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Introduction

1. Reminders about parallelism
2. Parallel programming model
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1. Goals of Parallel Programming

▶ Parallelizing?
– « Reorganizing » the problem to process simultaneously data and 

computations while using a number of computing ressources

▶ Why?
– Improve performance => computing faster
– Process a bigger volume of data => using memory of several computing 

nodes

▶ Important points:
– Knowing hardware architecture
– Choosing a programming model: MPI, OpenMP, hybrid programming…

5
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1. Architectures

▶ Shared memory computer
– Several processors sharing the same 

global memory space via a fast 
interconnect

6

▶ Hybrid computer
– Most common case: a set of shared memory computers (eventually 

equipped with coprocessors or accelarators) linked by a network

▶ Distributed memory computer
– Each node with its own memory
– Each node reaches other nodes memory via 

the network (call to communications routines)
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1. What Matters

▶ From developer point of view, architecture = network of processors
– CPU => computing power. Determine the FLOPS (FLoating-point Operations 

Per Second).
– Several levels of memory => several levels of parallelism. Critical points: size 

of memories & IO speed.
– Communication network => limiting factor: bandwidth. 

▶ Parallel programming: use of a software layer to handle ressources processing 
and access => MPI

7
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2. MPI: Message Passing Interface

▶ High level API  for message passing

▶ Designed for Performance, scalability and portability

▶ Currently, it’s the third major release:
– 1995: v1.2 (MPI-1)
– 1997: v2.0 (MPI-2)
– 2008: v2.1
– 2009: v2.2
– 2012: v3.0  (MPI-3)
– 2015: v3.1

▶ An API with different implementations
– Some with specific extensions…
– ... which can break the portability of an application

8
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2. MPI Implementations

▶ Open source implementation
– MPICH (MPI-1)
– MPICH2 (MPI-2)
– OpenMPI (1.8.3 includes most of MPI-3)
– LAM/MPI

▶ Manufacturer implementation’s
– HP MPI
– Intel MPI
– BullxMPI

9
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processus

2. Sequential Programming Model

▶ The program is executed by a single process.

▶ This process runs on a single physical processor of the machine.

▶ All data (Variables and Constants) are allocated in the memory assigned for the 
process.

▶ Does not allow to exploit modern machines with several physical processors 
distributed on several node
– Limited in term of computing power
– Limited in term of problem size (1 node)

10
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2. Programming Model by Message Passing

▶ A program is divided into sub-programs each executed by a process.

▶ The processes communicate by the interconnection network by sending or 
receiving messages
– Possibility to exploit whole platform.
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2. Key Notions

▶ Key notions: process, message, synchronization
– “Virtual” process ≠ processor / physical core. Processes can execute on 

different or identical processors / cores.
– Each process has its own variables and does not access directly to the 

variables of other processes.
– Data sharing between processes is done by explicit send & receives of 

messages.
– Processes synchronization.

12
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2. Programmation MPI

▶ In an MPI program each process runs a sub-program
– Written in a classical language (C, C++, Fortran, Python, ...)
– Can be different depending of the process
– Most often, the same sub-program for all process (SPMD – Single Program 

Multiple Data)
• Not required by the model, MPMD (Multiple Program Multiple Data) is also 

possible

▶ Variables of each sub-program:
– Can have the same name (SPMD)
– Different memory locations and different values (Distributed memory)
– Private to the sub-program

▶ The sub-programs use routines for sending and receiving messages to 
communicate

13
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2. Work and Data Distribution in MPI

▶ Create a system of N independent processes 

▶ Each process has a unique ID: Rank [0:N-1]

▶ Data and work distribution is based on rank

14
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program fortran_spmd

implicit none

integer :: process_rank
integer :: var1
real :: var2

!! CODE (later in this pres.)

if (process_rank == 0) call inst1()

if(process_rank /= 0) then
  call instr2()
  call instr3()
endif

!! CODE (later in this pres.)

end program fortran_spmd
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2. Messages

▶ Messages are blocks of data exchanged by sub-programs.

▶ For message sending and receiving, different information are required
– The rank of sender/receiver
– data location
– data type
– data size

15
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2. A First Simple Example 
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P0: data read P1: data read

Compute partial sum
Store in variable SUM

Communication via network

Compute partial sum
Store in variable SUM

=

+

Display or 
write in a file

SUM0



17-10-2016

© Atos - Confidential

Bases

1. Environment
2. Communicator
3. Environmental Management
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1. Generality

▶ Compilation unit containing MPI routines must:

– C/C++: include mpi header file "mpi.h”

– Fortran: use "MPI" module
• Introduced in MPI-2, else use "mpi.h”

▶ The prefix "MPI_” is reserved for MPI routines and macros.

