ANÁLISE – LNCC QUARTA LISTA

Prof. Alexandre Madureira

Data de entrega: 11 de agosto de 2011

Exercício 1. Seja $K \subseteq \mathbb{R}^n$. Mostre que as afirmativas abaixo são equivalentes:

- (1) K é compacto
- (2) toda sequência contida em K possui subsequência convergente com limite contido em K.

Exercício 2. Seja $x_1 \in [0, +\infty)$, e seja a sequência de reais definida por

$$x_{n+1} = \sqrt{x_n}$$
 para $n \in \mathbb{N}$.

Determine para quais valores de $x_1 \in [0, +\infty)$ a sequência (x_n) converge, e para qual valor. Demonstre suas afirmativas. (Obs: Para toda sequência convergente (y_n) , vale a propriedade $\lim_{n\to\infty} \sqrt{y_n} = \sqrt{\lim_{n\to\infty} y_n}$.)

Exercício 3. Sejam (x_n) e (y_n) duas subsequências de números reais, convergentes para x e y respectivamente, onde x < y. Mostre que existe um número natural N tal que $x_n < y_n$ para todo n maior que N.

Exercício 4. Seja (x_k) sequência monótona em \mathbb{R} , e suponha que (x_k) contenha subsequência convergente. Mostre que (x_k) converge.

Exercício 5. (Bartle) Seja $x_1 = 1$ e $x_{n+1} = (2+x_n)^{1/2}$. Mostre que x_n é monótona e limitada, e portanto converge. Ache seu limite.

Exercício 6. Seja (x_k) sequência em \mathbb{R} , limitada, e seja L o conjunto de números reais x tais que existe uma subsequência de (x_k) convergindo para x. Se $L \neq \emptyset$, mostre que sup $L = \limsup x_k$.