
17-10-2016

© Atos - Confidential

Introduction to MPI
B. Pajot

benjamin.pajot@atos.net
Copyright ©Bull S.A.S. 2016

mailto:benjamin.pajot@atos.net

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2

Introduction to MPI

Credits

http://www.mpi-forum.org/
https://computing.llnl.gov/tutorials/mpi/#What
http://www.idris.fr/data/cours/parallel/mpi/choix_doc.html
Programming Model training from R. Dolbeau & G.-E. Moulard (Atos)
Formations CED – Du calcul parallèle au massivement parallèle

http://www.mpi-forum.org/
https://computing.llnl.gov/tutorials/mpi/#What
http://www.idris.fr/data/cours/parallel/mpi/choix_doc.html

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

Plan

▶ Introduction

▶ Environment

▶ Data type

▶ Point-to-point communications

▶ Collective communications

▶ Questions

3

17-10-2016

© Atos - Confidential

Introduction

1. Reminders about parallelism
2. Parallel programming model

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Goals of Parallel Programming

▶ Parallelizing?
– « Reorganizing » the problem to process simultaneously data and

computations while using a number of computing ressources

▶ Why?
– Improve performance => computing faster
– Process a bigger volume of data => using memory of several computing

nodes

▶ Important points:
– Knowing hardware architecture
– Choosing a programming model: MPI, OpenMP, hybrid programming…

5

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Architectures

▶ Shared memory computer
– Several processors sharing the same

global memory space via a fast
interconnect

6

▶ Hybrid computer
– Most common case: a set of shared memory computers (eventually

equipped with coprocessors or accelarators) linked by a network

▶ Distributed memory computer
– Each node with its own memory
– Each node reaches other nodes memory via

the network (call to communications routines)

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. What Matters

▶ From developer point of view, architecture = network of processors
– CPU => computing power. Determine the FLOPS (FLoating-point Operations

Per Second).
– Several levels of memory => several levels of parallelism. Critical points: size

of memories & IO speed.
– Communication network => limiting factor: bandwidth.

▶ Parallel programming: use of a software layer to handle ressources processing
and access => MPI

7

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. MPI: Message Passing Interface

▶ High level API for message passing

▶ Designed for Performance, scalability and portability

▶ Currently, it’s the third major release:
– 1995: v1.2 (MPI-1)
– 1997: v2.0 (MPI-2)
– 2008: v2.1
– 2009: v2.2
– 2012: v3.0 (MPI-3)
– 2015: v3.1

▶ An API with different implementations
– Some with specific extensions…
– ... which can break the portability of an application

8

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. MPI Implementations

▶ Open source implementation
– MPICH (MPI-1)
– MPICH2 (MPI-2)
– OpenMPI (1.8.3 includes most of MPI-3)
– LAM/MPI

▶ Manufacturer implementation’s
– HP MPI
– Intel MPI
– BullxMPI

9

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

processus

2. Sequential Programming Model

▶ The program is executed by a single process.

▶ This process runs on a single physical processor of the machine.

▶ All data (Variables and Constants) are allocated in the memory assigned for the
process.

▶ Does not allow to exploit modern machines with several physical processors
distributed on several node
– Limited in term of computing power
– Limited in term of problem size (1 node)

10

Data

Program

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Programming Model by Message Passing

▶ A program is divided into sub-programs each executed by a process.

▶ The processes communicate by the interconnection network by sending or
receiving messages
– Possibility to exploit whole platform.

11

processusprocessusprocessusprocessus

Sub-
Data

Sub-
Program

Sub-
Data

Sub-
Program

Sub-
Data

Sub-
Program

Sub-
Data

Sub-
Program

Network

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Key Notions

▶ Key notions: process, message, synchronization
– “Virtual” process ≠ processor / physical core. Processes can execute on

different or identical processors / cores.
– Each process has its own variables and does not access directly to the

variables of other processes.
– Data sharing between processes is done by explicit send & receives of

messages.
– Processes synchronization.

12

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Programmation MPI

▶ In an MPI program each process runs a sub-program
– Written in a classical language (C, C++, Fortran, Python, ...)
– Can be different depending of the process
– Most often, the same sub-program for all process (SPMD – Single Program

Multiple Data)
• Not required by the model, MPMD (Multiple Program Multiple Data) is also

possible

▶ Variables of each sub-program:
– Can have the same name (SPMD)
– Different memory locations and different values (Distributed memory)
– Private to the sub-program

▶ The sub-programs use routines for sending and receiving messages to
communicate

13

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Work and Data Distribution in MPI

▶ Create a system of N independent processes

▶ Each process has a unique ID: Rank [0:N-1]

▶ Data and work distribution is based on rank

14

Rank=0
Data

Sub-
Program

Rank=1
Data

Sub-
Program

Rank=2
Data

Sub-
Program

Rank=N-1
Data

Sub-
Program

Network

program fortran_spmd

implicit none

integer :: process_rank
integer :: var1
real :: var2

!! CODE (later in this pres.)

if (process_rank == 0) call inst1()

if(process_rank /= 0) then
 call instr2()
 call instr3()
endif

!! CODE (later in this pres.)

end program fortran_spmd

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Messages

▶ Messages are blocks of data exchanged by sub-programs.