▶ MPI routines in C/C++ & Fortran have the same format:
– “MPI” prefix and the first letter are in capital letter

• MPI_Xxxx_xxx_xxx()

18
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1. Initialization of MPI Program

▶ In MPI program, the function MPI_Init must be the first one called by each sub-
program

– C/C++:

– Fortran:

▶ Initializes the environment of MPI execution  (communicator ...)

19

int MPI_Init(int *argc, char **argv)

MPI_Init(mpierror)
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1. Termination of a MPI Program

▶ Each sub-program must call MPI_Finalize before the end of the program

– C/C++:

– Fortran:

▶ In case where it’s necessary to stop the program before the normal end, use 
MPI_Abort function:
– For example if memory allocation required by a process fails

20

int MPI_Finalize()

MPI_Finalize(mpierror)
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2. Communicators

▶ A communicator is composed of a MPI process group.

▶ At the initialization of MPI program, a communicator with all MPI processes is 
created: MPI_COMM_WORLD
– this is a global communicator.

▶ Each MPI process is identified by its rank within a communicator:
– identifier between 0 and (number of processes in the communicator – 1)

▶ A process can belong to several communicators and has an associated rank 
(identifier) for each of these communicators

▶ Two MPI processes must be in the same communicator to be able to 
communicate together.

21
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2. Communicator: Size and Rank

▶ MPI_Comm_size function provides the number of MPI processes in the 
communicator

– C/C++:

– Fortran

▶ MPI_Comm_rank function provides the rank of the process in the 
communicator:

– C/C++:

– Fortran:

22

int MPI_Comm_size(MPI_Comm comm, int *size)

MPI_Comm_size(comm, size, mpierror)

int MPI_Comm_rank(MPI_Comm comm, int*rank)

MPI_Comm_rank(comm, rank, mpierror)
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2. Basic Example in C

#include <mpi.h> 

int main(int argc, char *argv[]) 
{
/* The basic MPI Program */
int mpierror, mpisize, mpirank; 

mpierror=MPI_Init(&argc, &argv); 

mpierror=MPI_Comm_size(MPI_COMM_WORLD, &mpisize); 
mpierror=MPI_Comm_rank(MPI_COMM_WORLD, &mpirank); 

/* Do work here */ 

mpierror=MPI_Finalize();

return 0;
}

#include <mpi.h> 

int main(int argc, char *argv[]) 
{
/* The basic MPI Program */
int mpierror, mpisize, mpirank; 

mpierror=MPI_Init(&argc, &argv); 

mpierror=MPI_Comm_size(MPI_COMM_WORLD, &mpisize); 
mpierror=MPI_Comm_rank(MPI_COMM_WORLD, &mpirank); 

/* Do work here */ 

mpierror=MPI_Finalize();

return 0;
}

23
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2. Basic Example in Fortran

program firstmpi
! The basic MPI Program 
use MPI

integer :: mpierror, mpisize, mpirank 

call MPI_Init(mpierror)

call MPI_Comm_size(MPI_COMM_WORLD, mpisize, mpierror) 
call MPI_Comm_rank(MPI_COMM_WORLD, mpirank, mpierror) 

! Do work here 

call MPI_Finalize(mpierror) 

end program firstmpi

program firstmpi
! The basic MPI Program 
use MPI

integer :: mpierror, mpisize, mpirank 

call MPI_Init(mpierror)

call MPI_Comm_size(MPI_COMM_WORLD, mpisize, mpierror) 
call MPI_Comm_rank(MPI_COMM_WORLD, mpirank, mpierror) 

! Do work here 

call MPI_Finalize(mpierror) 

end program firstmpi

24
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2. TP: MPI101

▶ Execute the TP (in C)
– Batch environment "SLURM”
– ./build.sh, ./run.sh

▶ Modify number of processes

25

srun --mpi=pmi2 -J TPMPI -N 1 -n 2 -p E52697v2 ./mpi101

enables interaction
between
Slurm and MPI

Job Name

number of node asked

Number
of processes

Partition Name
(group of machine)

icc -c mpi101.c
icc -lmpi mpi101.o -o mpi101

mpiicc -o mpi101

Compilation:
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3. MPI Environmental Management

▶ MPI_Get_processor_name
– Gets the processor name; format is implementation dependent

▶ MPI_Get_version
– Gets version and sub-version of MPI

▶ MPI_Initialized
– Gets if MPI_Init was called; for example, useful for libraries

