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Resumo. Estas notas de aula são relativas ao curso de Análise I da Escola de Pós-Graduação
em Economia da Fundação Getúlio Vargas (EPGE–FGV) e do Laboratório Nacional de Com-
putação Científica (LNCC). Estas notas devem servir de apoio, e certamente não eliminam
a necessidade de se usar os já clássicos, aprimorados e vários livros didáticos. Mencionamos
alguns deles na biliografia.

Neste curso apresento alguns tópicos de análise que, espero, sejam úteis. Na verdade, o
que eu espero mesmo é apresentar o rigor matemático aos alunos, e mostrar como este deve
ser utilizado em conjunto com a intuição matemática. Minha experiência diz que os alunos
do EPGE e do LNCC têm a intuição mais desenvolvida que o rigor.

Planejo discutir os seguintes tópicos:
• Os números reais e topologia em Rn

Funções; Conjuntos finitos, infinitos, contáveis; Propriedades dos reais;
Espaços Vetoriais; Conjuntos abertos e fechados; Vizinhanças; Teorema de Bolzano-

Weierstrass;
Conjuntos Compactos; Teorema de Heine–Borel;

• Sequências e Convergência;
Sequências, Subsequências;
Teorema de Bolzano-Weierstrass; Sequências de Cauchy
Sequências Contráteis e pontos fixos de contrações; Caracterização de abertos e

fechados;
Sequências monótonas (em R); limsup, liminf;

• Funções Contínuas
Propriedades Locais e Globais
Preservação de Compacidade e Continuidade Uniforme

• Sequência de funções
Convergência pontual e uniforme; Trocas de limites
Equicontinuidade

• Diferenciabilidade
Funções de uma variável; Derivadas parciais; Diferenciabilidade
Regra da cadeia; Teorema de Taylor;
Teorema da função implícita e da função inversa;
Aplicações: Minização com restrições de igualdade e desigualdade

A referência básica é o livro The elements of Real Analysis, de Robert Bartle [3]. Outras
referências importantes são os já clássicos [10, 17], bem como o novo [20]. Para tópicos
específicos em uma dimensão, pode-se ler [4,9,19]. Finalmente, idéias mais abstratas são
apresentadas em [11,18].
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CAPíTULO 1

Pré-requisitos

1 Neste capítulo, exemplificamos duas técnicas de demonstrações, e recordamos definições
e notações básicas sobre conjuntos e funções.

Supomos aqui que as propriedades básicas de conjuntos são conhecidas. Em particular,
são de grande importância os conjuntos

N = {1, 2, 3, 4, . . . } (números naturais),
Z = {0, 1,−1, 2,−2, 3,−3, . . . } (números inteiros),
Q = {m/n : m,n ∈ Z, n ̸= 0} (números racionais),

além é claro do conjunto dos números reais, que denotaremos por R.

1.1. Demonstração por indução e contradição

Primeiro revemos aqui, através de um exemplo, como é possível demonstrar alguns fatos
usando argumentos indutivos.

Considere a afirmativa

(1.1.1)
n∑

i=1

i =
n

2
(n+ 1)

para todo n ∈ N.
Para demonstrar que (1.1.1) vale para todos os inteiros positivos, começamos observando

que para n = 1, a afirmativa é obviamente verdadeira. Suponha então que (1.1.1) seja
verdade para n = N∗, i.e,

(1.1.2)
N∗∑
i=1

i =
N∗

2
(N∗ + 1).

Para n = N∗ + 1 temos
N∗+1∑
i=1

i = N∗ + 1 +
N∗∑
i=1

i.

Usamos a hipótese indutiva (1.1.2) obtemos
N∗+1∑
i=1

i = N∗ + 1 +
N∗

2
(N∗ + 1) =

N∗ + 1

2
(N∗ + 2),

e podemos concluir que (1.1.1) vale para n = N∗ + 1, e portanto vale para todos os inteiros
positivos.
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2 1. PRÉ-REQUISITOS

Um exemplo interessante de demonstração por indução mostra que todo número inteiro
n ≥ 2 é primo ou produto de primos [1]. De fato, considere a proposição para n ≥ 2 inteiro:

P (n) : todo inteiro i, tal que 2 ≤ i ≤ n, é primo ou produto de primos

Então P (2) é verdadeiro, pois 2 é primo. Suponha agora que P (N∗) seja verdadeiro para
algum inteiro dado N∗. Para n = N∗ + 1, temos que se N∗ + 1 for primo, então P (N∗ + 1)
é verdadeiro. Se N∗ + 1 não for primo, então ele é divisível por algum inteiro p > 1. Logo,
existe q ∈ N tal que N∗ + 1 = pq. Então tanto p como q são menores que N∗ + 1, e então,
pela hipótese indutiva P (N∗), tanto p como q são primos ou produtos de primos. Portanto
N∗ + 1 é primo ou produto de primos. Logo P (N∗ + 1) vale.

Um dos passos fundamentais, e algumas vezes esquecido, da demonstração por indução
é mostrar que o resultado vale para algum valor inicial (na demonstração acima, n = 1). De
fato, sem isto, podemos erroneamente “provar” que

(1.1.3) 2n é sempre ímpar para todo n ∈ N,
com uma argumentação obviamente falsa. De fato supondo que 2N∗ é ímpar, temos que
2(N∗ + 1) = 2N∗ + 2 também é pois 2N∗ é ímpar por hipótese, e somando 2 a um ímpar
obtemos um ímpar. O problema desta demonstração é que não se mostrou (1.1.3) para
nenhum número natural.

A demonstração por contradição segue os seguintes princípios lógicos: se queremos mos-
trar que uma afirmativa implica noutra, podemos simplesmente negar este fato e tentar
chegar numa contradição. Considere a afirmativa

(1.1.4) ∅ ⊆ A para qualquer conjunto A.

Talvez uma demonstração “direta” não seja tão fácil. Mas suponha que (1.1.4) seja falso.
Então existe algum conjunto A tal que ∅ ⊈ A. Portanto existe algum elemento no conjunto
vazio que não está em A. Mas isto é um absurdo, pois o vazio não contém nenhum elemento.
O que se vemos é que negar (1.1.4) (afirmar que (1.1.4) é falso) nos leva a concluir um
absurdo, e portanto (1.1.4) só pode ser verdade.

1.2. Funções

Um dos conceitos mais importantes em Matemática é o de funções. Esta “entidade
matemática” é definida rigorosamente no Apêndice que trata de conjuntos, ver a página 117.
Para nossos propósitos entretanto, a “definição” abaixo basta.

Considere A e B dois conjuntos. Uma função é uma regra que associa a cada elemento
x ∈ A, um elemento f(x) ∈ B. Chamamos o conjunto A de domínio da função f e o
denotamos por D(f). Chamamos o conjunto B de contradomínio da função f . Escrevemos
f : A→ B, ou ainda

f :A→ B

x 7→ f(x).

Se E ⊆ A, chamamos de imagem de E ao conjunto

f(E) = {f(x) : x ∈ E}.
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Similarmente, dado um conjunto H, chamamos de imagem inversa de H o conjunto

f−1(H) = {x : f(x) ∈ H}.
Se f(A) = B dizemos que f é sobrejetiva (ou simplesmente sobre). Dizemos que f é

injetiva (ou biunívoca ou um a um ou 1-1) quando, dados a, a′ ∈ D(f), se f(a) = f(a′)
então a = a′. Numa forma mais compacta, escrevemos que para todo a, a′ ∈ D(f) temos

f(a) = f(a′) =⇒ a = a′.

Se f é injetiva e sobre, a chamamos de bijetiva ou de uma bijeção.
Dado f : A→ B, e um subconjunto A′ ⊆ A, podemos definir a função restrição g = f |A′

onde g : A′ → B é dada por g(a′) = f(a′) para todo a′ ∈ A′.
Dizemos que g : B → A é função inversa de f se

g(f(x)) = x para todo x ∈ A, f(g(y)) = y para todo y ∈ B.

Quando esta existir, denotamos a inversa de f por f−1.

Observação. Note que a definição de imagem inversa independe de existir ou não a
função inversa. Por exemplo, a função f : R → R dada por f(x) = x2 não tem inversa.
Entretanto f−1(R) = R.

Exemplo 1.1. Seja

f :(0, 4) → R
x 7→

√
x.

Então o domínio é (0, 4) e a imagem é (0, 2). Note que f não é invertível pois f não é
sobrejetiva. Entretanto as imagens inversas

f−1
(
(1, 2)

)
= (1, 4), f−1({2}) = {4}, f−1

(
[−2, 0)

)
= ∅, f−1(∅) = ∅.

são bem-definidas.

1.3. Conjuntos finitos, infinitos, enumeráveis

Um conjunto B é finito se é vazio ou se existe uma bijeção entre B e {1, 2, · · · , N} para
algum N ∈ N. Caso B não seja finito, o dizemos infinito. Se B é finito ou se existe uma
bijeção entre B e N, dizemos que B é enumerável.

Observação. Existe aqui uma diferença entre os termos usados em inglês no livro do
Bartle [3], e suas traduções diretas em português. Seguindo Elon [9], usamos o termo
enumerável para equivaler ao inglês countable. Já as expressões enumerable ou denumerable
são usadas quando existe bijeção com N, i.e., exclui os conjuntos finitos. Por sua vez,
Rudin [17] define os termos de uma terceira forma.

Exemplo 1.2. O conjunto {2, 3, 4, 5} é finito pois a função ϕ : {1, 2, 3, 4} → {2, 3, 4, 5}
dada por ϕ(1) = 2, ϕ(2) = 3, ϕ(3) = 4, ϕ(4) = 5 é uma bijeção. Como o conjunto é finito,
ele é enumerável.

Exemplo 1.3. P = {2, 4, 6, · · · } é enumerável pois ϕ : N → P definida por ϕ(n) = 2n é
uma bijeção entre P e N.
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Exemplo 1.4. O conjunto Z é enumerável pois

Z = {0, 1,−1, 2,−2, 3,−3, · · · },

e ϕ : N → Z dada por ϕ(i) = (−1)i[i/2] é uma bijeção entre N e Z. A função [·] : R → Z é
tal que [x] é a parte inteira de x, i.e., o maior inteiro menor ou igual a x. Em outras palavras,

ϕ(i) = (−1)i[i/2] =

{
i
2

se i for par,
− i−1

2
se i for ímpar.

Exemplo 1.5. Q é enumerável pela “contagem diagonal”:

0,
1, −1, 2, −2, 3, −3, · · ·
1/2, −1/2, 2/2, −2/2, 3/2, −3/2, · · ·
1/3, −1/3, 2/3, −2/3, 3/3, −3/3, · · ·

...

e podemos contar pois

Q =

{
0, 1,−1,

1

2
, 2,−1

2
,
1

3
,−2,−1

3
, · · ·

}
.

Exemplo 1.6. O conjunto de números reais R não é enumerável. Para mostrar isto,
usaremos uma demonstração por contradição. Mostraremos na verdade que I = {x ∈ R :
0 ≤ x ≤ 1} não é enumerável.

Usando a base decimal, todo elemento x ∈ I pode ser representado pelos dígitos x =
0, a1a2a3 · · · , onde ai ∈ {0, . . . , 9}. Note que esta representação não é única; por exemplo
1, 0000 · · · = 0, 9999 . . . . Os números da forma ℓ × 10−k, para algum ℓ, k ∈ N, possuem
exatamente duas representações possíveis. Os demais números têm somente uma represen-
tação [19].

Suponha agora que I é enumerável. Então existe uma enumeração x1, x2, . . . , xn, . . . dos
elementos de I tal que

x1 = 0, a11a12a13 . . . ,

x2 = 0, a21a22a23 . . . ,

x3 = 0, a31a32a33 . . . ,

. . . ,

onde aij ∈ {0, . . . , 9}. Seja agora y = 0, b1b2b3 · · · onde

bi =

{
1 se aii ̸= 1

2 se aii = 1.

Logo, por construção, y não é da forma ℓ × 10−k, onde ℓ, k ∈ N, e portanto y possui
representação única. Como y ∈ I e bi ̸= aii para todo i ∈ N, então y ̸= xn para todo
n ∈ N. Isto contradiz a afirmação que x1, x2, . . . , xn, . . . é uma enumeração dos elementos
de I. Portanto, I não é enumerável.
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1.4. Exercícios

Exercício 1.1. Mostre por indução que n < 2n para todo n ∈ N.

Exercício 1.2. Prove que, para todo inteiro n > 1 tem-se que

1 +
n∑

i=2

1√
i
= 1 +

1√
2
+

1√
3
+ · · ·+ 1√

n
>

√
n.

Exercício 1.3. Mostre por indução a desigualdade de Bernoulli: se x > −1, então
(1 + x)n ≥ 1 + nx para todo n ∈ N.

Exercício 1.4. Mostre que 2n + 1 é divisível por 3 para todo número ímpar n.

Exercício 1.5. Seja a função x : N → R definida da seguinte forma. Defina x(1) = 1 e
x(k) = x(k − 1)× k, para todo inteiro k > 1. Mostre que x(k) = k!.

Exercício 1.6. Seja λ < 1 e n ∈ N. Mostre que
k∑

i=n

λi = λn
1− λk−n+1

1− λ

para todo inteiro k ≥ n.

Exercício 1.7. Usando indução, mostre que existe J ∈ N tal que j2 − 10j > 0 para
todo inteiro j > J .

Exercício 1.8. Mostre usando contradição que
√
2 não é racional.

Exercício 1.9. Mostre usando contradição que se p1, . . . , pn são todos os números primos
menores ou iguais a pn, então p1×· · ·×pn+1 não é divisível por pi para nenhum i ∈ {1, . . . , n}.

Exercício 1.10. Mostre usando contradição que existem infinitos números primos.

Exercício 1.11. Sejam A, B e C conjuntos e f : A → B, g : B → C bijeções. Mostre
que a função composta g ◦ f : A → C dada por g ◦ f(x) = g(f(x)) é bijeção. Se f−1 e g−1

forem as funções inversas de f e g, quem é (g ◦ f)−1? Justifique suas conclusões.

Exercício 1.12. Mostre que uma função tem inversa se e somente se ela é uma bijeção.

Exercício 1.13. Seja A um conjunto e f : A → B injetiva. Mostre que a função
g : A→ f(A) tal que g(x) = f(x) para todo x ∈ A é bijeção.

Exercício 1.14. Sejam os conjuntos A infinito e B ̸= ∅ finito, e considere uma função
f : A→ B. Mostre que existe b ∈ B tal que f−1({b}) é infinito.

Exercício 1.15. Seja n ∈ N e In = {1, . . . , n}. Mostre que se A ⊆ In e f : In → A é
bijeção, então A = In.

Dica: por indução, mostre para n = 1 (fácil), e suponha verdade para In. Para mostrar
com In+1, seja a = f(n + 1) ∈ A. A seguir, divida em dois casos; se a = n + 1 considere a
restrição f |In e use hipótese de indução. Caso contrário seja p ∈ In+1 tal que f(p) = n+ 1 e
defina a função g : In+1 → A tal que g(p) = a, g(n+ 1) = n+ 1 e g = f nos outros pontos.
Mostre que g|In é bijeção e use a hipótese indutiva.
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Exercício 1.16. Usando o exercício 1.15, mostre que
(1) se ϕ : In → Im for bijeção, então m = n.
(2) dado um conjunto X, se ϕ : In → X e ψ : Im → X forem bijeções, então m = n.
(3) seja X finito e Y ⊊ X. Então não existe bijeção entre X e Y .

Exercício 1.17. Sejam A e B finitos e disjuntos dois a dois. Mostre que A∪B é finito.
Generalize o resultado para um número finito de conjuntos.

Exercício 1.18. Sejam A e B finitos. Construa uma bijeção entre {1, 2, . . . , |A||B|} e
A×B, onde |A| denota o número de elementos de A (o mesmo para |B| e B).

Exercício 1.19. Mostre que todo conjunto infinito contém subconjunto infinito enume-
rável.

Exercício 1.20. Conclua usando o problema 1.19 que um conjunto X é infinito se e
somente se existe uma bijeção entre X e uma parte própria de X.

Dica: seja A = {a1, a2, . . . } ⊆ X infinito enumerável e Y = X\A; contrua bijeção
ϕ : X → Y tal que ϕ(x) = x em Y e ϕ(an) = a2n em A.

Exercício 1.21. Mostre que N × N é enumerável da seguinte forma: mostre que ϕ :
N × N → T = {(m,n) : n ≥ m}, onde ϕ(m,n) = (m,m + n − 1), é uma bijeção. A seguir
mostre que a função definida de T em N por (m,n) → (1/2)n(n+1)−n+m é também uma
bijeção. O esquema das bijeções é como abaixo:

ϕ(1, 1) ϕ(1, 2) ϕ(1, 3) ϕ(1, 4) ϕ(1, 5) · · ·
ϕ(2, 1) ϕ(2, 2) ϕ(2, 3) ϕ(2, 4) · · ·

ϕ(3, 1) ϕ(3, 2) ϕ(3, 3) · · ·
ϕ(4, 1) ϕ(4, 2) · · ·

...

=

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) · · ·
(2, 2) (2, 3) (2, 4) (2, 3) · · ·

(3, 3) (3, 4) (3, 5) · · ·
(4, 4) (4, 5) · · ·

...

=

1 2 4 7 11 · · ·
3 5 8 12 · · ·

6 9 13 · · ·
10 14 · · ·

...

Exercício 1.22. Sejam A e B conjuntos enumeráveis. Mostre que o produto cartesiano
A×B é enumerável. Conclua assim que Z enumerável implica em Q enumerável.

Exercício 1.23. Porque não se pode argumentar como no exemplo 1.6 e concluir erro-
neamente que os racionais não são enumeráveis.

Exercício 1.24. Para i ∈ N, seja Ai conjunto infinito enumerável. Mostre que o produto
cartesiano infinito

∏∞
i=1Ai não é enumerável.

Exercício 1.25. Para i ∈ N, seja Ai = {0, 1}. Mostre que o produto cartesiano infinito∏∞
i=1Ai não é enumerável.

Exercício 1.26. Considere o conjunto S em que cada elemento de S é uma sequência
da forma (a1, a2, a3, . . . ) com ai ∈ {0, 1}, i.e.,

S = {(a1, a2, a3, . . . ) : ai ∈ {0, 1}, i ∈ N}.
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Decida se S é ou não enumerável, e prove sua afirmativa.

Exercício 1.27. Mostre que, para todo N ∈ N, se A1, . . . , AN são enumeráveis, então
A1 × · · · × AN é enumerável. (dica: usar o resultado do exercício 1.22).

Exercício 1.28. Seja A enumerável e suponha que exista uma função f : A → B
sobrejetiva. Mostre que B é enumerável.

Exercício 1.29. Considere a base decimal, e mostre que os números da forma ℓ× 10−k,
para algum ℓ, k ∈ N, possuem exatamente duas representações possíveis. Mostre também
que os demais números têm somente uma representação.

Exercício 1.30 (Existência do elemento mínimo). Mostre que dado um conjunto não
vazio X ⊆ N, existe a ∈ X tal que a ≤ x para todo x ∈ X.





CAPíTULO 2

Os números reais e o Rn

1 Neste capítulo, falaremos sobre números reais. Suporemos aqui que os números reais
e as operações neles definidas são bem definidos e “existem”, sem entrar em detalhes sobre
a construção deste corpo. A idéia é apenas apresentar propriedades que os reais satisfazem.
A seguir, falaremos sobre abertos e fechados nos reais.

2.1. Os números Reais

2.1.1. Propriedades dos Reais. Para discutir uma importante propriedade dos núme-
ros reais, introduziremos o conceito de cotas. Para tal usaremos o fato de que R é ordenado,
i.e., existe uma relação de ordem denotada por < indicando se um elemento é menor que
outro. Usaremos também os símbolos >, ≤, ≥, indicando se um elemento é maior, menor
ou igual, maior ou igual, respectivamente.

Definição 2.1.1. Considere um conjunto A ⊆ R. Dizemos que c∗ ∈ R é cota superior
de A se a ≤ c∗ para todo a ∈ A. Analogamente, dizemos que c∗ ∈ R é cota inferior de A
se c∗ ≤ a para todo a ∈ A. Se um conjunto tem cota superior dizemos que ele é limitado
por cima ou superiormente. Se um conjunto tem cota inferior dizemos que ele é limitado
por baixo ou inferiormente. Se um conjunto tem cota superior e inferior, dizemos que ele é
limitado.

Note que nem todos os conjuntos possuem cotas superiores e/ou inferiores. Por exemplo
N ⊆ R não possui cota superior, apesar de possuir cota inferior. Segue-se da definição que
se um conjunto possui cota superior, então ele possui infinitas cotas superiores:

c∗ cota superior de A =⇒ c∗ + 1 cota superior de A.

Observação análoga vale para as cotas inferiores.

Exemplo 2.1. O conjunto R− = {x ∈ R : x < 0} é limitado superiormente mas não
inferiormente. De fato qualquer número não negativo é cota superior de R−, pois se b ≥ 0,
então x ∈ R− implica que x < 0 ≤ b. Por outro lado, nenhum número a ∈ R pode ser
cota inferior pois sempre existe y ∈ R− tal que y < a. Concluímos portanto que R− não é
limitado.

Exemplo 2.2. Usando argumentos como acima, vemos que R não é limitado nem supe-
riormente nem inferiormente.

Exemplo 2.3. Seja I = {x ∈ R : 0 ≤ x ≤ 1}. Então qualquer número b ≥ 1 é cota
superior de I, e todo número a ≤ 0 é cota inferior de I. De fato, nestes casos teríamos
a ≤ x ≤ b para todo x ∈ I. Logo, por definição, I é limitado.

1Última Atualização: 31/03/2025

9
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Exemplo 2.4. Note que qualquer número é cota inferior e superior do conjunto vazio.

Definição 2.1.2. Se um conjunto A é não vazio e limitado superiormente, chamamos de
supremo de A ou simplesmente sup A a menor de suas cotas superiores. Analogamente, se
um conjunto A é não vazio e limitado por baixo, chamamos de ínfimo de A ou simplesmente
inf A a maior de suas cotas inferiores.

Logo, se s∗ = supA, então
(1) a ≤ s∗ para todo a ∈ A.
(2) Se existe v ∈ R tal que a ≤ v para todo a ∈ A, então s∗ ≤ v.

Observação. Segue-se da definição a unicidade do supremo e do ínfimo, se estes existi-
rem, ver Exercício 2.5.

O resultado a seguir nos dá uma forma equivalente para determinar o supremo de um con-
junto.

Lema 2.1.3. Seja A não vazio e s∗ cota superior de A. Então s∗ = supA se e somente se
para todo ϵ > 0 existir aϵ ∈ A tal que s∗ − ϵ < aϵ.

Demonstração. (⇒) Seja s∗ = supA e ϵ > 0. Como s∗ − ϵ < s∗, então s∗ − ϵ não é
cota superior de A. Logo, existe um elemento aϵ ∈ A tal que aϵ > s∗ − ϵ.

(⇐) Seja s∗ cota superior de A. Suponha que para todo ϵ exista aϵ ∈ A tal que s∗−ϵ < aϵ.
Vamos então mostrar que s∗ = supA.

Seja c∗ cota superior de A com c∗ ̸= s∗. Se c∗ < s∗, definimos ϵ = s∗ − c∗ e então ϵ > 0
e existe aϵ ∈ A tal que aϵ > s∗ − ϵ = c∗. Isto é uma contradição com o fato de c∗ ser cota
superior. Logo temos obrigatoriamente c∗ > s∗, e s∗ é a menor das cotas superiores, i.e.,
s∗ = supA. □

Exemplo 2.5. I = {x ∈ R : 0 ≤ x ≤ 1} tem sup I = 1 e inf I = 0. Note que sup I ∈ I e
inf I ∈ I.

Exemplo 2.6. U = {x ∈ R : 0 < x < 1} tem supU = 1 e inf U = 0. Note que neste
caso sup I /∈ U e inf I /∈ U .

Uma propriedade fundamental dos reais, que o distingue por exemplo dos racionais, é
dada a seguir.

Propriedade do supremo de R: Todo conjunto não vazio em R limitado superiormente
tem um supremo em R.

Da propriedade acima, obtemos o seguinte resultado.

Lema 2.1.4 (Propriedade arquimediana). Para todo x ∈ R, existe n ∈ N tal que n > x.

Demonstração. (Por contradição.) Seja x ∈ R e suponha que não exista n tal que
n > x. Portanto, x é cota superior de N ⊆ R. Pela Propriedade do supremo de R, então
N tem um supremo s. Logo existe m ∈ N tal que s − 1 < m. Mas então, s < m + 1, uma
contradição, pois m+ 1 ∈ N e s deveria ser cota superior de N. □

Observação. Densidade de Q em R: Se x, y ∈ R e x < y, então existe r ∈ Q tal que
x < r < y. Da mesma forma, existe r ∈ R\Q tal que x < r < y.
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2.1.2. Valor absoluto e Intervalos. Para um número real a, o valor absoluto (ou
módulo) de a é dado por

|a| =

{
a se a ≥ 0,

−a se a < 0.

Exemplo 2.7. Por definição |5| = 5, e | − 5| = −(−5) = 5.

Lema 2.1.5. Algumas propriedades dos números reais:
(1) | − a| = |a| para todo a ∈ R.
(2) |ab| = |a||b| para todo a, b ∈ R.
(3) Dados a, k ∈ R temos que |a| ≤ k se e somente se −k ≤ a ≤ k.
(4) −|a| ≤ a ≤ |a| para todo a ∈ R.

Demonstração. (1) Se a = 0, então |0| = 0 = | − 0|. Se a > 0, então −a < 0 e
logo | − a| = −(−a) = a = |a|. Se a < 0, então −a > 0 e | − a| = −a = |a|.

(2) Exercício.
(3) Exercício.
(4) Tome k = |a| no ítem (3) do lema. Então |a| ≤ |a| =⇒ −|a| ≤ a ≤ |a|.

□

Lema 2.1.6 (Desigualdade Triangular). Para todo a, b ∈ R temos

|a+ b| ≤ |a|+ |b|.

Demonstração. Sabemos que −|a| ≤ a ≤ |a| e −|b| ≤ b ≤ |b|. Logo, −|a| − |b| ≤
a+ b ≤ |a|+ |b|. Pelo ítem (3) do Lema 2.1.5 temos que |a+ b| ≤ |a|+ |b|, como queríamos
demonstrar. □

Dentre os mais importantes conjuntos reais estão os intervalos. Sejam a, b ∈ R. Chama-
remos de intervalo quaisquer conjuntos dos seguintes tipos:

(1) (a, b) = {x ∈ R : a < x < b}
(2) [a, b] = {x ∈ R : a ≤ x ≤ b}
(3) [a, b) = {x ∈ R : a ≤ x < b}
(4) (a, b] = {x ∈ R : a < x ≤ b}
(5) [a,+∞) = {x ∈ R : a ≤ x}
(6) (a,+∞) = {x ∈ R : a < x}
(7) (−∞, b] = {x ∈ R : x ≤ b}
(8) (−∞, b) = {x ∈ R : x < b}
(9) (−∞,+∞) = R

(10) ∅
Os quatro primeiros intervalos acima são limitados. O primeiro é fechado, o segundo aberto,
o terceiro fechado à esquerda e aberto à direita, o quarto aberto à direita e fechado à esquerda.
Os intervalos (5-10) são semi-retas, onde (5) é fechada à esquerda, etc. Note que se a > b
então (a, b) = [a, b] = [a, b) = (a, b] = ∅. Se a = b então (a, b) = [a, b) = (a, b] = ∅ e
[a, b] = {a}. Estes intervalos são ditos degenerados.
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Observação. Alguns autores não listam o conjunto vazio como intervalo, e/ou impõem
a < b nas definições acima. Outros autores chamam alguns intervalos particulares de seg-
mentos. Finalmente, a notação ] e [ é por vezes utilizada no lugar de ( e ); por exemplo
]a, b[= (a, b), etc [3,9,17].

A definição de alguns intervalos particulares é imediata usando-se o módulo:

(a− d, a+ d) = {x ∈ R : |x− a| < d}, [a− d, a+ d] = {x ∈ R : |x− a| ≤ d},

Uma importante propriedade dos números reais, intrinsicamente ligada à sua própria
definição, é dada por interseções de intervalos encaixantes, noção que discutimos a seguir.

Definição 2.1.7. Dizemos que uma sequência de intervalos In é encaixante se

I1 ⊇ I2 ⊇ I3 ⊇ · · · ⊇ In ⊇ . . .

Nos dois exemplos abaixo, ilustramos o fato de que interseções de intervalos encaixantes
podem ser vazias ou não. Entretanto, quando os intervalos forem fechados e limitados, o
Teorema dos intervalos encaixantes abaixo garante que estas interseções são sempre não
vazias.

Exemplo 2.8. Se In = [0, 1/n] então ∩∞
n=1In = {0}. De fato, 0 ∈ IN para todo n ∈ N

e portanto 0 ∈ ∩∞
n=1In. Por outro lado, para x ∈ R não nulo a Propriedade arquimediana

(Lema 2.1.4) garante a existência de n ∈ N tal que x /∈ In. Logo x /∈ ∩∞
n=1In.

Exemplo 2.9. Usando novamente a Propriedade arquimediana (Lema 2.1.4) temos que
se In = (0, 1/n) então ∩∞

n=1In = ∅.

Teorema 2.1.8 (Teorema dos intervalos encaixantes). Sejam In = [an, bn] intervalos
fechados, limitados, não vazios e encaixantes. Então existe ξ ∈ R tal que ξ ∈ ∩∞

n=1In. Além
disto, se inf{bn − an : n ∈ N} = 0, então ξ é o único elemento da interseção.

Demonstração. Segue-se das hipóteses que para todo n ∈ N temos

(2.1.1) an+1 ≥ an, bn+1 ≤ bn, an ≤ bn.

Temos b1 ≥ an para todo n pois In ⊆ I1. Seja ξ = sup{an : n ∈ N}. Logo ξ ≥ an para
todo n. Queremos mostrar agora que ξ ≤ bn para todo n. Suponha o contrário, i.e., que
exista bk < ξ para algum k. Logo bk < am para algum m. Seja p = max{k,m}. Então
ap ≥ am > bk ≥ bp, uma contradição com (2.1.1). Logo an ≤ ξ ≤ bn para todo n ∈ N e
portanto ξ ∈ In para todo n ∈ N.

Supondo agora que inf{bn − an : n ∈ N} = 0, definimos η = inf{bn : n ∈ N}. Então
η ≥ an para todo n ∈ N e η ≥ ξ. Como 0 ≤ η − ξ ≤ bn − an para todo n ∈ N, temos η = ξ
pois inf{bn − an : n ∈ N} = 0 (ver exercício 2.14). Finalmente, seja x ∈ ∩∞

n=1In. Como
x ≥ ξ = η e x ≤ η = ξ, então x = ξ = η é o único ponto em ∩∞

n=1In. □

2.2. Espaços Vetoriais e o Rn

O exemplo mais comum e intuitivo de espaço vetorial é o Rn. Entretanto, uma definição
mais geral é de grande utilidade. A menos que explicitamente mencionado, neste texto nos
restringiremos a espaços vetoriais sobre o corpo dos reais.
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Definição 2.2.1. Um espaço vetorial V sobre os reais é um conjunto cujos elementos
chamamos de vetores, com duas operações binárias, soma vetorial e multiplicação por escalar
tais que

(1) x+ y = y + x, para todo x,y ∈ V
(2) (x+ y) + z = y + (x+ z), para todo x,y, z ∈ V
(3) Existe um elemento 0 ∈ V tal que 0+ x = x, para todo x ∈ V
(4) Para todo x ∈ V , existe um elemento y ∈ V tal que y + x = 0
(5) 1x = x, para todo x ∈ V
(6) (α + β)x = αx+ βx, para todo α, β ∈ R e para todo x ∈ V
(7) α(βx) = (αβ)x, para todo α, β ∈ R e para todo x ∈ V
(8) α(x+ y) = αx+ αy, para todo α ∈ R e para todo x,y ∈ V

Alguns resultados podem ser obtidos imediatamente:

Lema 2.2.2. Seja V um espaço vetorial sobre os reais. Então temos que
(1) O vetor zero é único
(2) Todo elemento de x ∈ V tem um único negativo dado por (−1)x
(3) 0x = 0 para todo x ∈ V
(4) α0 = 0 para todo α ∈ R

Demonstração. Demonstraremos apenas a primeira afirmativa. As demais ficam como
exercícios. Para demonstrar (1), suponha que 01 e 02 sejam dois zeros de V . Logo

01 = 02 + 01 = 01 + 02 = 02,

onde usamos que a hipótese de que 01 é zero e a propriedade (3) da Definição 2.2.1, seguida
da propriedade (1). Na última igualdade usamos a hipótese de que 01 é zero e novamente a
propriedade (3) da Definição de 2.2.1. □

Exemplo 2.10. O espaço das matrizes m × n reais denotado por Rm×n é um espaço
vetorial com a definição usual de soma de matrizes e multiplicação por escalar.

O exemplo usual de espaço vetorial é o Rn, como definido abaixo.

Definição 2.2.3. Seja Rn o conjunto das n-úplas ordenadas de números reais, i.e,

Rn = {x = (x1, . . . , xn) : xi ∈ R para i = 1, . . . , n}.

Definimos então as operações produto por escalar e soma da seguinte forma:

αx = (αx1, . . . , αxn), x+ y = (x1 + y1, . . . , xn + yn),

onde x = (x1, . . . , xn) e y = (y1, . . . , yn) estão em Rn, e α ∈ R. Pode-se checar que Rn é
espaço vetorial com as operações acima descritas.

Para i ∈ {1, . . . , n} seja ei onde o vetor com a iésima coordenada valendo um e as demais
coordenadas com valor zero, i.e.,

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . en = (0, 0, . . . , 0, 1).

Chamamos este vetores de vetores da base canônica. Note que podemos escrever um ponto
x = (x1, x2, . . . , xn) ∈ Rn como x = x1e1 + x2e2 + · · · + xnen. Definimos então a matriz
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coluna x⃗ ∈ Rn×1 dada por

(2.2.1) x⃗ =


x1
x2
...
xn


como sendo as coordenadas de x na base canônica.

Note que existe uma identificação natural dos pontos em Rn com suas coordenadas na base
canônica. Usaremos neste texto a notação indicada acima. Para cada x ∈ Rn, indicaremos
por x⃗ ∈ Rn×1 a matriz coluna das coordenadas na base canônica como em (2.2.1).

Exemplo 2.11. O espaço F das funções de R em R, com as operações

(u+ v)(x) = u(x) + v(x) para todo x ∈ R e todas u, v ∈ F,

(αu)(x) = αu(x) para todo x ∈ R, toda u ∈ F e todo α ∈ R,

é espaço vetorial.

Duas importantes ferramentas matemáticas quando se trabalha em espaços vetoriais são
produtos internos e normas.

Definição 2.2.4. Seja V espaço vetorial sobre os reais. Um produto interno é uma
função de V × V → R, denotado por x,y 7→ x · y e tal que

(1) x · x > 0 para todo x ∈ V com x ̸= 0
(2) x · y = y · x para todo x, y ∈ V
(3) (αx) · y = α(x · y) para todo α ∈ R e todo x, y ∈ V
(4) (x+ y) · z = x · z+ y · z para todo x, y, z ∈ V

Note que da definição acima concluímos imediatamente que para todo x ∈ V ,

0 · x = (00) · x = 0(0 · x) = 0.

Exemplo 2.12. Em R2, se x = (x1, x2), e y = (y1, y2), o produto interno canônico é
dado por

x · y = x⃗T y⃗ = x1y1 + x2y2.

Em Rn, para x = (x1, . . . , xn), e y = (y1, . . . , yn), definimos

x · y = x⃗T y⃗ = x1y1 + · · ·+ xnyn.

Exemplo 2.13. Em R2, a operação

(x1, x2) · (y1, y2) =
(
x1 x2

)( 2 −1
−1 4

)(
y1
y2

)
= 2x1y1 − x1y2 − x2y1 + 4x2y2

define um produto interno. De fato, a primeira propriedade (positividade) é verdadeira pois

(x1, x2) · (x1, x2) = 2x21 − 2x1x2 + 4x22 = 2[(x1 − x2/2)
2 + 7x22/4] > 0,

se (x1, x2) ̸= (0, 0). As outras propriedades do produto interno são mais fáceis de serem
checadas.
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Figura 1. Conjunto {x ∈ R2 : ∥x∥ = 1}.

Exemplo 2.14. Considere o espaço vetorial das funções contínuas em [0, 1], com as
operações de multiplicação por escalar e soma como no Exemplo 2.11. Então a operação
dada pela integral de Riemann

f · g =
∫ 1

0

f(x)g(x) dx

define um produto interno deste espaço.

Introduzimos agora a noção de norma. Num espaço vetorial, uma boa forma de se medir
distâncias entre vetores é através de normas. Em particular, o conceito normas ajuda na
definição canônica de conjuntos abertos e fechados, como veremos a seguir.

Definição 2.2.5. Dado um espaço vetorial V , uma norma é uma função de V em R,
denotada por x 7→ ∥x∥, e tal que

(1) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ para todo x, y ∈ V (desigualdade triangular)
(2) ∥αx∥ = |α|∥x∥ para todo x ∈ V , e para todo α ∈ R
(3) ∥x∥ > 0 para todo x ∈ V tal que x ̸= 0

Quando um espaço vetorial V tem uma norma associada, dizemos que é um espaço
normado.

Exemplo 2.15. Em R2,
∥(x1, x2)∥ =

√
x21 + x22

define uma norma. Na Figura 1 temos que o conjunto de pontos x tais que ∥x∥ = 1 é dado
por um círculo. No caso mais geral, em Rn,

∥(x1, . . . , xn)∥ =
√
x21 + · · ·+ x2n

também define uma norma.

Exemplo 2.16. Outra norma em Rn é dada por
∥(x1, . . . , xn)∥∞ = max

1≤j≤n
|xj|.

Na Figura 2 vemos que o conjunto de pontos x tais que ∥x∥∞ = 1 é dado por um quadrado.
Compare com a Figura 1.

O resultado abaixo é importante pois mostra que todo produto interno induz uma norma.

Teorema 2.2.6. Seja V um espaço vetorial com produto interno. Então

∥x∥ =
√
x · x

define uma norma em V . Além disto, vale a desigualdade de Cauchy-Schwartz

(2.2.2) |x · y| ≤ ∥x∥∥y∥ para todo x,y ∈ V.
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Figura 2. Conjunto {x ∈ R2 : ∥x∥∞ = 1}

Demonstração. Sejam x, y vetores de V . Seja f : R → R dada por

f(t) = (x+ ty) · (x+ ty) = x · x+ 2tx · y + t2y · y.
Como f(t) ≥ 0 para todo t ∈ R, então o discriminante da equação de segundo grau é não
positivo, i.e.,

4(x · y)2 − 4(y · y)(x · x) ≤ 0.

Tirando raízes, |x · y| ≤ ∥x∥∥y∥.

Uma demonstração alternativa é a seguinte. Como o produto interno garante que sempre
teremos x · x ≥ 0, então a operação acima está bem definida. Mostraremos primeiro (2.2.2).
Seja z = x− (x · y)y/∥y∥2. Então

z · y = x · y − x · y
∥y∥2

y · y = 0,

e
0 ≤ ∥z∥2 = z · z = z · x = x · x− x · y

∥y∥2
x · y.

Logo
(x · y)2 ≤ ∥x∥2∥y∥2,

e (2.2.2) vale.
Para mostrar a propriedade (1) da definição de norma, note que

∥x+y∥2 = (x+y) · (x+y) = x ·x+2x ·y+y ·y ≤ ∥x∥2+2∥x∥∥y∥+ ∥y∥2 = (∥x∥+ ∥y∥)2,
e assim temos (1). As propriedade (2) e (3) seguem-se imediatamente da definição e das
propriedades do produto interno. □

Observação. Note pela demonstração acima que a igualdade |x · y| = ∥x∥∥y∥ vale se
e somente se x = αy para algum α ∈ R. Ver exercício 2.21.

detA
detA
Dados dois espaços vetoriais V1 e V2, dizemos que uma função T : V1 → V2 é uma função,

transformação ou aplicação linear se

T (x+ αy) = T (x) + αT (y) para todo x, y ∈ V1 e todo α ∈ R.
Note que em particular, para toda aplicação linear linear temos T (0) = 0, pois

T (0) = T (00) = 0T (0) = 0.

Seja L(V1, V2) o espaço das aplicações lineares T : V1 → V2 para as quais existe M ∈ R
tal que

(2.2.3) ∥Tx∥V2 ≤M∥x∥V1 ,
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É possível definir operações canônicas de multiplicação por escalar e soma em L(V1, V2) de
tal forma que este seja um espaço vetorial, ver exercício 2.20. Se V1 for espaço normado com
norma ∥ · ∥V1 , e V2 for espaço normado com norma ∥ · ∥V2 , é possível induzir uma norma em
L(V1, V2), que é chamada norma dos operadores (exercício 2.23), dada por
(2.2.4)

∥T∥L(V1,V2) = sup
x∈V1
x ̸=0

∥Tx∥V2

∥x∥V1

= sup

{
∥Tx∥V2

∥x∥V1

: x ∈ V1, x ̸= 0

}
para T ∈ L(V1, V2).

