lw < M||x||y considere pontos na bola unitaria de W tais que ||7(x;)|lw >
t. Em seguida considere uma sequéncia J; — 0. Entao d;x; — 0. Escolhendo
propriamente d; e usando a continuidade na origem, obtenha uma contradicao.
Tome por exemplo = e sinz em R. Sejam as sequéncias x, = 2kmw e Yy, = ) + ag.
Vou contruir a; de forma que ar — 0, e portanto |z — yx| — 0. Mas a; tem que
ser de forma que |f(zx) — f(yx)| ndo convija para zero.

Note que f(zx) = 0 e f(yx) = (2km + ai)sin(ag). Tome a, = arcsin(1/k), e
portanto ay — 0 e f(yx) = (2km + ai)/k = 27 + ar/k — 2m. Portanto |f(xy) —
f(y)| — 2.

Logo eu construi duas sequéncias tais que a diferenca entre elas vai a zero, mas
a diferenca da imagem nao vai a zero. Segundo as notas de aula, Lema [4.3.2] isto
mostra que f nao é uniformemente continua.
considere a fungao f : [0,1] — R dada por

f() = {xsinl/x sex #0

0 sex =0

pela continuidade uniforme, existe 0 tal que |z —y| < 0 implica em | f(z)— f(y)| < 1.
Note que f(d) < f(0) + 1, e por indugao, f(NJ) < f(0) + N. Entao, dado z = N9,
tem-se f(x) = f(NJ) < f(0)+ N = f(0) + 6 'x.

para ver que f é continua nos irracionais, basta notar que uma sequéncia p;/q;
converge para um irracional somente se ¢; — 0.

verdade. Tome ¢ : [0,1] — R tal que g(x) = f(z) — f(z + 1). Entao basta achar
raiz de g. Mas ¢(0) = f(0) — f(1) = f(2) — f(1) = —g(1). Logo o resultado segue
se g(0) = 0 ou, caso contrario, pelo Teorema do Valor Intermediario.

. Primeiro note que f é continua e injetora. Mas K compacto implica em f(K)

compacto. Por contradigao, seja xo ¢ f(K), e defina x; = f(x,_1). Seja a distancia
de xo a f(K') maior que d > 0. Entao

= Xyl = 1 G-1) = F&Gm- )l = 1% -1 = Xl = -+ = %0 = X| > d-

Contradigao com (x;) ter subsequéncia convergente.

. A existéncia da inversa ¢ 6bvia. Seja g = f~! e FF C K fechado (e portanto

compacto). Entdao g7 (F) ={y € f(K) : g(y) € F} = f(K)N f(F) é fechado. Mas
f(F) é compacto e portanto fechado.

Basta considerar os pontos extremos da fungao f. (Este resultado é devido a Dar-
boux, ver |3|, pagina 199, Exercicio 27H).

A resposta é sim, pois basta usar que

1o = fllsup,joa) < [[fn = Fllsup,o.y + [f2(0) = f(O)],
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/2 (0) = F(O)] < 1fu(0) = fu(@)] + | fulz) — f(2)| + [f(x) = f(0)]
para todo z € (0, 1].
[6.11k A resposta é ndo. Como possivel contra-exemplo considere f a funcao f identica-

mente nula em K = [0, 1], e a sequéncia de fung¢oes continuas e lineares por partes
(fn) dada por

(t+1)x sex €10,1/(i +1)],

o) =q —i(i+ )z +i+1 sexe (1/(i+1),1/i],
0 se x> 1/i.



Indice Remissivo

Aberto [18 Contradominio 2]
Afirmativa [[11] Convergéncia
Aproximagoes sucessivas [40] [7§] pontual [I05]
Arzela—Ascoli, Teorema uniforme
Axioma Cota inferior
da especificacao [115 superior ]
da unido
Definigao [I13]
Base canonica [13] Demonstracao
Bola aberta por indugao [I]
Bola fechada [I7] contradi¢ao
Bijegao [3] Dependéncia linear [98]
Bolzano—Weiertrass, Teorema [21] [40] Derivada direcional [T
Derivada parcial 8
Cauchy, sequéncia Desigual d: de

Celas encaixantes 1] de Bernoulli

bert
Cobertura 22 de Cauchy-Schwartz
j 1
Conjunto Densidade dos racionais nos reais
bert
aberto 17 Diferenciabilidade
compacto [22]