▶ MPI_Wtime
– Gets the time in seconds since an arbitrary point in the past

• if MPI_WTIME_IS_GLOBAL is true (1), the value is synchronized for all 
processes

▶ MPI_Wtick
– Gets the precision in second of MPI_Wtime

26
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3. TP: MPI101 phase 2

▶ Display the name of the machine using the MPI function

▶ Modify the number of nodes to run the program

MPI_Get_processor_name
Gets the name of the processor

Synopsis
int MPI_Get_processor_name( char *name, int *resultlen )

Output Parameters
name A unique specifier for the actual (as opposed to virtual) node. 
This must be an array of size at least MPI_MAX_PROCESSOR_NAME. 
resultlen Length (in characters) of the name 

27
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3. TP: MPI101 phase 2 (solution)

#include <mpi.h>
int main(int argc, char *argv[])
{
/* The basic MPI Program */
int mpierror, mpisize, mpirank;
mpierror=MPI_Init(&argc, &argv);
mpierror=MPI_Comm_size(MPI_COMM_WORLD, &mpisize);
mpierror=MPI_Comm_rank(MPI_COMM_WORLD, &mpirank);
/* Do work here */
{
        char temp[MPI_MAX_PROCESSOR_NAME];
        int resultlen;
        int  r = MPI_Get_processor_name(temp, &resultlen);
        printf("I am %d out of %d running on %s\n", mpirank, mpisize, temp);
}
mpierror=MPI_Finalize();
return 0;
}

28
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Data Type

▶ For portability reasons, MPI predefined elementary data types.

▶ Using elementary data types to build more complex types (derived data types)
– Not tackled in this training

▶ MPI implementations can provide more elementary data types:
– These types are in "mpi.h” header file.
– They can prevent portability

30
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Data Type

▶ Predefined data types in Fortran:

31

TYPE MPI TYPE FORTRAN

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE_PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE

MPI_PACKED
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Data Type

▶ Predefined data types in C:

32

TYPE MPI TYPE C

MPI_CHAR char (treated as printable character)

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_LONG_LONG_INT 
MPI_LONG_LONG signed long long int

MPI_SIGNED_CHAR signed char(treated as integral value)

MPI_UNSIGNED_CHAR unsigned char (treated as integral value)

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_WCHAR wchar_t (treated as printable character)
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Data Type

▶ Predefined data types in C (end):

33

TYPE MPI TYPE C

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_C_BOOL _Bool

MPI_INT8_T
MPI_INT16_T
MPI_INT32_T
MPI_INT64_T

int8_t
int16_t
int32_t
int64_t

MPI_UINT8_T 
MPI_UINT16_T
MPI_UINT32_T
MPI_UINT64_T

uint8_t
uint16_t
uint32_t
uint64_t

MPI_C_COMPLEX
MPI_C_FLOAT_COMPLEX

Float _Complex

MPI_C_DOUBLE_COMPLEX double _Complex

MPI_C_LONG_DOUBLE_COMPLEX long double _Complex

MPI_BYTE

MPI_PACKED
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1. Description
2. Contents
3. Execution
4. Optimizations
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1. Principle

▶ A point to point communication is a communication between two MPI processes.

▶ One process is the sender: it sends the message.

▶ The other is the receiver or recipient: it waits the message of the senders.

▶ The sender and the receiver are identified by their rank.

35
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1. Blocking Communications

▶ A blocking send blocks the process until the memory space used for the 
message can be re-written without any modification of the message.

▶ A blocking send can be synchronous 
– It waits for an acknowledgment of receipt.

▶ A blocking send can be asynchronous 
– If system memory space is used to send the message.

▶ A blocking reception blocks the process until data are received and ready to 
be used by the system.

36
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1. Non-Blocking Communication

▶ Non-blocking send and reception return almost immediately:
– no wait for communication event (copy in the system memory space or 

acknowledgement of receipt)

▶ They aim to overlap communications time and computing time.

▶ User can not know the exact moment when a sending or a receiving has 
effectively been done.

▶ Synchronization routines help ensure the sending or receiving of message.

▶ It is unsafe to modify the memory space used for data sending or receiving 
without being ensured of the end of a sending or receiving.