Neste caso, para y ∈ V1, sempre vale a desigualdade

∥Ty∥V2 ≤ ∥T∥L(V1,V2)∥y∥V1 .

De fato, para y = 0 vale a igualdade. Para y ̸= 0 temos que

∥Ty∥V2 =
∥Ty∥V2

∥y∥V1

∥y∥V1 ≤ sup
x∈V1
x ̸=0

∥Tx∥V2

∥x∥V1

∥y∥V1 = ∥T∥L(V1,V2)∥y∥V1 .

O exemplo típico de transformação linear é dada por matrizes, da seguinte forma. Seja
A uma matriz com n linhas e m colunas, e TA : Rm → Rn definida por

TA(x) = y, onde y⃗ = Ax⃗,

onde usamos a notação da Definição 2.2.3. Neste caso denotamos a norma de operadores
∥TA∥L(Rm,Rn) simplesmente por ∥A∥. Vale portanto a importante desigualdade

(2.2.5) ∥TA(x)∥Rn ≤ ∥A∥∥x∥Rm para todo x ∈ Rm,

onde ∥ · ∥Rn e ∥ · ∥Rm são normas em Rn e Rm respectivamente.

2.3. Conjuntos abertos e fechados em Rn

Como já foi comentado, para definirmos conjuntos abertos e fechados no Rn, utilizaremos
o conceito de distância definida por uma norma. No caso, escolhemos a norma definida por

∥(x1, . . . , xn)∥ =
√
x21 + · · ·+ x2n.

É importante ressaltar que esta escolha de norma não implica em nenhuma “escolha de
topologia”, pois em espaços de dimensão finita, todas as normas são equivalentes, i.e., se ||| · |||
define uma norma em Rn, então existem contantes c e C tais que

c|||x||| ≤ ∥x∥ ≤ C|||x|||,

para todo x ∈ Rn. As contantes c e C dependem apenas de n (dimensão do espaço).
Para definirmos o que é um conjunto aberto necessitamos das chamadas bolas em Rn.

Dizemos que a bola aberta de raio r e centro x é dada por

Br(x) = {y ∈ Rn : ∥x− y∥ < r}.

De forma similar, chamamos de bola fechada de raio r e centro x, e de esfera de raio r e
centro x os conjuntos

{y ∈ Rn : ∥x− y∥ ≤ r}, {y ∈ Rn : ∥x− y∥ = r}.
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Exemplo 2.17. Em uma dimensão, para x ∈ R temos Br(x) = (x − r, x + r). A bola
fechada de raio r e centro em x é dada por [x − r, x + r], e a esfera de raio r e centro x é
simplesmente o conjunto {x− r, x+ r}.

Podemos agora definir conjuntos abertos em Rn.

Definição 2.3.1. Um conjunto A ⊆ Rn é aberto em Rn se para todo x ∈ A existe ϵ > 0
tal que Bϵ(x) ⊆ A. Em geral chamaremos conjuntos abertos simplesmente de abertos.

Exemplo 2.18. ∅ é aberto por “vacuidade”.

Exemplo 2.19. R é aberto nos reais pois para todo x ∈ R, temos B1(x) = (x−1, x+1) ⊆
R. Note que tomamos ϵ = 1. Da mesma forma, Rn também é aberto pois para todo x ∈ R,
tem-se B1(x) ⊆ Rn.

Exemplo 2.20. O conjunto I = [0, 1] ⊆ R não é aberto. De fato 0 ∈ I, e para todo
ϵ > 0, a bola Bϵ(0) = (−ϵ, ϵ) ̸⊆ I, pois, por exemplo, −ϵ/2 ∈ Bϵ(0) mas −ϵ/2 /∈ I.

Exemplo 2.21. O conjunto (0, 1) é aberto em R. De fato para qualquer x ∈ (0, 1),
seja ϵ = min{x/2, (1 − x)/2}. Então Bϵ(x) = (x − ϵ, x + ϵ) ⊆ (0, 1). De forma análoga,
B1(0) = {x ∈ Rn : ∥x∥ < 1} é aberto em Rn.

Exemplo 2.22. O subconjunto de R2 dado por
A = (0, 1)× {0} = {(x, 0) ∈ R2 : x ∈ (0, 1)}

não é aberto em R2. De fato, seja x ∈ (0, 1) e x = (x, 0) ∈ A. Para todo ϵ > 0 temos
que Bϵ(x) ̸⊆ A, pois, por exemplo, (x,−ϵ/2) ∈ Bϵ(x) mas (x,−ϵ/2) /∈ A. Compare com o
exemplo 2.21.

Lema 2.3.2. Duas propriedades fundamentais de conjuntos abertos são
(1) A união arbitrária de abertos é aberta.
(2) A interseção finita de abertos é aberta.

Demonstração. Para mostrar (1), seja Λ um conjunto de índices, e {Gλ : λ ∈ Λ} uma
família arbitrária de abertos, e seja

G = ∪λ∈ΛGλ

e x ∈ G. Então x ∈ Gλ0 para algum λ0 ∈ Λ. Como Gλ0 é aberto, então existe ϵ > 0 tal que
Bϵ(x) ⊆ Gλ0 . Logo

Bϵ(x) ⊆ ∪λ∈ΛGλ = G

e então G é aberto.
Para mostrar (2), sejam G1, · · · , Gk abertos e G = ∩k

i=1Gi. Seja x ∈ G. Logo x ∈ Gi

para todo i ∈ N. Como Gi é aberto, seja ϵi > 0 tal que Bϵi(x) ⊆ Gi. Definindo ϵ =
min{ϵ1, · · · , ϵk}, temos ϵ > 0 e Bϵ(x) ⊆ G1 ∩ · · · ∩Gk = G. Logo G é aberto. □

Exemplo 2.23. Em uma dimensão, seja In = (0, 1−1/n) onde n ∈ N. Então In é aberto
e ∪∞

n=1In = (0, 1) também o é.

Exemplo 2.24. A interseção infinita de abertos pode não ser aberta. Por exemplo,
Gn = (0, 1+1/n) é aberto em R, ao contrário de ∩∞

n=1Gn = (0, 1]. Da mesma forma, B1/n(0)
é aberto, mas ∩∞

n=1B1/n(0) = {0} não é aberto. Qual o passo da demonstração do Lema 2.3.2
que não seria correto para este exemplo?
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Um outro importante conceito é o de conjuntos fechados, e temos a seguinte definição.

Definição 2.3.3. Um conjunto F ⊆ Rn é fechado em Rn se seu complemento

C(F ) = Rn\F = {x ∈ Rn : x /∈ F}
é aberto.

Para mostrar que um conjunto G é aberto em Rn, basta mostrar que para todo x ∈ G
existe ϵ > 0 tal que Bϵ(x) ⊆ G. Para mostrar que F é fechado, basta mostrar que para todo
x /∈ F existe ϵ > 0 tal que Bϵ(x) ∩ F = ∅.

Exemplo 2.25. [0, 1] é fechado em R pois C([0, 1]) = (−∞, 0) ∪ (1,∞) é aberto em R.

Exemplo 2.26. (0, 1] não é aberto nem fechado em R.

Exemplo 2.27. Os conjuntos Rn e ∅ são fechados em Rn, pois seus complementares
C(∅) = Rn e C(Rn) = ∅ são abertos em Rn.

Exemplo 2.28. Para todo x ∈ Rn e r > 0, as esferas e as bolas fechadas de centro x e
raio r são conjuntos fechados em Rn.

Corolário 2.3.4. Como consequência do Lema 2.3.2 temos:
(1) A interseção arbitrária de fechados é fechada.
(2) A união finita de fechados é fechada.

Demonstração. Utilizamos nas duas demonstrações a regra de De Morgam (B.0.1).
(1) Seja {Fλ : λ ∈ Λ} uma coleção de fechados em Rn, e seja F = ∩λ∈ΛFλ. Então

C(F ) = ∪λ∈Λ C(Fλ) é uma união de abertos. Logo C(F ) é aberto e, por definição, F
é fechado.

(2) Se F1,. . . , Fn são fechados em Rn e F = F1∪· · ·∪Fn, então C(F ) = C(F1)∩· · ·∩C(Fn).
Como a interseção finita de abertos é aberta, e C(Fi) são abertos, então C(F ) é
aberto. Logo F é fechado.

□

Exemplo 2.29. Fn = [1/n, 1] é fechado em R, mas ∪∞
n=1Fn = (0, 1] não o é.

2.3.1. Outras caracterizações de conjuntos abertos e fechados. Outras noções
que podem ser úteis quando precisamos caracterizar conjuntos abertos ou fechados vêm a
seguir.

Definição 2.3.5. Sejam x ∈ Rn, e A ⊆ Rn. Dizemos então que
(1) uma vizinhança aberta de x é um conjunto aberto que contenha x.
(2) x é ponto interior de A se existe uma vizinhança aberta de x contida em A.
(3) x é ponto de fronteira de A se toda vizinhança aberta de x contém ponto de A e do

complementar C(A).
(4) x é ponto exterior de A se existe uma vizinhança aberta de x contida em C(A).

Observe que das definições acima, dados um ponto x ∈ Rn, e um conjunto A ⊆ Rn, então
x é ponto interior, exterior, ou de fronteira de A, sendo as opções mutuamente exclusivas.

Exemplo 2.30. Seja U = (0, 1). Se a ∈ U , então U é vizinhança aberta de a. De forma
análoga, qualquer conjunto aberto é vizinhança aberta de seus próprios pontos.
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As seguintes propriedades podem ser usadas para se definir se um conjunto é ou não
aberto.

Lema 2.3.6. Seja G ⊆ Rn. As afirmativas abaixo são equivalentes.
(1) G é aberto.
(2) Todo ponto de G é ponto interior.
(3) G não contém nenhum de seus pontos de fronteira.

Demonstração.
(
(1) ⇒ (2)

)
Supondo (1), seja x ∈ G. Como por hipótese G é aberto,

temos que G é vizinhança aberta de x. Logo x é ponto interior de G. Como x é arbitrário,
obtemos (2).(

(2) ⇒ (3)
)

Se todo ponto de G é interior, então nenhum de seus pontos é de fronteira.(
(3) ⇒ (1)

)
Suponha que G não contenha nenhum de seus pontos de fronteira. Se G

é vazio, então é aberto. Suponha então que G seja não vazio. Seja x ∈ G. Como G não
contém pontos de fronteira, logo x é ponto interior e existe vizinhança aberta U de x tal que
U ⊆ G. Logo G é aberto. □

Corolário 2.3.7. Seja F ⊆ Rn. Então F é fechado se e somente se contém todos os
seus pontos de fronteira.

Finalmente concluímos esta seção com o conceito de ponto de acumulação.

Definição 2.3.8. Um ponto x ∈ Rn é um ponto de acumulação de A ⊆ Rn se toda
vizinhança aberta de x contém pelo menos um ponto de A diferente de x.

Em uma dimensão, um ponto x ∈ R é de acumulação de A ⊆ R se e somente se para
todo ϵ > 0 existir ξ ̸= x tal que ξ ∈ (x− ϵ, x+ ϵ) ∩ A.

Note que um ponto pode ser de acumulação de um certo conjunto mesmo sem pertencer
a este conjunto. De fato veremos vários exemplos abaixo em que tal situação ocorre.

Exemplo 2.31. Se A = (0, 1), então todo ponto em [0, 1] é ponto de acumulação de A.

Exemplo 2.32. O conjunto N× N ⊆ R2 não tem ponto de acumulação.

Exemplo 2.33. O único ponto de acumulação de {1, 1/2, 1/3, 1/4, . . . , 1/n, . . . } é o 0.

Exemplo 2.34. ([0, 1]× [0, 1]) ∩Q2 tem como pontos de acumulação o conjunto [0, 1]×
[0, 1].

Exemplo 2.35. Seja A ⊆ R limitado superiormente e u = supA. Se u /∈ A, então u é
ponto de acumulação de A, pois para todo ϵ > 0 existe x ∈ A tal que x ∈ (u− ϵ, u+ ϵ).

Uma caracterização útil de fechados utiliza o conceito de pontos de acumulação, como o
resultado a seguir indica.

Teorema 2.3.9. Um subconjunto de Rn é fechado se e somente se contém todos os seus
pontos de acumulação.

Demonstração. (⇒) (Por contradição) Seja F um fechado em Rn, e x ponto de acu-
mulação de F . Temos que mostrar que x ∈ F . De fato, se x /∈ F , então x ∈ C(F ). Mas
como C(F ) é aberto, então existe ϵ > 0 tal que Bϵ(x) ⊆ C(F ). Logo Bϵ(x) ∩ F = ∅ e x não
é ponto de acumulação de F , uma contradição. Portanto x ∈ F .
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Figura 3. Conjunto A.

(⇐) Supomos agora que F contém todos os seus pontos de acumulação. Considere então
um ponto y ∈ C(F ). Então y não é ponto de acumulação de F , e portanto existe ϵ > 0 tal
que Bϵ(y) ⊆ C(F ). Logo C(F ) é aberto, e concluímos que F é fechado. □

Exemplo 2.36. Em R2 o conjunto

A = [0, 1)× {0} = {(x, 0) ∈ R2 : x ∈ [0, 1)}
representado na figura 3, não é nem aberto nem fechado. Para mostrar que A não é fechado,
considere os pontos xn ∈ A dados por xn = (1 − 1/n, 0). Então ∥xn − (1, 0)∥ = 1/n e
(1, 0) é ponto de acumulação. Como (1, 0) /∈ A, então A não contém um de seus pontos de
acumulação, logo A não é fechado. Para mostrar que A não é aberto, note que toda bola
de raio ϵ e centro em (0, 0) contém pontos em A e no complementar de A. Compare com o
exemplo 2.22.

2.4. Celas encaixantes e o Teorema de Bolzano–Weierstrass

Uma importante e imediata generalização do Teorema dos intervalos encaixantes (Teo-
rema 2.1.8) para o Rn é descrita a seguir. Antes de mais nada, chamamos de cela fechada
ao conjunto dado por

[a1, b1]× [a2, b2]× · · · × [an, bn] = {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, . . . , n},
onde ai ≤ bi para i = 1, . . . , n. Dizemos que uma sequência de celas (Ck) é encaixante se

C1 ⊃ C2 ⊃ C3 ⊃ · · · ⊃ Ck ⊃ · · · .
Finalmente, dizemos que um conjunto A ⊆ Rn é limitado se existe uma constante c tal que
para todo x ∈ A tem-se ∥x∥ ≤ c.

Teorema 2.4.1 (Teorema das celas encaixantes). Seja (Ck) uma sequência de celas fe-
chadas, limitadas, não vazias e encaixantes. Então existe ξ ∈ Rn tal que ξ ∈ ∩∞

k=1Ck.

Demonstração. Para k ∈ N, e ak,i ≤ bk,i para i = 1, . . . , n, suponha que

Ck = {x ∈ Rn : ak,i ≤ xi ≤ bk,i}.
Fixando i ∈ {1, . . . , n} e aplicando o Teorema dos intervalos encaixantes (Teorema 2.1.8)
para Ik,i = [ak,i, bk,i], temos que existe ξi ∈ ∩∞

k=1Ik,i. portanto ξ = (ξ1, . . . , ξn) ∈ ∩∞
k=1Ck. □

Uma importante aplicação do Teorema das celas encaixantes é na demonstração do resul-
tado a seguir, o Teorema de Bolzano–Weiertrass. Damos a demonstração em uma dimensão,
e a demonstração em Rn é análoga. Uma outra maneira de se mostrar este resultado é
baseada na noção de compacidade que discutiremos a seguir, ver o exercício 2.65.
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Teorema 2.4.2 (Bolzano–Weiertrass no Rn). Todo subconjunto de Rn infinito e limitado
tem pelo menos um ponto de acumulação.

A seguir damos uma idéia da demonstração em uma dimensão, antes de proceder formal-
mente. Os passos são os seguintes:

Seja A ⊆ R infinito e limitado.
(1) A ⊆ I1 := [a, b] para algum a < b ∈ R, pois A é limitado.
(2) Seja I2 um dos conjuntos [a, (a+ b)/2] ou [(a+ b)/2, b], tal que I2 contenha infinitos

pontos de A. Note que I2 ⊆ I1.
(3) Divida I2 em dois subconjuntos fechados de mesmo comprimento e defina I3 como

sendo uma das partes tal que que contenha infinitos pontos de A. Por definição,
I3 ⊆ I2.

(4) Prossiga assim definindo I4, . . . , In tais que In ⊆ · · · ⊆ I2 ⊆ I1, e que In seja fechado
e contenha infinitos pontos de A.

(5) Usando Teorema dos intervalos encaixantes, seja x ∈ ∩∞
n=1In.

(6) Mostre que x é ponto de acumulação.

Demonstração. (do Teorema 2.4.2, versão unidimensional). Seja A ⊆ R infinito e
limitado. Como A é limitado, existe I1 = [a, b] ⊆ R tal que A ⊆ I1. Note que [a, (a+ b)/2]/2
ou [(a+ b)/2, b] contém infinitos pontos de A, e chame de I2 tal intervalo. Da mesma forma,
decomponha I2 em dois subintervalos fechados, e denomine por I3 um dos subintervalos tal
que I3∩A contenha infinitos pontos. Assim procedendo, obtemos uma sequência encaixante
In ⊆ · · · ⊆ I2 ⊆ I1. Pelo Teorema dos intervalos encaixantes, existe ξ ∈ ∩∞

n=1In.
Temos agora que mostrar que ξ é ponto de acumulação. Note que o comprimento de

In = bn − an = (b − a)/2n−1. Dado ϵ > 0, seja V = (ξ − ϵ, ξ + ϵ). Seja n tal que
(b− a)/2n−1 < ϵ. Então In ⊆ V , pois se x ∈ In, então

|x− ξ| < bn − an < ϵ =⇒ x ∈ V.

Logo V contém infinitos pontos de A, e ξ é ponto de acumulação. □

2.5. Conjuntos Compactos

Um importante conceito em análise é o de conjuntos compactos. Em espaços de dimensão
finita, estes conjuntos são na verdade conjuntos fechados limitados, e a noção de compacidade
ajuda apenas nas demonstrações, tornando-as mais diretas. Entretanto, em dimensão infi-
nita, nem todo fechado limitado é compacto, e algumas propriedades que continuam valendo
para compactos, deixam de valer para fechados limitados.

Antes de definirmos compactos, precisamos introduzir a noção de cobertura aberta.
Abaixo, e no restante do texto, iremos denotar por Λ um conjunto de índices, que pode
ser ou não enumerável. Exemplos comuns serão Λ = Rn e Λ = N.

Definição 2.5.1. Seja A ⊆ Rn, e Λ um conjunto de índices. Chamamos G = {Gα : α ∈
Λ} de cobertura aberta de A se para todo α ∈ Λ temos Gα conjunto aberto, e A ⊆ ∪α∈ΛGα.
Dizemos que a cobertura é finita se Λ é finito.

Exemplo 2.37. Como (0, 1) ⊆ ∪∞
i=1(1/i, 1), então G = {(1/i, 1) : i ∈ N} é uma cobertura

aberta de (0, 1).
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Exemplo 2.38. Se para x ∈ R, temos Gx = (x − 1, x + 1), então G = {Gx : x ∈ R} é
uma cobertura aberta de R.

Definição 2.5.2. Dizemos que um conjunto K ⊆ Rn é compacto se toda cobertura
aberta de K possuir uma subcobertura finita de K, i.e., se G = {Gα : α ∈ Λ} é cobertura
aberta de K, então existem Gα1, Gα2 , . . . , GαJ

∈ G tais que K ⊆ ∪J
j=1Gαj

.

Note que para mostrar que um determinado conjunto é compacto precisamos provar que
para toda cobertura aberta existe subcobertura finita. Para mostrar que não é compacto
basta achar uma cobertura que não possui subcobertura finita.

Exemplo 2.39. Seja K = {x1, x2, . . . , xJ} conjunto finito em R e seja G = {Gα : α ∈ Λ}
coleção de conjuntos abertos em R tais que K ⊆ ∪α∈ΛGα, i.e., G é uma cobertura aberta
de K. Para j = 1, . . . , J , seja Gj ∈ G tal que xj ∈ Gj (tal conjunto sempre existe pois
G é cobertura de K). Então G1, . . . , GJ geram uma subcobertura finita de K. Logo K é
compacto, e concluímos que todo conjunto finito é compacto.

Exemplo 2.40. O conjunto (0, 1) não é compacto. De fato (0, 1) ⊆ ∪∞
j=1Gj, onde Gj =

(1/j, 1). Mas se existisse {Gn1 , . . . , Gnp} tal que (0, 1) ⊆ ∪p
j=1Gnj

, então (0, 1) ⊆ (1/N∗, 1),
onde N∗ = max{n1, . . . , np} > 0, um absurdo.

Como apontado anteriormente, a noção de compacidade é extremamente importante
pois permite generalizar alguns resultados em espaços mais gerais que o Rn. Nos espaços
de dimensão infinita, existem outras formas equivalentes de caracterizar os compactos. Em
espaços de dimensão finita fica mais simples, e os compactos são (surpreendentemente?)
os fechados e limitados. Apesar desta caracterização simples, a introdução da noção de
compacidade é importante pois torna mais direta algumas demonstrações.

O importante resultado abaixo mostra que todo compacto é fechado e limitado, inde-
pendente da dimensão do espaço, e que no Rn todo conjunto fechado e limitado é também
compacto.

Teorema 2.5.3 (Heine–Borel). Um conjunto em Rn é compacto se e somente se é fechado
e limitado.

Demonstração. (⇒) Suponha K ⊆ Rn conjunto compacto. Então K ⊆ ∪∞
m=1Bm(0).

Como K é compacto, a cobertura acima possui subcobertura finita e portanto existe M ∈ N
tal que K ⊆ BM(0). Logo K é limitado.

Para mostrar que é também fechado, seja x ∈ C(K) e Gi = {y ∈ Rn : ∥y−x∥ > 1/i} para
i ∈ N. Logo Gi é aberto e Rn\{x} = ∪∞

i=1Gi. Mas como x /∈ K, então K ⊆ ∪∞
i=1Gi. Usando

agora que K é compacto, extraimos uma subcobertura finita e temos K ⊆ ∪N∗
i=1Gi = GN∗

para algum N∗ ∈ N. Portanto K ∩ B1/N∗(x) = ∅ e concluímos que B1/N∗(x) ⊆ C(K). Logo
C(K) é aberto e K é fechado.

(⇐)(Contradição) Suponha K fechado e limitado. Então existe uma cela
C = {x ∈ Rn : ai ≤ xi ≤ bi, para i = 1, . . . n}

tal que K ⊆ C. Seja d = [
∑n

i=1(bi − ai)
2]1/2. A fim de obter uma contradição, suponha que

exista um recobrimento aberto {Gα} de K que não contenha nenhuma subcobertura finita
de K. Seja ci = (ai + bi)/2. Então [ai, ci] e [ci, bi] determinam 2n celas cuja união é C.
Pelo menos uma destas celas contém pontos da parte de K que não tem subcobertura finita.
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Chame de C1 esta cela. Subdividindo C1 desta mesma forma, obtemos uma sequência de
celas fechadas {Cj}j∈N tal que

(1) C1 ⊇ C2 ⊇ C3 ⊇ . . . ,
(2) Cj contém parte de K que não tem subcobertura finita,
(3) se x, y ∈ Cj, então ∥x− y∥ ≤ 2−jd.

Pelo Teorema das celas encaixantes (Teorema 2.4.1), existe ξ ∈ Cj, para todo j ∈ N. Como
Cj ∩K é infinito, então ξ é ponto de acumulação de K (porquê? Ver Exercício 2.60). Mas
K fechado implica que ξ ∈ K. Portanto ξ ∈ Gα, para algum α. Como Gα é aberto, então
existe r tal que

(2.5.1) ∥y − ξ∥ < r =⇒ y ∈ Gα.

Seja J ∈ N tal que 2−Jd < r, e y um ponto arbitrário de CJ . Por (3) acima,

∥ξ − y∥ ≤ 2−Jd < r.

Por (2.5.1), concluímos que y ∈ Gα, e portanto, todo ponto de Cj pertence a Gα. Logo,
Cj ⊆ Gα, e Gα é uma cobertura de Cj, uma contradição com (2). □

Uma outra demonstração que apresentamos abaixo como curiosidade vale no caso uni-
dimensional e pode ser usada para mostrar que um conjunto fechado e limitado em R é
compacto.

Teorema 2.5.4. Um conjunto fechado e limitado em R é compacto.

Demonstração. Parte (i) Primeiro provamos o resultado para um conjunto do tipo
[−a, a], onde a > 0, e G = {Gα} cobertura aberta de [−a, a]. A seguir mostraremos o caso
geral. Seja

Ca = {x ∈ [−a, a] : [−a, x] pode ser coberto por finitos abertos de G}.

Então Ca é não vazio, pois −a ∈ Ca, e é limitado. Seja s∗ = supCa. Então s∗ ∈ [−a, a], pois
se s∗ > a teríamos a como cota superior de Ca menor que o supremo, um absurdo.

Seja então Gᾱ elemento de G tal que s∗ ∈ Gᾱ. Sabemos que tal Gᾱ existe pois G é
cobertura de [−a, a] e s∗ ∈ [−a, a].

Primeiro afirmamos que s∗ ∈ Ca, pois caso contrário suponha {Gα1 , . . . , Gαn} subcober-
tura finita de Ca. Então teríamos {Gα1 , . . . , Gαn , Gᾱ} subcobertura finita de [−a, s∗].

Queremos mostrar agora que s∗ = a. Supondo s∗ < a, e como Gᾱ é aberto então existe
ϵ tal que s∗ + ϵ ∈ Gᾱ, e s∗ + ϵ < a, logo s∗ + ϵ ∈ Ca, uma contradição com a definição de
supremo.

Parte (ii) Consideramos agora o caso geral, onde K ⊆ R é fechado e limitado, e G =
{Gα} é cobertura aberta de K. Como K é fechado, então C(K) é aberto, e como K é
limitado, então existe a ∈ Rn tal que K ⊆ [−a, a]. Logo {Gα, C(K)} geram uma cobertura
aberta de [−a, a]. Pela Parte (i), existe uma subcobertura {Gα1 , . . . , Gαn , C(K)} de [−a, a],
e portanto também de K pois K ⊆ [−a, a]. Como K ∩ C(K) = ∅, então {Gα1 , . . . , Gαn} é
uma cobertura finita de K. □
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2.6. Exercícios

Exercício 2.1. Mostre que todo intervalo da reta não degenerado contém infinitos ele-
mentos.

Exercício 2.2. Prove a afirmativa do exemplo 2.4.

Exercício 2.3. Se A ⊆ R é um conjunto não vazio e limitado, então A ⊆ [inf A, supA].

Exercício 2.4. Seja A ⊆ R e as funções f : A → R e g : A → R sejam tais que os
conjuntos f(A) e g(A) sejam limitados superiormente. Defina a função f + g : A → R por
(f + g)(x) = f(x)+ g(x). Mostre que sup(f + g)(A) ≤ sup f(A)+ sup g(A). Dê um exemplo
em que a desigualdade é estrita.

Exercício 2.5. Seja A ⊆ R conjunto limitado. Mostre que inf A e supA são únicos.

Exercício 2.6. Enuncie e demonstre o resultado análogo ao Lema 2.1.3 no caso do
ínfimo.

Exercício 2.7. Suponha que A e B sejam dois conjuntos de números reais limitados
superiormente, e que toda cota superior de A seja cota superior de B. Mostre que supA ≥
supB.

Exercício 2.8. Sejam A e B dois conjuntos não vazios de R limitados superiormente, e
seja o conjunto C = {a + b : a ∈ A, b ∈ B} formado pela soma dos elementos de A com os
elementos de B. Mostre que supC = supA+ supB.

Exercício 2.9. Seja A ⊂ Rn não vazio, e f : Rn → R dada por

f(x) = inf{∥x− y∥ : y ∈ A}.
Mostre que f está bem definida. Construa entretanto um exemplo onde não exista y ∈ A
tal que f(x) = ∥x− y∥, para algum x ∈ Rn.

Exercício 2.10 (Densidade dos racionais nos reais). Mostre que dados x, y ∈ R com
x < y, existe r ∈ Q tal que x < r < y.

Exercício 2.11. Demonstre os ítens (2) e (3) no Lema 2.1.5.

Exercício 2.12. Faça os detalhes do exemplo 2.9.

Exercício 2.13. Mostre que intervalos encaixantes não limitados podem ter interseção
vazia.

Exercício 2.14. Usando a notação do Teorema 2.1.8, mostre que inf{bn − an : n ∈
N} = 0 se e somente se inf{bn : n ∈ N} = sup{an : n ∈ N}.

Exercício 2.15. Aponte na demonstração do Teorema 2.1.8 quais o(s) argumento(s)
que não é (são) válido(s) se considerarmos uma sequência encaixante de intervalos abertos.

Exercício 2.16. Mostre como exemplo uma sequências de fechados Fj ⊂ Rn não vazios
tais que Fj+1 ⊂ Fj e ∩∞

j=1Fj = ∅.

Exercício 2.17. Mostre que a propriedade do supremo de R (ver página 10) é equivalente
aos seguintes resultados:
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(1) teorema dos intervalos encaixantes (Teorema 2.1.8)
(2) teorema de Bolzano–Weiertrass em R (Teorema 2.4.2)

(Ver Exercício 3.16)

Exercício 2.18. Demonstar os ítens (2), (3) e (4) do Lema 2.2.2.

Exercício 2.19. Seja V espaço vetorial com norma ∥ · ∥ induzida por produto interno.
Mostre que vale a lei do paralelograma, i.e., para todo x, y ∈ V tem-se

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).

Exercício 2.20. Defina operações de multiplicação por escalar e soma em L(V1, V2), tais
que este seja um espaço vetorial com estas operações.

Exercício 2.21. Dado um espaço vetorial com produto interno x · y e norma ∥x∥ =
(x · x)1/2, mostre que |x · y| = ∥x∥∥y∥ se e somente se x = αy para algum α ∈ R.

Exercício 2.22. Mostre que ∥ · ∥∞ definido no Exemplo 2.16 de fato define uma norma
no Rn. Analise cada uma das propriedades de norma para ∥(x1, . . . , xn)∥inf = min1≤j≤n |xj|.
Conclua que esta operação não define uma norma.

Exercício 2.23. Mostre que (2.2.4) define uma norma.

Exercício 2.24. O conjunto {x = (x1, . . . , xn) ∈ B1(0) : x1 ∈ Q} é aberto? Prove a
sua afirmação.

Exercício 2.25. Responda à pergunta do Exemplo 2.24.

Exercício 2.26. Mostre que B1(0) é aberto.

Exercício 2.27. Mostre que se A ⊆ R e B ⊆ R são abertos em R, então o conjunto
C = A×B é aberto no R2.

Exercício 2.28. Seja I ⊆ R não vazio, fechado e limitado. Mostre que sup I ∈ I.

Exercício 2.29 (Ver Exercício 4.17). Dizemos que duas normas ∥ · ∥ e ||| · ||| de uma
espaço vetorial V são equivalentes se existem constantes positivas c1 e c2 tais que

c1|||v||| ≤ ∥v∥ ≤ c2|||v|||
para todo v ∈ V . Mostre que normas equivalentes geram “os mesmos abertos”, i.e., um
conjunto é aberto usando-se a norma ∥ · ∥ se e somente se ele for aberto usando-se a norma
||| · |||.

Exercício 2.30. Um conjunto pode ser aberto em Rn como na Definição 2.3.1, mas
também pode ser aberto em outro conjunto (aberto relativo). Dizemos que U é aberto em
V se para todo x ∈ U existe ϵ > 0 tal que Bϵ(x) ∩ V ⊆ U . Mostre que todo conjunto do Rn

é aberto nele mesmo.

Exercício 2.31. Assim como no exercício 2.30, um conjunto F é fechado em V se V \F
(o complementar de F em relação ao V ) é aberto em V . Mostre que todo conjunto do Rn é
fechado nele mesmo.

Exercício 2.32. Seja A ⊆ Rn e x ∈ Rn. Mostre que uma, e apenas uma, das afirmativas
abaixo é verdadeira:
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(1) x é ponto interior de A
(2) x é ponto exterior de A
(3) x é ponto de fronteira de A

Exercício 2.33. Seja A ⊂ R conjunto não vazio e limitado superiormente. Mostre que
se x = supA, então x é ponto de fronteira de A. E que se x é ponto interior de A, então
x ̸= supA.

Exercício 2.34. Apresente um exemplo para cada uma das situações abaixo:
(a) Um conjunto fechado, não vazio, e sem pontos de acumulação. Por que isto não contradiz

o Teorema 2.3.9?
(b) Um conjunto não enumerável, tal que todo ponto dele é ponto de fronteira
(c) Um conjunto não fechado que seja união de fechados

Exercício 2.35. Seja A ⊆ Rn, e denote por interior de A o conjunto A◦ de pontos
interiores de A. Mostre que

(1) (A◦)◦ = A◦

(2) (A ∩B)◦ = A◦ ∩B◦

(3) Se B ⊆ A e B é aberto, então B ⊆ A◦ (i.e. A◦ é o “maior” aberto contido em A)

Exercício 2.36. Sejam A,B ⊆ Rn. Mostre que A◦∩B◦ = (A∩B)◦ e A◦∪B◦ ⊆ (A∪B)◦.

Exercício 2.37. Seja A ⊆ Rn. Chamamos de fecho de A, e denotamos por Ā, a inter-
seção de todos os fechados que contenham A. Mostre que x ∈ Ā se e somente se x é ponto
de interior ou de fronteira da A.

Exercício 2.38. Seja A ⊆ Rn. Mostre que A é fechado se e somente se A = Ā.

Exercício 2.39. Seja A ⊆ Rn. Dizemos que x é ponto aderente a A se para todo ϵ > 0
tem-se Bϵ(x)∩A ̸= ∅. Mostre que o conjunto de pontos aderentes a A é dado por Ā, o fecho
de A — ver Exercícios 2.37 e 3.20.

Exercício 2.40. Apresente exemplos que mostrem que os seguintes conceitos são dis-
tintos: pontos de acumulação, de fronteira e aderente. Justifique sua resposta.

Exercício 2.41. Seja A ⊆ Rn e A′ conjunto dos pontos de acumulação de A. Mostre
que A′ é fechado. Seja Ā o fecho de A, ver Exercício 2.37. Mostre que Ā = A ∪ A′. Mostre
que (Ā)′ = A′, isto é, o conjunto dos pontos de acumulação de A e Ā são iguais.

Exercício 2.42. Demonstre o Corolário 2.3.7.

Exercício 2.43. Apresente dois subconjuntos do Rn em que o conjunto dos pontos de
fronteira seja vazio. Mostre que não existe nenhum outro subconjunto do Rn com estas
características.

Exercício 2.44. Mostre que um ponto x ∈ Rn é ponto de acumulação de A ⊂ Rn, e
a1, . . . ak ∈ A, então x é ponto de acumulação de A\{a1, . . . ak}.

Exercício 2.45. Mostre que um ponto x ∈ Rn é ponto de acumulação de A se e somente
se toda vizinhança aberta de x contém infinitos pontos de A.
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Exercício 2.46. Mostre que todo ponto de
{1/n : n ∈ N}

é ponto de fronteira, e que 0 é o único ponto de acumulação.

Exercício 2.47. Sejam A, B ⊆ Rn, e x ponto de acumulação de A ∩ B. Mostre que x
é ponto de acumulação de A e de B.

Exercício 2.48. Seja Ai ⊆ Rn conjunto aberto para todo i ∈ N. Decida se as afirmativas
abaixo são verdadeiras ou falsas, e prove sua resposta:

(1) Se x é ponto de acumulação de ∩i∈NAi, então x é ponto de acumulação de Ai para
todo i ∈ N.

(2) Se x é ponto de acumulação de ∪i∈NAi, então x é ponto de acumulação de Ai para
algum i ∈ N.

Exercício 2.49. Seja x ∈ Rn. Mostre que se F ̸= ∅ é fechado em Rn, e inf{∥x − y∥ :
y ∈ F} = 0, então x ∈ F .

Exercício 2.50. Mostre que se x ̸= y são pontos em Rn, então existem vizinhanças
abertas U de x e V de y tais que U ∩ V = ∅ (i.e., o Rn é um espaço de Hausdorff )

Exercício 2.51. Mostre que se U e V são vizinhanças abertas de x ∈ Rn, então U ∩ V
é vizinhança aberta de x.

Exercício 2.52. Dizemos que um conjunto aberto A ⊆ Rn é conexo se ele não é a união
de dois conjuntos abertos disjuntos não vazios. Mostre que R é conexo. Conclua a seguir
que o Rn é conexo.

Exercício 2.53. Generalize para o Rn as idéias apresentadas na demonstração unidi-
mensional do Teorema de Bolzano–Weiertrass (Teorema 2.4.2).

Exercício 2.54. Decida se o Teorema de Bolzano–Weiertrass (Teorema 2.4.2) pode ser
generalizado da seguinte forma:

Todo conjunto de Q infinito e limitado tem ao menos um ponto de acumulação
(em Q).

Em caso afirmativo, prove a generalização ou dê um contra-exemplo em caso negativo.

Exercício 2.55. Para cada um dos conjuntos abaixo, ache, se for possível, uma cobertura
de abertos que não contenha subcobertura finita.

(1) R
(2) {1, 1/2, 1/3, 1/4, . . . }
(3) {0, 1, 1/2, 1/3, 1/4, . . . }

Exercício 2.56. Mostre sem usar o Teorema de Heine–Borel que {0, 1, 1/2, 1/3, 1/4, . . . }
é compacto.

Exercício 2.57. Mostre sem usar o Teorema de Heine–Borel que a bola aberta B1(0) ⊆
Rn não é compacta.

Exercício 2.58. Seja A ⊆ Rn conjunto não limitado. Sem usar o Teorema de Heine–
Borel, mostre que A não é compacto.
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Exercício 2.59. Decida se os conjuntos abaixo são ou não compactos. Prove suas
afirmativas sem utilizar o Teorema de Heine–Borel.
(a) A ⊆ Rn, A finito.
(b) B ⊆ Rn tal que B não contém ao menos um de seus pontos de acumulação.

Exercício 2.60. Na demonstração do Teorema de Heine–Borel (Teorema 2.5.3), mostre
que ξ é de fato ponto de acumulação de K.

Exercício 2.61. Seja K conjunto compacto, e seja ϵ > 0. Mostre que existem J ∈ N e
pontos x1, . . . , xJ pertencentes a K tais que

K ⊆ ∪J
j=1Bϵ(xj).

Exercício 2.62. Mostre, sem usar o Teorema de Heine–Borel, que se K é compacto e
F ⊆ K é fechado, então F é compacto.

Exercício 2.63. Usando o teorema dos intervalos encaixantes, mostre que R não é
enumerável. (Sugestão: considere E = {x1, x2, . . . } ⊆ [0, 1], e construa um intervalo do tipo
I1 = [a1, b1] tal que x1 ̸∈ I1. Indutivamente, construa intervalo Ij = [aj, bj] ⊂ Ij−1 tal que
xj ̸∈ Ij. Conclua então que [0, 1] não é enumerável).

Exercício 2.64. Sem usar a parte do Teorema de Heine-Borel que diz que todo fechado
e limitado é compacto, mostre que a interseção arbitrária de compactos é compacta e que a
união finita de compactos é compacta.

Exercício 2.65. Sem usar o Teorema de Bolzano–Weiertrass no Rn (Teorema 2.4.2),
mostre que se K é compacto e A ⊆ K é infinito, então existe pelo menos um ponto de acu-
mulação de A. Obtenha como corolário o Teorema de Bolzano–Weiertrass (Teorema 2.4.2).
Este ponto de acumulação necessariamente pertence a A? Necessariamente pertence a K?

Exercício 2.66. Seja A ⊆ Rn conjunto aberto com fronteira não vazia. Mostre, sem
usar Heine-Borel, que A não é compacto.

Exercício 2.67 (Limitação Total). Dizemos que um conjunto A é totalmente limitado
se dado r ∈ R positivo, existirem índice J ∈ N e pontos x1, . . . ,xJ ∈ A tais que A ⊂
∪j=1...JBr(xj). Mostre que um conjunto no Rn é limitado se e somente se é totalmente
limitado.

2.6.1. Sessão Topológica. Seja X um conjunto. Uma topologia para X é uma coleção
T de subconjuntos de X tal que

(1) ∅, X ∈ T
(2) Uniões arbitrárias de conjuntos de T pertencem a T
(3) Interseções finitas de conjuntos de T pertencem a T

Os elementos de T são chamados de conjuntos abertos de X, e chamamos (X, T ) de espaço
topológico. Quando é clara qual é a topologia utilizada, escrevemos simplesmente X.