Dominio
conexo [28

convexo [72] Espagos vetoriais [12]

enumeréavel Equicontinuidade

fechado [19] Espagos topologicos [29]

finito 3] Espagos métricos

infinito [3 Extensdo continua

limitado 9] [21]

linearmente dependente, independente Fecho 271
Contagem diagonal [] Funcao [T17] 2]
Contragao [46] absolutamente continua
Contragao, Teorema [40] bijetiva [3]

123



124 INDICE REMISSIVO

biunivoca, injetiva, um a um [3]
composta

continua (7]

convexa

crescente, estritamente crescente [76]
decrescente, estritamente decrescente @
diferenciavel

inversa

limitada 62

de Lipschitz [67]

sobre, sobrejetiva

uniformemente continua

Heine—Borel, Teorema

Hessiana [87]

Imagem [3]
inversa
Infimo [10]
Implicagao [T12]
Intervalos [Tl
encaixantes
Independéncia linear

Lei do paralelograma [26]
Lema [I13]
Limite

inferior B0l

superior [50]

de sequéncia

de fungoes 58|
Limitacao Total [29]

Matriz (semi-)definida negativa/positiva
Matriz hessiana

Matriz jacobiana [82]

Méximo estrito local, local

Método de Newton

Métrica B30

Minimo estrito local, local

Norma

do supremo [106]
Numeros naturais, inteiros, racionais

Par ordenado [I17
Ponto
de acumulagao [20]
aderente
critico [89]
exterior
extremo (estrito) local
fixo
fronteira, de [I9]
interior
Produto
interno [I4]
cartesiano [[17]
Propriedade
da intersecao finita [30]
do supremo dos reais
Arquimediana

Prova: ver demonstragao

Regra de De Morgam

Relagao [117]

Subespago vetorial [43]
Subsequéncia [38]
Supremo
Sequéncia [33]
de Cauchy
contratil 44
limitada [36]
mondtona
de variagao limitada

Teorema
aplicagao aberta
Arzela—Ascoli
Bolzano-Weiertrass [21] [40]

celas encaixantes 21



contragao [46]
Heine—Borel 23]
intervalos encaixantes
Kuhn-Tucker
Lagrange
Ponto extremo interior [74]
Preservagao de compacidade
Rolle
Taylor
Valor Intermediario
Valor Médio [75]

Teste da razao 1

Topologia

Valor absoluto [I]]
Vizinhanca aberta

INDICE REMISSIVO

125






Referéncias Bibliograficas

[1] Tom M. Apostol, Mathematical analysis, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass.-
London-Don Mills, Ont., 1974. MR0344384 (49 #9123)

[2] Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty, Nonlinear programming, 3rd ed., Wiley-
Interscience [John Wiley & Sons|, Hoboken, NJ, 2006. Theory and algorithms. MR2218478
(2006k:90001)

[3] Robert G. Bartle, The elements of real analysis, 2nd ed., John Wiley & Sons, New York-London-Sydney,
1976. MR0393369 (52 #14179)

[4] Robert G. Bartle and Donald R. Sherbert, Introduction to real analysis, 2nd ed., John Wiley & Sons
Inc., New York, 1992. MR1135107 (92i:26002)

[5] James Bisgard, Mountain Passes and Saddle Points, SIAM Rev. 57 (2015), no. 2, 275-292, DOI
10.1137/140963510. MR3345345

[6] Ward Cheney, Analysis for applied mathematics, Graduate Texts in Mathematics, vol. 208, Springer-
Verlag, New York, 2001. MR1838468

[7] Roger A. Horn and Charles R. Johnson, Matriz analysis, Cambridge University Press, Cambridge, 1985.
MR832183 (87e:15001)

[8] S.Kesavan, Nonlinear functional analysis, Texts and Readings in Mathematics, vol. 28, Hindustan Book
Agency, New Delhi, 2004.