37
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1. Modes

▶ 4 modes of send for point to point communications:
– Standard (MPI implementation dependant)
– Buffered (copy in a buffer ; the send is done later, asynchroneously ; no need 

to wait receiving) => should probably give better results, but requires copy in 
memory

– Synchronous (with receiving ; the program takes back the hand when the send 
is complete)

– Ready (started only if the matching receive is already posted)
▶ Each mode has blocking and non-blocking implementation:

38

Mode Blocking Non-blocking

Send

Standard MPI_Send MPI_Isend

Buffered MPI_Bsend MPI_Ibsend

Synchronous MPI_Ssend MPI_Issend

Ready MPI_Rsend MPI_Irsend

Receive MPI_Recv MPI_Irecv
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2. Parameters (1/2)

▶ Parameters of point to point communication:

– buffer: memory address of the data or reception buffer

– count: number of elements in send buffer or the maximum of elements to 
receive

– type: data type

– comm: communicator used

– dest: rank of destination

– source: rank of source 
• use MPI_ANY_SOURCE to receive a message from any source

39



       | 17-10-2016 | Benjamin Pajot | © Atos - Confidential 
GBU France | BDS | LNCC Training 

2. Parameters (2/2)

– tag: a nonzero integer given by the programmer to identify a message 
• use MPI_ANY_TAG to receive a message without knowing the tag.

– request: used to associate non-blocking communication operations (Isend 
and Irecv) with an (MPI_request type) object used for synchronization.

– status: a variable containing additional information about the receive 
operation after it completes
• MPI_Status type
• contains the rank of the sender, the tag of the message, the error of the 

message.
• Instead, we have to find out the length of the message with MPI_Get_count
• which can be ignored with MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE

40
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2. Message Envelope & Body

▶ The envelope (description of the “context”) of message contains:
– Identities of the sender and the receiver (ranks)
– The tag
– The communicator

▶ A receiving operation works with a send operation only if the envelopes match.

▶ Communication with the fictive process of rank MPI_PROC_NULL has no effect.

▶ The body of the message contains:
– A buffer with data inside
– The type of the data
– Their size

41
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2. Send Operations

▶ Standard blocking send

▶ Synchronous blocking send:

▶ Standard non-blocking send:

42

int MPI_Send(buffer, count, type, dest, tag, comm, status)

int MPI_Ssend(buffer, count, type, dest, tag, comm)

int MPI_Isend(buffer, count, type, dest, tag, comm, request)
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2. Reception Operations

▶ Blocking reception :

– return only when buffer contains the message

▶ Non-blocking reception

– return immediately

43

int MPI_Recv(buffer, count, type, source, tag, comm, status)

int MPI_Irecv(buffer, count, type, source, tag, comm, request)
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2. A Simple Example

>> I am process of rank 1, buffer = 0
>> I am process of rank 0, buffer = 12
>> I am process of rank 1, buffer = 12

44

program basic_sendrecv

implicit none

use MPI

integer :: source, dest, tag, error, buffer, nb_elements
integer(MPI_STATUS_SIZE) :: status

source = 0
dest = 1
tag = 21
nb_elements = 1

!! MPI INITIALIZATION

if (rank_process == source) then
  buffer = 12
  call MPI_SEND(buffer, nb_elements, MPI_INTEGER, dest, tag, MPI_COMM_WORLD, error)
  print *, "I am process of rank ", rank_process, " , buffer =  ", buffer
else if (rank_process == dest) then
  buffer = 0
  print *, "I am process of rank ", rank_process, " , buffer =  ", buffer
  call MPI_RECV(buffer, nb_elements, MPI_INTEGER, source, tag, MPI_COMM_WORLD, status, error)
  print *, "I am process of rank ", rank_process, " , buffer =  ", buffer
endif

!! MPI FINALIZE

end program basic_sendrecv
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3. Executing Features

▶ During a point to point communication, the send & the receive are 2 different 
operations, eventually asynchronous, done by 2 different processes.

▶ It raises questions:
– What happens if no reception corresponds to the send?
– Can we use variables send/received without impact on the message?
– How to take back hand and do something else during the send or receive of 

the message?
– …

▶ One important notion to be defined: completion.

45
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3. Completion

▶ Of the reception: the message is arrived and the variable copied in local memory 
and can be used by the processor receiver.

▶ Of the send: the send variable (i.e. the matching memory zone) can be used 
safely, on read or write, in the sense that a modification of this variable by the 
processor sending will no more impact on the reception of the other processor.

▶ => Completion ≈ variables send/received can be used without risk

▶ A non-blocking send does not guarantee completion!

46
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3. Sending Process 

1. Beginning of the communication (posting of the send)
2. Then 2 situations possible:

– Copy in a buffer. The send will be done later, asynchroneously. No need to wait 
the reception.

– Synchronisation with reception: the routine is waiting that the process 
receiving is ready and that the transfer has begun. Program takes back control 
only when the send is complete.