Como exemplo temos que os conjuntos definidos como abertos e fechados na Seção 2.3
caraterizam uma topologia. Entretanto, como vemos abaixo outras possibilidades são possí-
veis.
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Exercício 2.68. Seja X um conjunto. Mostre que {X, ∅} é uma topologia para X (esta
é a topologia trivial). Mostre que a coleção formada por todos os subconjuntos de X é
também uma topologia (chamada de topologia discreta).

Exercício 2.69. Seja T uma topologia para X, e A ⊆ X. Mostre que {U ∩A : U ∈ T }
define uma topologia para A. Esta é chamada de topologia relativa.

Exercício 2.70. Seja T uma topologia para X. Então uma conjunto B ⊆ X é fechado
se seu complemento X −B á aberto, i.e., se X −B ∈ T . Mostre ∅ e X são fechados, que a
união finita de fechados é um conjunto fechado, e que a interseção arbitrária de de fechados
é um conjunto fechado.

Exercício 2.71. Dizemos que um espaço topológico (X, T ) é de Hausdorff se dados
dois pontos x, y ∈ X, existem abertos disjuntos Ax, Ay ∈ T tal que x ∈ Ax, y ∈ Ay. Um
espaço de Hausdorff é um espaço que “separa pontos”. Mostre que num espaço de Hausdorff,
todo conjunto finito é fechado.

Exercício 2.72. Dizemos que um espaço topológico X é conexo se os únicos conjuntos
simultaneamente abertos e fechados são ∅ e X. Mostre que um espaço topológico é conexo
se e somente se ele não é a união de dois conjuntos disjuntos, abertos e não vazios. Mostre
que se A é subconjunto de espaço topológico X, e A tem fronteira vazia, então A = X ou
A = ∅.

Exercício 2.73. Defina compactos para espaços topológicos.

Exercício 2.74. Diz-se que um espaço topológico tem a propriedade da interseção finita
se tem a seguinte propriedade: dada uma coleção F de fechados tal que toda subcoleção
finita de F tem interseção não nula, então a interseção de conjuntos de F é não vazia. Em
outras palavras, se F satisfaz (1) abaixo, então satisfaz (2):

(1) sejam finitos fechados F1, . . . , Fk ∈ F . Então F1 ∩ · · · ∩ Fk ̸= ∅
(2) ∩F∈FF ̸= ∅

Mostre que um espaço topológico é compacto se e somente se tem a propriedade da interseção
finita.

2.6.2. Sessão Métrica. Um espaço métrico (X, d) é um conjunto X munido de uma
métrica d(·, ·), que é uma função d : X ×X → [0,+∞) tal que para todo x, y, z ∈ X,

(1) d(x, y) = 0 se e somente se x = y
(2) d(x, y) = d(y, x)
(3) d(x, y) ≤ d(x, z) + d(z, y)

A propriedade (3) acima é chamada de desigualdade triangular.
Note que em qualquer conjunto X podemos definir a métrica

(2.6.1) d(x, y) =

{
0 se x = y,

1 se x ̸= y.

Exercício 2.75. Seja V um espaço vetorial. Mostre que se ∥ · ∥V é uma norma em V ,
a função d : V × V → R dada por d(x,y) = ∥x− y∥V define uma métrica. Por outro lado,
mostre que se V tem mais que um elemento, a métrica dada por (2.6.1) não define uma
norma em V .
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Exercício 2.76. Seja (X, d) espaço métrico. Definina a bola de dentro x e raio r > 0
por Br(x) = {y ∈ X : d(y,x) < r}, e os conjuntos abertos como em 2.3.1. Mostre que
a coleção destes conjuntos abertos é uma topologia. Caracterize a topogia definida pela
métrica (2.6.1).

Exercício 2.77. Mostre que todo espaço métrico é de Hausdorff.

Exercício 2.78. Mostre que, em espaços métricos, se K é um compacto, então K é
limitado e fechado.

Exercício 2.79. Mostre que um espaço métrico é completo se e somente se a interseção
de uma sequência de bolas fechadas encaixantes com raios tendendo a zero é não vazia. Além
disto, se o espaço for de fato completo, a interseção se reduz a somente um ponto.





CAPíTULO 3

Sequências

1

3.1. Definição e resultados preliminares

Uma sequência em Rn é simplesmente uma função de N em Rn. Portanto X : N →
Rn indica uma sequência de números reais, que escrevemos também como (xk), ou ainda
(x1,x2,x3, . . . ). Para indicar o k-ésimo valor da sequência escrevemos simplesmente xk.

Exemplo 3.1. xk = (−1)k define a sequência (−1, 1,−1, 1,−1, 1,−1, . . . ) em R.

Exemplo 3.2. A sequência de Fibonacci é definida recursivamente por x1 = 1, x2 = 1,
e xk+1 = xk + xk−1 para k ≥ 2. Portanto temos (xk) = (1, 1, 2, 3, 5, 8, . . . ).

Podemos realizar com sequências várias das operações que realizamos com números reais,
como por exemplo somar, subtrair, etc. Sejam por exemplo (xk) e (yk) duas sequências em
Rn, e c ∈ R. Então definimos

(xk) + (yk) = (xk + yk), (xk)− (yk) = (xk − yk), c(xk) = (cxk).

Podemos da mesma forma definir produtos internos de sequências em Rn por (xk) · (yk) =
(xk · yk).

Exemplo 3.3. Se xk = (2, 4, 6, 8, . . . ) e (yk) = (1, 1/2, 1/3, 1/4, . . . ), então (xk) · (yk) =
(2, 2, 2, · · · ).

A primeira pergunta que surge quando tratamos de sequências é quanto à convergência
destas, isto é, se quando k aumenta, os termos xk se aproximam de algum valor real. Note
que para isto, não importa o que acontece com finitos termos da sequência, mas sim seu
comportamento assintótico com respeito a k. Em outras palavras queremos determinar o
comportamento das sequências no “limite”.

Definição 3.1.1. Dizemos que x ∈ Rn é limite de uma sequência (xk), se para toda
vizinhança aberta U de x existir K∗ ∈ N tal que xk ∈ U para todo k ≥ K∗. Escrevemos
neste caso que xk → x, ou que x = limxk, ou ainda

x = lim
k→∞

xk.

De forma equivalente, xk → x se para todo ϵ > 0, existe K∗ ∈ N tal que xk ∈ Bϵ(x) para
todo k ≥ K∗.

Se uma sequência tem limite, dizemos que ela converge ou que é convergente, e se não
tem limite dizemos que ela diverge ou que é divergente.
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O lema abaixo é consequência da definição de convergência, e portanto na maioria dos
exemplos a seguir nos restringimos ao caso unidimensional.

Lema 3.1.2. Toda sequência (xk) em Rn converge se e somente se a sequência das i-ésimas
coordenadas

(
(xi)k

)
converge em R para i = 1, . . . , n.

Demonstração. Exercício. □

Exemplo 3.4. Se xk = 1, então limxk = 1. De fato, dado ϵ > 0, para todo k ≥ 1 temos
|xk − 1| = 0 < ϵ.

Exemplo 3.5. lim(1/k) = 0. De fato, dado ϵ > 0, seja K∗ tal que 1/K∗ < ϵ. Logo, para
todo k ≥ K∗ temos |1/k − 0| = 1/k ≤ 1/K∗ < ϵ.

Observe que diferentes situações ocorrem nos exemplos acima. Em 3.4 a sequência é
constante, e a escolha de K∗ independe de ϵ. Já no exemplo 3.5, temos que K∗ claramente
depende de ϵ.

A seguir, no exemplo 3.6 o objetivo é mostar que um certo valor x não é o limite da
sequência (xk). Mostramos então que existe pelo menos um certo ϵ > 0 tal que para todo
K∗, conseguimos achar k ≥ K∗ tal que |xk − x| > ϵ. Note que o que fazemos é negar a
convergência.

Exemplo 3.6. (0, 2, 0, 2, 0, 2, 0, 2, . . . ) não converge para 0. De fato, tome ϵ = 1. Então
para todo K∗ ∈ N temos 2K∗ > K∗ e x2K∗ = 2. Portanto |x2K∗ − 0| = 2 > ϵ.

Talvez a segunda pergunta mais natural em relação aos limites de sequências é quanto
a unicidade destes, quando existirem. A resposta é afirmativa, como mostra o resultado
abaixo.

Teorema 3.1.3 (Unicidade de limite). Uma sequência pode ter no máximo um limite.

Demonstração. Considere que (xk) é uma sequência tal que xk → x e xk → x′, com
x ̸= x′. Sejam ϵ = ∥x − x′∥/2 > 0, e sejam K∗ e K ′ ∈ N tais que ∥xk − x∥ < ϵ para todo
k ≥ K∗ e ∥xk − x′∥ < ϵ para todo k ≥ K ′. Logo, se k ≥ max{K∗, K ′}, então

∥x− x′∥ ≤ ∥x− xk∥+ ∥xk − x′∥ < 2ϵ = ∥x− x′∥.

Como um número não pode ser estritamente menor que ele mesmo, temos uma contradição.
Portanto x = x′ e o limite é único. □

Outro resultado importante trata de limites de sequências que são resultados de operações
entre sequências. Por exemplo, dadas duas sequências convergentes, o limite da soma das
sequências é a soma dos limites. E assim por diante.

Lema 3.1.4. Seja (xk) e (yk) tais que limxk = x e limyk = y. Então
(1) lim(xk + yk) = x+ y.
(2) lim(xk − yk) = x− y.
(3) lim(cxk) = cx, para c ∈ R.
(4) Em R, temos que lim(xkyk) = xy.
(5) Em R, temos que se yk ̸= 0 para todo k e y ̸= 0, então lim(xk/yk) = x/y.
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Demonstração. (1) Dado ϵ > 0, seja K∗ ∈ N tal que ∥xk −x∥ < ϵ/2 e ∥yk −y∥ < ϵ/2
para todo k ≥ K∗. Logo

∥xk + yk − (x+ y)∥ ≤ ∥xk − x∥+ ∥yk − y∥ < ϵ para todo k ≥ K∗.

(2) A demonstração é basicamente a mesma de (1), tomando-se o devido cuidado com os
sinais.

(4) Para todo k ∈ N temos

|xkyk − xy| ≤ |xkyk − xky|+ |xky − xy| = |xk||yk − y|+ |y||xk − x|.

Seja M ∈ R tal que |xk| < M e |y| < M . A existência de tal constante M é garantida pelo
Teorema 3.1.8 pelo fato de (xk) convergir. Agora, dado ϵ > 0, seja K∗ tal que |yk − y| <
ϵ/(2M) e |xk − x| < ϵ/(2M) para todo k ≥ K∗. Logo,

|xkyk − xy| ≤M [|yk − y|+ |xk − x|] < ϵ,

para todo k ≥ K∗.
Deixamos (3) e (5) como exercícios para o leitor. □

Observação. Os resultados do lema acima continuam válidos para um número finito de
somas, produtos, etc.

Às vezes, uma sequência se aproxima de algum valor em Rn de forma mais lenta que
alguma outra sequência de reais que converge para 0. É possível assim garantir convergência,
como o resultado a seguir nos mostra.

Lema 3.1.5. Seja (ak) sequência em R convergente para 0. Se para (xk) sequência em
Rn existir c > 0 tal que

∥xk − x∥ ≤ c|ak| para todo k ∈ N,

então xk → x.

Demonstração. Como (ak) converge, dado ϵ > 0, seja K∗ ∈ N tal que |ak| < ϵ/c para
todo k ≥ K∗. Logo

∥xk − x∥ ≤ c|ak| < ϵ para todo k ≥ K∗,

e limxk = x. □

Corolário 3.1.6. Seja (ak) sequência em R convergente para 0. Se para (xk) sequência
em Rn existir c > 0 e K∗ ∈ N tal que

∥xk − x∥ ≤ c|ak| para todo k ≥ K∗,

então xk → x.

Exemplo 3.7. Seja xk = (2/k) sin(k). Então

|xk − 0| ≤ 2

k
.

Como 1/k → 0, podemos usar o lema acima para garantir que lim[(2/k) sin(k)] = 0.
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Exemplo 3.8. limk→∞
(
(2k + 1)/k

)
= 2. De fato,

2k + 1

k
= (2) +

(
1

k

)
.

Como limk→∞ 2 = 2 e limk→∞(1/k) = 0, nós obtemos o resultado.

Exemplo 3.9. limk→∞
(
2k/(k2 + 1)

)
= 0, pois

2k

k2 + 1
=

2/k

1 + 1/k2
.

Como limk→∞(2/k) = 0 e limk→∞(1 + 1/k2) = 1 ̸= 0, podemos aplicar o resultado sobre
quociente de sequências.

Exemplo 3.10. A sequência

xk =
1

k2

k∑
i=1

i

converge. Primeiro note que

(3.1.1)
k∑

i=1

i =
k2 + k

2
.

Para k = 1 o resultado (3.1.1) é trivial. Suponha (3.1.1) vedadeiro para k = k∗. Temos
então que

k∗+1∑
i=1

i =
(k∗)2 + k∗

2
+ k∗ + 1 =

(k∗)2 + 3k∗ + 2

2
=

(k∗ + 1)2 + (k∗ + 1)

2
,

e portanto fórmula (3.1.1) é verdadeira. Temos então que

xk =
k2 + k

2k2
=

1

2

(
1 +

1

k

)
=

1

2
+

(
1

2k

)
.

Logo (xk) é soma de duas sequências convergentes, (1/2) e (1/2)(1/k) e

lim
k→∞

xk = lim
k→∞

1

2
+ lim

k→∞

1

2k
=

1

2
.

Uma outra noção importante é o de limitação de uma sequência. Neste caso, mesmo
quando a sequência não converge, podemos conseguir alguns resultados parciais, como vere-
mos mais a seguir.

Definição 3.1.7. Dizemos que uma sequência (xk) é limitada quando existe um número
real C tal que ∥xk∥ ≤ C para todo k ∈ N.

Um primeiro resultado intuitivo é que toda sequência convergente é limitada. De fato,
é razoável pensar que se a sequência converge, ela não pode ter elementos arbitrariamente
grandes em norma.

Teorema 3.1.8. Toda sequência convergente é limitada
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Demonstração. Seja (xk) sequência convergente e seja x seu limite. Seja ϵ = 1. Como
(xk) converge, existeK∗ tal que ∥x−xk∥ < 1 para todo k ≥ K∗. Logo, usando a desigualdade
triangular temos

∥xk∥ ≤ ∥xk − x∥+ ∥x∥ < 1 + ∥x∥ para todo k ≥ K∗.

Falta agora limitar os K∗ primeiros termos da sequência. Seja então
C = max{∥x1∥, ∥x2∥, ∥x3∥, . . . , ∥xK∗∥, 1 + ∥x∥}.

Portanto ∥xk∥ ≤ C para todo k ∈ N. □

Exemplo 3.11. A sequência (k) em R diverge pois não é limitada.

Exemplo 3.12. Seja Sk = 1+ 1/2 + 1/3 + 1/4 + · · ·+ 1/k. Mostraremos que (Sk) não é
limitada, e portanto divergente. Note que

s2k = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·+

(
1

2k−1 + 1
+ · · ·+ 1

2k

)

= 1 +
1

2
+

4∑
i=3

1

i
+

8∑
i=5

1

i
+ · · ·+

2k∑
i=2k−1+1

1

i
> 1 +

1

2
+

4∑
i=3

1

4
+

8∑
i=5

1

8
+ · · ·+

2k∑
i=2k−1+1

1

2k

= 1 +
1

2
+

1

2
+

1

2
+ · · ·+ 1

2
= 1 +

k

2
.

Logo (Sk) não é limitada, e portanto diverge.
Outra forma de ver que a sequência acima diverge é por indução. Quero mostrar que

S2k ≥ 1 + k/2. Note que S2 = 1 + 1/2. Supondo que S2k−1 ≥ 1 + (k − 1)/2 temos

S2k = S2k−1 +
1

2k−1 + 1
+ · · ·+ 1

2k
> 1 +

(k − 1)

2
+

1

2
> 1 +

k

2
,

como queríamos demonstrar. Mais uma vez a conclusão é que (Sk) não é limitada, logo
diverge.

Exemplo 3.13 (Sequência de Cesàro). Seja (xj) sequência convergente em Rn, e seja
x ∈ Rn seu limite. Então a sequência definida por

1

j
(x1 + x2 + · · ·+ xj)

converge e tem x como seu limite.
Sem perda de generalidade, supomos que (xj) converge para zero. Para o caso geral

quando (xj) converge para x basta tratar a sequência (xj − x).
Seja Sj = (x1 + x2 + · · ·+ xj)/j. Como (xj) converge, então é limitada. Seja M tal que

|xj| < M para todo j ∈ N. Dado ϵ > 0, seja K∗ tal que M/K∗ < ϵ e |xj| < ϵ para todo
j ≥ K∗. Então, temos Sj = Šj + Ŝj, onde

Šj =
1

j
(x1 + x2 + · · ·+ xK∗), Ŝj =

1

j
(xK∗+1 + xK∗+1 + · · ·+ xj).

Então (Sj) é a soma de duas sequências convergentes para zero. De fato para j ≥ (K∗)2,
temos

∥Šj∥ ≤ 1

j
(∥x1∥+ ∥x2∥+ · · ·+ ∥xK∗∥) ≤ K∗M

j
≤ M

K∗ < ϵ.



38 3. SEQUÊNCIAS

Além disso, ∥Ŝj∥ < ϵ(j −K∗)/j < ϵ. Portanto (Sj) converge para zero.
Note que sequências convergentes convergem também no sentido de Cesàro. Entretanto

o oposto não ocorre. Considere como exemplo (xk) = (0, 1, 0, 1, 0, 1, . . . ). Então Sj como
definida acima converge para 1/2, apesar de (xk) não convergir.

Outro resultado importante refere-se à convergência das normas de sequências: se uma
sequência converge, então a sequência de normas também converge. A reciproca não é ver-
dadeira. Basta considerar como contra-exemplo a sequência

(
(−1)n

)
. Neste caso a sequência

diverge mas a sequência de seus valores absolutos converge.

Lema 3.1.9. Seja (xj) convergente. Então a sequência dada por (∥xj∥) também o é.

Demonstração. Exercício. □

3.2. Subsequências e Teorema de Bolzano–Weierstrass

Seja (xk) sequência em Rn e

k1 < k2 < k3 < · · · < kj < . . .

sequência de números naturais. Então dizemos que (xkj) é uma subsequência de (xk).

Observação. Para definir subsequências de forma rigorosa, basta supor que k : N → N
é uma função estritamente crescente, i.e., i > j implica em k(i) > k(j). Para facilitar a
notação, escrevemos k(i) simplesmente como ki. Note que sempre ki ≥ i. Ver exercício 3.6.

Exemplo 3.14. Se (xk) = (1, 1/2, 1/3, 1/4, . . . ), então (1, 1/2, 1/4, 1/6, 1/8, . . . ) e (x2k)
são subsequências de (xk).

Um primeiro resultado relacionado com subsequências nos diz que se uma sequência
converge para um determinado limite, então todas as subsequências convergem e têm o
mesmo limite.

Lema 3.2.1. Se uma sequência (xk) converge para x, então todas as subsequências de
(xk) são convergentes e têm o mesmo limite x.

Demonstração. Seja (xk) sequência convergente, e seja x = limk→∞ xk. Dado ϵ > 0,
seja K∗ tal que

(3.2.1) ∥x− xk∥ < ϵ para todo k ≥ K∗.

Seja (xkj) subsequência de (xk). Como kj ≥ j para todo j ∈ N, então j ≥ K∗ implica em
kj ≥ K∗ e portanto

∥x− xkj∥ < ϵ,

por (3.2.1). Logo (xkj) converge para x. □

Exemplo 3.15.
(
(−1)n

)
diverge pois se convergisse para algum x ∈ R, suas subsequên-

cias convirgiriam este mesmo valor. Mas

lim
n→∞

((−1)2n
)
= 1, lim

n→∞
((−1)2n+1

)
= −1.
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Exemplo 3.16. Seja (xk) sequência convergente para l e tal que x2k = x2k. Então

l = lim
n→∞

(x2k) = lim
k→∞

xk lim
k→∞

xk = l2.

Logo l = 0 ou l = 1. Para concluirmos qual dos dois candidatos a limite é o correto,
precisaríamos de mais informações sobre a sequência. Por exemplo, se xk = ak para a < 1,
temos que l = 0 pois a sequência é limitada superiormente por a < 1. Então l = 1 não pode
ser limite, e limk→∞(ak) = 0. Por outro lado, se a = 1 então l = 1.

Lema 3.2.2 (Critérios de divergência). Seja (xk) sequência em Rn. As afirmativas abaixo
são equivalentes:

(1) (xk) não converge para x ∈ Rn.
(2) Existe ϵ > 0 tal que para todo K∗ ∈ N, existe k ∈ N, com k > K∗ e ∥x− xk∥ > ϵ.
(3) Existe ϵ > 0 e uma subsequência (xkj) de (xk) tal que ∥x − xkj∥ > ϵ para todo

j ∈ N.

Demonstração. (1) =⇒ (2): Se (xk) não converge para x então existe ϵ > 0 tal que
é impossível achar K∗ ∈ N tal que ∥x − xk∥ < ϵ para todo k > K∗. Logo, para todo K∗,
existe k > K∗ tal que ∥x− xk∥ > ϵ.

(2) =⇒ (3): Seja ϵ como em (2). Seja k1 ∈ N tal que ∥x − xk1∥ ≥ ϵ. Para todo inteiro
j > 1, seja kj > kj−1 tal que ∥x − xkj∥ ≥ ϵ. Portanto a subsequência (xkj) satisfaz a
propriedade (3).

(3) =⇒ (1): Se (xk) convergisse para x teríamos (xkj) convergindo para x, o que contraria
a hipótese inicial. Logo (xk) não converge para x. □

No exemplos abaixos temos uma aplicação imediata do Lema 3.2.2.

Exemplo 3.17. Seja (xk) sequência em Rn tal que toda subsequência de (xk) contém
uma subsequência convergente para x. Então (xk) converge para x.

Por contradição suponha que (xk) não convirja para x. Portanto existe uma subsequência
(xkj) e ϵ > 0 tal que

(3.2.2) ∥x− xkj∥ > ϵ para todo j ∈ N.
Mas então, por hipótese, (xkj) tem uma subsequência convergindo para x, uma contradição
com (3.2.2).

Exemplo 3.18. Sejam (xn) e (yn) sequências em Rn e seja (zi) a sequência formada por
z1 = x1, z2 = y1, z3 = x2, z4 = y2,. . . , z2i−1 = xi, z2i = yi, . . . . Então, se limi→∞ xi = ξ e
limi→∞ yi = ξ, temos que limi→∞ zi = ξ.

De fato, suponha que (zn) não convirja para ξ. Então existe ϵ > 0, uma subsequência
(znk

), e um inteiro N0 tal que

(3.2.3) ∥znk
− ξ∥ > ϵ para todo nk > N0.

Isto implica que existem infinitos elementos de (zn) distando mais que ϵ de ξ. Logo existem
infinitos elementos de (xn) ou de (yn) distando mais que ϵ de ξ. Mas isto contradiz o fato
de que limn→∞ xn = ξ e limn→∞ yn = ξ.

De forma mais rigorosa, sejam Nx, Ny ∈ N tais que ∥xk − ξ∥ < ϵ para k > Nx, e
∥yk − ξ∥ < ϵ para k > Ny. Seja N∗

k > 2max{N0, Nx, Ny} (a existência de tal número
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é garantida pois limk→+∞ nk = +∞). Se N∗
k for par, então zN∗

k
= yN∗

k/2
∈ Bϵ(ξ) pois

N∗
k/2 > Ny, contradição com (3.2.3). O caso de N∗

k ímpar é análogo.

A noção de subsequência, combinada com o conceito de ponto de acumulação e o Teo-
rema de Bolzano–Weierstrass (Teorema 2.4.2) pode ser aplicada como o exemplo abaixo nos
mostra.

Exemplo 3.19. Suponha que (xk) seja uma sequência limitada de elementos distintos,
e que o conjunto {xk : k ∈ N} tenha exatamente um ponto de acumulação. Então (xk) é
convergente.

De fato, seja x o ponto de acumulação da sequência. Por absurdo, suponha que (xk) não
convirja para x. Então existe ϵ > 0 e uma subsequência (xkj) tal que

(3.2.4) ∥xkj − x∥ > ϵ para todo k ∈ N.

Mas então o conjunto {xkj : j ∈ N} é infinito pois os xkj são distintos e portanto pelo
Teorema de Bolzano–Weierstrass ele tem pelo menos um ponto de acumulação, que é diferente
de x, uma contradição com x ser o único ponto de acumulação de {xk : k ∈ N}.

Finalmente mostramos um importante resultado que nos garante convergência de alguma
subsequência mesmo quando a sequência original não converge. É o análogo para sequências
do Teorema de Bolzano–Weierstrass (Teorema 2.4.2).

Teorema 3.2.3 (Bolzano–Weierstrass para sequências). Toda sequência limitada em Rn

tem pelo menos uma subsequência convergente.

Demonstração. Seja (xk) sequência em Rn e S = {xk : k ∈ N}. Então S é finito ou
não. Se S for finito, então existe pelo menos um elemento ξ ∈ S tal que ξ = xk1 = xk2 =
xk3 = . . . . para algum k1, k2, k3, . . . em N. Neste caso, a subsequência constante (xkj) é
convergente (ver Exercício 1.14).

Se S for infinito, e como este conjunto é limitado por hipótese, então o Teorema de
Bolzano–Weierstrass 2.4.2 garante a existência de pelo menos um ponto x de acumulação de
S. Vamos construir (xkj), subsequência de (xk) convergente para x:

(1) Seja j = 1 e ρ1 = 1. Como x é ponto de acumulação de S, então existe ao menos
um índice k1 ∈ N tal que xk1 ̸= x e xk1 ∈ S ∩Bρ1(x).

(2) Seja j = 2, e ρ2 = 1/2. Como x é ponto de acumulação de S então também é ponto
de acumulação do conjunto S2 = S\{x1,x2, . . . ,xk1−1,xk1} (ver Exercício 2.44) ,
então existe ao menos um índice k2 ∈ N tal que

xk2 ∈
(
S2 ∩Bρ2(x)

)
⊊

(
S ∩Bρ2(x)

)
.

Note que xk2 ∈ S2 =⇒ k2 > k1 (porquê?).
(3) Procedemos agora de forma indutiva, i.e., suponha que dado j > 2 inteiro, os inteiros

k1 < k2 < · · · < kj−1 estejam bem definidos, e que xki ∈ S ∩Bρi(x) para todo i < j,
onde ρi = 1/2i.

(4) Seja ρj = 1/2j. Como x é ponto de acumulação de S então também é ponto de
acumulação do conjunto Sj = S\{x1,x2, . . . ,xkj−1−1,xkj−1

} (ver Exercício 2.44) ,
então existe ao menos um índice kj ∈ N tal que xkj ∈ Sj ∩ Bρj(x). Note que
kj > kj−1 (porquê?).
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Então, dado ϵ > 0, para J ∈ N tal que 2−J < ϵ temos

∥x− xkj∥ < ρj ≤ 2−j < 2−J < ϵ para todo j ≥ J.

Logo, a subsequência (xkj) é convergente. □

3.3. Sequências de Cauchy

Um conceito importante tratando-se de sequências é o de sequências de Cauchy. Formal-
mente, dizemos que uma sequência (xk) é de Cauchy se para todo ϵ > 0 existe K∗ ∈ N tal
que

∥xk − xm∥ < ϵ para todo k,m ≥ K∗.

Usando os lemas a seguir, mostraremos que uma sequência é convergente se e somente se é
de Cauchy.

Lema 3.3.1. Toda sequência convergente é de Cauchy.

Demonstração. Seja (xk) sequência convergente, e x o seu limite. Então, dado ϵ > 0,
existe K∗ ∈ N tal que ∥x− xk∥ < ϵ/2 para todo k ≥ K∗. Portanto,

∥xk − xm∥ ≤ ∥xk − x∥+ ∥x− xm∥ < ϵ se k,m ≥ K∗.

Logo (xk) é de Cauchy. □

Lema 3.3.2. Toda sequência de Cauchy é limitada.

Demonstração. Seja (xk) sequência de Cauchy. Então, considerando ϵ = 1, temos que
existe K∗ ∈ N tal que ∥xK∗ − xk∥ < 1 para todo k > K∗. Logo, para k > K∗ temos

∥xk∥ ≤ ∥xk − xK∗∥+ ∥xK∗∥ < 1 + ∥xK∗∥.

Definindo C = max{∥x1∥, . . . , ∥xK∗−1∥, 1+∥x∗
K∥}, temos imediatamente que ∥xk∥ ≤ C para

todo k ∈ N. Portanto a sequência é limitada. □

Finalmente podemos enunciar a equivalência entre convergência e o critério de Cauchy.

Teorema 3.3.3 (Critério de convergência de Cauchy). Uma sequência é convergente se
e somente se é de Cauchy.

Demonstração. Já vimos no Lema 3.3.1 que se uma sequência é convergente, ela é de
Cauchy.

Suponha agora que (xk) seja sequência de Cauchy. Pelo Lema 3.3.2, a sequência é
limitada, e pelo Teorema de Bolzano–Weierstrass (Teorema 3.2.3), existe uma subsequência
(xkj) convergente. Seja x = limkj→∞ xkj . Quero mostrar que x = limk→∞ xk. Seja ϵ > 0.
Como (xk) é de Cauchy, temos que existe K∗ ∈ N tal que

(3.3.1) ∥xk − xm∥ ≤ ϵ

2
para todo k,m ≥ K∗.

Como (xkj) é convergente, então existe m∗ ∈ {k1, k2, . . . } tal que m∗ > K∗, e

∥x− xm∗∥ < ϵ

2
.
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Como m∗ > K∗ temos também de (3.3.1) que ∥xk − xm∗∥ ≤ ϵ/2 para todo k ≥ K∗.
Finalmente, para todo k ≥ K∗ temos

∥x− xk∥ ≤ ∥x− xm∗∥+ ∥xm∗ − xk∥ < ϵ.

Concluímos que (xk) converge. □

Exemplo 3.20. Considere x1 = 1, x2 = 2 e xj = (xj−1 + xj−2)/2 para j ≥ 3. Então
mostraremos que (xj) converge pois é de Cauchy. Mostramos primeiro que

(3.3.2) |xj − xj+1| =
1

2j−1
, para j ∈ N.

Note que (3.3.2) é válido para j = 1. Supondo também válida para j = k, i.e., que

(3.3.3) |xk − xk+1| =
1

2k−1
,

temos
|xk+1 − xk+2| = |xk+1 −

1

2
(xk+1 + xk)| = |1

2
(xk+1 − xk)| =

1

2k
,

onde usamos (3.3.3) na última igualdade. Concluímos por indução que (3.3.2) é válida.
Tendo (3.3.2) sido demonstrado, basta agora, dado ϵ, tomar K∗ tal que 2K

∗−2ϵ > 1.
Neste caso, se j ≥ i ≥ K∗, tem-se

(3.3.4) |xj − xi| ≤ |xj − xj−1|+ |xj−1 − xj−2|+ |xj−2 − xj−3|+ · · ·+ |xi+1 − xi|

=
1

2j−2
+

1

2j−3
+

1

2j−4
+ · · ·+ 1

2i−1
=

1

2i−1

(
1

2j−i−1
+

1

2j−i−2
+

1

2j−i−3
+ · · ·+ 1

)
=

1

2i−1

1− 1/2j−i

1− 1
2

≤ 1

2i−2
< ϵ,

Exemplo 3.21. Em geral, se (xi) é tal que ∥xi+1 − xi∥ < ci, onde Si =
∑i

k=1 ck é
convergente, então (xi) é convergente. De fato, mostramos abaixo que a sequência é de
Cauchy, e portanto converge. Note que para i > j, temos
(3.3.5)
∥xi−xj∥ ≤ ∥xi−xi−1∥+∥xi−1−xi−2∥+· · ·+∥xj+1−xj∥ ≤ ci−1+ci−2+· · ·+cj = Si−1−Sj−1.

Como Si converge, então é de Cauchy. Logo dado ϵ > 0, existe K∗ ∈ N tal que i > j > K∗

implica que |Si−1 − Sj−1| < ϵ. Logo, por (3.3.5) temos que i > j > K∗ implica que
∥xi − xj∥ < ϵ e (xi) é de Cauchy.

3.4. Resultados Topológicos

O conceito de sequência é importante também para caracterizar conjuntos quanto à sua
topologia. Apresentamos abaixo alguns resultados nesta direção.

Podemos por exemplo usar sequências para caracterizar conjuntos fechados, como o re-
sultado abaixo mostra.

Lema 3.4.1 (Conjuntos fechados). Seja F ⊂ Rn. As afirmativas abaixo são equivalentes.
(1) F é fechado em Rn.
(2) Se (xk) é sequência convergente, com xk ∈ F para todo k ∈ N, então limk→∞ xk ∈ F .
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Demonstração. (1)⇒(2) (por contradição) Suponha F fechado em Rn, e seja (xk) se-
quência em F com limk→∞ xk = x. Suponha x /∈ F . Como C(F ) é aberto, existe aberto V
contendo x tal que V ∩F = ∅. Logo, para todo k ∈ N, temos xk /∈ V , uma contradição com
limk→∞ xk = x. Portanto x ∈ F .

(1)⇐(2) (por contradição) Suponha que C(F ) não seja aberto. Então existe x ∈ C(F )
tal que para todo k ∈ N existe um ponto em xk ∈ B1/k(x) ∩ F . Logo (xk) é uma sequência
em F que converge para x. Por hipótese, temos que x ∈ F , uma contradição com x ∈ C(F ).
Portanto C(F ) é aberto, e F é fechado. □

A caracterização de fechados dada pelo Lema 3.4.1, é útil na bela aplicação que descre-
vemos abaixo. Seja V ⊂ Rn um subespaço vetorial do Rn, i.e., V é espaço vetorial com as
operações “herdadas” do Rn. Então, dado um ponto x ∈ Rn, pode-se perguntar se existe
algum ponto em V que minimize a distância entre x e V , i.e, se existe x∗ ∈ V tal que

(3.4.1) ∥x− x∗∥ = inf{∥x− y∥ : y ∈ V }.

Outra pergunta natural é se x∗ é único.
Supondo que a norma ∥ · ∥ seja induzida por um produto interno, a resposta é afirmativa

para ambas perguntas, existência e unicidade, como nos mostra o resultado abaixo.

Lema 3.4.2. Seja V subespaço vetorial do Rn e x ∈ Rn. Então existe um único x∗ ∈ V
satisfazendo (3.4.1).

Demonstração. Vamos primeiro mostrar a existência. Note que V é não vazio, pois
0 ∈ V , e portanto

d = inf{∥x− y∥ : y ∈ V }
está bem definido. Para k ∈ N, seja xk ∈ V tal que ∥x − xk∥ < d + 1/k. Usando a lei do
paralelograma, ver exercício 2.19, temos que

∥2x− xi − xj∥2 + ∥xi − xj∥2 = 2∥x− xi∥2 + 2∥x− xj∥2,

para todo i, j ∈ N. Mas V é subespaço vetorial, logo (xi + xj)/2 ∈ V , e portanto,

2d ≤ 2∥x− (xi + xj)/2∥ = ∥2x− xi − xj∥.

Temos então que

(3.4.2) ∥xi − xj∥2 = 2∥x− xi∥2 + 2∥x− xj∥2 − ∥2x− xi − xj∥2

≤ 2∥x− xi∥2 + 2∥x− xj∥2 − 4d2.

Mas então, (xk) é de Cauchy, pois ∥x−xi∥ → d. De fato, dado ϵ > 0, existe K∗ tal que para
todo k ≥ K∗ tem-se ∥x− xk∥2 − d2 < ϵ/2. Logo, por (3.4.2), ∥xi − xj∥2 < ϵ se i, j ≥ K∗.

Seja x∗ = limk→∞ xk. Mas V é fechado em Rn (por quê? ver exercício 3.23), e portanto
x∗ ∈ V . Finalmente, para todo k ∈ N,

d ≤ ∥x− x∗∥ ≤ ∥x− xk∥+ ∥xk − x∗∥.

Tomando o limite k → ∞, temos ∥x− x∗∥ = d, como queríamos.
Para mostrar a unicidade, seja y ∈ V , com ∥x− y∥ = d. Então (y + x∗)/2 ∈ V , e

d2 ≤ ∥x− (y + x∗)/2∥2.
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Portanto, usando novamente a lei do paralelograma, temos
4d2 + ∥y − x∗∥2 ≤ ∥2x− y − x∗∥2 + ∥y − x∗∥2 = 2∥x− y∥2 + 2∥x− x∗∥2 = 4d2.

Logo ∥y − x∗∥ = 0 e y = x∗. □

Observação. Pode-se mostrar também que x∗ é o único vetor de V tal que x − x∗ é
ortogonal a V , i.e.,

(x− x∗) · y = 0

para todo y ∈ V .

Também os conceito de fronteira de um conjunto e o de conjunto aberto pode ser dado
através de sequências.

Lema 3.4.3 (Pontos de fronteira). Um ponto x é de fronteira de Ω ⊂ Rn se e somente se
existe sequência em Ω e sequência em C(Ω), ambas convergentes para x.

Lema 3.4.4 (Conjuntos abertos). Seja Ω ⊂ Rn. As afirmativas abaixo são equivalentes.
(1) Ω é aberto em Rn.
(2) Seja x ∈ Ω e (xk) contida em Rn com xk → x. Então existe K∗ tal que

k ≥ K∗ =⇒ xk ∈ Ω.

3.5. Sequências contráteis e o método das aproximações sucessivas

Dizemos que uma sequência (xk) é contrátil se existem número real λ < 1 e um natural
K∗ tais que

∥xk+2 − xk+1∥ ≤ λ∥xk+1 − xk∥
para todo k > K∗.

Teorema 3.5.1. Toda sequência contrátil é convergente

Demonstração. Seja (xk) sequência contrátil com constante λ < 1. Sem perda de
generalidade, supomos nesta demonstração que K∗ = 1, isto é

∥xk+2 − xk+1∥ ≤ λ∥xk+1 − xk∥
para todo k ∈ N. Então,

∥xk+2 − xk+1∥ ≤ λ∥xk+1 − xk∥ ≤ λ2∥xk − xk−1∥ ≤ · · · ≤ λk∥x2 − x1∥.
Logo, para m ∈ N e k ≥ m temos

∥xk − xm∥ ≤ ∥xk − xk−1∥+ ∥xk−1 − xk−2∥+ · · ·+ ∥xm+1 − xm∥
≤

(
λk−2 + λk−3 + · · ·+ λm−1

)
∥x2 − x1∥ = λm−1

(
λk−m−1 + λk−m−2 + · · ·+ 1

)
∥x2 − x1∥

= λm−11− λk−m

1− λ
∥x2 − x1∥ ≤ λm−1

1− λ
∥x2 − x1∥.

Logo, dado ϵ > 0 se K∗ ∈ N é tal que
λK

∗−1

1− λ
∥x2 − x1∥ < ϵ,

então ∥xk − xm∥ < ϵ para todo m ≥ K∗, k ≥ K∗. Portanto a sequência é de Cauchy e é
convergente □
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Exemplo 3.22. Seja a sequência definida por

x0 = a > 0, xn+1 = 1 +
1

xn
.

Queremos mostrar que (xn) é contrátil, e portanto convergente.
Seja f : R+ → R dada por f(x) = 1+1/x. Então a sequência é definida por xn+1 = f(xn),

e temos portanto que x∗ = (1 +
√
5)/2 é a única solução em R+ para a equação x = f(x).

Usaremos mais tarde o fato de que x > x∗ implica em x2 > x + 1. Note ainda que f é tal
que

(3.5.1) x > y =⇒ f(x) < f(y),

e que se x, y ∈ R+ e c < min{x, y}, então

(3.5.2) |f(x)− f(y)| =
∣∣∣∣1x − 1

y

∣∣∣∣ = |x− y|
xy

≤ |y − x|
c2

.

A fim de utilizar (3.5.2), mostraremos que (xn) é limitada inferiormente por algum número
maior que um.

Temos então três possibilidades: a = x∗, a > x∗ ou a < x∗. Quando a = x∗, a série é
trivialmente convergente pois temos x1 = x2 = · · · = x∗. Suponha então que x0 = a > x∗.
A análise para a < x∗ é similar.

Então x1 = f(x0) < f(x∗) = x∗. Por indução temos que x2n−2 > x∗ e x2n−1 < x∗. De
fato, como estas desigualdades são verdadeiras para n = 1 e supondo também corretas para
n = k temos x2k = f(x2k−1) > f(x∗) = x∗ e x2k+1 = f(x2k) < f(x∗) = x∗, como queríamos
demonstrar.