[9] Elon Lages Lima, Curso de andlise. Vol. 1, Projeto Euclides [Euclid Project]|, vol. 1, Instituto de Mate-
maética Pura e Aplicada, Rio de Janeiro, 1976 (Portuguese). MR654861 (83h:26002a)

, Curso de andlise. Vol. 2, Projeto Euclides [Euclid Project|, vol. 13, Instituto de Matemética

Pura e Aplicada, Rio de Janeiro, 1981 (Portuguese). MR654862 (83h:26002b)

, Espagos métricos, Projeto Euclides [Euclid Project], vol. 4, Instituto de Matematica Pura e
Aplicada, Rio de Janeiro, 1977 (Portuguese). MR654506 (83d:54001)

[12] Paul R. Halmos, Naive set theory, Springer-Verlag, New York, 1974. Reprint of the 1960 edition; Un-
dergraduate Texts in Mathematics. MR0453532 (56 #11794)

[13] David G. Luenberger, Introduction to linear and nonlinear programming, Addison-Wesley, Reading, MA,
1973.7Zbl 0297.90044

, Optimization by vector space methods, John Wiley & Sons Inc., New York, 1969. MR0238472
(38 #6748)

[15] Giuseppe De Marco, For every e there continuously exists a 6, Amer. Math. Monthly 108 (2001), no. 5,
443-444, DOT 10.2307/2695800. MR 1837868

[16] Prova de Matemdtica Extramuros, http://www.provaextramuros.org.br/.

[17] Walter Rudin, Principles of mathematical analysis, 3rd ed., McGraw-Hill Book Co., New York, 1976.
International Series in Pure and Applied Mathematics. MR0385023 (52 #5893)

[18] I. M. Singer and J. A. Thorpe, Lecture notes on elementary topology and geometry, Springer-Verlag,
New York, 1976. Reprint of the 1967 edition; Undergraduate Texts in Mathematics. MR0413152 (54
#1273)

[19] Terence Tao, Analysis. I, Texts and Readings in Mathematics, vol. 37, Hindustan Book Agency, New
Delhi, 2006. MR2195040 (2006g:26002a)

, Analysis. 11, Texts and Readings in Mathematics, vol. 38, Hindustan Book Agency, New Delhi,
2006. MR2195041 (2006g:26002b)

[21] Monkey saddle — Wikipedia, The Free Encyclopedia, Wikipedia (2009).

[10]

[11]

[14]

[20]

127


http://www.provaextramuros.org.br/

128 REFERENCIAS BIBLIOGRAFICAS

[22] Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3,
443-551, DOI 10.2307/2118559. MR1333035 (96d:11071)



	Capítulo 1. Pré-requisitos
	1.1. Demonstração por indução e contradição
	1.2. Funções
	1.3. Conjuntos finitos, infinitos, enumeráveis
	1.4. Exercícios

	Capítulo 2. Os números reais e o Rn
	2.1. Os números Reais
	2.2. Espaços Vetoriais e o Rn
	2.3. Conjuntos abertos e fechados em Rn
	2.4. Celas encaixantes e o Teorema de Bolzano–Weierstrass
	2.5. Conjuntos Compactos
	2.6. Exercícios

	Capítulo 3. Sequências
	3.1. Definição e resultados preliminares
	3.2. Subsequências e Teorema de Bolzano–Weierstrass
	3.3. Sequências de Cauchy
	3.4. Resultados Topológicos
	3.5. Sequências contráteis e o método das aproximações sucessivas
	3.6. Sequências em R
	3.7. Exercícios

	Capítulo 4. Continuidade e Funções Contínuas
	4.1. Propriedades locais
	4.2. Propriedades globais
	4.3. Funções Uniformemente Contínuas
	4.4. Exercícios

	Capítulo 5. Diferenciação
	5.1. Derivada em uma dimensão
	5.2. Teorema de Taylor em uma dimensão e Aplicações
	5.3. Diferenciabilidade para funções de várias variáveis
	5.4. Matriz Hessiana, Fórmula de Taylor e pontos críticos
	5.5. Teorema da Função Inversa e da Função Implícita
	5.6. Minimização com restrições
	5.7. Exercícios

	Capítulo 6. Sequência de Funções
	6.1. Convergência Pontual
	6.2. Convergência Uniforme
	6.3. Equicontinuidade
	6.4. Exercícios

	Apêndice A. Uma introdução não tão formal aos fundamentos da matemática
	A.1. Argumentação formal

	Apêndice B. Uma introdução não tão formal à teoria de conjuntos
	B.1. Exercícios

	Apêndice C. Dicas de Soluções de exercícios escolhidos
	Índice Remissivo
	Referências Bibliográficas