▶. « Bufferization » will probably give better performance but requires a copy in 
memory (sending or receiving side, amongst the implementation). To note that 
the size of the buffers is necessarily limited.

47
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3. Receiving Process

48

1. Initialization of the reception (posting): verification in the stack of the waiting 
messages if an envelop corresponds to the one asked by the SEND_RECV

2. Transfer of data received in the memory zone dedicated by the SEND_RECV.

▶. Warning: data type is not checked by the SEND_RECV.

▶. Warning 2: In « standard » mode, using MPI_SEND and MPI_RECV is safe from 
the data access point of view, nevertheless a bad management in the code of 
the synchronization and the blocking behaviour may lead to deadlocks.
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3. A First Example of Deadlock

49

if (rank_process == 0) then
  ! Reception of 10 MPI_REAL in data coming from 1 with tag "tag1" 
  call MPI_RECV(data, 10, MPI_REAL, 1, tag1, MPI_COMM_WORLD, status, error) 
  ! Send of 10 MPI_REAL of data2 towards 1 with the tag "tag2" 
  call MPI_SEND(data2, 10, MPI_REAL, 1, tag2, MPI_COMM_WORLD, error)
else if (rank_process == 1) then
  ! Reception of 10 MPI_REAL in data coming from 0 with tag "tag2" 
  call MPI_RECV(data, 10, MPI_REAL, 0, tag2, MPI_COMM_WORLD, status, error) 
  ! Send of 10 MPI_REAL of data2 towards 0 with the tag "tag1" 
  call MPI_SEND(data2, 10, MPI_REAL, 0, tag1, MPI_COMM_WORLD, error)
endif

Waiting message from 1 Waiting message from 0

Time
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3. A Second Example of Deadlock

50

if (rank_process == 0) then
  ! Send of 10 MPI_REAL of data2 towards 1 with the tag "tag2" 
  call MPI_SEND(data2, 10, MPI_REAL, 1, tag2, MPI_COMM_WORLD, error)  
  ! Reception of 10 MPI_REAL in data coming from 1 with tag "tag1" 
  call MPI_RECV(data, 10, MPI_REAL, 1, tag1, MPI_COMM_WORLD, status, error) 
else if (rank_process == 1) then
  ! Send of 10 MPI_REAL of data2 towards 0 with the tag "tag1" 
  call MPI_SEND(data2, 10, MPI_REAL, 0, tag1, MPI_COMM_WORLD, error)
  ! Reception of 10 MPI_REAL in data coming from 0 with tag "tag2" 
  call MPI_RECV(data, 10, MPI_REAL, 0, tag2, MPI_COMM_WORLD, status, error) 
endif

Time

"Bufferized" message send towards 1 "Bufferized" message send towards 0

data2

copy of 
data2

Buffer data2

copy of 
data2

Buffer
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3. A Second Example of Deadlock

51

if (rank_process == 0) then
  ! Send of 10 MPI_REAL of data2 towards 1 with the tag "tag2" 
  call MPI_SEND(data2, 10, MPI_REAL, 1, tag2, MPI_COMM_WORLD, error)  
  ! Reception of 10 MPI_REAL in data coming from 1 with tag "tag1" 
  call MPI_RECV(data, 10, MPI_REAL, 1, tag1, MPI_COMM_WORLD, status, error) 
else if (rank_process == 1) then
  ! Send of 10 MPI_REAL of data2 towards 0 with the tag "tag1" 
  call MPI_SEND(data2, 10, MPI_REAL, 0, tag1, MPI_COMM_WORLD, error)
  ! Reception of 10 MPI_REAL in data coming from 0 with tag "tag2" 
  call MPI_RECV(data, 10, MPI_REAL, 0, tag2, MPI_COMM_WORLD, status, error) 
endif

Time

"Bufferized" message send towards 1 "Bufferized" message send towards 0

data2

copy of 
data2

Buffer data2

copy of 
data2

Buffer

data2 data2

Reception of 
message 1

Reception of 
message 0

OK! OK!
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3. A Second Example of Deadlock

52

if (rank_process == 0) then
  ! Send of 10 MPI_REAL of data2 towards 1 with the tag "tag2" 
  call MPI_SEND(data2, 10, MPI_REAL, 1, tag2, MPI_COMM_WORLD, error)  
  ! Reception of 10 MPI_REAL in data coming from 1 with tag "tag1" 
  call MPI_RECV(data, 10, MPI_REAL, 1, tag1, MPI_COMM_WORLD, status, error) 
else if (rank_process == 1) then
  ! Send of 10 MPI_REAL of data2 towards 0 with the tag "tag1" 
  call MPI_SEND(data2, 10, MPI_REAL, 0, tag1, MPI_COMM_WORLD, error)
  ! Reception of 10 MPI_REAL in data coming from 0 with tag "tag2" 
  call MPI_RECV(data, 10, MPI_REAL, 0, tag2, MPI_COMM_WORLD, status, error) 
endif