Temos então x0 = a, x1 = (a+ 1)/a, e

x2 = 1 +
1

x1
=

2a+ 1

a+ 1
<
a+ a2

a+ 1
= a = x0,

onde usamos que a + 1 < a2. Da mesma forma, x3 = 1 + 1/x2 > 1 + 1/x0 = x1. Portanto
temos que para n = 1 vale x2n < x2n−2 e x2n+1 > x2n−1. Supondo estas duas desigualdades
para n = k temos

x2k+2 = 1 + 1/x2k+1 < 1 + 1/x2k−1 = x2k, x2k+3 = 1 + 1/x2k+2 > 1 + 1/x2k = x2k+1,

como queríamos demonstrar.
Concluímos que (x2n−1) é sequência não decrescente, e que |x2n| > x∗ > x1 para todo

n ∈ N. Portanto (xn) é limitada inferiormente por x1.
Aplicando agora (3.5.2), temos

|xk+1 − xk| = |f(xk)− f(xk−1)| ≤
1

x21
|xk − xk−1|.

Como x1 = 1 + 1/a > 1, então (xn) é contrátil e portanto converge.
Para achar o valor limite, basta resolver x = f(x), e temos que limn→∞ xn = x∗.

Em várias apliações importantes é necessário achar um ponto fixos, i.e., uma solução do
tipo x = T (x), onde T : Rn → Rn é dada. É natural perguntar-se se dado algum ponto
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inicial x0, a sequência gerada por

xk = T (xk−1), k ∈ N,

converge para um ponto fixo. Esta forma de determinar pontos fixos é denominada método
das aproximações sucessivas.

No caso de T ser uma “contração”, (xk) será contrátil, e portanto convergente. É exata-
mente isto que mostraremos a seguir.

Definição 3.5.2. Seja A ⊂ Rn. Dizemos que uma função T : A→ Rn é uma contração
se existir λ < 1 tal que

∥T (y)− T (x)∥ ≤ λ∥y − x∥

para todo x, y ∈ A.

Temos então o seguinte resultado.

Teorema 3.5.3. Seja A ⊂ Rn fechado, e T : A → A uma contração. Então T possui
um e somente um ponto fixo em A. Além disto, para qualquer x0 ∈ A, a sequência definida
por

(3.5.3) xk = T (xk−1), k ∈ N,

converge para o ponto fixo de T em A.

Demonstração. Suponha que exista λ < 1 tal que

∥T (y)− T (x)∥ ≤ λ∥y − x∥

para todo x, y ∈ A.
Mostraremos primeiro a unicidade. Dados dois pontos fixos x e y de T em A, temos que

∥x− y∥ = ∥T (x)− T (y)∥ ≤ λ∥x− y∥ =⇒ (1− λ)∥x− y∥ ≤ 0,

o que só é possível se x = y, e portanto o ponto fixo, se existir, é único.
Note que (xk) é contrátil pois

∥xk+2 − xk+1∥ = ∥T (xk+1)− T (xk)∥ ≤ λ∥xk+1 − xk∥.

Logo (xk) converge, e seja x∗ seu limite. Como A é fechado, então x∗ ∈ A. Para mostrar
que x∗ é ponto fixo de T , note que para todo k ∈ N, temos que

∥x∗ − T (x∗)∥ ≤ ∥x∗ − xk∥+ ∥xk − T (x∗)∥ = ∥x∗ − xk∥+ ∥T (xk−1)− T (x∗)∥
≤ ∥x∗ − xk∥+ λ∥xk−1 − x∗∥.

Tomando o limite k → ∞ dos dois lados da desigualdade obtemos que ∥x∗ − T (x∗)∥ = 0, e
portanto x∗ = T (x∗). □
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3.6. Sequências em R

Vários conceitos e propriedades de sequências fazem sentido em R, mas não em Rn para
n maior que um. Por exemplo, o conceito de monotonicidade, a definição de lim sup, lim inf
não se generalizam no Rn. E propriedades, como por exemplo o limite de uma sequência
positiva é não negativo também não. Este por sinal é o primeiro resultado que apresentamos
a seguir.

Outro resultado importante para se tentar achar um “candidato” a limite nos diz que se
temos uma sequência “sanduichadas” entre outras duas sequências convergentes que têm o
mesmo limite, então a sequência do meio converge e tem também o mesmo limite.

Lema 3.6.1. Seja (xk) convergente com limxk = x. Se existe K∗ ∈ N tal que xk ≥ 0
para todo k ≥ K∗, então x ≥ 0.

Demonstração. (por contradição) Suponha que x < 0. Seja então ϵ = −x/2 > 0.
Como (xk) converge para x, seja K̂ ∈ N tal que |xk − x| < ϵ para todo k ≥ K̂. Seja
K = max{K∗, K̂}. Logo, xK ∈ (x− ϵ, x+ ϵ), isto é, xK < x+ ϵ = x/2 < 0. Obtivemos então
uma contradição pois K ≥ K∗, e então xK não pode ser negativo. □

Observação. Note que o resultado acima não pode ser modificado tal que

xk > 0 para todo k ≥ K∗, então limxk > 0.

De fato, considere a sequência (1/k) de números positivos, mas com limite igual a zero.

Corolário 3.6.2. Se (xk) e (yk) são convergentes com limxk = x e lim yk = y, e se
existe K∗ ∈ N tal que xk ≥ yk para todo k > K∗, então x ≥ y.

Demonstração. Se zk = xk − yk, então lim zk = limxk − lim yk = x − y. O presente
resultado segue então do Lema 3.6.1. □

Lema 3.6.3 (sanduíche de sequências). Sejam (xk), (yk) e (zk) sequências tais que xk ≤
yk ≤ zk para todo k > K∗, para algum K∗ ∈ N. Suponha ainda que (xk) e (zk) convirjam
com limxk = lim zk. Então (yk) converge e lim yk = limxk = lim zk.

Demonstração. Seja a = limxk = lim zk. Dado ϵ > 0, existe K̂ tal que |xk − a| < ϵ e
|zk − a| < ϵ para todo k > K̂. Logo

−ϵ < xk − a ≤ yk − a ≤ zk − a < ϵ =⇒ |yk − a| < ϵ

para todo k > max{K̂,K∗}, como queríamos demonstrar. □

Exemplo 3.23. limk→∞
(
(sin k)/k

)
= 0 pois como −1 ≤ sin k ≤ 1, então

−1/k ≤ (sin k)/k ≤ 1/k,

e o resultado segue do lema 3.6.3.

Lema 3.6.4 (teste da razão). Seja (xk) sequência de números positivos tal que (xk+1/xk)
convirja e limk→∞(xk+1/xk) < 1. Então (xk) converge e limk→∞ xk = 0.
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Demonstração. Seja L = limk→∞(xk+1/xk). Então, por hipótese, L < 1. Seja r tal
que L < r < 1, e seja ϵ = r − L > 0. Portanto existe K∗ tal que xk+1/xk < L + ϵ = r para
todo k ≥ K∗. Logo,

0 < xk+1 < xkr < xk−1r
2 < xk−2r

3 < · · · < xK∗rk−K∗+1 para todo k ≥ K∗.

Se c = xK∗r−K∗ , então 0 < xk+1 < crk+1. O resultado segue do Corolário 3.1.6, pois como
r < 1, então limk→∞ rk = 0. □

Corolário 3.6.5. Seja (xk) tal que xk ̸= 0 para todo k ∈ N e

L = lim
k→∞

|xk+1|
|xk|

existe e L > 1. Então para todo C ∈ R existe K∗ ∈ N tal que
k ≥ K∗ =⇒ |xk| > C.

Demonstração. Basta considerar o teste da razão para yk = 1/|xk|. Neste caso,

lim
k→∞

|yk+1|
|yk|

= lim
k→∞

|xk|
|xk+1|

= lim
k→∞

1
|xk+1|
|xk|

=
1

limk→∞
|xk+1|
|xk|

=
1

L
< 1.

Logo (yk) converge para zero, e para todo C ∈ R+ existe K∗ tal que

k ≥ K∗ =⇒ |yk| <
1

C
.

Portanto para k ≥ K∗ temos |xk| > C. □

Observação. Observe que no Corolário 3.6.5 acima, (xk) não é limitada e portanto não
converge.

Exemplo 3.24. Seja (xk) = k/2k. Então

lim
k→∞

(xk+1

xk

)
= lim

k→∞

(k + 1

2k+1

2k

k

)
=

1

2
lim
k→∞

(k + 1

k

)
=

1

2
.

Pelo teste da razão temos limk→∞(xk) = 0

Exemplo 3.25. Note que para xk = 1/k, temos limk→∞ xk+1/xk = 1 e (xk) converge.
Entretanto, para yk = k, temos limk→∞ yk+1/yk = 1 mas (yk) não convergente. Portanto o
teste não é conclusivo quando o limite da razão entre os termos é um.

3.6.1. Sequências Monótonas. Um classe muito especial de sequências é a de sequên-
cias monótonas. Uma sequência monótona é tal que seus valores não “oscilam”, i.e., eles ou
nunca diminuem ou nunca aumentam. Pode-se ver que a definição de sequência monótona é
restrita a uma dimensão.

Definição 3.6.6. Dizemos que uma sequência (xk) é monótona crescente, ou simples-
mente crescente se x1 ≤ x2 ≤ · · · ≤ xk ≤ . . . . Da mesma forma uma sequência (xk) é
monótona decrescente, ou simplesmente decrescente se x1 ≥ x2 ≥ · · · ≥ xk ≥ . . . . Final-
mente, uma sequência é monótona se for crescente ou decrescente.

Exemplo 3.26. (1, 2, 3, 4, . . . ) e (1, 2, 3, 3, 3, 3, . . . ) são crescentes.

Exemplo 3.27. (1/k) é decrescente.
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Exemplo 3.28. (−1, 1,−1, 1,−1, . . . ) não é monótona.

Teorema 3.6.7. Uma sequência monótona é convergente se e somente se é limitada.
Além disso, se (xk) é crescente, então limk→∞(xk) = sup{xk : k ∈ N}. Da mesma forma,

se (xk) é decrescente, então limk→∞(xk) = inf{xk : k ∈ N}.

Demonstração. ( =⇒ ) Já vimos que toda sequência convergente é limitada.
( ⇐= ) Suponha (xk) crescente e limitada. Seja x = sup{xk : k ∈ N}. Então dado ϵ > 0,

existe K∗ tal que x − ϵ < xK∗ ≤ x < x + ϵ, pois x é o supremo. Logo, para todo k > K∗

temos x − ϵ < xK∗ ≤ xk ≤ x < x + ϵ, portanto xk converge para x. Se a sequência for
não-crescente, a demonstração é análoga. □

Exemplo 3.29. (ak) diverge se a > 1 pois não é limitada.

Exemplo 3.30. (ak) converge se 0 < a ≤ 1 pois é monótona decrescente e limitada.
Além disso, segue-se para a < 1 que limk→∞(ak) = 0, pois inf{ak : k ∈ N} = 0.

Exemplo 3.31. Seja y1 = 1 e yn+1 = (1 + yn)/3. Mostraremos que (yn) é convergente
e achamos seu limite. Note que y2 = 2/3 < 1 = y1. Vamos mostrar por indução que
0 < yn+1 < yn. Esta afirmativa vale para n = 1. Suponha verdadeira para n = k − 1, isto é
0 < yk < yk−1. Então para n = k temos

yk+1 = (1 + yk)/3 < (1 + yk−1)/3 = yk,

e como yk > 0, então yk+1 > 0, como queríamos. Portanto a sequência é monótona não
crescente e limitada inferiormente por zero. Portanto converge. Seja y seu limite. Então

y = lim
n→∞

yn+1 = lim
n→∞

(1 + yn)/3 = (1 + y)/3.

Logo y = 1/2.

Exemplo 3.32. Seja y1 = 1, e yn+1 = (2yn+3)/4. Note que y2 = 5/4 > y1. Para mostrar
que yn+1 > yn em geral, usamos indução. Note que para n = 1 o resultado vale. Suponha
agora que valha também para n = k para algum k, i.e., yk+1 > yk. Então

yk+2 =
1

4
(2yk+1 + 3) >

1

4
(2yk + 3) = yk+1.

Logo, por indução, yn+1 > yn para todo n ∈ N, e (yn) é não decrescente. Para mostrar que
é limitada, note que |y1| < 2. Mais uma vez usamos indução a fim de provar que em geral
|yn| < 2. Suponha que |yk| < 2. Logo,

|yk+1| = |1
4
(2yk + 3)| ≤ 1

4
(2|yk|+ 3) <

7

4
< 2.

Por indução, segue-se que |yn| < 2 para todo n ∈ N. Como (yn) é monótona e limitada,
então é convergente. Seja y = limn→∞(yn). Então

y = lim
n→∞

(yn) = lim
n→∞

((2yn + 3)/4) = ((2y + 3)/4).

resolvendo a equação algébrica acima, temos y = 3/2.
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Exemplo 3.33. Seja 0 < a < b, e defina a0 = a e b0 = b. Seja

ak+1 =
√
akbk, bk+1 =

1

2
(ak + bk),

para k ∈ N. Então (ak) e (bk) convergem para o mesmo limite.
Vamos mostrar por indução que

(3.6.1) ai+1 > ai, 0 < ai < bi, bi+1 < bi para i = 0, 1, . . . .

Para i = 0 temos a0 = a < b = b0. Logo, usando que y > x implica em √
y >

√
x, e que a0 e

b0 são positivos, temos a1 =
√
a0b0 > a0 > 0. Além disso, b1 = (a0 + b0)/2 < b0 pois a0 < b0.

Portanto (3.6.1) vale para i = 0. Suponha que valha também para i = k. Então

0 < ak < bk =⇒ 0 <
(√

ak −
√
bk
)2

=⇒
√
akbk <

1

2
(ak + bk) =⇒ ak+1 < bk+1.

Note também que ak+1 > ak > 0. Finalmente,

ak+2 =
√
ak+1bk+1 > ak+1, bk+2 =

ak+1 + bk+1

2
< bk+1.

Logo (3.6.1) vale também para i = k+1. Portanto temos que (ak) é monótona não decrescente
e limitada superiormente, enquanto (bk) é monótona não crescente e limitada superiormente.
Ambas então convergem e sejam A e B seus limites. Neste caso teremos

A =
√
AB, B =

1

2
(A+B).

e portanto A = B.

3.6.2. Limite superior e inferior. Uma noção importante tratando-se de sequências é
a de limites superiores (lim sup) e inferiores (lim inf), que nos dá informações sobre sequências
limitadas mesmo quando estas não são convergentes.

Seja (xk) sequência limitada de reais, e defina

V = {v ∈ R : existem finitos k ∈ N tais que xk > v}.
Definimos então

lim supxk = inf V.

De forma análoga, se

W = {v ∈ R : existem finitos k ∈ N tais que xk < v},
definimos

lim inf xk = supW.

Lema 3.6.8. Seja (xk) sequência de reais limitada. Então (xk) converge para x se e
somente se lim supxk = lim inf xk = x.

Exemplo 3.34. Seja (xk) = (−1)k. Então lim inf xk = −1 e lim supxk = 1.

Exemplo 3.35. Seja

(zk) =

(
(−1)k +

(−1)k

k

)
.

Então lim inf zk = −1 e lim sup zk = 1.
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3.7. Exercícios

Exercício 3.1. Demonstre o Lema 3.1.2.

Exercício 3.2. Demonstrar o Lema 3.1.9.

Exercício 3.3. Seja C ⊆ Rn não-vazio, y ∈ Rn, e A = {∥y − x∥ : x ∈ C}. Mostre que
existe o ínfimo de A, e que

inf A = 0 ⇐⇒ existe sequência em C convergente para y.

Exercício 3.4. Seja F um conjunto fechado em Rn não vazio, e seja y /∈ F . Mostre que
existe x∗ ∈ F tal que ∥x∗ − y∥ = inf{∥x− y∥ : x ∈ F}.

Exercício 3.5. Mostre que se A ⊂ R não vazio e limitado, e s = supA, então existe
sequência em A convergindo para s.

Exercício 3.6. Suponha que k : N → N seja uma função estritamente crescente, i.e.,
i > j implica em k(i) > k(j). Mostre então que k(i) ≥ i.

Exercício 3.7. Dê um exemplo de uma sequência (xn) em R tal que toda subsequência
convergente de (xn) convirja para x, mas que (xn) não seja convergente.

Exercício 3.8. Seja (xk) sequência em Rn limitada, e tal que toda subsequência con-
vergente converge para x ∈ Rn. Mostre que (xk) converge para x.

Exercício 3.9. Ache uma sequência (xn) de números reais tal que todos os pontos de
[0, 1] sejam limites de alguma subsequência de (xn). Esboce o motivo de seu exemplo estar
correto.

Exercício 3.10 ([6]). Decida se as propriedades abaixo são equivalentes à definição de
sequências de Cauchy:

i) limk→∞ sup{∥xi − xk∥ : i ≥ k} = 0.
ii) para todo ϵ > 0 existe k ∈ N tal que

i ≥ k =⇒ ∥xi − xk∥ < ϵ.

Exercício 3.11. Toda sequência de Cauchy é contrátil?

Exercício 3.12. Seja (xk) sequência de Cauchy contendo uma subsequência convergente
para x. Mostre que (xk) converge para x.

OBS: Não pode usar que toda sequência de Cauchy converge.

Exercício 3.13. Seja (xk) sequência em Rn, e dk = ∥xk+1−xk∥. Decida se a afirmativa
“Se lim

k→∞
dk = 0, então (xk) converge”

é verdadeira ou não. Se for verdadeira, demonstre-a. Caso contrário, apresente um contra-
exemplo.

Exercício 3.14. Dizemos que uma sequência (xj) no Rn tem variação limitada se a
sequência (vk) de reais definida por

vk =
k∑

i=1

∥xi+1 − xi∥

converge. Mostre que toda sequência de variação limitada é convergente.
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Exercício 3.15. Seja aj sequência de números reais, e sejam as sequências

bn =
n∑

j=1

aj, cn =
n∑

j=1

|aj|.

Mostre que se (cn) converge, então (bn) converge.

Exercício 3.16. Mostre que o Teorema 3.3.3 (toda sequência de Cauchy em R é con-
vergente) é equivalente aos seguintes resultados:

(1) a propriedade do supremo de R (página 10)
(2) teorema dos intervalos encaixantes (Teorema 2.1.8)
(3) teorema de Bolzano–Weiertrass em R (Teorema 2.4.2)

(Ver Exercício 2.17)

Exercício 3.17. Demonstrar o Lema 3.4.3.

Exercício 3.18. Demonstrar o Lema 3.4.4.

Exercício 3.19. Seja S ⊂ Rn. Mostre que x é ponto de acumulação de S se e somente
se existe sequência de pontos (xj) em S\{x} que converge para x.

Exercício 3.20. Seja A ⊂ Rn. Mostre que um ponto x∗ é aderente (ver definição no
problema 2.39) a A se e somente se existe sequência convergente e contida em A, e que tenha
x∗ como seu limite. Mostre que o conjunto de pontos aderentes a A é fechado.

Exercício 3.21. Apresente e justifique um exemplo para cada uma das situações abaixo:
(a) Uma sequência convergente (xj), mas que {xj : j ∈ N} não contenha pontos de acumu-

lação.
(b) Um conjunto com infinitos pontos de aderência, mas sem pontos de acumulação.

Exercício 3.22. Seja (xk) sequência convergente de pontos distintos em Rn, e seja
x = limk→∞ xk. Mostre que x é ponto de acumulação de S = {xk : k ∈ N}. Dê um exemplo
de uma sequência convergente cujo limite não é ponto de acumulação de S.

Exercício 3.23. Seja V um subespaço vetorial de Rn. Mostre que V é fechado em Rn

Exercício 3.24. Seja K ⊆ Rn. Mostre que as afirmativas abaixo são equivalentes:
(1) K é compacto
(2) Todo subconjunto infinito de K tem ponto de acumulação
(3) toda sequência contida em K possui subsequência convergente com limite contido

em K
(4) K é completo (i.e., toda sequência de Cauchy converge) e totalmente limitado (ver

definição do exercício 2.67).

Observação. No Rn, pode-se definir compacidade usando qualquer uma das propri-
edades acima, ou mesmo definir conjuntos compactos como sendo fechados e limitados.
Um conjunto que satisfaz (3) é chamado de sequencialmente compacto. A equivalência
(1) ⇔ (2) ⇔ (3) ⇔ (4) vale para qualquer espaço métrico. Ver Exercício 3.50.
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Exercício 3.25. No exercício 3.24, mostre que (1) ⇔ (2) ⇔ (3) ⇔ (4) sem usar o
Teorema de Heine–Borel. (Dica: mostre que (1) ⇒ (2), (2) ⇒ (3), (3) ⇔ (4), e depois
mostre que (3) + (4) ⇒ (1). Para esta última implicação, mostre por contradição usando
(3) que para qualquer cobertura, existe n ∈ N tal que toda bola de raio 1/n está contida em
algum aberto da cobertura. Extraia daí e de (4) uma subcobertura.)

Exercício 3.26. Sejam K1 e K2 dois conjuntos compactos, e A = {∥x1 − x2∥ : x1 ∈
K1, x2 ∈ K2}. Mostre que A é compacto.

Exercício 3.27. Diga se as afirmativas abaixo são verdadeiras ou falsas, provando suas
afirmações. Em todos os casos, K1 e K2 são subconjuntos do Rn, e A = {∥x1 − x2∥ : x1 ∈
K1, x2 ∈ K2}.

(1) K1 e K2 fechados implica em A compacto.
(2) K1 e K2 fechados implica em A fechado.
(3) K1 compacto e K2 fechado implica em A fechado.

Exercício 3.28. Apresente uma sequência (xk) em Rn tal que ∥xk+1−xk∥ < ∥xk−xk−1∥
para todo k > 1 mas que (xk) não convirja.

Exercício 3.29. Sejam (xn) e (yn) duas sequências de números reais, convergentes para
x e y respectivamente, onde x < y. Mostre que existe um número natural N tal que xn < yn
para todo n maior que N .

Exercício 3.30. Mostre que uma sequência limitada de números reais (xn), monótona
não decrescente converge para “seu supremo”, i.e., converge para sup{xn : n ∈ N}.

Exercício 3.31. Seja (cj)j∈N sequência em R e defina

ak =
k∑

j=1

|cj| para k ∈ N.

Mostre que se a sequência (ak)k∈N é limitada então é convergente

Exercício 3.32. Seja (xk) sequência monótona em R, e suponha que (xk) contenha
subsequência convergente. Mostre que (xk) converge.

Exercício 3.33. Seja x1 ∈ [0,+∞), e seja a sequência de reais definida por

xn+1 =
√
xn para n ∈ N.

Determine para quais valores de x1 ∈ [0,+∞) a sequência (xn) converge, e para qual valor.
Demonstre suas afirmativas. (Obs: Para toda sequência convergente (yn), vale a propriedade
limn→∞

√
yn =

√
limn→∞ yn.)

Exercício 3.34 (Bartle [3]). Seja x1 = 1 e xn+1 = (2+xn)
1/2. Mostre que xn é monótona

e limitada, e portanto converge. Ache seu limite.

Exercício 3.35 (Bartle [3]). Seja a > 0 e x1 > 0. Mostre que a sequência dada por
xn+1 = (a+ xn)

1/2 converge.

Exercício 3.36. Demonstre o Lema 3.6.8.



54 3. SEQUÊNCIAS

Exercício 3.37. Seja A ⊂ Rn fechado e não vazio, e considere a função d : Rn → R
definida por

d(x) = inf {∥x− a∥ : a ∈ A}.

Mostre que d−1({0}) = A. Além disto, mostre que

(i) existe a ∈ A tal que d(x) = ∥x− a∥.
(ii) este elemento a dado por (i) é único em geral?
(iii) o ítem (i) ainda é verdade se A não for fechado?

Mostre que se (xj)j∈N é sequência em Rn convergente para x, então
(
d(xj)

)
j∈N converge para

d(x).

Exercício 3.38. Seja (xk) uma sequência em Rn convergente, e seja x seu limite. Mostre
que o conjunto

S = {x} ∪ {xi : i ∈ N} = {x,x1,x2,x3, . . . }

é compacto.

Exercício 3.39. Resolva o problema 3.38 sem usar Heine-Borel.

Exercício 3.40 (Teorema da interseção de Cantor). Suponha que {Kj} seja uma coleção
de conjuntos não vazios, compactos, com K1 ⊇ K2 ⊇ K3 ⊇ . . . . Mostre que ∩∞

j=1Kj é
compacto e não vazio.

Exercício 3.41 (Teorema da interseção de Cantor). Resolva o Exercício 3.40 sem usar
Heine–Borel.

Exercício 3.42. Seja G = {Ki : i ∈ N} uma coleção de conjuntos compactos. Suponha
que toda interseção finita seja não vazia, i.e.,

Ki1 ∩Ki2 ∩ · · · ∩Kil ̸= ∅ para quaisquer i1, i2, . . . il ∈ N.

Mostre (sem usar o Teorema da Interseção de Cantor) que ∩∞
i=1Ki ̸= ∅.

Exercício 3.43. Faça a questão (3.42) sem usar Heine–Borel nem o Teorema da Inter-
seção de Cantor.

Exercício 3.44. Dadas duas sequências limitadas (xk) e (yk), mostre que

lim sup(xk + yk) ≤ lim sup(xk) + lim sup(yk).

Exercício 3.45. Seja (xk) sequência em R, limitada. Se si = sup{xj : j ∈ N, j ≥ i},
mostre que

lim supxk = inf{si : i ∈ N}.

Exercício 3.46. Seja (xk) sequência em R, limitada, e seja L o conjunto de números
reais x tais que existe uma subsequência de (xk) convergindo para x. Se L ̸= ∅, mostre que
supL = lim sup xk.
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3.7.1. Sessão Topológica & métrica.

Exercício 3.47. Mostre que, dado uma espaço topológico, nem todo subconjunto fe-
chado é completo e que nem todo subconjunto completo é fechado.

Exercício 3.48. Seja X espaço topológico completo e F ⊂ X. Mostre que F é completo
se e somente se é fechado em X.

Exercício 3.49. Considere as seguintes definições para um espaços topológico:
(1) sequencialmente compacto: toda sequência tem subsequência convergente
(2) enumeravelmente compacto: toda cobertura aberta enumerável tem subcobertura

finita
(3) pseudocompacto: toda função real contínua é limitada
(4) compacto acumulativo: toda conjunto infinito tem ponto de acumulação

Mostre que
(1) espaços compactos são enumeravelmente compactos
(2) espaços sequencialmente compactos são enumeravelmente compactos
(3) espaços enumeravelmente compactos são pseudocompactos

Exercício 3.50. Mostre que num espaço métrico, todas as definições do exercício 3.49
são equivalentes à definição de compacidade.

Exercício 3.51. O que muda no exercício 3.27 se considerarmos K1 e K2 como subcon-
juntos de um espaço métrico?

Exercício 3.52 ([6]). Um espaço vetorial normado é de Banach se for completo. Seja
c0 o espaço das sequências em R que convergem para 0, e ∥(xk)k∈N∥c0 = sup{xk : k ∈ N}.
Mostre que c0 é de Banach.





CAPíTULO 4

Continuidade e Funções Contínuas

1 Um dos mais importantes tópicos de análise é o estudo de funções e suas propriedades,
em particular a continuidade. Seja Ω ⊆ Rm. Dizemos que uma função f : Ω → Rn é contínua
em x ∈ Ω, se para toda vizinhança aberta V de f(x) existir vizinhança aberta U de x tal
que

y ∈ U ∩ Ω =⇒ f(y) ∈ V.

Ver Figura 1. Finalmente, dizemos que f é contínua em Ω′ ⊆ Ω se f for contínua em todos
os pontos de Ω′.

Dividimos o estudo de funções contínuas analisando primeiro propriedades locais, se-
guido das propriedades globais. A menos que seja explicitamente indicado, neste capítulo
utilizaremos a notação acima.

4.1. Propriedades locais

Começamos observando que a função f é contínua em todo ponto x ∈ Ω que não seja
ponto de acumulação de Ω. De fato, se x ∈ Ω não é ponto de acumulação, existe vizinhança
aberta U de x tal que Ω ∩ U = {x}. Logo para todo vizinhança aberta V de f(x), temos
que

y ∈ Ω ∩ U =⇒ y = x =⇒ f(y) = f(x) ∈ V

Logo f é necessariamente contínua em x.
Abaixo descrevemos outras formas de checar a continuidade de uma função num ponto.
1Última Atualização: 25/02/2025
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Figura 1. Continuidade de f(x).
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Lema 4.1.1. Seja f : Ω → R, e x ∈ Ω ⊆ Rn. Então as afirmativas abaixo são equivalen-
tes.

(1) f é contínua em x.
(2) Para todo ϵ > 0 existe δ > 0 tal que

y ∈ Ω, ∥x− y∥ < δ =⇒ ∥f(x)− f(y)∥ < ϵ.

(3) Se (xk) é sequência em Ω e limk→∞ xk = x, então limk→∞ f(xk) = f(x).

Observação. Pode-se notar que dada uma função contínua como no Lema 4.1.1, δ de-
pende de ϵ e x. Um resultado curioso afirma entretanto que esta dependância é contínua [15].

Outro resultado importante é o seguinte critério de descontinuidade: f não é contínua
em x se e somente se existe sequência (xk) em Ω convergindo para x mas

(
f(xk)

)
não

convergindo para f(x).

Uma noção que pode ser útil em algumas ocasiões é a de limites de funções. Se x for
ponto de acumulação de Ω, dizemos que p é o limite de f em x se para toda vizinhança
aberta V de p existir vizinhança aberta U de x tal que

y ∈ U ∩ Ω, y ̸= x =⇒ f(y) ∈ V.

Neste caso, escrevemos p = limy→x f(y), e dizemos que f converge para p no ponto x. Uma
observação a respeito da definição acima é que só a utilizamos para pontos de acumulação
do domínio. Note também que a noção de limite em x independe do valor de f em x. Na
verdade, f não precisa nem estar definida neste ponto.

As seguintes afirmativas são equivalentes:
(1) p = limy→x f(y)
(2) Para todo ϵ > 0 existe δ > 0 tal que

y ∈ Ω\{x}, ∥y − x∥ < δ =⇒ ∥f(y)− p∥ < ϵ.

(3) Para toda sequência (xk) em Ω\{x}, tem-se

xk → x =⇒ f(xk) → p.

Observação. Note algumas diferenças na definição de limite de função e continuidade
num ponto x:

(1) Para definir limite, a função não precisa estar definida em x, e mesmo que esteja,
o valor não tem importância. Mas faz parte da definição que x seja ponto de
acumulação do domínio da função.

(2) Na definição de continuidade, a função tem que estar definida em x, mas este ponto
não necessariamente é de acumulação.

Se x ∈ Ω for ponto de acumulação de Ω, então

f é contínua em x ⇐⇒ f(x) = lim
y→x

f(y).

Exemplo 4.1. g(x) = x é contínua em R. De fato, para todo c ∈ R, temos limx→c g(x) =
c = g(c).
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Figura 2. Gráfico de sgn(x), que é descontínua em x = 0.

Exemplo 4.2. Considere A ∈ L(Rm,Rn), isto é, A : Rm → Rn é aplicação linear e a
norma ∥A∥ está bem definida (ver página 17). Seja f : Rm → Rn dada por f(x) = A(x)+c,
onde c ∈ Rn é vetor constante. Então f é contínua.

De fato, dado ϵ > 0, seja δ = ϵ/∥A∥. Logo, para todos x, y ∈ Rm tem-se

∥x− y∥ < δ =⇒ ∥f(x)− f(y)∥ = ∥A(x− y)∥ ≤ ∥A∥∥x− y∥ < ∥A∥δ = ϵ.

Exemplo 4.3. Seja A ⊆ Rm conjunto fechado, e f : A → Rn contínua em A, e seja (xk)
sequência de Cauchy em A. Então

(
f(xk)

)
é sequência de Cauchy em Rn.

Realmente, como (xk) é de Cauchy, então converge. Seja x seu limite. Como A é fechado,
então x ∈ A. Posto que f é contínua em A, e portanto em x, então f(xk) converge para
f(x). Logo, f(xk) é convergente. Como toda sequência convergente é de Cauchy, temos que
f(xk) é de Cauchy.

Exemplo 4.4. Seja

sgn(x) =


1 se x > 0,

0 se x = 0,

−1 se x < 0,

como na figura 2.
Tomando-se as sequências (−1/n) e (1/n), ambas convergindo para c = 0 mas nunca

atingindo este valor, tem-se
(
sgn(−1/n)

)
= −1 e

(
sgn(1/n)

)
= 1. Então esta função não

tem limite em c = 0, pois se o limite existe, este tem que ser único. Portanto, a função
sgn(x) não é contínua no zero, já que não existe limx→0 sgn(x).

Exemplo 4.5. Seja f : R → R dada por

f(x) =

{
1 se x ∈ Q,
0 caso contrário,

é descontínua para todo x ∈ R. Para mostrar isto, suponha x ∈ Q, e uma sequência
(xn) em R\Q convergindo para x. Neste caso, limn→∞

(
f(xn)

)
= 0 ̸= 1 = f(x). Da

mesma forma, se x /∈ Q, tomamos uma sequência (xn) em Q convergindo para x, e temos
limn→∞

(
f(xn)

)
= 1 ̸= 0 = f(x).
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As vezes, é possível estender uma função de forma contínua. Seja x /∈ Ω ponto de
acumulação de Ω. Se existir limy→x f(y), então definimos f(x) como sendo este limite, e f
será contínua em x.

Exemplo 4.6. Considere a função

f : R+ → R, f(x) =

{
x, se x ∈ R+ ∩Q,
0, se x ∈ R+\Q.

Então limx→0 f(x) = 0 e podemos estender f continuamente no zero definindo

g : R+ ∪ {0} → R, g(x) =

{
f(x), se x ∈ R+,

0, se x = 0.

Então temos g contínua no zero (e somente no zero).

Exemplo 4.7. É claro que nem sempre tal extensão contínua é possível. Por exemplo no
caso de f : R+ → R dada por f(x) = 1/x, não se pode definir f(0) tal que f : R+∪{0} → R
seja contínua.

4.1.1. Composição de funções. Em geral, se f e g são contínuas, então f +g, f −g,
e no caso unidimensional, fg também o são. Da mesma forma, se h : Ω → R é tal que
h(x) ̸= 0 para todo x do domínio, então f/h é contínua. O próximo resultado garante que
a composição de funções contínuas também é contínua. Denotamos a composição de uma
função f com g por g ◦ f , i.e., g ◦ f(x) = g(f(x)).

Teorema 4.1.2. Sejam Ω ⊆ Rm, R ⊆ Rn, e f : Ω → R e g : R → Rl. Suponha f
contínua em x ∈ Ω e g contínua em f(x) ∈ R. Então a composição g ◦ f : Ω → Rl é
contínua em x.

Demonstração. Seja y = f(x) e W vizinhança aberta de g(y). Como g é contínua
em y, então existe vizinhança aberta V de y tal que

(4.1.1) y′ ∈ V ∩R =⇒ g(y′) ∈ W.

Como f é contínua em x, então existe vizinhança aberta U de x tal que

x′ ∈ U ∩ Ω =⇒ f(x′) ∈ V.

Logo
x′ ∈ U ∩ Ω =⇒ f(x′) ∈ V =⇒ f(x′) ∈ V ∩R =⇒ g(f(x′)) ∈ W,

pois f(x′) ∈ R, já que está imagem de f . Na última implicação usamos ainda (4.1.1). Logo
g ◦ f é contínua em x. □

Exemplo 4.8. A função g(x) = ∥x∥ é contínua em Rm. Realmente, como

|g(x)− g(y)| = | ∥x∥ − ∥y∥ | ≤ ∥x− y∥,
se (xn) converge para x então

|g(xn)− g(x)| ≤ ∥xn − x∥ =⇒ lim
n→∞

(
g(xn)

)
= g(x).

Portanto, se f é contínua em x, entao h(x) = ∥f(x)∥ também o é, pois h = g◦f é composição
de funções contínuas.
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Figura 3. Continuidade em x = 0.

Observação. Note que não podemos concluir a continuidade de f : Rm → Rn, mesmo
que ∥f∥ seja contínua. Por exemplo se f : R → R é tal que

f(x) =

{
−1 se x ≥ 0,

1 se x > 0,

então |f | é contínua mesmo sendo f descontínua.

4.2. Propriedades globais

Algumas propriedades de funções contínuas não estão restritas a apenas um ponto, mas
sim a todo o domínio. Como exemplos citamos preservação de compacidade, e a continuidade
uniforme.

Antes de prosseguirmos com as propriedades e suas aplicações, temos o seguinte resultado
que caracteriza funções contínuas em todo domínio.

Teorema 4.2.1 (Continuidade Global). Seja f : Ω → Rn. Então as afirmativas abaixo
são equivalentes:

(1) f é contínua em Ω
(2) Se V ⊆ Rn é aberto, então existe aberto U tal que U ∩ Ω = f−1(V )
(3) Se H ⊆ Rn é fechado, então existe fechado F tal que F ∩ Ω = f−1(H)

Demonstração. (1) ⇒ (2): Seja f contínua em Ω e V ⊆ Rn aberto. Seja x ∈ f−1(V ).
Como é f contínua, existe aberto Ux contendo x tal que

y ∈ Ux ∩ Ω =⇒ f(y) ∈ V.

Logo Ux ∩ Ω ⊆ f−1(V ). Seja
U = ∪x∈f−1(V )Ux.

Então U é aberto pois é união de abertos, e U ∩ Ω = f−1(V ).
(2) ⇒ (1): Seja x ∈ Ω e V vizinhança aberta de f(x). Por hipótese existe um aberto

U tal que U ∩ Ω = f−1(V ). Mas como f(x) ∈ V , então x ∈ U e portanto U é vizinhança
aberta de x. Além disto, para todo y ∈ U ∩ Ω tem-se f(y) ∈ V .
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(2) ⇒ (3): Seja H ⊆ Rn fechado. Então como C(H) é aberto, temos por hipótese que
existe aberto U tal que U ∩ Ω = f−1(C(H)). Seja F = C(U). Então

x ∈ F ∩ Ω =⇒ x /∈ U =⇒ f(x) /∈ C(H) =⇒ f(x) ∈ H =⇒ F ∩ Ω ⊆ f−1(H).

Por outro lado,

x ∈ f−1(H) =⇒ x /∈ f−1(C(H)) =⇒ x /∈ U∩Ω e x ∈ Ω =⇒ x ∈ F∩Ω =⇒ f−1(H) ⊆ F∩Ω.

Logo f−1(H) = F ∩ Ω.
(3) ⇒ (2): semelhante ao caso anterior. □

Observação. Observe que pelas definições de abertos e fechados relativos dadas nos
Exercícios 2.30, 2.31, o Teorema da Continuidade Global (Teorema 4.2.1) diz simplesmente
que uma função f : Ω → Rn é contínua em Ω se e somente se imagens inversas de abertos
são abertos em Ω e se e somente se imagens inversas de fechados são fechados em Ω.

Observação. Note que U aberto e f contínua não implica em f(U) aberto. Da mesma
forma, F fechado não implica em f(F ) fechado. Como exemplo tome f(x) = x2 e U = (−1, 1)
implica em f(U) = [0, 1). E se F = [1,+∞), que é fechado, com g(x) = 1/x, então
g(F ) = (0, 1].

4.2.1. Funções Contínuas em Conjuntos Compactos. Um resultado com várias
aplicações vem a seguir e garante que a compacidade é uma propriedade preservada por
funções contínuas.

Teorema 4.2.2 (Preservação de compacidade). Se K é compacto, e f : K → Rn é
contínua, então f(K) é compacto.

Demonstração. Seja G = {Gα} cobertura aberta para f(K), i.e., f(K) ⊆ ∪αGα. Logo
K ⊆ ∪αf

−1(Gα). Por f ser contínua, pelo Teorema 4.2.1, para todo α existe Hα aberto tal
que f−1(Gα) = Hα∩K. Portanto {Hα} é uma cobertura aberta de K. Como K é compacto,
então existe {Hα1 , . . . , HαJ

} subcobertura finita. Logo,

K ⊆ ∪J
j=1Hαj

∩K = ∪J
j=1f

−1(Gαj
),

e então f(K) ⊆ ∪J
j=1Gαj

. Portanto, achamos uma subcobertura aberta finita para f(K), e
concluímos que f(K) é compacto. □

Uma aplicação imediata do resultado acima é a existência de máximos e mínimos de
funções contínuas definidas em compactos. Em particular, estas funções são limitadas.

Definição 4.2.3. Dizemos que f : Ω → Rn é limitada em Ω se existe M ∈ R tal que
∥f(x)∥ ≤M para todo x ∈ Ω.

Exemplo 4.9. sinx é limitada em R pois | sinx| ≤ 1 para todo x ∈ R.

Exemplo 4.10. A função 1/x não é limitada em R+. Entretanto 1/x é limitada em
(1/2,+∞) pois |1/x| ≤ 2 para todo x neste intervalo.

O Teorema 4.2.2 garante que imagens de compactos são conjuntos compactos, portanto
pelo Teorema de Heine–Borel (Teorema 2.5.3) fechados e limitados. O resultado abaixo é
consequência imediata deste fato.
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Figura 4. Gráfico de 1/(1− x2), que não é limitada em (−1, 1).