Time

Synchronous message send towards 1 Synchronous message send towards 0

data2 data2
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3. A Second Example of Deadlock

53

if (rank_process == 0) then
  ! Send of 10 MPI_REAL of data2 towards 1 with the tag "tag2" 
  call MPI_SEND(data2, 10, MPI_REAL, 1, tag2, MPI_COMM_WORLD, error)  
  ! Reception of 10 MPI_REAL in data coming from 1 with tag "tag1" 
  call MPI_RECV(data, 10, MPI_REAL, 1, tag1, MPI_COMM_WORLD, status, error) 
else if (rank_process == 1) then
  ! Send of 10 MPI_REAL of data2 towards 0 with the tag "tag1" 
  call MPI_SEND(data2, 10, MPI_REAL, 0, tag1, MPI_COMM_WORLD, error)
  ! Reception of 10 MPI_REAL in data coming from 0 with tag "tag2" 
  call MPI_RECV(data, 10, MPI_REAL, 0, tag2, MPI_COMM_WORLD, status, error) 
endif

Time

Synchronous message send towards 1 Synchronous message send towards 0

data2 data2

Waiting the reception of 0…Waiting the reception of 1…
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3. Complements

54

▶ It exists routines allowing to perform a send and a receive at one time:

– Warning: in the first case, data_send & data_recv must be different. In the 
second case, the variable send is replaced by the one received.

▶ Blocking test: waiting the arrival of a message correponding to the given 
envelop.

MPI_SENDRECV(data_send, nb_elem_send, type_send, dest, tag_send,
           data_recv, nb_elem_recv, type_recv, src, tag_recv,
           comm, status, error)

MPI_SENDRECV_REPLACE(data, nb_elem, type, dest, tag_send,
     src, tag_recv, comm, status, error)

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)
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4. Performance of a MPI Computation (1/2)

▶ What are decisive factors?
– System architecture and network between cores and nodes.
– MPI implementation.
– The code: choice of algorithms, memory management, 

communication/computing ratio in the code, load balancing…
▶ Time sharing during the execution of a MPI program

– Latency: time to begin an exchange ≈ time needed to send an empty 
message

– Communications
– Computations

Example:

55



       | 17-10-2016 | Benjamin Pajot | © Atos - Confidential 
GBU France | BDS | LNCC Training 

4. Performance of a MPI Computation (2/2)

▶ How to improve the implementation?
– Use the good algorithms…
– Use specialized libraries (fftw, scalapack…).
– Overlap communications with computations.
– Change communication mode.
– Balance load between different processes.

Example:

56
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4. Non-blocking Communications (1/2)

▶ How? To not wait the completion to give back control.

▶ Non-blocking send (MPI_ISEND): as soon as the message is posted, the program 
takes back control over the processor source.

▶ Non-blocking receive (MPI_IRECV): as soon as the reception is posted, the 
program takes back the hand.

=> The program can do something else during data transfers: overlap 
communications with computations.

Warning: The program takes back control before that the reception or the send is 
complete. As a consequence the variable send/received is not usable immediately.

57
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4. Non-blocking Communications (2/2)

58

call MPI_ISEND(data, nb_elements, type, dest, tag, comm, request, error)  
!! …
call MPI_WAIT(request, status, error) 

▶ How to know if the reception or the send is finished? To not wait the completion 
to give back control?

▶ MPI_WAIT

MPI_WAIT is blocking and gives back control as soon as the reception or the send 
has completed.
▶ MPI_TEST

MPI_TEST is non-blocking and sends back a boolean that is true if the send or the 
reception has completed.

logical flag
!! …
call MPI_ISEND(data, nb_elements, type, dest, tag, comm, request, error)  
!! …
call MPI_WAIT(request, status, error) 
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1. Collective Communications

▶ A collective communication allows to realize in one call a set of point to point 
communications.

▶ A collective communication implies all processes of a communicator.

▶ 3 types of collective operations:
– synchronization
– data transfer
– global reduction operation

▶ No tag needed

60
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1. Global Synchronization

▶ Barrier synchronization across all members of a comm.
▶ Blocks the caller until all group members have called it
▶ Returns at any process only after all processes in comm have entered the call.

61

int MPI_Barrier(MPI_Comm comm)

P0

active process

ti
m

e

waiting process

P1 P2 P3

barrier



       | 17-10-2016 | Benjamin Pajot | © Atos - Confidential 
GBU France | BDS | LNCC Training 

1. Broadcast (1/2)

62

int MPI_Bcast(&buffer, count, datatype, root, comm)

root

0

3 4 51 2
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1. Broadcast (2/2)

▶ root sends data to all process in the communicator

▶ Others processes wait to receive the data 

▶ Equivalent to:
– root calls MPI_Send to all processes
– others process call MPI_Recv

63
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1. Scatter (1/2)

64

int MPI_Scatter(&sendbuf, sendcnt, sendtype, 
                         &recvbuf, recvcnt, recvtype, root, comm)

root

0

3 4 50 1 2
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1. Scatter (2/2)

▶ Each process receives a part of the data sent by root according to their rank:

▶ The message is split into n equal segments, the i-th segment is sent to the i-th 
process of comm.

▶ Equivalent to :
– root sends to each process of rank i a part of data: 

• MPI_Send( &(sendbuf + i * sendcnt * extent(sendtype), sendcnt, sendtype, i, …)
 

– Each process receives:
• MPI_Recv( &recvbuf, recvcnt, recvtype, root, ...)

▶ Only root uses sendbuf, sendcnt and sendtype arguments.

▶ root can use MPI_IN_PLACE to receive data :
– root sends no data to itself

65
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1. Gather (1/2)

66

int MPI_Gather(&sendbuf, sendcnt, sendtype, 
                      &recvbuf, recvcount, recvtype, root, comm)

0

3 4 50 1 2

root
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1. Gather (2/2)

▶ Each process (root process included) sends the contents of its send buffer to the 
root process.

▶ The root process receives the messages and stores them in rank order.

▶ Equivalent to :
– each of the n processes (including the root process) executes a call to:

MPI_Send( &sendbuf, sendcnt, sendtype, root, …) 

– and the root executes n calls to:
MPI_Recv( &(recvbuf + i * recvcnt * extent(recvtype)), recvcnt, recvtype, i, ...)

▶ root can use MPI_IN_PLACE as send buffer:
– root sends no data to itself

▶ The recvbuf, recvtype and recvcnt  arguments are ignored for all non-root 
processes. 

67
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1. Allgather (1/2)

68

int MPI_Allgather(&sendbuf, sendcount, sendtype, 
                             &recvbuf, recvcount, recvtype, comm)

0

30 1 2

1 2 3
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1. Allgather (2/2)

▶ MPI_ALLGATHER can be thought of as MPI_GATHER, but where all processes 
receive the result, instead of just the root.

▶ All processes can use "MPI_IN_PLACE" in the parameter sendbuf ,
– process sends no data to itself

69
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1. All-to-All Scatter/Gather(1/2)

70

int MPI_Alltoall(&sendbuf, sendcount, sendtype, 
                           &recvbuf, recvcount, recvtype, comm)

0

a a a a

0
a b c d

1

b b b b

1
a b c d

2

c c c c

2
a b c d

3

d d d d

3
a b c d
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1. All-to-All Scatter/Gather(2/2)

▶ It is an extension of MPI_ALLGATHER to the case where each process sends 
distinct data to each of the receivers.

▶ Equivalent to
– each process executes a send to each process (itself included) 

MPI_Send( &(sendbuf + i * sendcnt * extent(sendtype), sendcnt, sendtype, i, …)

– and a receive from every other process with a call to, 
MPI_Recv( &(recvbuf + i * recvcnt * extent(recvtype)), recvcnt, recvtype, i, ...)

▶ All processes can use MPI_IN_PLACE in the parameter sendbuf ,
– the data to be sent is taken from the recvbuf…
– …and replaced by the received data

71
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2. Vector Versions of the Collective

▶ Operation of collective vector (name of operation with "v” suffix)
– MPI_Scatterv
– MPI_Gatherv
– MPI_Allgatherv
– MPI_Alltoallv (et MPI_Alltoallw)

▶ Allows a varying count of data from each process, since recvcounts is now an 
array

72
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2. Vector Version of Scatter (1/3)

▶ Vector version of MPI_Scatter

– sendcounts: integer array (of length group size) specifying the number of 
elements to send to each rank

–  displs: integer array (of length group size). Entry i specifies the displacement 
(relative to sendbuf) from which to take the outgoing data to process i

▶ The send buffer is ignored for all non-root processes. 