Teorema 4.2.4. Seja K compacto, e f : K → Rn contínua em K. Então f é limitada
em K.

Uma demonstração alternativa do Teorema 4.2.4 que dispensa o uso de noções de com-
pacidade vem a seguir.

Demonstração. (alternativa do Teorema 4.2.4; por contradição) Suponha K fechado
e limitado e f não limitada. Então para todo j ∈ N existe xj ∈ K tal que f(xj) > j.
Como K é fechado e limitado, então, pelo Teorema de Bolzano–Weierstrass, (xj)j∈N possui
subsequência (xji)i∈N convergente. Seja x = limi→∞ xji . Como K é fechado, então x ∈ K.
Mas como f é contínua, então limi→∞ f(xji) = f(x), e portanto a sequência

(
f(xji)

)
i∈N

tem limite, e logo ela é limitada, uma contradição, pois a construção de (xj)j∈N implica em
f(xji) > ji. □

Outra noção importante é o de máximos e mínimos. Dizemos que f : Ω → R tem valor
máximo em Ω se existe x∗ ∈ Ω tal que f(x∗) é cota superior de f(Ω). De forma análoga
dizemos que f tem valor mínimo em Ω se existe x∗ ∈ Ω tal que f(x∗) é cota inferior de f(Ω).
Chamamos x∗ de ponto de valor máximo e x∗ de ponto de valor mínimo.

Observação. Se uma função f como acima definida tem seus valores máximo e mínimo
em Ω, então f é limitada em Ω.

Exemplo 4.11. A função f : (−1, 1) → R dada por f(x) = 1/(1− x2) (Figura 4) não é
limitada em (−1, 1), mas é limitada em [−1/2, 1/2] por exemplo.

Exemplo 4.12. f(x) = x é contínua e limitada em (−1, 1), mas não toma valor máximo
nem mínimo em (−1, 1). Entretanto f tem seus valores máximo e mínimo em [−1, 1].
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Figura 5. Gráfico de 1/(1+x2), que tem seu máximo mas não o seu mínimo
em R.

Exemplo 4.13. A função h(x) = 1/(1 + x2) (Figura 5) é limitada em R, tem seu valor
máximo em x∗ = 0, mas não tem seu valor mínimo. Isto porque inf h(R) = 0 ̸= h(x) para
todo x ∈ R.

Observação. Note que pontos de máximo e mínimo não são únicos em geral. Por
exemplo, f(x) = x2 tem −1 e 1 como seus dois pontos de máximo em [−1, 1].

O resultado a seguir mais uma vez é consequência do Teorema 4.2.2.

Teorema 4.2.5 (Pontos Extremos). Seja K compacto e f : K → R contínua em K.
Então f tem pelo menos um ponto de máximo e um de mínimo em K.

Demonstração. Como K é compacto, então o Teorema 4.2.2 garante que f(K) tam-
bém é compacto. Logo f(K) é limitado e portanto tem supremo, e f(K) é fechado, e
portanto o supremo pertence a f(K). Logo existe x∗ ∈ K tal que f(x∗) = sup f(K).

Mesmo tipo de argumento assegura que existe ponto de mínimo em K. □

A seguinte demonstração dispensa o uso direto de compacidade.

Demonstração. (alternativa do Teorema 4.2.5) Demonstraremos somente que existe
um ponto de máximo para f . O caso de valor mínimo é análogo. Como K é fechado limitado,
então f(K) é limitado. Seja s∗ = sup f(K). Seja xn tal que f(xn) > s∗ − 1/n. Mas pelo
Teorema de Bolzano–Weierstrass, K limitado implica em existência de uma subsequência
(xnk

) convergente. Seja x∗ o limite de tal subsequência. Como K é fechado, então x∗ ∈ K.
Como f é contínua, então f(x∗) = limnk→∞ f(xnk

). Finalmente, usamos que

s∗ − 1

nk

≤ f(xnk
) ≤ s∗,

e pelo Lema do sanduíche de sequências 3.6.3, temos que f(x∗) = limnk→∞ f(xnk
) = s∗. □

Outro resultado de grande importância é o Teorema do Valor Intermediário que garante
a preservação de intervalos por funções contínua.

Teorema 4.2.6 (Teorema do Valor Intermediário). Sejam a < b e suponha f : [a, b] → R
contínua. Se existe d ∈ R tal que f(a) < d < f(b), então existe c ∈ (a, b) tal que f(c) = d.

Demonstração. Seja

I = {x ∈ [a, b] : f(x) < d} = f−1
(
(−∞, d)

)
.
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Logo I é não vazio pois a ∈ I, e definimos c = sup I. Então c ∈ [a, b], pois b é cota superior
de I. Pelo Teorema da Continuidade Global (Teorema 4.2.1), existe aberto U tal que

I = U ∩ [a, b] = U ∩ [a, b),

pois b ̸∈ I. Logo, para todo x ∈ I, existe ϵ > 0 tal que x + ϵ ∈ I. Portanto c ̸∈ I, i.e.,
f(c) ≥ d. Seja então xn ∈ I tal que xn → c, ver Exercício 3.5. Por continuidade de f , temos
f(c) = limn→∞ f(xn). Como f(xn) < d, então f(c) ≤ d. Portanto f(c) = d. □

Corolário 4.2.7 (Teorema do ponto fixo em uma dimensão). Seja f : [0, 1] → [0, 1]
contínua. Então f tem um ponto fixo, i.e., existe x ∈ [0, 1] tal que f(x) = x.

Demonstração. seja d : [0, 1] → R dada por d(x) = f(x)− x. Portanto d é contínua.
Nosso objetivo é achar raiz para d em [0, 1]. Se d(0) = 0 ou d(1) = 0, então nada mais há a
fazer. Suponha que nem 0 nem 1 sejam raízes de d. Logo d(0) = f(0) > 0 e d(1) = f(1)−1 <
0 pois f(x) ∈ [0, 1]. Aplicando o Teorema do Valor Intermediário (Teorema 4.2.6), temos
que existe x ∈ (0, 1) tal que d(x) = 0, como queríamos demonstrar. □

Concluímos esta parte com uma importante consequência dos resultados anteriores.

Teorema 4.2.8. Seja I intervalo fechado limitado e f : I → R função contínua. Então
f(I) é intervalo fechado limitado.

4.3. Funções Uniformemente Contínuas

Considere g(x) = 1/x, para x ∈ (0, 1). Seja c ∈ (0, 1). Então

g(c)− g(x) =
1

c
− 1

x
=
x− c

cx
.

Para mostrarmos que g é contínua em c. seja ϵ > 0. Sem perda de generalidade, podemos
supor que ϵ < 1, e portanto ϵc < 1. Seja δ = c2ϵ/2. Então

|x− c| < δ =⇒ c < x+ δ = x+
c2ϵ

2
< x+

c

2
=⇒ c

2
< x.

Logo

|x− c| < δ =⇒ |g(c)− g(x)| = |x− c|
cx

<
δ

cx
=
c2ϵ

2cx
=
cϵ

2x
< ϵ

onde usamos que c/2 < x na última desigualdade. Mostramos então, usando ϵ’s e δ’s que
1/x é contínua em todo ponto diferente de zero. O objetivo principal do cálculo acima é
ressaltar que a escolha de δ não é uniforme em relação ao ponto c, i.e., δ depende de c.

Em outros casos, a escolha de δ independe do ponto em questão. Por exemplo, para
f(x) = x, dado ϵ > 0, tomando δ = ϵ temos

|x− c| < δ =⇒ |f(x)− f(c)| < ϵ.

Outro caso já foi visto no exemplo 4.2. Dizemos que estas funções são uniformemente
contínuas.

Definição 4.3.1. Seja Ω ⊆ Rm e f : Ω → Rn. Dizemos que f é uniformemente
contínua em Ω se para todo ϵ > 0, existir δ tal que para todo x, y ∈ Ω tem-se

∥x− y∥ < δ =⇒ ∥f(x)− f(y)∥ < ϵ.
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Note que a definição de continuidade uniforme só faz sentido no domínio ou subdomínio
da função, e não pontualmente como na definição de continuidade. Uma forma equivalente
de se definir uma função uniformemente contínua, é exigir que dado ϵ > 0 exista δ tal que
para todo x ∈ Ω tem-se

y ∈ Bδ(x) ∩ Ω =⇒ f(y) ∈ Bϵ

(
f(x)

)
.

Além disto, pode-se usar o seguinte resultado abaixo para se mostar que uma função não é
uniformemente contínua.

Lema 4.3.2. Seja Ω ⊆ Rm e f : Ω → Rn. Então as afirmativas abaixo são equivalentes.
(1) f não é uniformemente contínua em Ω.
(2) Existe ϵ > 0 tal que para todo δ > 0 existem pontos x, y ∈ Ω tais que ∥x− y∥ < δ

mas ∥f(x)− f(y)∥ > ϵ.
(3) Existe ϵ > 0 e duas sequências (xk) e (yk) em Ω tais que limk→∞(xk − yk) = 0 e

∥f(xk)− f(yk)∥ > ϵ para todo k ∈ N.

Exemplo 4.14. O resultado acima pode ser usado por exemplo para mostrar que f(x) =
1/x não é uniformemente contínua em R+. Considere as sequências (1/k) e

(
1/(k + 1)

)
.

Então limk→∞
(
1/k − 1/(k + 1)

)
= 0 mas f(1/k)− f

(
1/(k + 1)

)
= 1 para todo k ∈ N.

Uma interessante propriedade da continuidade uniforme é dada abaixo, e tem aplicação
na extensão de funções, ver exercício 4.27. Seja Ω ⊆ Rm e suponha que f : Ω → Rn é
uniformemente contínua. Então (xi) ser sequência de Cauchy implica que

(
f(xi)

)
também

é sequência de Cauchy.
De fato, seja ϵ > 0. Como f é uniformemente contínua, então existe δ tal que

(4.3.1) ∥x− y∥ < δ =⇒ ∥f(x)− f(y)∥ < ϵ,

para todo x, y ∈ Ω. Como (xi) é sequência de Cauchy, então existe N0 tal que se

(4.3.2) i, j > N0 =⇒ ∥xi − xj∥ < δ.

Combinando (4.3.1) e (4.3.2), temos então que

i, j > N0 =⇒ ∥f(xi)− f(xj)∥ < ϵ.

Note que isto nos dá um outro critério para determinar quando uma função não é uniforme-
mente contínua. Por exemplo, para o caso considerado no exemplo 4.14, temos que xk = 1/k
é de Cauchy mas f(xk) = k não é de Cauchy. Logo f não é uniformemente contínua em R+.

Observação. Note que nem todas as funções que “preservam” sequências de Cauchy
são uniformemente contínuas. Tome como exemplo f : R → R tal que f(x) = x2.

Apesar de parecer difícil conferir se uma dada função é ou não uniformemente contínua,
o (surpreendente?) resultado abaixo garante que todas as funções contínuas em conjuntos
compactos são uniformemente contínuas.

Teorema 4.3.3 (Continuidade Uniforme em compactos). Seja K ⊆ Rm conjunto com-
pacto, e f : K → Rn contínua em K. Então f é uniformemente contínua em K.
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Demonstração. Seja ϵ > 0. Entao, para todo x ∈ K, existe δ(x) > 0 tal que

(4.3.3) y ∈ Bδ(x)(x) ∩K =⇒ ∥f(y)− f(x)∥ < ϵ/2.

Seja a cobertura aberta de K gerada por {B 1
2
δ(x)(x)}x∈K . Como K é compacto, então existe

{x1, . . . ,xJ} ⊆ K tal que {B 1
2
δ(xi)

(xi)}Ji=1 é uma subcobertura de K. Seja

δ =
1

2
min{δ(x1), . . . , δ(xJ)}.

Sejam x, y ∈ K tais que ∥x − y∥ < δ. Então existe índice j ∈ {1, . . . , J} tal que x ∈
B 1

2
δ(xj)

(xj), i.e., ∥x− xj∥ < δ(xj)/2. Portanto, usando (4.3.3) temos que ∥f(x)− f(xj)∥ <
ϵ/2. Da mesma forma,

∥y − xj∥ ≤ ∥y − x∥+ ∥x− xj∥ < δ +
1

2
δ(xj) ≤ δ(xj),

e então ∥f(y)− f(xj)∥ < ϵ/2. Concluímos que

∥x− y∥ < δ =⇒ ∥f(x)− f(y)∥ ≤ ∥f(x)− f(xj)∥+ ∥f(xj)− f(y)∥ < ϵ,

e portanto f é uniformemente contínua. □

Abaixo apresentamos uma demonstração alternativa do Teorema 4.3.3, que não usa ar-
gumentos de compacidade.

Demonstração. (alternativa do Teorema 4.3.3; por contradição) Suponha que f não
seja uniformemente contínua. Como K é compacto, então é fechado e limitado. Então, pelo
Lema 4.3.2, existe ϵ > 0 e existem sequências (xn) e (yn) em K tais que ∥xn − yn∥ < 1/n
e ∥f(xn) − f(yn)∥ > ϵ. Como K é fechado, pelo Teorema de Bolzano–Weierstrass, existe
subsequência (xnk

) convergente. Seja z = limnk→∞(xnk
). Como K é fechado, então z ∈ K.

Note que (ynk
) também converge para z pois

(ynk
− z) = (ynk

− xnk
) + (xnk

− z).

Como f é contínua em z, então f(z) = limnk→∞ f(xnk
), e f(z) = limnk→∞ f(ynk

), uma
contradição com ∥f(xn)− f(yn)∥ > ϵ. Logo f é uniformemente contínua. □

Outra importante situação em que temos continuidade uniforme, mesmo com domínios
não compactos, é quando a função é de Lipschitz. Seja Ω ⊆ Rm e f : Ω → Rn. Dizemos que
f é de Lipschitz se existe M ∈ R tal que

∥f(x)− f(y)∥ ≤M∥x− y∥
para todo x, y ∈ Ω.

Teorema 4.3.4. Se Ω ⊆ Rm e f : Ω → Rn, e f é de Lipschitz, então f é uniformemente
contínua em Ω.

Demonstração. Seja M ∈ R tal que

∥f(x)− f(y)∥ ≤M∥x− y∥
para todo x, y ∈ Ω. Dado ϵ > 0, seja δ = ϵ/M . Então se x, y ∈ Ω e ∥x−y∥ < δ, temos que

∥f(x)− f(y)∥ ≤M∥x− y∥ ≤Mδ = ϵ.

o que mostra que f é uniformemente contínua em Ω. □
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Nem toda função uniformemente contínua é de Lipschitz, como o exemplo abaixo mostra.

Exemplo 4.15. Seja g : [0, 1] → R, tal que g(x) =
√
x. Como [0, 1] é compacto, e g

é contínua, então g é uniformemente contínua em [0, 1]. Entretanto note que se g fosse de
Lipschitz, nós teríamos a existência de M ∈ R tal que

√
x = |g(x)− g(0)| ≤ k|x− 0| =Mx =⇒ 1√

x
≤M para todo x > 0,

um absurdo. Logo g não é de Lipschitz apesar de ser uniformemente contínua em seu domínio.

4.4. Exercícios

Exercício 4.1. Determine os pontos de continuidade da função [x], que retorna para
cada x ∈ R o maior inteiro menor ou igual a x. Por exemplo, [2] = 2, [2.5] = 2, [−2.5] = −3.

Exercício 4.2. Demonstre o Lema 4.1.1.

Exercício 4.3. Seja f : Rm → R contínua em x ∈ Rm, e f(x) > 0. Mostre que existe
uma vizinhança aberta de x tal que f seja estritamente positiva.

Exercício 4.4. Seja f : Rm → R contínua. Mostre de duas formas diferentes que o
conjunto {x ∈ Rm : f(x) = 0} é fechado em Rm.

Exercício 4.5. Sejam f , g : Rm → R funções contínuas. Mostre de duas formas
diferentes que o conjunto {x ∈ Rm : f(x) > g(x)} é aberto em Rm.

Exercício 4.6. Mostre que toda contração é uma função contínua.

Exercício 4.7. Seja f : R → R tal que f(x + y) = f(x) + f(y) para todo x, y ∈ R.
Mostre que f(0) = 0 e que f(−x) = −f(x) para todo x ∈ R. Mostre que se f é contínua em
x = 0, então f é contínua em todo x ∈ R.

Exercício 4.8. Dê exemplos de
(1) Um conjunto F fechado em R e uma função f : F → R contínua tais que f(F ) não

seja compacto.
(2) Um conjunto A aberto em R e uma função f : R → R tais que f−1(A) não seja

aberto em R.
(3) Um conjunto Ω ⊆ R, um conjunto A aberto em R e uma função contínua f : Ω → R

tais que f−1(A) não seja aberto em R.

Exercício 4.9. Seja K ⊂ Rm conjunto compacto e f : K → Rn contínua, e seja
(
xj

)
sequência contida em K. Mostre que a sequência

(
f(xj)

)
possui subsequência convergente

com limite contido em f(K).

Exercício 4.10. Seja f : Ω → R, onde Ω ⊂ Rm é aberto. Mostre que f é contínua em
Ω se e somente se f−1((α,+∞)) e f−1((−∞, α)) são abertos para todo α ∈ R.

Exercício 4.11. Seja f : [0, 1] → R contínua tal que f(0) < 0 e f(1) > 0. Mostre que
se s = sup{x ∈ [0, 1] : f(x) < 0}, então f(s) = 0.

Exercício 4.12. Sejam Ω ⊆ Rm fechado e limitado, e f : Ω → Rn contínua em Ω. Sem
usar Heine–Borel, mostre que f(Ω) é fechado e limitado.
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Exercício 4.13. Seja Ω ⊆ Rm conjunto limitado. Dê exemplo de uma função f : Ω → R
contínua e limitada que não atinja seu máximo.

Exercício 4.14 (Ver definição de extremos locais na página 74). Sejam a < b reais, e
f : [a, b] → R contínua em [a, b]. Sejam x1 < x2 elementos de [a, b] e máximos locais da f .
Mostre que existe c ∈ (x1, x2) que é mínimo local da f .

Exercício 4.15. Seja f : R → R contínua em R e tal que f(x + 1) = f(x) para todo
x ∈ R. Mostre que f é limitada.

Exercício 4.16 (Ver definição de extremos locais na página 74). Sejam a < b números
reais e f : [a, b] → R contínua em [a, b]. Suponha que nenhum ponto interior é extremo local.
Mostre que f é estritamente crescente ou estritamente decrescente.

Exercício 4.17. [Equivalência de normas no Rn; ver definição no Exercício 2.29] Mostre
que no Rn todas as normas são equivalentes.

Exercício 4.18. Sejam V e W dois espaços vetoriais normados, e T : V → W uma
aplicação linear. Mostre que

(1) T é contínua em V se e somente se T é contínua em 0
(2) T é contínua em V se e somente se T é limitada (i.e., T ∈ L(V,W ); ver (2.2.3))
(3) se V e W têm dimensão finita, então T é contínua

Exercício 4.19. Mostre que não é possível generalizar o Teorema do ponto fixo (Teo-
rema 4.2.7) para o intervalo (0, 1].

Exercício 4.20. Mostre que se f : Rm → R e g : Rm → R são uniformemente contínuas,
então f + g é uniformemente contínua. Mostre que, mesmo que f seja limitada, a função fg
não é necessariamente uniformemente contínua.

Exercício 4.21. Dê exemplo de uma função que preserve sequências de Cauchy, mas
que não seja uniformemente contínua.

Exercício 4.22. Mostre que o produto de duas funções uniformemente contínuas e
limitadas é função uniformemente contínua.

Exercício 4.23. Seja f : [0,+∞) → R contínua em todo seu domínio. Suponha que
exista b > 0 tal que f seja uniformemente contínua em [b,+∞). Mostre que f é uniforme-
mente contínua em [0,+∞).

Exercício 4.24. Sejam a < b números reais, e f : [a, b] → R contínua. Mostre que
dado ϵ > 0, existem a = a0 < a1 < · · · < an = b tais que se x, y ∈ [ai−1, ai] para algum
i ∈ {1, . . . , n}, então |f(x)− f(y)| < ϵ.

Exercício 4.25. Seja I ⊂ R um intervalo. Dizemos que uma função f : I → R
é absolutamente contínua se para todo ϵ > 0 existir δ tal que dados K subintervalos
(x1, y1), . . . , (xK , yK) contidos em I e disjuntos (i.e., x1 < y1 < · · · < xK < yK), com∑K

i=1(yi − xi) < δ então
∑K

i=1 |f(yi)− f(xi)| < ϵ. Mostre que
(1) toda função absolutamente contínua é uniformemente contínua
(2) toda função de Lipschitz é absolutamente contínua
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Exercício 4.26. Dê um exemplo de uma função uniformemente contínua que não seja
absolutamente contínua.

Exercício 4.27. Suponha f : (0, 1] → R uniformemente contínua em (0, 1]. Mostre que
podemos definir f(0) tal que f seja uniformemente contínua em [0, 1].

Exercício 4.28. Suponha f : Ω → Rn uniformemente contínua em Ω. Mostre que
podemos definir f̄ : Ω̄ → Rn tal que f̄ seja contínua em Ω̄, e f̄(x) = f(x) para todo x ∈ Ω.
Neste caso dizemos que f̄ é uma extensão contínua de f .

Exercício 4.29. Seja B ⊆ Rm limitado, e f : B → Rn uniformemente contínua. Mostre
que f é limitada em B. Mostre que esta conclusão não é necessariamente verdadeira se B
não for limitado.

Exercício 4.30. Resolva o Exercício 4.29 usando o conceito de limitação total (Exercí-
cio 2.67).

Exercício 4.31. Dizemos que {x0, x1, . . . , xn} ⊆ R é uma partição de I = [a, b] se
a = x0 < x1 < · · · < xn = b. Uma função g é constante por partes em I se for constante
em (xi−1, xi) e tomando um dos valores limites de um lado ou outro nos pontos da partição.
Mostre que se f : I → R é contínua, então para todo ϵ > 0 existe uma função constante por
partes tal g que |f(x)− g(x)| < ϵ para todo x ∈ I.

Exercício 4.32. Seja f : [0,+∞) → R uma função uniformemente contínua. Mostre
que existem constantes a, b tais que f(x) ≤ ax+ b para todo x ≥ 0.

Exercício 4.33. Seja f : R → R dada por

f(x) =

{
1/q se x ∈ Q é da forma irredutível p/q,
0 se x ∈ R\Q.

Mostre que f é descontínua em Q e contínua em R\Q.

Exercício 4.34. É verdade que para toda função contínua f: [0, 2] → R tal que f(0) =
f(2) existe x ∈ [0, 1] tal que f(x) = f(x+ 1)?

Exercício 4.35. Seja K um compacto e f : K → K tal que ∥f(x)− f(y)∥ = ∥x− y∥
para todo x, y ∈ K. Mostre que f é bijetora.

(Dica: mostre que f é injetora e contínua, e considere a sequência xj = f(xj−1) onde
x0 /∈ f(K). Mostre que ∥xj − xj+m∥ = ∥x0 − xm∥, e obtenha contradição.)

Exercício 4.36. Mostre que se f : K → Rn é contínua e injetora, onde K é compacto,
então a função inversa f−1 : f(K) → K é contínua.

(Dica: Considere um fechado em K e use o Teorema da Continuidade Global (Teo-
rema 4.2.1) para f−1.)



CAPíTULO 5

Diferenciação

1 Neste capítulo vemos a noção de diferenciabilidade e suas aplicações. Começaremos
com o caso unidimensional, onde veremos algumas propriedades e aplicações particulares.

5.1. Derivada em uma dimensão

Seja f : I → Rn, onde I ⊆ R é um intervalo. Logo, para t ∈ I, temos

f(t) =
(
f1(t), f2(t), . . . , fn(t)

)
.

Dizemos que f é diferenciável em c ∈ I com derivada L ∈ Rn onde dado ϵ > 0 existe
δ > 0 tal que

(5.1.1) x ∈ I, 0 < |x− c| < δ =⇒
∥∥∥∥f(x)− f(c)

x− c
− L

∥∥∥∥ < ϵ.

Chamamos L de derivada de f em c, e escrevemos L = f ′(c).
Note que se L = (L1, L2, . . . , Ln) for diferenciável em c ∈ I, então cada uma de suas

componentes L1, . . . , Ln será diferenciável no mesmo ponto. De fato para i = 1, . . . , n fixado
e supondo que (5.1.1) vale, temos que se x ∈ I e 0 < |x− c| < δ então∣∣∣∣fi(x)− fi(c)

x− c
− Li

∣∣∣∣ ≤ ( n∑
j=1

∣∣∣∣fj(x)− fj(c)

x− c
− Lj

∣∣∣∣2)1/2

=

∥∥∥∥f(x)− f(c)

x− c
− L

∥∥∥∥ < ϵ.

Portanto, Li é diferenciável em c.
Se f é diferenciável em todo ponto de I dizemos que f é diferenciável em I. Neste caso

note que a derivada f ′ é uma função de I em Rn.
Existem outras formas de se definir a diferenciabilidade. De fato as afirmativas abaixo

são equivalentes:
(1) f : I → R é diferenciável em c ∈ I, com derivada L.
(2) O limite abaixo existe e é igual a L:

lim
x→c

f(x)− f(c)

x− c
= L.

(3) Para toda sequência (xk) em I\{c} convergindo para c tem-se

lim
k→∞

f(xk)− f(c)

xk − c
= L

1Última Atualização: 25/02/2025
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Figura 1. Gráfico de f(x), que é diferenciável, mas a derivada não é contínua.

(4) Existe uma função r tal que

f(x) = f(c) + L(x− c) + r(x− c) com lim
h→0

r(h)

h
= 0.

De forma equivalente escrevemos h = x− c, e então

(5.1.2) f(c+ h) = f(c) + Lh+ r(h) com lim
h→0

r(h)

h
= 0.

Podemos também entender L como a aplicação linear (neste caso dada por um número) que
torna (5.1.2) possível. Esta interpretação induz de forma natural a generalização da noção
de derivada para o caso multidimensional.

Observação. Seja f : D → R e c ∈ D, onde D ⊆ R. Mesmo que D não seja um
intervalo, é possível definir a derivada de f em c, desde que c seja de acumulação [9,19].

A seguir temos dois exemplos de funções diferenciáveis.

Exemplo 5.1. Se f(x) = x2, então para c ∈ R tem-se

f ′(c) = lim
x→c

x2 − c2

x− c
= lim

x→c

(x+ c)(x− c)

x− c
= lim

x→c
(x+ c) = 2c.

Exemplo 5.2. Seja

f(x) =

x2 sin
1

x
, se x ̸= 0

0, se x = 0,

mostrada na Figura 1. Para x ̸= 0 temos f ′(x) = 2x sin 1/x − cos 1/x. Observe que não
existe o limite limx→0 f

′(x). Em x = 0 usamos a definição:

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0
x sin

1

x
= 0.

Logo f é diferenciável em R mas f ′ não é contínua no zero.

Diferenciabilidade implica em continuidade, como nos mostra o resultado a seguir.
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Figura 2. Gráfico de f(x) = |x|, função contínua mas não diferenciável.

Teorema 5.1.1. Se f : I → R, onde I é um intervalo, é diferenciável em c ∈ I, então
f é contínua em c.

Demonstração. Seja L = f ′(c). Dado ϵ > 0, existe δ > 0 tal que

x ∈ I, 0 < |x− c| < δ =⇒ |L| − ϵ <

∣∣∣∣f(x)− f(c)

x− c

∣∣∣∣ < |L|+ ϵ.

Seja δ̄ = min{δ, ϵ/(|L|+ ϵ)}. Então

x ∈ I, 0 < |x− c| < δ̄ =⇒ |f(x)− f(c)| =
∣∣∣∣f(x)− f(c)

x− c

∣∣∣∣|x− c| < (|L|+ ϵ)δ̄ ≤ ϵ.

Logo f é contínua em c. □

Observação. Pelo teorema acima, diferenciabilidade implica em continuidade. O in-
verso entretanto não é verdade em geral. Seja por exemplo f : R → R onde f(x) = |x|,
representada na Figura 2. Então f é contínua em R mas não é diferenciável em zero pois
para x ̸= 0 temos

f(x)− f(0)

x− 0
=

|x|
x

=

{
1 se x > 0,

−1 se x < 0.

Logo o limite quando x→ 0 não existe.

Sejam f e g funções de I → R, onde I é um intervalo, ambas diferenciáveis em c ∈ I.
Então

(1) (αf)′(c) = αf ′(c), onde α ∈ R. De fato, se x ̸= c, então

(αf)(x)− (αf)(c)

x− c
= α

f(x)− f(c)

x− c
.

(2) (f + g)′(c) = f ′(c) + g′(c).
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(3) Se p = fg, então se x ̸= c,

p(x)− p(c)

x− c
=
f(x)g(x)− f(c)g(c)

x− c
=
f(x)g(x)− f(c)g(x) + f(c)g(x)− f(c)g(c)

x− c

=
f(x)− f(c)

x− c
g(x) + f(c)

g(x)− g(c)

x− c
.

Logo existe limx→c(p(x)− p(c))/(x− c) e

p′(c) = lim
x→c

p(x)− p(c)

x− c
= lim

x→c

[
f(x)− f(c)

x− c
g(x)

]
+ lim

x→c

[
f(c)

g(x)− g(c)

x− c

]
= f ′(c)g(c) + f(c)g′(c).

(4) Se g(x) ̸= 0 para todo x ∈ I, então seja h(x) = f(x)/g(x). Logo se x ̸= c,

h(x)− h(c)

x− c
=

f(x)
g(x)

− f(c)
g(c)

x− c
=
f(x)g(c)− f(c)g(x)

(x− c)g(x)g(c)

=
f(x)g(c)− f(c)g(c)

(x− c)g(x)g(c)
+
f(c)g(c)− f(c)g(x)

(x− c)g(x)g(c)
=
f(x)− f(c)

(x− c)

1

g(x)
− f(c)

g(x)g(c)

g(x)− g(c)

x− c
.

Logo existe limx→c(h(x)− h(c))/(x− c) e

h′(c) = lim
x→c

h(x)− h(c)

x− c
= f ′(c)

1

g(c)
− f(c)

g2(x)
g′(c).

Exemplo 5.3. Pela regra acima temos que se f(x) = xn, para n ∈ N, então f é diferen-
ciável e f ′(c) = nxn−1.

Uma primeira e importante aplicação de derivadas diz respeito a pontos extremos locais.
Dizemos que uma função f : I → R, onde I é um intervalo, tem um máximo local em x ∈ I
se existe δ > 0 tal que

(5.1.3) y ∈ (x− δ, x+ δ) ∩ I =⇒ f(y) ≤ f(x).

Se a desigualdade em (5.1.3) for estrita, chamamos o ponto de máximo estrito local. Definição
análoga serve para mínimo local e mínimo estrito local. Chamamos um ponto de máximo
ou mínimo (estrito) local de ponto extremo (estrito) local.

O resultado a seguir descreve condição necessária para um ponto interior ser extremo
local.

Teorema 5.1.2 (Ponto extremo interior). Seja f : I → R, onde I é um intervalo, e c
ponto interior de I e extremo local de f . Se f é diferenciável em c, então f ′(c) = 0.

Demonstração. Sem perda de generalidade, suponha que c seja ponto interior de má-
ximo local. Então, se f ′(c) > 0 temos

0 < f ′(c) = lim
x→c

f(x)− f(c)

x− c
=⇒ f(x)− f(c)

x− c
> 0

numa vizinhança aberta de c. Logo, para x > c tem-se f(x) > f(c), contradição pois c é
ponto de máximo local. De forma semelhante não podemos ter f ′(c) < 0. Logo f ′(c) = 0. □
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Figura 3. Gráfico de f(x) = x3, que tem derivada zero em x = 0, mas este
não é ponto extremo.

Figura 4. Os Teoremas de Rolle e do Valor Médio versam sobre a existência
de derivada com valor determinado pelos pontos extremos.

Note que se a derivada de uma função se anula num determinado ponto, não se pode
concluir que este seja um ponto extremo. Como exemplo temos f : R → R dada por
f(x) = x3, que tem derivada zero em x = 0 mas este não é ponto de máximo nem mínimo
local. Ver Figura 3.

A seguir apresentamos um resultado com importantes por si e por suas consequências.
É o Teorema do Valor Médio, que vemos a seguir na sua versão mais simples, o Teorema de
Rolle, ilustrados na Figura 4.

Teorema 5.1.3 (Teorema de Rolle). Seja a < b ∈ R e f : [a, b] → R contínua em [a, b]
e diferenciável em (a, b). Suponha ainda que f(a) = f(b) = 0. Então existe c ∈ (a, b) tal que
f ′(c) = 0.

Demonstração. Se f é identicamente nula em [a, b], então o resultado é verdadeiro.
Caso contrário, então f tem algum valor positivo ou negativo em (a, b). Sem perda de
generalidade, suponha que f tem algum valor positivo. Como [a, b] é compacto, então f
atinge seu máximo em algum c ∈ (a, b). Mas pelo Teorema do ponto extremo interior
(Teorema 5.1.2), f ′(c) = 0, como queríamos demonstrar. □
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Teorema 5.1.4 (Teorema do Valor Médio). Seja a < b ∈ R e f : [a, b] → R contínua
em [a, b] e diferenciável em (a, b). Então existe c ∈ (a, b) tal que

f(b)− f(a) = f ′(c)(b− a).

Demonstração. Seja

ϕ(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

Então ϕ(a) = ϕ(b) = 0. Como f é diferenciável em (a, b), então ϕ também o é no mesmo
intervalo. Logo, pelo Teorem de Rolle 5.1.3 existe c ∈ (a, b) tal que ϕ′(c) = 0. Portanto

f ′(c) =
f(b)− f(a)

b− a
.

□

Uma primeira aplicação do Teorema do Valor Médio garante que se uma função definida
num intervalo tem derivada identicamente igual a zero, então a função é constante.

Lema 5.1.5. Suponha que f : [a, b] → R seja contínua em [a, b], onde a < b, e diferenciável
em (a, b). Se f ′(x) = 0 para todo x ∈ (a, b), então f é constante em [a, b].

Demonstração. Seja a < c ≤ b. Pelo Teorema do Valor Médio 5.1.4, existe x ∈ (a, c)
tal que f(c)−f(a) = f ′(x)(c−a). Como f ′(x) = 0, temos f(c) = f(a). Como c é arbitrário,
temos f constante em [a, b]. □

Observe que pelo resultado acima, se f , g são funções diferenciáveis que tem a mesma
derivada, então f e g diferem por uma constante.

A aplicação seguinte do Teorema do Valor Médio garante condições necessárias e sufici-
entes para uma função ser crescente num intervalo. Dizemos que uma função f : I → R é
crescente no intervalo I se para x, y ∈ I com y > x tem-se f(y) ≥ f(x). Dizemos ainda que
f : I → R é estritamente crescente em I se para x, y ∈ I com y > x tem-se f(y) > f(x).
Definições análogas valem para funções decrescentes e estritamente decrescentes.

Lema 5.1.6. Seja I intervalo e f : I → R diferenciável em I. Então
(1) f é crescente em I se e somente se f ′(x) ≥ 0 para todo x ∈ I.
(2) f é decrescente em I se e somente se f ′(x) ≤ 0 para todo x ∈ I.

Demonstração. (⇒) Suponha f crescente. Para x, c ∈ I,

x < c ou x > c =⇒ f(x)− f(c)

x− c
≥ 0.

Portanto
f ′(c) = lim

x→c

f(x)− f(c)

x− c
≥ 0.

(⇐) Suponha f ′(x) ≥ 0 para todo x ∈ I. Sejam x1, x2 ∈ I com x1 < x2. Usando o
teorema do valor médio 5.1.4, existe c ∈ (x1, x2) tal que f(x2)− f(x1) = f ′(c)(x2 − x1). □

Observação. É possível modificar a demonstração acima e mostrar que f ′(x) > 0
implica em f estritamente crescente. Entretanto, mesmo funções que tem derivada nula em
alguns pontos podem ser estritamente crescentes, como por exemplo f(x) = x3 (Figura 3).
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Figura 5. Gráfico de g(x), que tem g′(0) = 1 mas não é localmente crescente.

Observação. Não é verdade que se f ′(c) > 0 para algum ponto c no domínio da f
implique em f crescente numa vizinhança de c. Como exemplo considere

g(x) =

{
x+ 2x2 sin

π

x
se x ̸= 0,

0 se x = 0,

é diferenciável em zero com g′(0) = 1, mas não é crescente em nenhuma vizinhança do zero,
ver Figura 5. De fato, considere as sequências xk = 1/(2k + 1/2) e yk = 1/(2k). Então
xk < yk mas g(xk) > g(yk). Para comprovar esta última desigualdade note que

2k

(
2k +

1

2

)2

[g(xk)− g(yk)] = 2k

(
2k +

1

2

)2[
1

2k + 1
2

+
2

(2k + 1
2
)2

− 1

2k

]
= 2k

(
2k +

1

2

)
+ 4k −

(
2k +

1

2

)2

= 4k2 + k + 4k − (4k2 + 2k + 1/4) = 3k − 1/4 > 0

para todo k inteiro positivo.

Outra aplicações do Teorema do Valor Médio seguem nos exemplos abaixo.

Exemplo 5.4. Seja f(x) = exp(x). Então f ′(x) = exp(x). Queremos mostrar que

(5.1.4) exp(x) > 1 + x para todo x ̸= 0.

Seja x > 0. Então aplicando o Teorema do Valor Médio em [0, x] temos que existe c ∈ (0, x)
tal que

exp(x)− exp(0) = exp(c)(x− 0).
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Como c > 0, então exp(c) > exp(0) = 1. Logo

exp(x) > 1 + x.

Para x < 0, os argumentos são semelhantes e portanto a desigualdade (5.1.4) vale.

Exemplo 5.5 (Ponto Fixo). Seja I intervalo fechado e f : I → I diferenciável em I tal
que |f ′(x)| < c para todo x ∈ I, onde c < 1. Então a sequência definida por x0 e xi = f(xi−1)
para i ∈ N converge, e x∗ = limn→∞ xn é ponto fixo, i.e, f(x∗) = x∗. Além disto, este ponto
fixo é único.

De fato, note que f é uma contração pois

|f(y)− f(x)| ≤ f ′(ξ)|y − x| ≤ c|y − x|,
onde ξ é um ponto entre y e x, e como I é intervalo, então ξ ∈ I. Logo pelo Teorema 3.5.3,
o ponto fixo é único, e é o limite da sequência (xi) acima, pois esta é a gerada pelo método
das aproximações sucessivas, e portanto converge.

5.2. Teorema de Taylor em uma dimensão e Aplicações

Uma ferramenta poderosa em análise com várias consequências é o Teorema de Taylor,
que é na verdade também uma aplicação do Teorema do Valor Médio.

A expansão de Taylor aproxima localmente por um polinômio uma função que pode ser
complicada. Suponha que f : I → R onde I ⊆ R tenha k ≥ 0 derivadas num ponto x0 ∈ I.
Defina

Pk(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)

2

2
+ · · ·+ f (k)(x0)

(x− x0)
k

k!
,

onde escrevemos g(j)(c) para indicas a j-ésima deriva de g num ponto c.
Note que com a definição acima, temos f (j)(x0) = P

(j)
k (x0) para j = 1, . . . , k. Chamamos

Pk de polinômio de Taylor de ordem k para f em x0, e o resultado abaixo diz o quão boa é
a aproximação de uma função por seu polinômio de Taylor.

Teorema 5.2.1 (Taylor). Seja k ≥ 0 e I = [a, b], com a < b. Seja f : I → R função k
vezes diferenciável em I com f (k) contínua em I e tal f (k+1) exista em (a, b). Se x0, x ∈ I
então existe ξ ∈ (x0, x) ∪ (x, x0) tal que

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)

2

2
+ · · ·+ f (k)(x0)

(x− x0)
k

k!

+ f (k+1)(ξ)
(x− x0)

k+1

(k + 1)!
.

Demonstração. Sejam x0, x ∈ I. Sem perda de generalidade, suponha x > x0. Defina
J = [x0, x] e seja F : J → R dada por

F (t) = f(x)− f(t)− (x− t)f ′(t)− · · · − (x− t)k

k!
f (k)(t).

Logo

F ′(t) = −(x− t)k

k!
f (k+1)(t).
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Definindo G : J → R por

G(t) = F (t)−
(
x− t

x− x0

)k+1

F (x0),

temos G(x0) = G(x) = 0. Pelo Teorema de Rolle (Teorema 5.1.3) existe ξ ∈ (x0, x) tal que

0 = G′(ξ) = F ′(ξ) + (k + 1)
(x− ξ)k

(x− x0)k+1
F (x0).

Portanto

F (x0) = − 1

k + 1

(x− x0)
k+1

(x− ξ)k
F ′(ξ) =

1

k + 1

(x− x0)
k+1

(x− ξ)k
(x− ξ)k

k!
f (k+1)(ξ)

=
(x− x0)

k+1

(k + 1)!
f (k+1)(ξ).

□

Exemplo 5.6. Seja f : I → R, onde I = [a, b] ⊆ R, com a < b. Suponha que f e suas
derivadas f ′, f ′′,. . . , f (k+1) existam e sejam contínuas em I. Se f (k+1)(x) = 0 para todo
x ∈ I e f(x0) = f ′(x0) = · · · = f (k)(x0) = 0 para algum x0 ∈ I, então f(x) = 0 para todo
x ∈ I. De fato, pelo Teorema de Taylor unidimensional (Teorema 5.2.1), dado x ∈ I, existe
ξ entre x e x0 tal que

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)

2

2
+ · · ·+ f (k)(x0)

(x− x0)
k

k!

+ f (k+1)(ξ)
(x− x0)

k+1

(k + 1)!
.

Mas por hipótese, f (i)(x0) para i = 0, . . . , k, e f (k+1) ≡ 0 em I. Em particular, como ξ ∈ I,
temos f (k+1)(ξ) = 0. Portanto, f(x) = 0 para todo x ∈ I.

Uma aplicação da série de Taylor refere-se à caracterização de extremos locais.

Teorema 5.2.2. Sejam a < b ∈ R e I = [a, b]. Sejam x0 ∈ (a, b) e k ≥ 2 número
inteiro. Dada f : I → R, e supondo que f ′,. . . ,f (k) existam, que sejam contínuas em I, e
que f ′(x0) = · · · = f (k−1)(x0) = 0 mas f (k)(x0) ̸= 0, temos que

(1) Se k é par e f (k)(x0) > 0, então x0 é ponto de mínimo estrito local.
(2) Se k é par e f (k)(x0) < 0, então x0 é ponto de máximo estrito local.
(3) Se k é ímpar, então x0 não é extremo local.

Demonstração. Vamos começar por mostrar (1). Pelo Teorema de Taylor, para x ∈ I
existe ξ entre x0 e x tal que

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)

2

2
+ · · ·+ f (k−1)(x0)

(x− x0)
(k−1)

(k − 1)!

+ fk(ξ)
(x− x0)

k

k!
= f(x0) + fk(ξ)

(x− x0)
k

k!
.
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Supondo agora que f (k)(x0) > 0, como f (k) é contínua então existe δ > 0 tal que f (k)(x) > 0
para todo x ∈ U = (x0 − δ, x0 + δ). Se x ∈ U , então ξ ∈ U e então f (k)(x) > 0. Se k é par,
então para x ̸= x0 temos

f (k)(ξ)
(x− x0)

k

k!
> 0.

Logo
x ∈ U\{x0} =⇒ f(x)− f(x0) > 0 =⇒ x0 é mínimo local,

e portanto (1) está demonstrado.
Para demonstrar (2), o argumento é semelhante.
Finalmente, para mostrar (3), procedemos primeiro como no argumento acima. Note que

por hipótese, f (k) é contínua, e f (k)(x0) ̸= 0. Então existe δ > 0 tal que f (k) não muda de
sinal em (x0−δ, x0+δ). Nos restringindo a esta vizinhança, se k é ímpar, então (x−x0)k/k! é
positivo para x > x0 e negativo para x < x0. Logo f(x) > f(x0) ou f(x) < f(x0) dependendo
do sinal de x− x0. Logo a proposição (3) é verdadeira. □

5.3. Diferenciabilidade para funções de várias variáveis

A noção de diferenciabilidade e de derivada em dimensões maiores simplesmente genera-
liza de forma natural a derivada unidimensional. Seja f : Ω → Rn, onde Ω ⊆ Rm é aberto e
x ∈ Ω. Dizemos que f é diferenciável em x se existe uma aplicação linear L : Rm → Rn tal
que

lim
h→0

∥f(x+ h)− f(x)−L(h)∥
∥h∥

= 0.

Chamamos L de derivada de f em x, e que também denotamos por Df(x) ou f ′(x). No
caso escrevemos

L(h) = Df(x)(h) = f ′(x)(h).

Adotaremos neste texto a convenção que h é sempre suficientemente pequeno de tal forma
que x+ h ∈ Ω.

Assim como em uma dimensão, f é diferenciável em x se e somente se existir uma função
r : Rm → Rn tal que

(5.3.1) f(x+ h) = f(x) + f ′(x)(h) + r(h) com lim
h→0

∥r(h)∥
∥h∥

= 0.

Note que pela identidade acima, temos imediatamente que diferenciabilidade implica em
continuidade.

A derivada de uma função num determinado ponto, se existe, é única. De fato, se L1

e L2 são duas derivadas de f em x , então substituindo h = tξ, com ∥ξ∥ = 1 em (5.3.1)
concluímos que existem funções r1 e r2 tais que

f(x+ tξ) = f(x) + tL1(ξ) + r1(tξ), f(x+ tξ) = f(x) + tL2(ξ) + r2(tξ),

lim
t→0

∥r1(tξ)∥
∥t∥

= lim
t→0

∥r2(tξ)∥
∥t∥

= 0,

Logo concluímos que

∥(L1 −L2)(ξ)∥ =
∥r2(tξ)− r1(tξ)∥

t
≤ ∥r2(tξ)∥

t
+

∥r1(tξ)∥
t

.
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Tomando o limite quando t→ 0 em ambos os lados da equação concluímos que (L1−L2)(ξ) =
0, para todo ξ ∈ Rm com norma unitária. Mas isto só é possível se L1 = L2, como queríamos
demonstrar.

Exemplo 5.7. Podemos usar o resultado de unicidade acima descrito para encontrar
derivadas em casos simples. Como exemplo considere A : Rm → Rn aplicação linear e f :
Rm → Rn dada por f(x) = A(x)+c, onde c ∈ Rn é vetor constante. Então f ′(x)(h) = A(h)
para todo x,h ∈ Rm, e para mostrar tal fato vemos que se f ′(x) = A então

r(h) = f(x+ h)− f(x)− f ′(x)(h) = A(x+ h) + c− (Ax+ c)−Ah = 0,

e portanto limh→0 ∥r(h)∥/∥h∥ = 0. A unicidade da derivada garante que f ′(x)(h) = A(h).
Note que neste caso, a derivada f ′(x) é na verdade independente de x.

Exemplo 5.8. Seja a matriz A ∈ Rn×m e c = (c1, . . . , cn) vetor constante. Considere
ainda f : Rm → Rn tal que para x = (x1, . . . , xm) tem-se f(x) = (f1(x), . . . , fn(x)) e

f⃗(x) = Ax⃗+ c⃗ i.e., fi(x) =
m∑
j=1

Aijxj + cj para i = 1, . . . , n.

Então, para h = (h1, . . . , hm) tem-se f ′(x)(h) = y onde y⃗ = Ah⃗, i.e.,

yi =
m∑
j=1

Aijhj.

Compare com o exemplo 5.7.

Uma interessante forma de analisarmos uma função em várias variáveis é restringindo
esta função numa direção e usando propriedades de funções de apenas uma variável. Para
tanto, sejam u ∈ Rm com ∥u∥ = 1, e f : Ω → Rn, onde Ω ⊆ Rm é aberto. Dado x ∈ Ω,
seja ϵ > 0 tal que x + tu ∈ Ω para todo t ∈ (0, ϵ). Finalmente, seja ϕ : [0, ϵ) → Rn, para
ϕ = (ϕ1, . . . , ϕn) dada por ϕ(t) = f(x+ tu). Então, definimos a derivada direcional de f em
x na direção u como ϕ′(0), quando esta existir. Note que neste caso, ϕ′(0) define a aplicação
linear de R em Rn dada por t 7→ (tϕ′

1(0), . . . , tϕ
′
n(0)).

Noutra forma de definir, a derivada direcional é dada por Lu ∈ Rn tal que

lim
t→0

f(x+ tu)− f(x)

t
−Lu = 0.

Escrevemos neste caso Duf(x) = Lu.
No caso em que u = ei, então temos a derivada parcial em relação à iésima coordenada

e escrevemos
Deif(x) =

∂f

∂xi
(x).

É importante ressaltar que a existência de derivadas parciais em relação às coordenadas
não implica na existência de derivadas direcionais em geral. Considere o simples exemplo
abaixo.

Exemplo 5.9. Seja f : R2 → R dada por

f(x, y) =

{
x
y

se y ̸= 0,

0 se y = 0.
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Então
∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0,

mas a derivada direcional na direção (a, b) não existe se a e b são não nulos, pois não existe
o limite quando t→ 0 de

f(ta, tb)− f(0, 0)

t
=

1

t

a

b
.

A situação muda se supusermos diferenciabilidade, como mostra o resultado a seguir.

Teorema 5.3.1. Seja Ω ⊆ Rm aberto e f : Ω → Rn diferenciável em x ∈ Ω. Seja
u ∈ Rm com ∥u∥ = 1. Então existe a derivada direcional Duf(x), e esta é dada por

Duf(x) = f ′(x)(u).

Demonstração. Como f é diferenciável em x, então para todo ϵ > 0 existe δ > 0 tal
que Bδ(x) ∈ Ω e

h ∈ Rm, 0 < ∥h∥ < δ =⇒
∥∥f(x+ h)− f(x)− f ′(x)(h)

∥∥
∥h∥

< ϵ.

Tomando h = tu, com |t| ∈ (0, δ), temos∥∥∥∥f(x+ tu)− f(x)

t
− f ′(x)(u)

∥∥∥∥ < ϵ.

Logo

lim
t→0

f(x+ tu)− f(x)

t
= f ′(x)(u),

e portanto a derivada direcional existe e é dada por f ′(x)(u). □

O teorema acima é importante porque podemos calcular f ′(x) tomando-se derivadas nas
direções das coordenadas. De fato, considerando-se f(x) =

(
f1(x), f2(x), . . . , fn(x)

)
, temos

que

Deif(x) =

(
∂f1
∂xi

(x),
∂f2
∂xi

(x), . . . ,
∂fn
∂xi

(x)

)
.

Usando agora a linearidade de f ′(x) e que f ′(x)(ei) = Deif(x) obtemos

f ′(x)(y) =
m∑
i=1

yif
′(x)(ei) =

m∑
i=1

yiDeif(x) =
m∑
i=1

yi

(
∂f1
∂xi

(x),
∂f2
∂xi

(x), . . . ,
∂fn
∂xi

(x)

)
.

Em termos matriciais, definindo a matriz [f ′(x)] ∈ Rn×m dada por

[f ′(x)] =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xm...

... · · · ...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xm

 ,
temos que se ξ = f ′(x)(y) então ξ⃗ = [f ′(x)]y⃗. A matriz [f ′(x)] também é chamada de
matriz jacobiana de f no ponto x.
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A existência de derivadas direcionais não implica em diferenciabilidade. Para ilustrar tal
fato, considere a função

f(x, y) =

{
x2

y
se y ̸= 0,

0 se y = 0.

Então
∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0,

mas dado (a, b) com ∥(a, b)∥2 = a2 + b2 = 1 e b ̸= 0, temos

lim
t→0

f(ta, tb)− f(0, 0)

t
=
a2

b
,

e a derivada direcional é dada por

(5.3.2) D(a,b)f(0, 0) =
a2

b
.

Entretanto, se f fosse diferenciável, teríamos

D(a,b)f(0, 0) = f ′(0, 0)(a, b) =
∂f

∂x
(0, 0)a+

∂f

∂y
(0, 0)b = 0,

uma contradição com (5.3.2). Logo f não é diferenciável em (0, 0) apesar de ter todas
as derivadas direcionais neste ponto. Note que f(x, x2) = 1 para x ̸= 0, e portanto f é
descontínua em (0, 0).

Apesar da existência de derivadas direcionais num determinado ponto não garantir a
diferenciabilidade neste ponto, a existência e continuidade das derivadas parciais numa vizi-
nhança dum ponto garante a diferenciabilidade, como podemos ver no resultado a seguir.

Teorema 5.3.2. Seja f : Ω → R, onde Ω ⊆ Rm é aberto, e considere x ∈ Ω. Se
∂f/∂xi existir numa vizinhança aberta de x e for contínua em x para i = 1, . . . ,m, então f
é diferenciável em x.

Demonstração. Dado ϵ > 0, seja δ tal que

∥y − x∥ < δ =⇒
∥∥∥∥ ∂f∂xi (y)− ∂f

∂xi
(x)

∥∥∥∥ < ϵ√
m
.

Dados x = (x1, x2, . . . , xm) e y = (y1, y2, . . . , ym), sejam

z0 = y, z1 = (x1, y2, y3, . . . , ym), z2 = (x1, x2, y3, . . . , ym),

. . . , zm−1 = (x1, x2, . . . , xm−1, ym), zm = x.

Temos então que ∥y − x∥ < δ implica em ∥zi − x∥ < δ, para i = 1, . . . ,m. Note que

f(y)− f(x) = f(z0)− f(z1) + f(z1)− f(z2) + · · ·+ f(zm−1)− f(zm).

Seja i ∈ {0, . . . ,m−1}. Pelo Teorema do valor médio (Teorema 5.1.4), existe ẑi no segmento
determinado por zi e zi−1 tal que

f(zi−1)− f(zi) = (yi − xi)
∂f

∂xi
(ẑi).
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Logo,

(5.3.3)
∣∣∣∣f(y)− f(x)−

m∑
i=1

∂f

∂xi
(x)(yi − xi)

∣∣∣∣ = ∣∣∣∣ m∑
i=1

[
f(zi−1)− f(zi)

]
−

m∑
i=1

∂f

∂xi
(x)(yi − xi)

∣∣∣∣
≤

m∑
i=1

∣∣∣∣ ∂f∂xi (ẑi)− ∂f

∂xi
(x)

∣∣∣∣|yi − xi| ≤
ϵ√
m

m∑
i=1

|yi − xi| ≤ ϵ∥y − x∥,

onde usamos a desigualdade de Cauchy–Schwartz para obter a última desigualdade. Portanto
de (5.3.3) concluímos que f é diferenciável em x. □

Corolário 5.3.3. Seja f : Ω → Rn, onde Ω ⊆ Rm é aberto. Se x ∈ Ω e ∂f/∂xi existir
e for contínua numa vizinhança aberta de x para i = 1, . . . ,m, então f é diferenciável em x.

Outro resultado de grande importância diz respeito à diferenciabilidade de composições
de funções, garantindo que se duas funções são diferenciáveis, então a composição também
o é.

Teorema 5.3.4 (Regra da Cadeia). Sejam Ω ⊆ Rl e R ⊆ Rm conjuntos abertos. Sejam
f : Ω → R e g : R → Rn. Se f é diferenciável em x ∈ Ω e g é diferenciável em f(x),
então g ◦ f é diferenciável em x e

(g ◦ f)′(x) = g′(f(x)) ◦ f ′(x).

Demonstração. Seja y = f(x). Note que para h tal que x + h ∈ Ω e k tal que
y + k ∈ R, temos

f(x+ h) = f(x) + f ′(x)(h) + r(h) com lim
h→0

∥r(h)∥
∥h∥

= 0,

g(y + k) = g(y) + g′(y)(k) + p(k) com lim
k→0

∥p(k)∥
∥k∥

= 0.

Definindo k = f(x+ h)− f(x) = f ′(x)(h) + r(h), temos

g ◦ f(x+ h) = g(f(x+ h)) = g(y + k) = g(y) + g′(y)(k) + p(k)

= g(y) + g′(y)[f ′(x)(h) + r(h)] + p(f(x+ h)− f(x)) = g(y) + g′(y)f ′(x)(h) + q(h)

onde q(h) = g′(y)r(h) + p(f(x+ h)− f(x)). Finalmente,

(5.3.4) lim
h→0

q(h)

∥h∥
= g′(y) lim

h→0

r(h)

∥h∥
+ lim

h→0

p(f(x+ h)− f(x))

∥h∥
= lim

h→0

p(f(x+ h)− f(x))

∥h∥
.

Para terminar nossa demonstração, basta mostar que o limite em (5.3.4) se anula. Seja
ϵ > 0 fixado, h ∈ Rl\{0} também fixado, e tal que x+ h ∈ Ω. Duas situações mutualmente
exclusivas se apresentam:

(1) Se h é tal que f(x+ h) = f(x), então p(f(x+ h)− f(x)) = 0.
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(2) Caso contrário, temos

∥p(f(x+ h)− f(x))∥
∥h∥

=
∥p(f(x+ h)− f(x))∥
∥f(x+ h)− f(x)∥

∥f(x+ h)− f(x)∥
∥h∥

≤ ∥p(k)∥
∥k∥

(
∥f ′(x)h∥

∥h∥
+

∥r(h)∥
∥h∥

)
.

Sejam δ′ > 0 e c ∈ R tais que se 0 < ∥h∥ < δ′, então ∥f ′(x)∥ + ∥r(h)∥/∥h∥ < c.
Seja δ′′ > 0 tal que

(5.3.5) ∥k∥ < δ′′ =⇒ ∥p(k)∥
∥k∥

<
ϵ

c
.

Da continuidade de f temos que existe δ′′′ > 0 tal que

∥h∥ < δ′′′ =⇒ ∥k∥ = ∥f(x+ h)− f(x)∥ < δ′′.

Por (5.3.5), tem-se que para δ = min{δ′, δ′′′},

∥h∥ < δ =⇒ ∥k∥ < δ′′ =⇒ ∥p(k)∥
∥k∥

<
ϵ

c
=⇒ ∥p(f(x+ h)− f(x))∥

∥h∥
< ϵ.

Dos casos (1) e (2) acima, concluímos que dado ϵ > 0 existe δ > 0 tal que

0 < ∥h∥ < δ =⇒ ∥p(f(x+ h)− f(x))∥
∥h∥

< ϵ.

i.e.,

lim
h→0

p(f(x+ h)− f(x))

∥h∥
= 0.

Portanto, concluímos por (5.3.4) que

lim
h→0

∥q(h)∥
∥h∥

= 0,

donde obtemos o resultado. □

Exemplo 5.10. Seja f : Rn → Rn, e seja a função g : Rn → Rn inversa de f , isto é,

g(f(x)) = x, f(g(y)) = y,

para todo x, y em Rn. Se f é diferenciável em x ∈ Rn, e g é diferenciável em y = f(x),
então f ′(x) e g′(y) são inversas uma da outra, isto é,

f ′(x) ◦ g′(y) = g′(y) ◦ f ′(x) = I,

onde I é o operador identidade I(x) = x.
De fato, seja h(x) = g(f(x)) = x. Derivando h(x) = x, temos h′(x) = I. Usando a

regra da cadeia para h(x) = g(f(x)), temos h′(x) = g′(y)f ′(x). Logo, g′(y)f ′(x) = I. De
forma análoga segue-se que f ′(x)g′(y) = I.

Uma aplicação imediata da regra da cadeia é dada no seguinte teorema do valor médio
para funções de várias variáveis. Na verdade, esta é uma aplicação imediata do teorema
do valor médio unidimensional (Teorema 5.1.4) quando restringimos uma função de várias
variáveis a um segmento de reta.
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Teorema 5.3.5. Seja f : Ω → R, diferenciável em Ω, onde Ω ⊆ Rm é aberto. Sejam x,
y ∈ Ω e S = {x+ t(y − x) : t ∈ (0, 1)}. Se S ⊆ Ω, então existe ξ ∈ S tal que

f(y)− f(x) = f ′(ξ)(y − x).

Demonstração. Este resultado segue-se de uma aplicação do teorema do valor médio
unidimensional (Teorema 5.1.4) para a função ϕ : [0, 1] → R dada por ϕ(t) = f

(
x+t(y−x)

)
.

Note ainda que pela regra da cadeia temos que
ϕ′(t) = f ′(x+ t(y − x)

)
(y − x).

□

É interessante notar que não vale uma “generalização trivial” para o teorema do valor
médio quando a imagem de uma função está no Rn, para n ≥ 2. Como exemplo, considere
a função ϕ : R → R2 dada por ϕ(t) = (sin t, cos t). Tomando-se os pontos t = 0 e t = 2π,
vemos que não existe ξ ∈ [0, 2π] tal que

0 = ϕ(0)− ϕ(2π) = ϕ′(ξ)(2π − 0) = 2πϕ′(ξ).

pois ϕ′(ξ) ̸= 0 para todo ξ.
Existe entretanto o seguinte resultado para funções em Rn.

Teorema 5.3.6. Seja f : Ω → Rn, diferenciável em Ω, onde Ω ⊆ Rm é aberto. Sejam
x0, x1 ∈ Ω e seja S o segmento de reta unindo estes pontos. Se S ⊆ Ω, então existe ξ ∈ S
tal que

∥f(x1)− f(x0)∥ ≤ ∥f ′(ξ)(x1 − x0)∥.

Demonstração. Seja v = f(x1)− f(x0), e ϕ(x) = f(x) · v. Então

ϕ(x1)− ϕ(x0) = (f(x1)− f(x0)) · v = ∥f(x1)− f(x0)∥2,
e ϕ′(x)(h) = [f ′(x)(h)] · v. Pelo Teorema do valor médio dado pelo Teorema 5.3.5, existe
ξ ∈ S tal que ϕ(x1)− ϕ(x0) = ϕ′(ξ)(x1 − x0), i.e.,

∥f(x1)− f(x0)∥2 = [f ′(ξ)(x1 − x0)] · (f(x1)− f(x0)) ≤ ∥f ′(ξ)(x1 − x0)∥∥f(x1)− f(x0)∥.
Finalmente, se f(x1) = f(x0), o resultado é trivial. Caso contrário dividimos ambos os lados
da desigualdade acima para concluir a demonstração. □

Exemplo 5.11. Seja f : B1(0) → Rm diferenciável e com derivada limitada em B1(0).
Se (xi) é sequência de Cauchy em B1(0), então

(
f(xi)

)
é sequência de Cauchy em Rm.

Para mostrar este fato, como f tem derivada limitada, seja c constante tal que ∥f ′(x)∥ <
c para todo x ∈ B1(0). Dado ϵ > 0, como (xi) é sequência de Cauchy em B1(0), então existe
N tal que

i, j > N =⇒ ∥xi − xj∥ <
ϵ

c
.

Pelo Teorema do valor Médio, temos para todo xi e xj que existe ξi,j ∈ B1(0) tal que

∥f(xi)− f(xj)∥ ≤ ∥f ′(ξi,j)(xi − xj)∥.
Logo,

∥f(xi)− f(xj)∥ ≤ ∥f ′(ξi,j)∥∥xi − xj∥ ≤ c∥xi − xj∥,
e portanto

i, j > N =⇒ ∥f(xi)− f(xj)∥ ≤ c∥xi − xj∥ < ϵ,
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e
(
f(xi)

)
é sequência de Cauchy.

Encontramos na demonstração do resultado abaixo uma outra aplicação da regra da
cadeia, desta vez para funções de R em R.

Teorema 5.3.7 (Derivada da Função Inversa). Seja I intervalo, f : I → R contínua e
invertível com inversa g : J → R contínua, e J = f(I). Se f é diferenciável em c ∈ I, então
g é diferenciável em d = f(c) se e somente se f ′(c) ̸= 0. Neste caso,

g′(d) =
1

f ′(c)
=

1

f ′(g(d))

Demonstração. Se y ∈ J\{d}, então g(y) ̸= c. Logo, se f ′(c) ̸= 0,

lim
y→d

g(y)− g(d)

y − d
= lim

y→d

g(y)− c

f(g(y))− f(c)
= lim

y→d

(
f(g(y))− f(c)

g(y)− c

)−1

=
1

f ′(c)
,

onde usamos a continuidade de g no último passo. Concluímos que g é diferenciável em d e
g′(d) = 1/f ′(c).

Analogamente, se g é diferenciável em d, então usando a regra da cadeia e que g(f(x)) =
x, temos

g′(f(c))f ′(c) = 1,

e então f ′(c) ̸= 0. □

Exemplo 5.12. Seja f : R+ → R+ dada por f(x) = xn, onde n ∈ N. Então f tem
inversa g : R+ → R+, e g(y) = n

√
y. Para y > 0 temos então

g′(y) =
1

ny
n−1
n

.

Note que g não é diferenciável no zero pois f ′(0) = 0.

5.4. Matriz Hessiana, Fórmula de Taylor e pontos críticos

Note que a derivada de uma função de uma função de f : Rm → R num determinado
ponto x foi definida como uma aplicação linear de Rm em R com certa capacidade de a-
proximar a função f no ponto x. No caso, para x fixo, teríamos f ′(x) : Rm → R dada
por

f ′(x)(y) =
∂f

∂x1
(x)y1 +

∂f

∂x2
(x)y2 + · · ·+ ∂f

∂xm
(x)ym,

onde y ∈ Rm.
De forma análoga, definimos a segunda derivada de f num ponto x fixado como sendo a

função bilinear f ′′(x) : Rm × Rm → R tal que

f ′′(x)(y, z) =
m∑

i,j=1

∂2f(x)

∂xi∂xj
yizj, onde

∂2f

∂xi∂xj
=

∂

∂xi

(
∂f

∂xj

)
,

e y, z ∈ Rm. Uma forma mais compacta de escrever a definição acima é usando-se a matriz
hessiana H dada por Hij(x) = ∂2f(x)/∂xi∂xj. Logo

f ′′(x)(y, z) = (y⃗)tH(x)⃗z.
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Observação. Um interessante resultado garante que se f for suficientemente suave num
determinado ponto x0 (é suficiente que as segundas derivadas existam e sejam contínuas numa
vizinhança aberta de x0) teremos que não importa a ordem em que se toma as derivadas, i.e.,
∂2f/∂xi∂xj = ∂2f/∂xj∂xi, e portanto a matriz hessiana é simétrica. Este tipo de resultado,
com diferentes hipóteses, é atribuido à Clairaut em [20], e à Schwarz em [3,10].

Definições para derivadas de ordem mais alta seguem o mesmo formato, sendo estas
aplicações multilineares. Entretanto para os nossos propósitos, a matriz hessiana basta.

Apresentamos no teorema a seguir a fórmula de Taylor, e nos restringimos ao caso par-
ticular de polinômios quadráticos. Este teorema será de fundamental importância para
caracterizarmos pontos extremos.

Teorema 5.4.1 (Taylor). Seja Ω ⊆ Rm aberto e f : Ω → R duas vezes diferenciável em
Ω, com derivadas contínuas. Para x ∈ Ω, e h ∈ Rm tais que x+ th ∈ Ω para todo t ∈ [0, 1],
existe t̂ ∈ (0, 1) tal que para ξ = x+ t̂h tem-se

(5.4.1) f(x+ h) = f(x) + f ′(x)(h) +
1

2
f ′′(ξ)(h,h).

Demonstração. Seja ϕ : [0, 1] → R dada por ϕ(t) = f
(
x+ th

)
. Aplicando o Teorema

de Taylor em uma dimensão (Teorema 5.2.1), obtemos que existe t̂ ∈ (0, 1) tal que

ϕ(1) = ϕ(0) + ϕ′(0) +
1

2
ϕ′′(t̂).

Note que

ϕ′(t) = f ′(x+ th)(h) =
m∑
i=1

∂f

∂xi
(x+ th)hi, ϕ′′(t) =

m∑
j=1

m∑
i=1

∂2f

∂xi∂xj
(x+ th)hihj,

e usando a definição de ϕ obtemos o resultado diretamente. □

Observação. Note que exigindo que as segundas derivadas sejam contínuas, podemos
usar o fato de que a “ordem” das segundas derivadas não importam.

Assim como em uma dimensão, usaremos o Teorema de Taylor para estudarmos pontos
extremos de uma função. Dizemos que f : Ω → R, onde Ω ⊆ Rm, tem um máximo local em
x ∈ Ω se existe δ > 0 tal que

(5.4.2) y ∈ Bδ(x) ∩ Ω =⇒ f(y) ≤ f(x).

Dizemos que x é máximo estrito local se valer a desigualdade estrita em (5.4.2). Definição
análoga serve para mínimo local e mínimo estrito local. Chamamos um ponto de máximo
ou mínimo local de ponto extremo local, e um ponto de máximo ou mínimo estrito local de
ponto extremo estrito local.

O resultado que obtemos a seguir, relativo a pontos extremos interiores, é análogo ao
caso unidimensional, ver o Teorema 5.1.2, e diz primeiro que pontos extremos interiores são
pontos críticos, i.e., pontos em que a derivada se anula. O resultado mostra também que
se um ponto x é de mínimo local, então a forma bilinear f ′′(x) é semi-definida positiva, i.e,
f ′′(x)(h,h) ≥ 0 para todo h ∈ Rm. De forma análoga se um ponto é de máximo local, então
f ′′(x) é semi-definida negativa, i.e, f ′′(x)(h,h) ≤ 0 para todo h ∈ Rm.
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Em termos matriciais, f ′′(x) é semi-definida positiva se a matriz hessiana H(x) o for,
i.e., se (h⃗)tH(x)h⃗ ≥ 0 para todo h ∈ Rm, e semi-definida negativa se (h⃗)tH(x)h⃗ ≤ 0 para
todo h ∈ Rm.

Teorema 5.4.2 (Ponto extremo interior). Seja f : Ω → R, onde Ω ⊆ Rm é aberto, e
x ∈ Ω ponto extremo local. Se f é diferenciável em x, então x é ponto crítico, i.e., f ′(x) = 0.
Se além disto, f for duas vezes diferenciável em Ω, com derivadas segundas contínuas, então
temos que

(1) se x for ponto de mínimo local, então f ′′(x)(h,h) ≥ 0 para todo h ∈ Rm,
(2) se x for ponto de máximo local, então f ′′(x)(h,h) ≤ 0 para todo h ∈ Rm.

Demonstração. Para mostrar que x é ponto crítico, basta usar o Teorema 5.3.1 e
mostrar que as derivadas parciais se anulam, pois dado o vetor ei temos que a função ϕ(t) =
f(x+ tei) tem ponto extremo local em t = 0. Usando o Teorema 5.1.2 vemos que ϕ′(0) = 0.
Mas então

0 = ϕ′(0) = f ′(x)(ei) =
∂f

∂xi
(x)

e concluímos que f ′(x) = 0.
Suponha agora que f seja duas vezes diferenciável com derivadas segundas contínuas, e

que x seja ponto de mínimo local. Então x é ponto crítico, como acabamos de mostrar, e
pelo Teorema de Taylor em várias dimensões (Teorema 5.4.1), temos que

f(x+ su)− f(x) =
s2

2
f ′′(ξs)(u,u),

para todo s suficientemente pequeno e u ∈ Rm, onde ξs é ponto do segmento unindo x e
x+ su. Quando s→ 0, temos que ξs → x, e usando a continuidade de f ′′ concluímos que

f ′′(x)(u,u) = lim
s→0

f ′′(ξs)(u,u) = 2 lim
s→0

f(x+ su)− f(x)

s2
≥ 0,

pois como x é mínimo local, então f(x+su)−f(x) ≥ 0 para todo s suficientemente pequeno.
Portanto f ′′(x)(u,u) ≥ 0, como queríamos demonstrar. □

Os resultados acima nos dão condições necessárias para um ponto interior ser extremo
local, porém estas não são suficientes (vide exemplo f(x) = x3 na Figura 3). Dizemos
que um ponto é de sela quando a derivada se anula mas este não é extremo local. Um
caso interessante é quando a função é localmente crescente na direção de uma coordenada
e decrescente na direção de outra. Por exemplo, f : R2 → R dada por f(x, y) = x2 − y2,
ver Figura 6. Ver também a sela de macaco dada por f(x, y) = x3 − 3xy2, Figura 7 (tirada
de [21]).

O resultado a seguir nos fornece algumas condições suficientes para um ponto ser de
máximo, mínimo ou de sela. Mais precisamente, temos que se um ponto crítico x de uma
função suave tem f ′′(x) positiva definida, i.e, f ′′(x)(h,h) > 0 para todo h ∈ Rm\{0}, então
ele é mínimo estrito local. De forma análoga, se f ′′(x) é negativa definida, i.e, f ′′(x)(h,h) < 0
para todo h ∈ Rm\{0}, então ele é máximo estrito local. O último caso é quando f ′′(x)
é indefinida i.e, existem h, ξ em Rm tais que [f ′′(x)(h,h)][f ′′(x)(ξ, ξ)] < 0. Aí então x é
ponto de sela.
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Figura 6. Gráfico de x2 − y2, que tem ponto de sela em (0, 0).

Figura 7. Gráfico da sela de macaco dada por x3 − 3xy2, com ponto de sela em (0, 0).

Teorema 5.4.3. Seja Ω ⊆ Rm aberto e f : Ω → R duas vezes diferenciável, com
derivadas contínuas, e x ∈ Ω ponto crítico. Temos então que

(1) se f ′′(x) for positiva definida então x é mínimo estrito local,
(2) se f ′′(x) for negativa definida então x é máximo estrito local,
(3) se f ′′(x) for indefinida então x é ponto de sela.
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Demonstração. Mostraremos apenas o caso em que f ′′(x) é positiva definida. Neste
caso, devido à continuidade das segundas derivadas, f ′′(·) é positiva definida numa vizinhança
aberta de x. Para y ∈ Ω\{x} satisfazendo as condições do Teorema de Taylor no Rm

(Teorema 5.4.1), e suficientemente próximo de x, temos que existe ξ pertencente ao segmento
de reta entre y e x e tal que

(5.4.3) f(y)− f(x) =
1

2
f ′′(ξ)(y − x,y − x).

Portanto x é mínimo estrito local pois a espressão do lado direito de (5.4.3) é estritamente
positiva. □

Note que apesar do teorema anterior dar condições suficientes para determinar se um
ponto crítico é ou não extremo local, ainda é preciso descobrir se a f ′′ é positiva ou negativa
definida ou indeterminada. Esta dificuldade é contornável, pois existem vários resultados
de álgebra linear que dizem, por exemplo, quando uma matriz é ou não positiva definida.
Por exemplo, uma matriz simétrica é positiva definida se e somente se seus autovalores são
positivos. A referência [7] apresenta este e vários outros resultados relacionados ao tema.

Exemplo 5.13. Seja F : Rm → R dada por

F (x) = c+ b⃗tx⃗+
1

2
x⃗tAx⃗,

onde A ∈ Rm×m é simétrica positiva definida, b⃗ ∈ Rm×1, e c ∈ R. Então x∗ é ponto de
mínimo estrito de F se e somente se Ax⃗∗ = −b⃗. De fato, se x∗ é ponto de mínimo estrito
de F , então F ′(x∗) = 0. Mas a matriz jacobiana [F ′(x∗)] ∈ Rm×1 é dada por

[F ′(x∗)] = (x⃗∗)
tA+ b⃗t,

e portanto Ax⃗∗ = −b⃗. Por outro lado, se Ax⃗∗ = −b⃗, então F ′(x∗) = 0. Como a matriz
hessiana de F , dada por A, é positiva definida, então x∗ é ponto de mínimo estrito de F .

Exemplo 5.14. No exemplo 5.13 acima, note que mesmo que A não seja positiva definida,
vale que x∗ é ponto crítico de F se e somente se Ax⃗∗ = −b⃗. Suponha [5] que A tenha uma
autovalor negativo λ1, e outro positivo λ2, sendo os respectivos autovetores x1 e x2. Note
que

F (tx1) = c+ tb⃗tx⃗1 +
t2

2
x⃗t
1Ax⃗1 = c+ tb⃗tx⃗1 +

t2λ1
2

x⃗t
1x⃗1 → −∞

se t → +∞ pois λ1 < 0. Analogamente, F (tx2) → +∞ se t → +∞. Portanto, F não tem
nem máximo nem mínimo globais. Na verdade, F não possui nem extremos locais, pois a
matriz A, que é a hessiana de F , é indefinida:

x⃗t
1Ax⃗1 = λ1x⃗

t
1x⃗1 = λ1∥x1∥2 < 0, x⃗t

2Ax⃗2 = λ2x⃗
t
2x⃗2 = λ2∥x2∥2 > 0.

Logo, segundo o Teorema 5.4.3, todo ponto crítico é ponto de sela.

Exemplo 5.15. [Método de Newton] O exemplo 5.13 acima, conjuntamente com a fór-
mula 5.4.1 motiva a seguinte linha de raciocínio. Seja f : Ω → R uma função suficientemente
suave (três vezes diferenciável, com a terceira derivada contínua) e x∗ ∈ Ω ponto de mínimo
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x

f

Figura 8. Função convexa.

local com hessiana positiva definida. Então, para x ∈ Ω e h suficientemente pequeno temos
que

g(h)
def
= f(x) + b⃗th⃗+

1

2
h⃗tHh⃗ ≈ f(x+ h),

onde b e H e são as matrizes jacobiana e hessiana de f em x. Note que não temos uma
igualdade na expressão acima pois a hessiana é calculada em x, e não num ponto entre x e
x + h, como nos diz o Teorema de Taylor 5.4.1. Então h dado por h⃗ = −H−1b⃗ é minimo
local de g.

Temos então o seguinte esquema iterativo. Seja x0 ∈ Ω “próximo o suficiente” de x∗, e
dado xk ∈ Ω seja xk+1 ∈ Ω definido por

xk+1 = xk −H−1f⃗ ′(xk).

Alguns fatos podem ser demonstrados:
(1) a sequência (xk) está de fato bem-definida em Ω.
(2) limk→∞ xk = x∗, e existe constante c tal que

∥x∗ − xk+1∥ ≤ c∥x∗ − xk∥2,

i.e., a convergência é quadrática.
O método acima descrito é o Método de Newton para localizar pontos mínimos locais. Ver
mais detalhes em [2,14].

Uma segunda aplicação do Teorema 5.4.1 diz respeito à funções convexas definidas em
convexos. Dizemos que Ω ⊆ Rm é convexo se x, y ∈ Ω implica em (1 − t)x + ty ∈ Ω para
todo t ∈ [0, 1]. Dizemos que f : Ω → R é convexa em Ω se

f
(
(1− t)x+ ty

)
≤ (1− t)f(x) + tf(y).

para todo t ∈ [0, 1]. Graficamente, uma função é convexa se o gráfico de f entre x e y está
abaixo da reta que une os pontos (x, f(x)) e (y, f(y)), como ilustra a Figura 8.

Existem inúmeros resultados relacionados a convexidade. Em particular, um mínimo
local é também global, e se o mínimo local é estrito, segue-se a unicidade de mínimo glo-
bal [13].
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Teorema 5.4.4. Seja Ω ⊆ Rm conjunto aberto e convexo e f : Ω → R duas vezes
diferenciável, com derivadas contínuas. Então as afirmativas abaixo são equivalentes:

(1) f é convexa
(2) f ′′(x) é semi-definida positiva para todo x ∈ Ω.

Demonstração. (⇐) Suponha que f ′′(x) seja semi-definida positiva em Ω. Seja S o
segmento de reta unindo x e y ∈ Ω, e seja 0 < t < 1. Definindo x0 = (1 − t)x + ty, pelo
Teorema de Taylor existe ξ1 ∈ S entre x e x0, e ξ2 ∈ S entre x0 e y tais que

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(ξ1)(x− x0,x− x0),

f(y) = f(x0) + f ′(x0)(y − x0) +
1

2
f ′′(ξ2)(y − x0,y − x0).

Como f ′′(ξ1) e f ′′(ξ2) são ambas semi-definidas positivas, então

(1− t)f(x) + tf(y)

= f(x0)+f ′(x0)[(1− t)x+ ty−x0]+
(1− t)

2
f ′′(ξ1)(x−x0,x−x0)+

t

2
f ′′(ξ2)(y−x0,y−x0)

= f(x0) +
(1− t)

2
f ′′(ξ1)(x− x0,x− x0) +

t

2
f ′′(ξ2)(y − x0,y − x0) ≥ f(x0).

Logo f é convexa.
(⇒) Se f é convexa,

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

e para t ∈ (0, 1] temos que

f((1− t)x+ ty)− f(x)

t
≤ f(y)− f(x).

Tomando o limite t → 0 obtemos f ′(x)(y − x) ≤ f(y) − f(x). Seja s = ∥x − y∥ e
h = (y − x)/s. Usando agora a fórmula de Taylor obtemos que existe ŝ ∈ (0, s) tal que

1

2
f ′′(x+ ŝh)(sh, sh) =

1

2
f ′′(x+ ŝh)(y − x,y − x) = f(y)− f(x)− f ′(x)(y − x) ≥ 0.

Usando a bilinearidade da aplicação f ′′(x+ ŝh), temos

f ′′(x+ ŝh)(h,h) ≥ 0.

para todo h ∈ B1(0). Tomando y → x temos s → 0 e portanto ŝ → 0. Usando a
continuidade de f ′′ concluímos a demonstração. □

Observação. Note que no processo de demonstração do Teorema 5.4.4, mostramos
também que uma função f ser convexa implica em f ′(x)(y−x) ≤ f(y)− f(x) para todo x,
y.
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Figura 9. Teorema da função inversa.

5.5. Teorema da Função Inversa e da Função Implícita

5.5.1. Teorema da Função Inversa. Como motivação considere primeiro o caso uni-
dimensional, e seja f : R → R “suave”. Se f ′(x) ̸= 0 para algum x ∈ R, então f é localmente
invertível, i.e, f é injetiva numa vizinhança aberta U de x e existe g = f−1 : V → U , onde
U = f(V ), tal que

g(f(x)) = x, para todo x ∈ U.