73

int MPI_Scatterv(const void* sendbuf, const int sendcounts[],
                            const int displs[], MPI_Datatype sendtype, 
                            void* recvbuf, int recvcount, MPI_Datatype recvtype, 
                            int root, MPI_Comm comm)
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2. Vector Version of Scatter (2/3)

▶ Equivalent to:

– the outcome is as if the root executes n send operations, 

– and each process executes a receive

▶ root can use MPI_IN_PLACE as recvbuf:
– root sends no data to itself

74

MPI_Send( &(sendbuf + displs[i] * extent(sendtype), sendcounts[i], sendtype, i, …)

MPI_Recv( &recvbuf, recvcount, recvtype, root, ...)
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2. Vector Version of Scatter (3/3)

75

...
for (i=0; i<gsize; ++i) {
  displs[i] = i*stride;
  scounts[i] = 100-i;
}
MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, recvbuf, 100-i, MPI_INT, root, comm);

100 99 98 97

displs[2]

96

sendbuf

ROOT

99P1

recvbuf

100P0

recvbuf

P3

recvbuf

97...

...

...

...
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2. TP: Example of vector version of collective 
communication

▶ The first process (rank=0) send an array to all process. 
– The size of the array depending of the rank of the receiver.

(sends 1 element to rank=1, 2 elements to rank=2 …)

76
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2. TP: Example of vector version of collective 
communication (solution)

int *scounts = malloc(sizeof(int)* mpisize);
int *displs = malloc(sizeof(int)* mpisize);
for (i = 0 ; i < mpisize ; i++)
  scounts[i] = i;
displs[0] = 0;
for (i = 1 ; i < mpisize ; i++)
  displs[i] = displs[i-1] + scounts[i-1];

 MPI_Scatterv(array, scounts, displs, MPI_INT,
                   array, mpirank, MPI_INT, 0, MPI_COMM_WORLD);

77
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3. Reduction (1/6)

▶ Performs a global reduce operation (for example sum, maximum, and logical 
and) across all members of a group

▶ Example with SUM operation 

78

P0

3

P1

5

P2

1

P0

9
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3. Reduction (2/6)

▶ Predefined Reduction Operations

79

Name Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND logical and

MPI_BAND bit-wise and

MPI_LOR logical or

MPI_BOR bit-wise or

MPI_LXOR logical exclusive or (xor)

MPI_BXOR bit-wise exclusive or (xor) 

MPI_MAXLOC max value and location

MPI_MINLOC Min value and location
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3. Reduction (3/6)

▶ MPI_REDUCE combines the elements provided in the input buffer sendbuf of each 
process in the communicator comm, using the operation op.

▶ Returns the combined value in the output buffer of the process with rank root

▶ Example

– recvbuf[0] = max(all of sendbuf[0])
– recvbuf[1] = max(all of sendbuf[1])

80

int MPI_Reduce(const void* sendbuf, void* recvbuf, int count, MPI_Datatype datatype,
                             MPI_Op op, int root, MPI_Comm comm)

MPI_Reduce(&sendbuf, &recvbuf, 2, MPI_INT, MPI_MAX, 0, comm)
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P Root

3. Reduction (4/6)

▶ Another example:

81

MPI_Reduce(&sendbuf, &recvbuf, 3, MPI_INT, MPI_SUM, 0, comm)

P3P2P1P0

1 15 11 2 15 13 3 45 17 2 25 19

8 100 60
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3. Reduction (5/6)

▶ A variant of the reduce operations where the result is returned to all processes in 
a group. 

▶ Example with SUM operation

82

int MPI_Allreduce(const void* sendbuf, void* recvbuf, int count, 
                                 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

P0
3

P1
5

P2
1

P1
9

P2
9

P0
9

Send

Reception
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P0
2

P1
4

P2
1

P1
6

P2
7

P0
2

Send

Receptions

P3
2

P3
9

3. Reduction (6/6)

▶ The operation returns, in the receive buffer of the process with rank i, the 
reduction of the values in the send buffers of processes with ranks 0,. . .,i 

▶ Example with SUM operation

83

int MPI_Scan(const void* sendbuf, void* recvbuf, int count, 
                        MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
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3. User Defined Reduction 

▶ Just to mention that thanks to the following routines, the user can define its own 
reduction operations. 

84

int MPI_Op_create(MPI_User_function* user_fct, int commute, MPI_Op* op)

int MPI_Op_free(MPI_Op* op)

void MPI_User_function(void* invec, void* inoutvec, int *len, MPI_Datatype *datatype)
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