No caso a “suavidade” necessária é que a função tenha derivadas contínuas. Dado Ω ⊆ Rm,
dizemos que uma função f : Ω → Rn é de classe C1(Ω) se é diferenciável com derivadas
contínuas em Ω. A regularidade exigida nos garante o seguinte resultado.

Lema 5.5.1. Seja Ω ⊆ Rm aberto, e f : Ω → Rm de classe C1(Ω). Suponha queD = f ′(x̂)
seja invertível, onde x̂ ∈ Ω. Então f ′(x) é invertível com inversa contínua, na vizinhança
aberta de x̂ dada por

(5.5.1) U =

{
x ∈ Ω : ∥D − f ′(x)∥ < 1

2∥D−1∥

}
.

Demonstração. Como f ∈ C1(Ω), então U é de fato vizinhança aberta de x̂. Se f ′

fosse não invertível para algum x ∈ U , existiria ξ ∈ Rm não nulo tal que f ′(x)ξ = 0 (por
que?). Mas então

∥Dξ∥ = ∥Dξ − f ′(x)ξ∥ < 1

2∥D−1∥
∥ξ∥.

Finalmente,

∥ξ∥ = ∥D−1Dξ∥ ≤ ∥D−1∥∥Dξ∥ < ∥D−1∥ 1

2∥D−1∥
∥ξ∥ =

1

2
∥ξ∥,

uma contradição. Logo tal x não existe e f ′ é invertível em U .
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Para mostrar que a inversa de f ′ é uma função contínua em x0 ∈ U , seja D0 = f ′(x0) e
A(x) = f ′(x). Usando o fato de que para cada x ∈ U , o operador linear A(x) : Rm → Rm é
uma sobrejeção, temos que

(5.5.2) ∥D−1
0 − A−1(x)∥ = sup

η∈Rm,η ̸=0

∥D−1
0 η − A−1(x)η∥

∥η∥
= sup

ξ∈Rm, ξ ̸=0

∥D−1
0 A(x)ξ − ξ∥
∥A(x)ξ∥

≤ ∥D−1
0 A(x)− I∥ sup

ξ∈Rm, ξ ̸=0

∥ξ∥
∥A(x)ξ∥

Note primeiro que

(5.5.3) x → x0 =⇒ ∥D−1
0 A(x)− I∥ → 0.

Portanto, basta mostrar que existe uma constante M tal que

(5.5.4) sup
ξ∈Rm, ξ ̸=0

∥ξ∥
∥A(x)ξ∥

≤M,

pois por (5.5.2), (5.5.3), (5.5.4), temos que A−1(x) → D−1
0 se x → x0. Portanto A−1 é

contínua em x0. Como x0 é arbitrário, o resultado vale para todo ponto de U .
Para mostrar (5.5.4), note que para cada ξ não nulo fixo temos

lim
x→x0

∥ξ∥
∥A(x)ξ∥

=
∥ξ∥

∥D0ξ∥
≤ sup

ξ∈Rm, ξ ̸=0

∥ξ∥
∥D0ξ∥

= sup
ζ∈Rm, ζ ̸=0

∥D−1
0 ζ∥
∥ζ∥

= ∥D−1
0 ∥.

Portanto, existe uma vizinhança aberta de x0 e uma constante M tal que para todo x nesta
vizinhança, e todo ξ ∈ Rm\{0},

∥ξ∥
∥A(x)ξ∥

≤M.

Tomando o supremo em ξ temos (5.5.4). □

Teorema 5.5.2 (Função Inversa). Seja Ω ⊆ Rm e f : Ω → Rm de classe C1(Ω). Seja
x̂ ∈ Ω tal que D = f ′(x̂) é invertível. Então dada a vizinhança aberta U de x̂ definida
por (5.5.1), temos que

(1) f : U → V = f(U) é injetiva, e V é aberto.
(2) Seja g : V → U a função inversa de f definida por

g(f(x)) = x para todo x ∈ U.

Então g ∈ C1(V ) e para ŷ = f(x̂) tem-se g′(ŷ) = [f ′(x̂)]−1.

Demonstração. (Rudin) Para mostrar (1) começamos definindo

(5.5.5) λ =
1

2∥D−1∥
.

Como f ′ é contínua, então U é de fato vizinhança aberta de x̂. Definindo para y ∈ Rm a
função ϕ : Ω → Rm dada por

(5.5.6) ϕ(x) = x+D−1(y − f(x)),

temos que f(x) = y se e só se x é ponto fixo de ϕ.
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Mas ϕ′(x) = I − D−1f ′(x) = D−1(D − f ′(x)), e portanto ∥ϕ′(x)∥ ≤ 1/2 em U . Logo,
se y ∈ U , temos pelo Teorema 5.3.6 que

(5.5.7) ∥ϕ(x)− ϕ(y)∥ ≤ 1

2
∥x− y∥,

e ϕ é contração. Portanto tem no máximo um ponto fixo, e f é injetiva em U (observe que
a existência de ponto fixo não está garantida pois ϕ está definida em Ω somente. Por que?).

Para mostrar que V é aberto, seja y0 ∈ V . Então y0 = f(x0) para algum x0 ∈ U .
Considere ρ > 0 tal que Bρ(x0) ⊆ U . Mostraremos que Bρλ(y0) ⊆ V , para concluir que V é
aberto. Para y ∈ Bρλ(y0),

∥ϕ(x0)− x0∥ = ∥D−1(y − y0)∥ < ∥D−1∥ρλ =
ρ

2
.

Mas então para x ∈ Bρ(x0),

∥ϕ(x)− x0∥ ≤ ∥ϕ(x)− ϕ(x0)∥+ ∥ϕ(x0)− x0∥ <
1

2
∥x− x0∥+

ρ

2
≤ ρ,

e ϕ(x) ∈ Bρ(x0). Portanto ϕ é contração de Bρ(x0) em Bρ(x0), e pelo Teorema 3.5.3 tem
então um único ponto fixo x ∈ Bρ(x0) ⊆ U . Logo f(x) = y, e y ∈ f

(
Bρ(x0)

)
⊆ f(U) = V ,

como queríamos demonstrar.

Mostramos agora (2). Por (1), temos que f é invertível em U , e seja g : V → U sua
inversa. Para y, y + k ∈ V , existem x = g(y), x + h = g(y + k). Considerando ϕ como
em (5.5.6), temos que

ϕ(x+ h)− ϕ(x) = h+D−1[f(x)− f(x+ h)] = h−D−1k.

Por (5.5.7) temos ∥h−D−1k∥ ≤ ∥h∥/2 e então ∥D−1k∥ ≥ ∥h∥/2. Logo

∥h∥ ≤ 2∥D−1∥∥k∥ ≤ ∥k∥
λ
.

Mas por (5.5.5), e Lema 5.5.1, f ′ é invertível em U . Denotando esta inversa por T , temos

∥g(y + k)− g(y)− Tk∥
∥k∥

=
∥h− Tk∥

∥k∥
≤ ∥T (f ′(x)h− k)∥

λ∥h∥

≤ ∥T∥
λ

∥f(x+ h)− f(x)− f ′(x)h∥
∥h∥

.

Tomando k → 0, temos h → 0, e o lado direito acima vai zero. Portanto o lado esquerdo
também converge para zero, e g′(y) = T (y), que é a inversa de f(x). Logo g é diferenciável.
Para concluir que g ∈ C1(V ), usamos que g′(y) = [f ′(g(y))]−1, e pelo Lema 5.5.1, f ′ tem
inversa contínua. □

Observação. Note que o teorema acima tem caráter local. Em particular, é possível
construir funções não injetivas em seu domínios que possuem matrizes jacobianas invertíveis
em todos os pontos. Entretanto em uma dimensão, se a derivada não se anula em nenhum
ponto de um intervalo aberto, a função é globalmente invertível.
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y

x

Figura 10. Conjunto {(x, y) ∈ R2 : x2 + y2 = 1}.

x

y

Figura 11. Conjunto {(x, y) ∈ R2 : x = y2}.

5.5.2. Teorema da função implícita. O teorema de função inversa trata da impor-
tante questão de solvabilidade de equações dadas de forma implícita. A pergunta é simples:
dados os pontos (x,y) soluções de uma equação F (x,y) = 0, será que é possível escrever y
em função de x?

Como uma primeira motivação, considere F (x, y) = x2 + y2 − 1. Então a curva de
nível determinada por F (x, y) = 0 é dada pelo círculo de raio unitário, como nos mostra a
Figura 10. Seja (a, b) ∈ R2 tal que F (a, b) = 0. Por exemplo (0, 1) e (−1, 0) satisfazem esta
condição. Uma pergunta natural é se existe uma função ϕ tal que F (x, ϕ(x)) = 0, e ϕ(a) = b.
A resposta é globalmente, não. Mas localmente sim, se ∂F/∂y(a, b) ̸= 0.

Um segundo exemplo é dado por F (x, y) = x−y2, ver Figura 11. Para se ter F (x, ϕ(x)) =
0, pode-se escolher ϕ(x) =

√
x ou ϕ(x) = −

√
x. Entretanto nenhuma das duas funções está

definida na vizinhança de x = 0. Note que ∂F/∂y(0, 0) = 0.
Um exemplo final, agora em dimensões maiores. Sejam T1 : Rm → Rn e T2 : Rn → Rn

transformações lineares, e F : Rm+n → Rn dada por F (x,y) = T1x + T2y. Então podemos
escrever a equação F (x,y) = 0 somente em função de x se T2 for invertível. Neste caso
temos F (x,−T−1

2 T1x) = 0. Note que se definirmos a aplicação linear L : Rn → Rn dada
por L : v → F ′(a, b)(0,v), teremos L = T2. Então a condição de solvabilidade é de L seja
invertível.

Teorema 5.5.3 (Função implícita). Seja Ω ⊆ Rm+n um aberto, e (x0,y0) ∈ Ω. Seja
F : Ω → Rn de classe C1(Ω), e tal que F (x0,y0) = 0. Se a transformação linear de Rn em
Rn definida por v 7→ F ′(x0,y0)(0,v) for invertível, então existe uma vizinhança aberta W
de x0, e uma única função ϕ : W → Rn, que é C1(W ) e tal que y0 = ϕ(x0) e F (x,ϕ(x)) = 0
para todo x ∈ W .
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Demonstração. Sem perda de generalidade, suponha x0 = 0 e y0 = 0. Seja H : Ω →
Rm+n dada por H(x,y) = (x,F (x,y)). Então H ′(0,0) é invertível. Pelo teorema da função
inversa (Teorema 5.5.2), existe vizinhança aberta U de (0,0) em Rm+n tal que V = H(U)
é vizinhança aberta em Rm+n. Além disto existe Φ : V → U inversa de H de classe C1.
Escrevendo Φ = (ϕ1, ϕ2), onde ϕ1 : V → Rm e ϕ1 : V → Rn, temos

(x,y) = H ◦ Φ(x,y) = H(ϕ1(x,y), ϕ2(x,y)) = (ϕ1(x,y), F (ϕ1(x,y), ϕ2(x,y))).

Logo,

(5.5.8) x = ϕ1(x,y), y = F (x, ϕ2(x,y)),

para todo (x,y) ∈ V . Então W = {x ∈ Rm : (x,0) ∈ V} é vizinhança aberta de x = 0 em
Rm. Definindo ϕ(x) = ϕ2(x,0), temos ϕ(0) = 0, e segue-se de (5.5.8) que F (x, ϕ(x)) = 0.
Como Φ é de classe C1, então ϕ2, e portanto ϕ também é de classe C1. □

5.6. Minimização com restrições

Para problemas de minimização com restrições, dois importantes resultados nos dão
condições suficientes para que um ponto seja extremo. São os teoremas de Lagrange e de
Kuhn–Tucker, que demonstramos abaixo. Em ambas demonstrações que apresentamos se
faz necessário o Lema da aplicação aberta (ou sobrejetiva), que apresentamos abaixo sem
demonstrar [3].

Lema 5.6.1 (aplicação aberta). Seja Ω aberto em Rm, e f : Ω → Rn de classe C1(Ω).
Suponha que f ′(x) : Rm → Rn seja uma sobrejeção. Então existe U vizinhança aberta de x
tal que f(U) é aberto.

Precisamos também de alguns conceitos de álgebra linear. Dizemos por exemplo que o
conjunto de vetores {v1, · · · ,vk} dum espaço vetorial é linearmente dependente se existem
números λ1, · · · , λk, não todos nulos, tais que λ1v1+ · · ·+λ1vk = 0. Estes mesmos conjunto
é linearmente independente se não é linearmente dependente.

Um resultado importante de álgebra linear linear nos diz que se uma aplicação linear
A : Rm → Rn dada por A(x) = (v1 · x, . . . ,vn · x) não é sobrejetiva, então {v1, · · · ,vn}
é linearmente dependente. De fato, como A não é sobrejetiva, então existe vetor não nulo
ξ = (ξ1, . . . , ξn) ∈ Rn ortogonal a A(x) para todo x ∈ Rm, i.e.,

0 = (v1 · x, . . . ,vn · x) · ξ = (ξ1v1 + · · ·+ ξnvn) · x.
Mas então ξ1v1 + · · · + ξnvn ∈ Rm é ortogonal a todo vetor do Rm, e isto só é possível se
ξ1v1 + · · ·+ ξnvn = 0, como queríamos demonstrar.

Voltemos ao problema de minimização com restrições. Dadas funções reais f, g1, . . . , gk
definidas num aberto Ω de Rm, consideramos o problema de minimizar f restrita ao conjunto
de raízes de g1, . . . , gk em Ω. O Teorema de Lagrange nos dá condições necessárias que um
candidato a mínimo de tal problema tem que satisfazer.

Teorema 5.6.2 (Lagrange). Seja Ω ⊆ Rm aberto, e f, g1, . . . , gk funções reais definidas
em Ω de classe C1(Ω). Suponha que exista um aberto U ⊆ Ω e x∗ ∈ U e tal que

f(x∗) = inf{f(x) : x ∈ U e g1(x) = · · · = gk(x) = 0}.
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Então existem números µ, λ1, . . . , λk não todos nulos e tais que

(5.6.1) µf ′(x∗) = λ1g
′
1(x∗) + · · ·+ λkg

′
k(x∗).

Além disto, se {g′1(x∗), . . . , g
′
k(x∗)} é linearmente independente, então pode-se tomar µ = 1.

Demonstração. Seja F : Ω → Rk+1 dada por F (x) = (f(x), g1(x), . . . , gk(x)). Então
para x ∈ Ω, temos que F ′(x) : Rm → Rk+1 é dada por

F ′(x)(h) = (f ′(x)(h), g′1(x)(h), . . . , g
′
k(x)(h)).

Para x ∈ N = {x ∈ Ω : g1(x) = · · · = gk(x) = 0}, temos que F (x) = (f(x), 0, . . . , 0).
Supondo agora que x∗ minimiza f restrita a N , então F (Ω) não contém pontos da forma
(f(x∗)− ϵ, 0, . . . , 0) para nenhum ϵ > 0. Logo, pelo Lema da aplicação aberta (Lema 5.6.1),
F ′(x∗) não é uma sobrejeção. Temos portanto que {f ′(x), g′1(x∗), . . . , g

′
k(x∗)} é linearmente

dependente, e (5.6.1) vale.
Finalmente, se {g′1(x∗), . . . , g

′
k(x∗)} é linearmente independente, então µ ̸= 0, pois caso

contrário teríamos λ1 = · · · = λk = 0. Logo podemos dividir os fatores da combinação linear
por µ. □

Os números λ1, . . . , λk acima são conhecidos por multiplicadores de Lagrange, e em muitas
aplicações têm significado próprio.

Uma outra situação de minimização com restrições ocorre quando as restrições são dadas
por desigualdades, e não mais como acima. neste caso temos o Teorema de Kuhn–Tucker,
dado abaixo.

Teorema 5.6.3 (Kuhn–Tucker). Seja Ω ⊆ Rm aberto, e f, h1, . . . , hk funções reais defi-
nidas em Ω de classe C1(Ω). Suponha que exista um aberto U ⊆ Ω e x∗ ∈ U e tal que

f(x∗) = inf{f(x) : x ∈ U e h1(x) ≥ 0, · · · , hk(x) ≥ 0}.
Então as seguintes afirmativas são verdadeiras:

(1) existem números µ, λ1, . . . , λk não todos nulos e tais que

µf ′(x∗) = λ1h
′
1(x∗) + · · ·+ λkh

′
k(x∗).

(2) seja i ∈ {1, . . . , k} tal que hi(x∗) > 0. Então pode-se impor λi = 0.
(3) se conjunto V = {h′i(x∗) : hi(x∗) = 0, onde 1 ≤ i ≤ k} é linearmente independente,

então pode-se tomar µ = 1 e λ1 ≥ 0, . . . , λk ≥ 0.

Demonstração. (1) Neste caso, a demonstração é muito semelhante à do Teorema 5.6.2.
Seja F (x) = (f(x), h1(x), . . . , hk(x)). Então para x ∈ Ω,

F ′(x)(h) = (f ′(x)(h), h′1(x)(h), . . . , h
′
k(x)(h)).

Supondo agora que x∗ minimiza f restrita a {x ∈ Ω : h1(x) ≥ 0, · · · , hk(x) ≥ 0, }, então
F (Ω) não contém pontos da forma (f(x∗)− ϵ, h1(x∗), . . . , hk(x∗)) para nenhum ϵ > 0. Pelo
Lema da aplicação aberta (Lema 5.6.1), F ′(x∗) não é uma sobrejeção. Temos portanto que
{f ′(x), h′1(x∗), . . . , h

′
k(x∗)} é linearmente dependente.

(2) Se hr+1(x∗) > 0, . . . , hk(x∗) > 0 então considere um aberto U contendo x∗ tal que
hr+1(x∗) > 0, . . . , hk(x∗) > 0 em U . Aplicando a primeira parte deste teorema com somente
as primeiras r restrições h1(x) ≥ 0, · · · , hr(x) ≥ 0 obtemos o resultado.
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(3) Sem perda de generalidade, considere V = {h′1(x∗), . . . , h
′
r(x∗)}, onde r ≤ k. Se V

é linearmente independente, argumentamos como na demonstração do Teorema 5.6.2 para
tomar µ = 1. Além disto, dado ϵ > 0, existem vetores v1, . . . ,vr ∈ Rm tais que

h′i(x∗) · vj =

{
1 se i = j,

ϵ se i ̸= j.

Logo existe t suficientemente pequeno e t̂ contido em (0, t), tais que

hi(x∗ + tvj) = hi(x∗ + tvj)− hi(x∗) = th′i(x∗ + t̂vj)(vj) ≥ 0.

Logo f(x∗) ≤ f(x∗ + tvj). Concluímos então que

0 ≤ lim
t→0
t>0

f(x∗ + tvj)− f(x∗)

t
= f ′(x∗)(vj) = λ1h

′
1(x∗)(vj) + · · ·+ λrh

′
r(x∗)(vj)

= λjh
′
j(x∗)(vj) +

r∑
i=1, i ̸=j

λih
′
i(x∗)(vj) = λj + ϵ

r∑
i=1, i ̸=j

λi.

Como ϵ pode ser tomado arbitrariamente pequeno, necessariamente tem-se λj ≥ 0. □

5.7. Exercícios

Exercício 5.1. Seja f : R → R dada por

f(x) =

{
x2 se x ∈ Q,
0 se x ∈ R\Q.

Calcule f ′(0).

Exercício 5.2. Seja f : R → R e c ∈ R tal que f(c) = 0. Mostre então que g(x) = |f(x)|
é diferenciável em c se e somente se f é diferenciável em c e f ′(c) = 0.

Exercício 5.3. Seja f : R → R dada por f(x) = |x|. Note que f atinge seu mínimo em
x = 0. Pode-se concluir então que f ′(0) = 0? Por que?

Exercício 5.4. Seja f : R → R dada por

f(x) =
n∑

i=1

(x− ci)
2,

onde ci ∈ R para i = 1, . . . , n, e n ∈ N. Ache um ponto de mínimo local de f . Mostre que é
único.

Exercício 5.5. Dê exemplo de uma função uniformemente contínua em [0, 1] que seja
diferenciável em (0, 1) mas cuja derivada não seja limitada em (0, 1). Mostre porque que o
seu exemplo funciona.

Exercício 5.6. Seja a < b e f : [a, b] → R diferenciável em [a, b]. Mostre que se f ′(a) > 0
e f ′(b) < 0, então existe x ∈ (a, b) tal que f ′(x) = 0.

Exercício 5.7. Seja f : R → R função diferenciável em R e tal que f ′(x) ̸= 0 para todo
x ∈ R. Mostre que f é injetiva.
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Exercício 5.8. Seja f : (0, 1) → R diferenciável em (0, 1) e tal que f ′(x) ̸= 0 para todo
x ∈ (0, 1). Mostre que existe função inversa f−1 : f

(
(0, 1)

)
→ (0, 1). Mostre que f−1 é

contínua.

Exercício 5.9. Seja I um intervalo e f : I → R diferenciável. Mostre que se f ′ é
positiva em I, i.e., f ′(x) > 0 para todo x ∈ I, então f é estritamente crescente.

Exercício 5.10. Mostre que se I é um intervalo e f : I → R diferenciável com derivada
limitada em I, então f é de Lipschitz.

Exercício 5.11. Sejam a < b, e x0, x1, . . . , xN pontos tais que a = x0 < x1 < · · · <
xN = b. Mostre que se f : [a, b] → R é diferenciável e tem derivada contínua em [a, b], então
existe uma constante M ∈ R independente de N tal que

N∑
i=1

|f(xi)− f(xi−1)| ≤M.

(Obs: dizemos neste caso que f tem variação limitada.)

Exercício 5.12. Seja I ⊆ R intervalo aberto e f : I → R duas vezes diferenciável com
a segunda derivada contínua, numa vizinhança aberta de x ∈ I. Mostre então que existem
constantes positivas δ e c tal que∣∣∣∣f ′(x)− f(x+ h)− f(x)

h

∣∣∣∣ ≤ ch,

para todo 0 < h < δ. Mostre que a constante c pode ser escolhida independentemente de h.
Repita o exercício supondo agora que f : I → R é três vezes diferenciável com a terceira

derivada contínua, numa vizinhança aberta de x ∈ I, e que então∣∣∣∣f ′(x)− f(x+ h)− f(x− h)

2h

∣∣∣∣ ≤ ch2,

As duas formas acima são utilizadas para aproximar f ′(x) computacionalmente.

Exercício 5.13. Seja I ⊆ R intervalo aberto e f : I → R quatro vezes diferenciável,
com a quarta derivada contínua, numa vizinhança aberta de x ∈ I. Mostre então que existem
constantes positivas δ e c tal que∣∣∣∣f ′′(x)− f(x+ h)− 2f(x) + f(x− h)

h2

∣∣∣∣ ≤ ch2,

para todo 0 < h < δ. Mostre que a constante c pode ser escolhida independentemente de h.
A forma acima é utilizada para aproximar f ′′(x), quando f é suave.

Exercício 5.14. Mostre que dados quaisquer x, y ∈ R fixados, o resto da série de Taylor
com n termos da função cosx centrada em x e calculada em y converge para zero quando
n→ +∞.

Exercício 5.15. Seja f : R → R suave, com mínimo local em x = 0, e suponha que este
mínimo não seja global. Mostre que existe ponto crítico diferente de x = 0. Note [5] que
este resultado não pode ser generalizado para f : R2 → R, por exemplo.
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Exercício 5.16. Suponha que f : R → R seja suave, e possua ao menos dois mínimos
locais. Mostre que f possui um ponto crítico entre estes dois mínimos. Novamente [5], este
resultado não vale em geral para f : R2 → R.

Exercício 5.17. Seja f : A→ R duas vezes diferenciável em A, com a segunda derivada
contínua, onde A ⊆ R aberto, e x ∈ A ponto crítico de f tal que f ′′(x) ̸= 0 (são chamados de
não degenerados). Mostre que existe uma vizinhança aberta de x tal que x é o único ponto
crítico.

Exercício 5.18. Sejam f e A como no exercício 5.17. Suponha que todo ponto crítico
de A tem segunda derivada não nula. Mostre que cada compacto contido em A contém um
número finito de pontos críticos não degenerados.

Exercício 5.19. Seja f : R → R suave e tal que f ′(x1) > 0 e f ′(x2) > 0 para x1 < x2
raízes de f . Mostre que f possui ao menos uma raiz em (x1, x2).

Exercício 5.20. Sejam a < b números reais, e f : [a, b] → R contínua em [a, b] e
diferenciável em (a, b). Mostre que entre duas raízes consecutivas de f ′ existe no máximo
uma raiz de f .

Exercício 5.21. Sejam f e g funções de Rm → Rn, diferenciáveis em x ∈ Rm. Mostre,
usando a definição de derivadas que (f + g)′(x) = f ′(x) + g′(x). Seja h : Rm → R também
diferenciável em x ∈ Rm. Mostre usando a definição de derivadas que (hg)′(x) = h′(x)g(x)+
h(x)g′(x).

Exercício 5.22. Seja f : R2 → R dada por

f(x, y) =


xy2

x2 + y4
para (x, y) ̸= (0, 0),

0 para (x, y) = (0, 0).

Mostre que a derivada direcional de f em (0, 0) com respeito a u = (a, b) existe e que

Duf(0, 0) =
b2

a
, se a ̸= 0.

Mostre que f não é contínua e portanto não é diferenciável no (0, 0).

Exercício 5.23. Mostre que f : R2 → R dada por

f(x, y) =


x3

x2 + y2
para (x, y) ̸= (0, 0),

0 para (x, y) = (0, 0).

tem todas as derivadas direcionais em (0, 0), mas que f não é diferenciável no (0, 0).

Exercício 5.24 ([8], Example 1.1.1). Mostre que f : R2 → R dada por

f(x, y) =


x5

(y − x2) + x4
para (x, y) ̸= (0, 0),

0 para (x, y) = (0, 0).

tem todas as derivadas direcionais em (0, 0) iguais a zero, mas que f não é diferenciável no
(0, 0). (Dica: considere h = (h, h2) em (5.3.1)).
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Exercício 5.25. Seja f : R2 → R definida por

f(x, y) =

{
x3y

x4+y2
se (x, y) ̸= (0, 0),

0 se (x, y) = (0, 0).

Decida se f é ou não diferenciável em (0, 0). Prove seu resultado.

Exercício 5.26. Seja Ω ⊂ Rm, e x e y ∈ Ω tais que S = {tx+(1− t)y : t ∈ (0, 1)} ⊂ Ω.
Seja f : Ω → Rn diferenciável em Ω com derivadas contínuas, e T ∈ L(Rm,Rn). Mostre que

∥f(x)− f(y)− T (x− y)∥ ≤ sup
z∈S

∥f ′(z)− T∥L(Rm,Rn)∥x− y∥

Exercício 5.27. Seja Q = (0, 1) × (0, 1). Suponha que f : Q → R, e g : Q → R sejam
diferenciáveis em Q. Mostre que se f ′(x) = g′(x) para todo x ∈ Q, então existe constante c
tal que f(x) = g(x) + c para todo x ∈ Q.

Exercício 5.28. Seja D = R2\B1/100(0), i.e., D = {x ∈ R2 : ∥x∥ ≥ 1/100}. Seja
f : D → R tal que todas suas derivadas parciais se anulem em D. Mostre que f(−1, 0) =
f(1, 0).

Exercício 5.29. Sejam f : B̄ → R “suave” (i.e., todas derivadas direcionais existem
e são contínuas), onde B̄ = {x ∈ Rm : ∥x∥ ≤ 1} é fechado, e x∗ ∈ B̄ ponto de máximo.
Mostre que se x∗ for ponto interior de B̄, então f ′(x∗) = 0. Se ∥x∗∥ = 1 (i.e., pertence à
fronteira de B̄), o que pode ser dito sobre o sinal da derivada direcional

Duf(x
∗) = lim

t→0

f(x∗ + tu)− f(x∗)

t

na direção u = −x∗?

Exercício 5.30. Seja Ω ⊂ Rm, aberto e com a seguinte propriedade: existe x∗ ∈ Ω tal
que para todo x ∈ Ω, a reta Sx = {tx+(1− t)x∗ : t ∈ [0, 1]} está contida em Ω, i.e., Sx ⊂ Ω
(dizemos que tal domínio tem formato de estrela). Seja f : Ω → R função diferenciável em
Ω e tal que todas as derivadas parciais de f(x) são nulas, para todo x ∈ Ω. Mostre que f é
constante.

Exercício 5.31. Seja Ω como no exercício 5.30, e f : Ω → Rn diferenciável em Ω.
Suponha que exista T ∈ L(Rm,Rn) tal que f ′(x) = T para todo x ∈ Ω. Mostre que
f(x) = T (x) + c, para algum c ∈ Rn.

Exercício 5.32. Seja B = {x ∈ Rm : ∥x∥ ≤ 1} e f : B → R função contínua em B,
diferenciável no interior de B e tal que f ≡ 0 na fronteira de B. Mostre que f tem ponto
crítico no interior de B.

Exercício 5.33 (Mínimos Quadrados). Considere para i = 1, . . . , n os pontos (xi, yi) ∈
R2, e seja p : R → R dada por p(x) = ax2 + bx + c tal que a, b e c minimizam o erro
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i=1 |p(xi)− yi|2. Mostre que a, b e c satisfazem as equações

a

n∑
i=1

x4i + b
n∑

i=1

x3i + c
n∑

i=1

x2i =
n∑

i=1

x2i yi,

a

n∑
i=1

x3i + b
n∑

i=1

x2i + c
n∑

i=1

xi =
n∑

i=1

xiyi,

a
n∑

i=1

x2i + b

n∑
i=1

xi + cn =
n∑

i=1

yi.

Exercício 5.34. Seja A ⊂ Rm compacto, e A◦ o conjunto dos pontos interiores de A.
Seja f : A → R duas vezes diferenciável, com derivadas contínuas em A◦, e f contínua em
A. Suponha ainda que f se anule em toda a fronteira de A, e que f ′′ seja negativa definida
para todo ponto em A◦. Mostre que f(x) > 0 para todo x ∈ A◦.

Exercício 5.35. Mostre, usando o Teorema 5.4.3, que (0, 0) é ponto de sela de f(x, y) =
x2 − y2, e ponto de mínimo estrito local de f(x, y) = x2 + y2.

Exercício 5.36. Sejam as funções f : R → R e g : R → R duas vezes diferenciáveis,
com as segundas derivadas contínuas. Suponha que o zero seja ponto de mínimo estrito de
f e g, e que f(0) = g(0) = 1. Seja φ : R2 → R dada por φ(x, y) = f(x)g(y). O que podemos
afirmar sobre a Hessiana de φ em (0, 0) (nada pode ser afirmado, ela é indefinida, positiva
definida, positiva semi-definida, negativa definida, etc)? O que podemos afirmar sobre o
ponto (0, 0) em relação à φ (nada pode ser afirmado, é ponto de máximo, de máximo estrito,
de mínimo, de mínimo estrito, de sela, etc)? Justifique suas respostas.

Exercício 5.37. Seja f : R → R3 diferenciável e tal que ∥f(t)∥ = 1 para todo t ∈ R.
Mostre então que f ′(t) · f(t) = 0. O vetor f ′(t) é o vetor tangente da curva f em t.

Exercício 5.38. Seja Ω ⊆ Rm aberto e f : Ω → R diferenciável em x ∈ Ω. Seja
∇ f(x) = (∂f/∂x1, . . . , ∂f/∂xm)(x) ∈ Rm. Supondo que x não é ponto crítico de f , mostre
que a derivada direcional Duf(x) atinge seu máximo quando u = c∇ f(x) para algum c > 0.
O vetor ∇ f é chamado de vetor gradiente de f , e dá a direção de “maior crescimento” da
função f no ponto x.



CAPíTULO 6

Sequência de Funções

1 Seja Ω ⊂ Rm e fi : Ω → Rn, onde i ∈ N. Dizemos então que (fi) define uma sequência
de funções. Note que cada x ∈ Ω define a sequência (fi(x)) em Rn.

6.1. Convergência Pontual

Definição 6.1.1. Seja (fi) uma sequência de funções, onde fi : Ω → Rn, e Ω ⊂ Rm.
Dizemos que (fi) converge pontualmente para uma função f : Ω0 → Rn em Ω0 ⊂ Ω se para
todo x ∈ Ω0, a sequência (fi(x)) converge para f(x).

Exemplo 6.1. Sejam fi(x) = x/i e f(x) = 0. Então fi converge pontualmente para f
em R, pois para todo x ∈ R tem-se limi→∞ fi(x) = limi→∞ x/i = 0.

Exemplo 6.2. Sejam gi(x) = xi. Então
(1) Se x ∈ (−1, 1), então limi→∞ gi(x) = limi→∞ xi = 0.
(2) Se x = 1, então limi→∞ gi(x) = limi→∞ 1 = 1.
(3) Se x = −1, então gi(x) = (−1)n = 1 não converge.
(4) Se |x| > 1, então gi(x) não é limitada e portanto não converge.

Logo (gi) converge pontualmente para g em (−1, 1], onde

(6.1.1) g(x) =

{
0 se − 1 < x < 1,

1 se x = 1.

Note que
0 = lim

x→1−
g(x) = lim

x→1−
lim

i→+∞
gi(x) ̸= lim

i→+∞
lim
x→1−

gi(x) = 1.

Note que a definição de convergência pontual pode ser escrita da seguinte forma.

Definição 6.1.2. Uma sequência de funções (fi) onde fi : Ω → Rn, e Ω ⊂ Rm converge
pontualmente para uma função f : Ω0 → Rn em Ω0 ⊂ Ω se para dado ϵ > 0 e x ∈ Ω0, existe
I0(x, ϵ) tal que

i > I0(x, ϵ) =⇒ |fi(x)− f(x)| < ϵ.

O que fica claro na definição acima é que a “escolha de N0” depende do ponto x em
consideração. Considere o exemplo 6.1, e seja ϵ = 1/10. Então, para x = 1 e I0(x, ϵ) = 10,
temos

i > I0(x, ϵ) = 10 =⇒ |fi(x)− f(x)| = |1/i| < ϵ.

Mas para x = 2, a escolha anterior de I0 = 10 já não é suficiente e temos que escolher
I0(x, ϵ) ≥ 20.

1Última Atualização: 02/04/2014
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6.2. Convergência Uniforme

Definição 6.2.1. Dados Ω ⊂ Rm e i ∈ N, seja fi : Ω → Rn. Dizemos que a sequência
de funções (fi), converge uniformemente para f : Ω → Rn, se dado ϵ > 0 existe I0(ϵ) tal que

i > I0 =⇒ ∥fi(x)− f(x)∥ < ϵ para todo x ∈ Ω.

Observe que convergência uniforme implica em convergência pontual, mas que a afirmação
recíproca não vale. Uma forma prática de se mostrar que uma sequência de funções não
converge uniformemente é utilizando o resultado abaixo.

Teorema 6.2.2. Seja fi : Ω → Rn onde Ω ⊂ Rm e i ∈ N. Então a sequência de funções
(fi) não converge uniformemente para f : Ω → Rn se e somente se para algum ϵ > 0 existir
uma subsequência (fik) e uma sequência de pontos (xk) em Ω tais que

∥fik(xk)− f(xk)∥ ≥ ϵ para todo k ∈ N.

Exemplo 6.3. Sejam fi : R → R e f : R → R, onde fi(x) = x/i e f(x) = 0. Tome
ϵ = 1/2, nk = k e xk = k. Então

|fnk
(xk)− f(xk)| = 1 > ϵ.

Logo não há convergência uniforme.

Uma forma de “medir” convergência uniforme é através da norma do supremo, que a cada
função limitada associa o valor máximo do módulo desta. Formalmente temos a seguinte
definição.

Definição 6.2.3. Seja f : Ω → Rn, onde Ω ⊂ Rm, função limitada. Definimos a
norma do supremo então por

∥f∥sup,Ω = sup{∥f(x)∥ : x ∈ Ω}.

Portanto, uma sequência de funções limitadas (fi), onde Ω ⊂ Rm, converge para f : Ω →
Rn, se e somente se limi→∞ ∥fi−f∥sup,Ω = 0. Em particular, é possível mostrar que o espaço
das funções contínuas e limitadas tem propriedades interessantes (i.e., é completo) quando
se usa a norma do supremo. Ver exercício 6.7.

Exemplo 6.4. Se gi : [0, 1] → R é tal que gi(x) = xi, g : [0, 1] → R é tal que

(6.2.1) g(x) =

{
0 se x ∈ [0, 1),

1 se x = 1,

então
∥gi − g∥sup,[0,1] = sup

(
{xi : x ∈ [0, 1)} ∪ {0}

)
= 1

para todo i ∈ N. Logo gi não converge uniformemente para g. Observe entretanto no
Exemplo 6.2 que há convergência pontual para a função definida em (6.2.1).

Exemplo 6.5. Se fi(x) = x/i e f(x) = 0 então

∥fi − f∥sup,[0,1] = sup{x/i : x ∈ [0, 1]} = 1/i.

Logo fi converge uniformemente para a função identicamente nula.
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Exemplo 6.6. Suponha que f : R → R seja uniformemente contínua em R e defina
fi(x) = f(x + 1/i). Então fi converge uniformemente para f em R. De fato, seja ϵ > 0.
Como f é uniformemente contínua, existe δ ∈ R tal que

|x− y| < δ =⇒ |f(x)− f(y)| < ϵ para todo x, y ∈ R.

Seja então N∗ ∈ N tal que N∗ > 1/δ. Logo

i > N∗ =⇒ |fi(x)− f(x)| = |f(x+ 1/i)− f(x)| < ϵ,

para todo x ∈ R. Portanto, fi converge uniformemente para f .

Teorema 6.2.4 (Critério de Cauchy para convergência uniforme). Seja Ω ⊂ Rm e, para
i ∈ N, seja fi : Ω → Rn. Então a sequência (fi) converge uniformemente para uma função
f : Ω → R se e somente se dado ϵ > 0, existe K0 tal que

(6.2.2) ∥fi(x)− fj(x)∥ < ϵ.

para todo i, j ≥ K0, e x ∈ Ω.

Demonstração. (⇒) Basta usar que

∥fj(x)− fi(x)∥ ≤ ∥fj(x)− f(x)∥+ ∥f(x)− fi(x)∥
para todo x ∈ Ω.

(⇐) Por hipótese, dado ϵ > 0, existe K0 tal que

i, j ≥ K0 =⇒ ∥fi(x)− fj(x)∥ <
ϵ

2
,

para todo x ∈ Ω. Mas então (fi(x)) é sequência de Cauchy em Rn, e podemos definir
f(x) = limi→+∞ fi(x). Falta agora mostrar a convergência uniforme de fi para f . Dado
x ∈ Ω, seja K ∈ N tal que

i ≥ K =⇒ ∥fi(x)− f(x)∥ < ϵ

2
.

Note que K0 depende somente de ϵ, mas K depende também de x. Então, seja i ≥ K0, e
para cada x ∈ Ω, seja j = sup{K0, K}. Logo

∥f(x)− fi(x)∥ ≤ ∥f(x)− fj(x)∥+ ∥fj(x)− fi(x)∥ < ϵ,

e (fi) converge uniformemente para f . □

Finalmente concluímos esta seção mostrando que limite uniforme de funções contínuas
é também uma função contínua. Lembre-se que esta propriedade não vale em geral se a
convergência é só pontual.

Teorema 6.2.5 (Troca de Limites e Continuidade). Seja (fi) sequência de funções fi :
Ω → Rn contínuas em Ω ⊂ Rm, convergindo uniformemente para f : Ω → Rn. Então f é
contínua em Ω.

Demonstração. Seja x0 ∈ Ω. Dado ϵ > 0 existe N0 ∈ N tal que ∥f(x)−fN0(x)∥ < ϵ/3
para todo x ∈ Ω. Como fN0 é contínua em Ω, existe δ > 0 tal que

x ∈ Bδ(x0) ∩ Ω =⇒ ∥fN0(x)− fN0(x0)∥ <
ϵ

3
.
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Logo se x ∈ Ω e ∥x− x0∥ < δ, então

∥f(x)− f(x0)∥ ≤ ∥f(x)− fN0(x)∥+ ∥fN0(x)− fN0(x0)∥+ ∥fN0(x0)− f(x0)∥ < ϵ.

Logo f é contínua. □

6.3. Equicontinuidade

Nesta seção discutiremos os conceitos de equicontinuidade e enunciaremos o Teorema
de Arzelá–Ascoli. Não apresentaremos demonstrações, que podem (devem) ser conferidas
em [9], por exemplo.

Seja F um conjunto de funções de Ω ⊂ Rm em Rn. Chamamos o conjunto F de equicon-
tínuo em x0 ∈ Ω, se dado ϵ > 0, existe δ > 0 tal que

x ∈ Ω, ∥x− x0∥ < δ =⇒ ∥f(x)− f(x0)∥ < ϵ para toda f ∈ F .

Se F for equicontínuo em todos os pontos de Ω, dizemos simplesmente que F é equicontínuo.
O conceito de equicontinuidade num ponto pode ser generalizado de forma a que a escolha

de δ não dependa mais do ponto em consideração i.e., seja uniforme. Dizemos então que F
é uniformemente equicontínuo, se dado ϵ > 0, existe δ > 0 tal que

x,x0 ∈ Ω, ∥x− x0∥ < δ =⇒ ∥f(x)− f(x0)∥ < ϵ para toda f ∈ F .

De forma semelhante, chamamos F de simplesmente limitado se para cada x ∈ Ω existe c
tal que ∥f(x)∥ < c para todo f ∈ F . Finalmente, dizemos que F é uniformemente limitado
se existe c tal que ∥f(x)∥ < c para cada x ∈ Ω e para todo f ∈ F .

O resultado abaixo informa que se o domínio for compacto, então equicontinuidade e
equicontinuidade uniforme são equivalentes. O mesmo acontece com limitação simples e
uniforme, quando as funções são contínuas.

Lema 6.3.1. Seja F conjunto de funções de um compacto K ⊂ Rm em Rn. Então,
F é equicontínuo se e somente se é uniformemente equicontínuo. Além disto, se F for
equicontínuo, então F é simplesmente limitado se e somente se for uniformemente limitado.

Temos então o Teorema de Arzelá–Ascoli, que de alguma forma generaliza o Teorema de
Bolzano–Weierstrass para sequências de funções.

Teorema 6.3.2 (Teorema de Arzelá–Ascoli). Seja F conjunto infinito de funções defi-
nidas num compacto K ⊂ Rm e tomando valores em Rn. Então F é equicontínuo e sim-
plesmente limitado se e somente se toda sequência de funções tem subsequência que converge
uniformemente.

Demonstração. Sejam {x1,x2,x3, . . . } = K ∩Qm o conjunto dos elementos de K com
cordenadas racionais, e seja (fi) sequência em F . Então a sequência

(
fi(x1)

)
é limitada

e possui subsequência denotada por
(
f 1
i (x1)

)
convergente. Analogamente,

(
f 1
i (x2)

)
possui

subsequência
(
f 2
i (x2)

)
convergente. De forma geral, dada a sequência limitada

(
f j−1
i (xj)

)
,

extrai-se uma subsequência convergente
(
f j
i (xj)

)
. Note que, para j fixado,

(
f j
i (xl)

)∞
i=1

é
convergente para l = 1, . . . , j. Seja gi = f i

i . Então, por construção,
(
gi(xl)

)
é convergente

para todo l ∈ N. De fato,
(
gi(xl)

)
é subsequência de

(
f l
i (xl)

)
, que converge.
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Como F é equicontínuo num compacto, então é uniformemente equicontínuo. Dado então
ϵ > 0, seja δ > 0 tal que

x,x0 ∈ K, ∥x− x0∥ < δ =⇒ ∥f(x)− f(x0)∥ <
ϵ

3
para toda f ∈ F.

Como K é compacto, então existe N0 ∈ N tal que {Bδ(xl)}N0
l=1 é cobertura aberta de K.

Como
(
gi(xl)

)
converge para l = 1, . . . , N0, seja N1 ∈ N tal que

i, j ≥ N1 =⇒ ∥gi(xl)− gj(xl)∥ <
ϵ

3
para l = 1, . . . , N0.

Finalmente, tomando N = max{N0, N1} e i, j ≥ N , temos

∥gi(x)− gj(x)∥ ≤ ∥gi(x)− gi(xl)∥+ ∥gi(xl)− gj(xl)∥+ ∥gj(xl)− gj(x)∥ < ϵ

para todo x ∈ K, onde l ∈ {1, . . . , N0} é tal que x ∈ Bδ(xl). O resultado segue então do
critério de Cauchy para convergência uniforme (Teorema 6.2.4). □

Como aplicação mostramos alguns detalhes do belo exemplo apresentado em [9].

Exemplo 6.7. Seja F o conjunto das funções f : [−1, 1] → [0, 1], contínuas e tais que
f(−1) = f(1) = 1. Considere I(f) =

∫ 1

−1
f(x) dx. É possível mostrar que não existe f̄ ∈ F

tal que I(f̄) = minf∈F I(f). Considere agora

Fc = {f ∈ F : f é de Lipschitz com constante c}.
Então Fc é simplesmente limitado e equicontínuo. De fato, dado ϵ > 0, a equicontinuidade
segue se tomarmos δ = ϵ/c. A limitação uniforme vem de

|f(x)− f(−1)| ≤ c|x+ 1| ≤ 2c,

e portanto |f(x)| ≤ 2c+ f(−1) = 2c+ 1.
Seja então µc = inf{I(f) : f ∈ Fc}, e para cada i ∈ N seja fi ∈ Fc tal que

µc ≤ I(fi) ≤ µc +
1

i
.

Pelo Teorema de Arzelá–Ascoli, (fi) possui subsequência (fik) uniformemente convergente
para algum f̄c. Pode-se mostrar que f̄c ∈ Fc, e que I(f̄c) = minf∈Fc I(f). Portanto o
problema de minimizar I(·) em Fc tem solução.

6.4. Exercícios

Exercício 6.1. Mostre que ∥ · ∥sup,Ω, ver Definição 6.2.3, satisfaz as propriedades de
norma.

Exercício 6.2. Seja a sequência de funções (fi), onde fi(x) = sin(ix)/(1 + ix). Mostre
que (fi) converge pontualmente para todo x ∈ [0,+∞), uniformemente em [a,+∞) para
a > 0, mas não converge uniformemente em [0,+∞).

Exercício 6.3. Sejam Ω ⊂ Rm e fi : Ω → Rn sejam funções uniformemente contínuas.
Mostre que se (fi) converge uniformemente para f , então f é uniformemente contínua.

Exercício 6.4. Ache exemplo de sequência (fi) de funções que converge uniformemente
em (0, 1], mas não em [0, 1].
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Exercício 6.5. Mostre que convergência uniforme implica em convergência pontual,
mas que a volta não vale.

Exercício 6.6. Suponha que K ⊂ Rm seja compacto, e defina as sequências de funções
contínuas dadas por fj : K → Rn e gj : K → Rn. Suponha que (fj) convirja uniformemente
para f : K → Rn e (gj) convirja uniformemente para g : K → Rn. Mostre que (fjgj)
converge uniformemente para fg. O que acontece se trocarmos K por um conjunto aberto
qualquer? Mostre que o resultado continua válido ou apresente um contra-exemplo.

Exercício 6.7. Seja Clim(Ω) o espaço das funções de Ω ⊂ Rm em Rn, contínuas e
limitadas. Mostre que Clim(Ω) é completo na norma do supremo ∥·∥sup,Ω, i.e., uma sequência
(fi) em Clim(Ω) é de Cauchy (satisfaz (6.2.2)) se e somente se existe f ∈ Clim(Ω) tal que
∥fi − f∥sup,Ω → 0.

Exercício 6.8. Demonstre o Lema 6.3.1.

Exercício 6.9. Mostre que se K ⊂ Rm é compacto, e (fi) é sequência de funções em
Clim(Ω) (ver exercício 6.7) uniformemente convergente, então {fi : i ∈ N} é equicontínuo.

Exercício 6.10. Seja f : [0, 1] → R contínua, e (fn) sequência de funções contínuas de
[0, 1] em R. Prove ou apresente contra-exemplo para a seguinte afirmação:

Se (fn) converge uniformemente para f em (0, 1], então (fn) converge uniformemente
para f em [0, 1].

Exercício 6.11. Seja K conjunto compacto, f : K → R contínua, e (fn) sequência de
funções contínuas de K em R. Prove ou apresente contra-exemplo para a seguinte afirmação:

Se (fn) converge pontualmente para f em K, então (fn) converge uniformemente para f
em K.

Exercício 6.12. Mostre que f̄c ∈ Fc no exemplo 6.7.



APÊNDICE A

Uma introdução não tão formal aos fundamentos da matemática

1

A matemática se baseia na argumentação lógica. Outras áreas do conhecimento, talvez
todas, podem também reclamar para si tal propriedade, Entretanto a matemática é o próprio
desenvolvimento da argumentação formal, é a “lógica aplicada.”

Este aspecto da matemática tem consequências interessantes; seus resultados independem
da época, cultura e região em que foram gerados. O Teorema de Pitágoras, demonstrado
por fanáticos matemáticos (os pitagóricos), cerca de 500 A.C., será válido em qualquer lugar
e época (http://mathworld.wolfram.com/PythagoreanTheorem.html).

Outras áreas têm teorias “exatas” que são na verdade aproximações da realidade, com
“validade” somente sob determinadas condições (por exemplo, teoria da relatividade versus
física quântica). Mesmo certas definições podem mudar. Como exemplo, em 1997 a unidade
de tempo segundo foi definida mais uma vez (http://en.wikipedia.org/wiki/Second). Quanto
ao pobre quilograma, bem, este ainda busca uma definição adequada aos nossos tempos
(http://en.wikipedia.org/wiki/Kilogram).

Parece-me desnecessário comentar sobre a volatilidade de várias teorias econômicas. . .

Nestes rápidos comentários que seguem, pretendo passear por alguns aspectos de como
a matemática funciona. Uma ótima referência é o livro do Terence Tao [19].

A.1. Argumentação formal

A.1.1. Afirmativas. Como funciona a argumentação formal na prática? Objetos fun-
damentais são as afirmativas (ou afirmações ou expressões lógicas), que sempre são verda-
deiras ou falsas, mas nunca verdadeiras e falsas simultaneamente. Por exemplo2

1 + 1 = 2,(A.1.1)
1 = 2.(A.1.2)

Vou me adiantar afirmando que (A.1.1) é verdadeira e (A.1.2) é falsa. Esperando que o leitor
já tenha se recuperado da surpresa, cabe aqui comentar que frases sem sentido como

= 1 + 3−
não são afirmativas. Expressões do tipo 3+1 também não. Uma regra usual é que afirmativas
têm verbos.

Afirmativas podem ser combinadas com “ou” e “e” gerando outras. Por exemplo, se a é
um número real qualquer, então a afirmativa (a > 0 ou a ≤ 0) é verdadeira, mas (a > 0 e
a ≤ 0) não o é. A regra geral é que se X e Y são afirmativas, então (Xe Y ) só é verdadeira

1Última Atualização: 06/08/2019
2Suponho, por enquanto, que as propriedades de conjuntos e dos números reais são conhecidas
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se X e Y forem ambas verdadeiras. Similarmente, (Xou Y ) só é falsa se X e Y forem ambas
falsas. Note que se apenas uma das afirmativas for verdadeira, (Xou Y ) é verdadeira. Note
que esta noção pode diferir de um possível uso corriqueiro do ou, como na frase ou eu, ou
ele ficamos. Neste caso quer-se dizer que ou eu fico, ou ele fica, mas não ambos — este é o
chamado ou exclusivo.3

Podemos também negar uma afirmativa. Se X é uma afirmativa verdadeira, então (não
X) é falsa. Da mesma forma, se Y é uma afirmativa falsa, então (não Y ) é verdadeira. Negar
uma afirmativa pode ser útil pois para concluir que uma afirmativa Z é falsa, as vezes é mais
fácil provar que (não Z) é verdadeira.

Seguramente, este papo poderia ir bem mais longe com a álgebra de Boole ou booleana
(http://en.wikipedia.org/wiki/Boolean_algebra).

A.1.2. Implicações. Os passos de uma argumentação matemática são dados via im-
plicações. Se de um fato conhecido, por exemplo uma afirmativa verdadeira X, eu possso
concluir uma afirmativa verdadeira Y , então eu escrevo

(A.1.3) X =⇒ Y,

e leio Ximplica Y , ou ainda se X então Y . Por exemplo
(A.1.4) a > 0 =⇒ 2a > 0.

Abstraindo um pouco mais, note que (A.1.3) e (A.1.4) também são afirmativas. Outros
exemplos de afirmativas:

0 = 0 =⇒ 0 = 0,(A.1.5)
0 = 1 =⇒ 0 = 0,(A.1.6)
0 = 1 =⇒ 0 = 1,(A.1.7)
0 = 0 =⇒ 0 = 1.(A.1.8)

As três primeiras afirmativas acima são verdadeiras. Somente a última é falsa. A primeira da
lista é uma tautologia (redundância, do grego tauto, o mesmo), e é obviamente correta. Já a
segunda é correta pois de hipóteses falsas pode-se concluir verdades (multiplique ambos os
lados de (A.1.6) por zero). A terceira é verdade pois se a hipótese é verdadeira, a conclusão,
sendo uma mera repetição da hipótese, também o é (este tipo de argumento é usado em
demonstrações por contradição). Finalmente, (A.1.8) é falsa pois não se pode deduzir uma
afirmativa falsa partindo-se de uma verdadeira.

A argumentação (e a demonstração) matemática baseia-se em supor que algumas hipó-
teses são verdadeiras e em concluir resultados através de implicações.

Note que a implicação não é “reversível”, i.e., se X =⇒ Y , não podemos concluir que
Y =⇒ X. Realmente, x = −1 =⇒ x2 = 1, mas x2 = 1 ̸=⇒ x = −1 (esta seta cortada é o
símbolo de não implica), ou seja, não se pode concluir se x = −1 ou não a partir da hipótese
x2 = 1.

As vezes, tanto a implicação como seu reverso valem. Se por exemplo X =⇒ Y e
Y =⇒ X escrevemos simplesmente X ⇐⇒ Y , e lemos X se e somente se Y .

3Outro termo matemático que pode ter sentido diferente do uso diário é em geral. Na matemática, em
geral quer dizer sempre, enquanto no dia-a-dia quer dizer "quase sempre"

http://en.wikipedia.org/wiki/Boolean_algebra
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A.1.3. Axiomas. E como começar a construção da matemática em si, i.e., quais são as
hipóteses básicas que são necessariamente verdadeiras? Isso é importante pois, como vimos,
partindo-se de hipóteses falsas pode-se chegar a conclusões falsas, sem comprometer a lógica.
Aqui entram os axiomas, premissas verdadeiras consideradas “óbvias.” É uma boa idéia que
este conjunto de premissas seja o menor possível, i.e., um axioma do conjunto não pode ser
demonstrada a partir dos outros.

A partir dos axiomas contrói-se via implicações toda uma matemática (mudando-se o
conjunto de axiomas, muda-se a matemática).

Um exemplo de axioma vem a seguir.

Axioma A.1.1 (do conjunto vazio). Existe um conjunto que não contém nenhum ele-
mento.

Suponha que se possa definir o que é uma pessoa careca, e considere o seguinte axioma.

Axioma A.1.2 (do fio extra). Um careca que ganhar um fio extra de cabelo continua
careca.

Pode-se concluir então o seguinte resultado (tente demonstrá-lo).

Se o Axioma do fio extra vale, então todos os seres humanos são carecas.

O alerta que o resultado acima nos fornece é que devemos ter cuidado com os axiomas
escolhidos. Resultados “patológicos” podem advir deles. E de fato, resultados “estranhos”
permeiam a matemática. . .

A.1.4. Definições, lemas, teoremas. Uma das formas de se construir novos objetos
matemáticos é através de definições. Por exemplo podemos definir o conjunto dos números
naturais como N = {1, 2, 3, . . . }4. Outro exemplo: seja

f :Z → R
x 7→ x2.

A expressão acima define uma função chamada “f” que associa a cada número inteiro o seu
quadrado, levando-o nos reais.

E quanto a proposições dadas por lemas e teoremas5? Normalmente, lemas e teoremas são
escritos à parte, sendo compostos por hipóteses, e conclusões explicitamente mencionadas.

Exemplos de lema e teorema vêm a seguir.

Lema A.1.3. Supondo que o Axioma do conjunto vazio vale, então existe somente um
conjunto vazio.

4Alguns autores utilizam o símbolo := no lugar de = em definições. Esta é provavelmente uma boa idéia
pouco utilizada, e eu não a seguirei.

5Uma dúvida comum: qual a diferença entre os três? Bom, normalmente proposição tem um caráter mais
geral, sendo uma sentença lógica verdadeira (na matemática “usual”). Já um lema é proposição preliminar,
que contribui na demonstração de um resultado principal, um teorema. Muitas vezes entretanto, o lema tem
interesse próprio. Em geral, o gosto e o estilo do autor determinam o que é proposição, lema ou teorema.
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Teorema A.1.4 (de Fermat). 6 Seja n ∈ N, com n > 2. Então não existem inteiros
positivos x, y, z tais que xn + yn = zn.

A hipótese do lema A.1.3 é o axioma do conjunto vazio (Axioma A.1.1), e a conclusão é
de que só existe um conjunto vazio, isto é todos os conjuntos vazios são iguais. Este é um
típico resultado de unicidade. Já no Teorema de Fermat A.1.4, impondo-se hipóteses sobre
a potência n (ser inteiro e maior que dois), obtem-se um resultado de não existência.

Normalmente lemas e teoremas descrevem resultados de interesse e não triviais, i.e., as
conclusões não se seguem trivialmente das hipóteses. Algumas vezes entretanto casos impor-
tantes particulares são facilmente obtidos de resultados mais gerais. Estes casos particulares
são chamados de corolários. O Teorema de Fermat por exemplo é um corolário de um outro
resultado mais poderoso (chamado Teorema da Modularidade). É claro que “trivialidade”
não é um conceito rigoroso e é certamente relativa.

A.1.5. Prova ou demonstração. Uma prova ou demonstração são os passos lógicos
para se concluir uma proposição. Algumas demonstrações são simples, outras nem tanto. Por
exemplo, a demonstração por Andrew Wiles do Teorema de Fermat fechou com chave de ouro
a matemática do século XX. A prova é uma intricada sequência de resultados publicada num
artigo de 109 páginas na mais conceituada revista de matemática, os Anais de Matemática
de Princeton [22].

Antes da demonstração de Wiles, o agora “Teorema de Fermat” era “somente” uma con-
jectura, um resultado que acredita-se verdadeiro mas que ninguém demonstrou. Uma ainda
conjectura famosa é a de Goldbach, que afirma que todo inteiro par maior que dois pode ser
escrito como a soma de dois números primos. Para números menores que 1018, o resultado
foi checado computacionalmente, mas o caso geral ainda não está provado.

6Enunciado de Fermat, na margem do livro Arithmetica de Diophantus: Cubum autem in duos cubos, aut
quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem
in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis
exiguitas non caperet. (É impossível separar um cubo em dois cubos, ou a quarta potência em quartas
potências, ou em geral qualquer potência em duas potências iguais. Eu descobri uma demonstração realmente
maravilhosa disto, para a qual esta margem é por demais exígua para caber.)



APÊNDICE B

Uma introdução não tão formal à teoria de conjuntos

1

Esta parte do texto pretende apenas expor algumas dificuldades básicas, da parte talvez
mais fundamental da matemática (excluindo-se a lógica). Duas referências também introdu-
tórias, mas muito mais completas, são os livros do Terence Tao [19], e do Paul Halmos [12].

A primeira dificuldade encontrada é definir o que é um conjunto. Uma saída (questi-
onável) é simplesmente dizer que um conjunto é uma “coleção” ou família de objetos (ou
elementos ou membros). Se um objeto x faz parte de um conjunto A, dizemos que ele per-
tence à A e escrevemos x ∈ A (o símbolo /∈ indica que quando um elemento não pertence a
um conjunto).

Espera-se que o uso da palavra "coleção"acima não traga confusões. O termo coleção
será a seguir utilizado para conjuntos cujos elementos são também conjuntos.

Considere agora dois conjuntos A e B.
• Dizemos que A está contido em B e escrevemos A ⊆ B se todo elemento de A é

elemento de B. Pode-se também escrever B ⊇ A (lê-se B contém A) para indicar
A ⊆ B.

• Se A não está contido em B escrevemos A ̸⊆ B.
• Dizemos que dois conjuntos A e B são iguais, e escrevemos A = B se A ⊆ B e
B ⊆ A.

• Se não forem iguais, dizemos que são diferentes e escrevemos A ̸= B.
• Também escrevemos A ⊊ B se A ⊆ B mas A ̸= B. Dizemos neste caso que A está

propriamente contido em B.
O seguinte axioma é importante, nos garante que a “forma usual” de definir conjuntos é

“segura,” ou seja, quando definimos um conjunto obtemos um e apenas um conjunto (mesmo
que seja vazio).

Axioma B.0.1 (da especificação). Seja A um conjunto, e para cada x ∈ A, seja P (x)
uma afirmativa (verdadeira ou falsa). Então existe um único conjunto B composto de todos
os elementos x de A tais que P (x) é verdade.

O conjunto acima é denotado por {x ∈ A : P (x) é verdade}. Quando o conjunto A é
claro pelo contexto, podemos escrever simplesmente {x : P (x) é verdade}. Este conjunto é
formado por todos os elementos x que estejam em A e tais que a propiedade P (x) seja verda-
deira. Uma última forma de denotar os conjuntos é simplesmente descrever seus elementos
entre as chaves.

1Última Atualização: 06/08/2019
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Por exemplo, o conjunto dos números pares pode ser denotado por

{x ∈ Z : x é divisível por 2}.
Sendo um pouco menos formal, pode-se escrever este mesmo conjunto como {2x : x ∈ Z}
ou ainda enumerar todos os elementos do conjunto: {. . . ,−4,−2, 0, 2, 4, 6, . . . }.

Vale aqui descrever uma situação interessante dada pelo Paradoxo de Russel. É natural
perguntar-se o quão grande podem ser conjuntos. Por exemplo, existe um conjunto U tal
que todos os conjuntos existentes sejam elementos de U? Se U existe, então, pelo Axioma
da especificação (Axioma B.0.1) podemos formar

R = {x ∈ U : x é conjunto e x /∈ x}.
Então R /∈ U . De fato, se R ∈ U , então R ∈ R ou R /∈ R. Vamos dividir em dois casos:

(1) Se R ∈ R, então R /∈ R pois por definição, R é formado pelos conjuntos que não se
autocontém.

(2) Se R /∈ R, então R não satisfaz as propriedades que definem R. No caso de não se
autoconter. Logo R ∈ R.

Em ambas possibilidades (1) e (2) obtemos absurdos. Logo R /∈ U . Mas U é exatamente o
conjunto que contém todos os outros. . . . Somos levados a concluir que tal conjunto U não
pode existir.

O próximo passo é definir as operações usuais. Por incrível que possa parecer, o mais
difícil é definir a união entre dois conjuntos, e para isto é necessário um axioma.

Axioma B.0.2 (da união). Para qualquer coleção de conjuntos, existe um conjunto que
contém todos os elementos pertencentes a pelo menos um conjunto da coleção.

Podemos agora definir a união entre dois conjuntos A e B. Para tanto, note que pelo
Axioma da união, existe um conjunto U que contém todos os elementos de A e de B.
Definimos então A ∪B = {x ∈ U : x ∈ A ou x ∈ B}.

Observe entretanto a seguinte armadilha. O Axioma da união não garante que o tal
conjunto contendo A e de B é único, somente garante que existe. Podemos ter por exemplo
um outro conjunto Û contendo A e de B. Seja agora C = {x ∈ Û : x ∈ A ou x ∈ B}. Para
a união ser definida de forma única, temos que garantir que C = A ∪ B. Isto é verdade, e
para provar basta argumentar que C ⊆ A ∪B e C ⊇ A ∪B.

Com o Axioma da especificação, podemos definir as seguintes operações.
• O conjunto interseção entre A e B é A ∩B = {x ∈ A : x ∈ B}.
• O conjunto diferença A menos B é A\B = {x ∈ A : x /∈ B}. O conjunto resultante

também denotado por A−B e chamado de complemento de B em relação à A.
• Quando é claro quem é o conjunto A, denotamos A\B por C(B), e o chamamos de

complemento de B.

Observação. É fácil generalizar os conceitos acima para uniões e interseções arbitrárias
de conjuntos.

Finalmente, é útil a regra de De Morgam, que diz que para conjuntos En, onde n ∈ N,
temos que

(B.0.1) C(∪i∈NEn) = ∩i∈N C(En), C(∩i∈NEn) = ∪i∈N C(En).



B. UMA INTRODUÇÃO NÃO TÃO FORMAL À TEORIA DE CONJUNTOS 117

Outro conceito útil é o de par ordenado. Dados dois elementos, ou objetos a e b, formamos
o par (a, b), e chamamos a e b de (primeiro e segundo) componentes de (a, b). Dizemos
(definimos) que um par ordenado é igual a outro se os respectivos componentes forem iguais,
i.e., (a, b) = (a′, b′) se a = a′ e b = b′.

Do ponto de vista axiomático, não é claro que dados dois elementos, exista o par ordenado
formado por eles. Viveremos por enquanto com esta dúvida. O importante é como pares
ordenados são formados (por elementos de dois conjuntos) e quando são iguais (quando os
componentes são iguais).

Definimos agora produtos cartesianos . Dados dois conjuntos A e B, definimos o conjunto
A×B = {(a, b) : a ∈ A, b ∈ B} como sendo o composto pelos pares ordenados.

Observação. A extensão destes conceitos para n-úplas ordenadas e produtos cartesianos
com n conjuntos é natural.

Chamamos R de relação2 entre A e B se R é subconjunto de A × B. Similarmente,
dizemos que a ∈ A e b ∈ B são relacionados se (a, b) ∈ R. Uma relação binária num
conjunto A é um subconjunto R ⊆ A×A. Dado a, b ∈ A, denotamos (a, b) ∈ R por aR b, e
(a, b) /∈ R por a ̸R b.

Exemplo B.1. Nos reais, =, ≥, <, etc definem relações binárias. Considere por exemplo
A = {1, 2, 3}, e defina <⊆ A×A por <= {(1, 2), (1, 3), (2, 3)}. Então 1 < 2, 1 < 3 e 2 < 3.

Definição B.0.3. Dizemos que uma relação R em A é:
i) completa: para todo a, b ∈ A tem-se aR b ou bR a
ii) transitiva: para todo a, b, c ∈ A tais que aR b e bR c tem-se aR c
iii) reflexiva: para todo a ∈ A tem-se aR a
iv) simétrica: para todo a, b ∈ A tais que aR b tem-se bR a
v) assimétrica: para todo a, b ∈ A tais que aR b tem-se b ̸R a
vi) antissimétrica: para todo a, b ∈ A tais que aR b e bR a tem-se a = b

Uma relação é de equivalência se é reflexiva, simétrica e transitiva.

Da definição de relação vem o importante conceito de função. Uma função entre A e B
nada mais é que uma relação entre A e B, e sendo assim f ⊆ A×B. Esta relação entretanto
satisfaz a seguinte restrição: para todo a ∈ A existe um único b ∈ B tal que (a, b) ∈ f .
Denotamos esta relação especial por f : A → B. Dado a ∈ A, b ∈ B, dizemos que f(a) = b
se (a, b) ∈ f .

Na prática, comumente nos "esquecemos"desta definição e tratamos funções de forma
mais informal e direta. Este será o tratamento dado neste texto, a começar no Capítulo 1.
Este pecadilho matemático não chega a atrapalhar nossos objetivos, mas é importante ter
em mente a definição formal.

Uma relação de equivalência ∼ num conjunto A é uma relação binária reflexiva, simétrica
e transitiva. Um exemplo trivial de relação de equivalência é a relação de igualdade =.

Exemplo B.2. Seja Z∗ = Z\{0}. Então a relação

(a, b) ∼ (c, d) ⇐⇒ ad = bc

é de equivalência. De fato, note que ∼ é
2Os conceitos de relação de ordem, relação de equivalência vêm daqui.
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(1) reflexiva: (a, b) ∼ (a, b) pois ab = ba.
(2) simétrica: seja (a, b) ∼ (c, d). Então, por definição, ad = bc. Então (c, d) ∼ (a, b)

pois bc = ad.
(3) transitiva: seja (a, b) ∼ (c, d) e (c, d) ∼ (m,n). Segue-se por definição que ad = bc e

cn = dm. Quero mostrar que an = bm. Mas adn = bcn = bdm. Como d ̸= 0, temos
que adn = bdm. Portanto, (a, b) ∼ (m,n).

Seja agora um conjunto não vazio X e P(X) o conjunto das partes de X, i.e., é a coleção
contendo todos os subconjuntos de X. Dada uma relação de equivalência em X e x ∈ X,
podemos definir a classe de equivaçência de x como sendo

[x] = {x̂ ∈ X : x̂ ∼ x}.
Denotamos o conjunto de todas as classes de equivalência de X por X/ ∼∈ P(X), onde

X/ ∼= {[x] : x ∈ X}.
Uma coleção T ⊂ P(X) é uma partição de X se
(1) ∅ /∈ X
(2) para todo A, B ∈ T , temos A = B ou A ∩B = ∅
(3) para todo x ∈ X existe conjunto A ∈ T tal que x ∈ A

Por exemplo, {R<0, {0},R>0} define uma partição de R.

B.1. Exercícios

Exercício B.1. Mostre que
(1) {x ∈ R : x2 ≥ 0} = R.
(2) {x ∈ R : x > 0} ⊊ {x ∈ R : x2 ≥ 0}.
(3) R ̸⊆ {x ∈ R : x2 ≥ 0}.

Exercício B.2. Mostre a regra de De Morgam dada em (B.0.1).

Exercício B.3. Mostre que {a, a} = {a}.

Exercício B.4. Sejam A e B dois conjuntos disjuntos, i.e., A∩B = ∅. Seja X = A∪B.
Mostre que A = X\B e B = X\A.

Exercício B.5. Sejam A e B dois conjuntos, e C = (A\B) ∪ (B\A). Mostre que
C = (A ∪B)\(A ∩B) e que C ∩ A ∩B = ∅.

Exercício B.6. Seja X conjunto não vazio e ∼ uma relação de equivalência em X.
Mostre que X/ ∼ define uma partição de X.
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Dicas de Soluções de exercícios escolhidos

2.14: Sejam A = {an : n ∈ N} e B = {bn : n ∈ N}. Suponha primeiro que inf{bn − an :
n ∈ N} = 0. Quero mostrar que inf B = supA. Note que como para todo n ∈ N
temos que bn é cota superior de A, então bn ≥ supA. Logo supA é cota inferior
de B, e inf B ≥ supA. Suponha agora por contradição que inf B > supA. Então
existem números c qualquer e d > 0 tais que c − d ≥ an e c + d ≤ bn para todo
n ∈ N. Então bn − an ≥ c+ d− (c− d) = 2d > 0. Ou seja, 2d > 0 é cota inferior de
{bn − an : n ∈ N}, contradição com inf{bn − an : n ∈ N} = 0.

Suponha agora que inf B = supA. Quero mostrar que inf{bn − an : n ∈ N} = 0
usando a definição (2.1.2). Como bn − an > 0 para todo n ∈ N, então zero é cota
inferior de {bn − an : n ∈ N}. Seja agora ϵ > 0 e s∗ = inf B. Então existe n ∈ N tal
que s∗ − ϵ/2 < an∗ , e s∗ + ϵ/2 > bn∗ . Logo, bn∗ − an∗ < s∗ + ϵ/2 − s∗ + ϵ/2 = ϵ, e
portanto, inf{bn − an : n ∈ N} = 0.

2.26: Suponha B1(0) não aberto. Então existe x com ∥x∥ = α < 1 tal que Bϵ(x) ̸⊆ B1(0),
para todo ϵ > 0. Seja ϵ∗ > 0 tal que α + ϵ∗ < 1, e x∗ ∈ Bϵ∗(x) ∩ C(B1(0)). Mas
então

∥x∗∥ ≤ ∥x∗ − x∥+ ∥x∥ ≤ ϵ∗ + α < 1,

uma contradição com x∗ ∈ C(B1(0)).
2.34 (c): sabendo que uniões finitas de fechados é fechada, então, a união do exemplo tem que

ser infinita. Por exemplo, pode-se tomar U∞
i=1[1/i, 1] = (0, 1], e (0, 1] não á fechado.

2.36: Tome A = (0, 1], B = [1, 2).
2.44: por contradição.
2.48: O ítem (2) é falso: tome Ai = (1/i, 1). Então ∪i∈NAi = (0, 1).
2.64: interseção de compactos é fechada por ser interseção de fechados. Mas um fechado

contido em compacto é compacto (exercício 2.62). Logo a interseção é compacta.
2.65: Suponha que não exista pontos de acumulação. Então para todo ponto de K existe

vizinhança aberta contendo somente um ponto de S. Isto gera cobertura para K.
Extraindo-se cobertura finita para K, e portanto para S, geramos contradição pois
algumas bolas teriam que conter infinitos de S.

2.66: Considere um ponto x na fronteira de A mas que x não pertença ao A. Agora
proceda de forma semelhante à demostração de que todo compacto é fechado. Para
cada j natural, considere em torno de x os abertos dados pelos complementares
das bolas fechadas em torno de x e raio 1/j. Isto formará uma cobertura para o
conjunto A (afinal forma uma cobertura para Rn\{x} e x não pertence ao A). Mas
não é possível extrair desta cobertura uma subcobertura finita pois toda bola em
torno de x conterá pontos de A (pois x é fronteira de A).
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2.67: para mostrar que A limitado implica em A totalmente limitado, tome Ā, o fecho
de A. Mostre que Ā é compacto (por Heine Borel: A ⊂ BM(0) =⇒ Ā ⊂ B̄M(0).
Mostre depois que {Br(x) : x ∈ A} é cobertura de Ā (o caso difícil é x′ ponto de
acumulação de A. Mas neste caso, esiste x ∈ A tal que x′ ∈ Br(x)). A seguir, use
compacidade.

3.9: Considere os racionais em [0, 1] e os enumere. Isto gera uma sequência de racionais
(o x1 é o primeiro, o x2 o segundo, etc). Agora, se você tomar um ponto x em [0, 1]
e tomar bolas de raio 1/j, para j natural, você sempre acha um racional dentro
desta bola (os racionais são densos nos reais, exercício 2.10). Assim você constrói
uma subsequência xkj formada somente por racionais e tal que limj→∞ xkj = x.

3.14: ler com atenção os exemplos 3.20 e 3.21.
3.25: ver solução em [18, Seção 2.4, pag 40]
3.26: Ver que A ⊆ R. Então basta mostrar que é fechado e limitado. Limitado é fá-

cil. Para mostrar fechado, tome αk → α em A. Então αk = ∥x1
k − x2

k∥, para
alguma sequência (x1

k) ∈ K1, e (x2
k) ∈ K2. Mas K1 e K2 compactos então existe

subsequência com limites x1 ∈ K1 e x2 ∈ K2. Então

∥x1 − x2∥ = lim
j→∞

∥x1
kj
− x2

kj
∥ = lim

k→∞
αk = α.

Então α ∈ A e portanto A é fechado.
3.27: (a) K1 e K2 fechados implica em A compacto. Resposta: não, basta tomar K1 =

K2 = R, e ver que A = [0,+∞) não é limitado.
(b) K1 e K2 fechados implica em A fechado. Resposta: não. Tome K1 = {(x, 0) :

x ∈ R} e K2 = {(x, 1/x) : x ≥ 1}, então a sequência (1/x) → 0 quando x→ ∞
está em A mas 0 ̸∈ A.

(c) K1 compacto e K2 fechado implica em A fechado. Resposta: sim. Para mostrar
fechado, tome αk → α em A. Então αk = ∥x1

k − x2
k∥, para alguma sequência

(x1
k) ∈ K1, e (x2

k) ∈ K2. Mas ∥x2
k∥ ≤ ∥x2

k − x1
k∥ + ∥x1

k∥ = αk + ∥x1
k∥. Então

(x2
k) é limitada pois αk converge e K1 é compacto. Então existe subsequência

com limites x1 ∈ K1 e x2 ∈ K2. Então

∥x1 − x2∥ = lim
j→∞

∥x1
kj
− x2

kj
∥ = lim

k→∞
αk = α.

Então α ∈ A e portanto A é fechado.
3.37: Dado x ∈ Rn, seja a(x) ∈ A tal que ∥x− a(x)∥ = d(x).Para mostrar continuidade

de d(·), note que para (xj)j∈N → x, então

d(x) = ∥a(x)− x∥ ≤ ∥a(xj)− x∥ ≤ ∥a(xj)− xj∥+ ∥x− xj∥ = d(xj) + ∥x− xj∥
d(xj) = ∥a(xj)− xj∥ ≤ ∥a(x)− xj∥ ≤ ∥a(x)− x∥+ ∥x− xj∥ = d(x) + ∥x− xj∥

Das desigualdades acima obtemos que |d(x)− d(xj)| ≤ ∥x− xj∥.
Pergunta: e se A não for fechado?

3.43: Ver [17, página 38, Teorema 2.36]
3.51: Nada.
4.10: Seja A ⊂ R aberto. Então basta mostrar que f−1(A) é aberto. Seja x ∈ f−1(A) e

ϵ > 0 tal que (f(x)− ϵ, f(x) + ϵ) ⊂ A. Então

f−1((f(x)− ϵ, f(x) + ϵ)) = f−1((f(x)− ϵ,+∞)) ∩ f−1(−∞, f(x) + ϵ))
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é uma vizinhança aberta de x contida em f−1(A).
4.17: Mostre que todas as normas são equivalentes à norma euclidiana, i.e., considere ∥ · ∥

como sendo a norma euclidiana. Para tal, comece mostrando que existe constante
c1 tal que c1|||v||| ≤ ∥v∥ para todo v ∈ V . Para obter a desigualdade inversa, mostre
que ||| · ||| define uma função contínua em Rn. Conclua então usando o Teorema dos
pontos extremos (Teorema 4.2.5) de forma apropriada.

4.18: Para mostrar que se T é contínua em V então T é limitada, i.e., existe M tal que
∥T (x)∥W ≤ M∥x∥V considere pontos na bola unitária de W tais que ∥T (xi)∥W >
i. Em seguida considere uma sequência δi → 0. Então δixi → 0. Escolhendo
propriamente δi e usando a continuidade na origem, obtenha uma contradição.

4.20: Tome por exemplo x e sinx em R. Sejam as sequências xk = 2kπ e yk = xk + ak.
Vou contruir ak de forma que ak → 0, e portanto |xk − yk| → 0. Mas ak tem que
ser de forma que |f(xk)− f(yk)| não convija para zero.

Note que f(xk) = 0 e f(yk) = (2kπ + ak) sin(ak). Tome ak = arcsin(1/k), e
portanto ak → 0 e f(yk) = (2kπ + ak)/k = 2π + ak/k → 2π. Portanto |f(xk) −
f(yk)| → 2π.

Logo eu construi duas sequências tais que a diferença entre elas vai a zero, mas
a diferença da imagem não vai a zero. Segundo as notas de aula, Lema 4.3.2, isto
mostra que f não é uniformemente contínua.

4.26: considere a função f : [0, 1] → R dada por

f(x) =

{
x sin 1/x se x ̸= 0

0 se x = 0

4.32: pela continuidade uniforme, existe δ tal que |x−y| < δ implica em |f(x)−f(y)| < 1.
Note que f(δ) < f(0) + 1, e por indução, f(Nδ) < f(0) +N . Então, dado x = Nδ,
tem-se f(x) = f(Nδ) < f(0) +N = f(0) + δ−1x.

4.33: para ver que f é contínua nos irracionais, basta notar que uma sequência pi/qi
converge para um irracional somente se qi → ∞.

4.34: verdade. Tome g : [0, 1] → R tal que g(x) = f(x) − f(x + 1). Então basta achar
raiz de g. Mas g(0) = f(0) − f(1) = f(2) − f(1) = −g(1). Logo o resultado segue
se g(0) = 0 ou, caso contrário, pelo Teorema do Valor Intermediário.

4.35: Primeiro note que f é contínua e injetora. Mas K compacto implica em f(K)
compacto. Por contradição, seja x0 /∈ f(K), e defina xj = f(xj−1). Seja a distância
de x0 a f(K) maior que d > 0. Então

∥xj − xj+m∥ = ∥f(xj−1)− f(xj+m−1)∥ = ∥xj−1 − xj+m−1∥ = · · · = ∥x0 − xm∥ > d.

Contradição com (xj) ter subsequência convergente.
4.36: A existência da inversa é óbvia. Seja g = f−1 e F ⊆ K fechado (e portanto

compacto). Então g−1(F ) = {y ∈ f(K) : g(y) ∈ F} = f(K)∩ f(F ) é fechado. Mas
f(F ) é compacto e portanto fechado.

5.6: Basta considerar os pontos extremos da função f . (Este resultado é devido à Dar-
boux, ver [3], página 199, Exercício 27H).

6.10: A resposta é sim, pois basta usar que

∥fn − f∥sup,[0,1] ≤ ∥fn − f∥sup,(0,1] + |fn(0)− f(0)|,



122 C. DICAS DE SOLUÇÕES DE EXERCíCIOS ESCOLHIDOS

e
|fn(0)− f(0)| ≤ |fn(0)− fn(x)|+ |fn(x)− f(x)|+ |f(x)− f(0)|

para todo x ∈ (0, 1].
6.11: A resposta é não. Como possível contra-exemplo considere f a função f identica-

mente nula em K = [0, 1], e a sequência de funções contínuas e lineares por partes
(fn) dada por

fn(x) =


(i+ 1)x se x ∈ [0, 1/(i+ 1)],

−i(i+ 1)x+ i+ 1 se x ∈ (1/(i+ 1), 1/i],

0 se x > 1/i.
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