▶ For message sending and receiving, different information are required
– The rank of sender/receiver
– data location
– data type
– data size

15

Network

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. A First Simple Example

16

P0: data read P1: data read

Compute partial sum
Store in variable SUM

Communication via network

Compute partial sum
Store in variable SUM

=

+

Display or
write in a file

SUM0

17-10-2016

© Atos - Confidential

Bases

1. Environment
2. Communicator
3. Environmental Management

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Generality

▶ Compilation unit containing MPI routines must:

– C/C++: include mpi header file "mpi.h”

– Fortran: use "MPI" module
• Introduced in MPI-2, else use "mpi.h”

▶ The prefix "MPI_” is reserved for MPI routines and macros.

▶ MPI routines in C/C++ & Fortran have the same format:
– “MPI” prefix and the first letter are in capital letter

• MPI_Xxxx_xxx_xxx()

18

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Initialization of MPI Program

▶ In MPI program, the function MPI_Init must be the first one called by each sub-
program

– C/C++:

– Fortran:

▶ Initializes the environment of MPI execution (communicator ...)

19

int MPI_Init(int *argc, char **argv)

MPI_Init(mpierror)

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Termination of a MPI Program

▶ Each sub-program must call MPI_Finalize before the end of the program

– C/C++:

– Fortran:

▶ In case where it’s necessary to stop the program before the normal end, use
MPI_Abort function:
– For example if memory allocation required by a process fails

20

int MPI_Finalize()

MPI_Finalize(mpierror)

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Communicators

▶ A communicator is composed of a MPI process group.

▶ At the initialization of MPI program, a communicator with all MPI processes is
created: MPI_COMM_WORLD
– this is a global communicator.

▶ Each MPI process is identified by its rank within a communicator:
– identifier between 0 and (number of processes in the communicator – 1)

▶ A process can belong to several communicators and has an associated rank
(identifier) for each of these communicators

▶ Two MPI processes must be in the same communicator to be able to
communicate together.

21

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Communicator: Size and Rank

▶ MPI_Comm_size function provides the number of MPI processes in the
communicator

– C/C++:

– Fortran

▶ MPI_Comm_rank function provides the rank of the process in the
communicator:

– C/C++:

– Fortran:

22

int MPI_Comm_size(MPI_Comm comm, int *size)

MPI_Comm_size(comm, size, mpierror)

int MPI_Comm_rank(MPI_Comm comm, int*rank)

MPI_Comm_rank(comm, rank, mpierror)

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Basic Example in C

#include <mpi.h>

int main(int argc, char *argv[])
{
/* The basic MPI Program */
int mpierror, mpisize, mpirank;

mpierror=MPI_Init(&argc, &argv);

mpierror=MPI_Comm_size(MPI_COMM_WORLD, &mpisize);
mpierror=MPI_Comm_rank(MPI_COMM_WORLD, &mpirank);

/* Do work here */

mpierror=MPI_Finalize();

return 0;
}

#include <mpi.h>

int main(int argc, char *argv[])
{
/* The basic MPI Program */
int mpierror, mpisize, mpirank;

mpierror=MPI_Init(&argc, &argv);

mpierror=MPI_Comm_size(MPI_COMM_WORLD, &mpisize);
mpierror=MPI_Comm_rank(MPI_COMM_WORLD, &mpirank);

/* Do work here */

mpierror=MPI_Finalize();

return 0;
}

23

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Basic Example in Fortran

program firstmpi
! The basic MPI Program
use MPI

integer :: mpierror, mpisize, mpirank

call MPI_Init(mpierror)

call MPI_Comm_size(MPI_COMM_WORLD, mpisize, mpierror)
call MPI_Comm_rank(MPI_COMM_WORLD, mpirank, mpierror)

! Do work here

call MPI_Finalize(mpierror)

end program firstmpi

program firstmpi
! The basic MPI Program
use MPI

integer :: mpierror, mpisize, mpirank

call MPI_Init(mpierror)

call MPI_Comm_size(MPI_COMM_WORLD, mpisize, mpierror)
call MPI_Comm_rank(MPI_COMM_WORLD, mpirank, mpierror)

! Do work here

call MPI_Finalize(mpierror)

end program firstmpi

24

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. TP: MPI101

▶ Execute the TP (in C)
– Batch environment "SLURM”
– ./build.sh, ./run.sh

▶ Modify number of processes

25

srun --mpi=pmi2 -J TPMPI -N 1 -n 2 -p E52697v2 ./mpi101

enables interaction
between
Slurm and MPI

Job Name

number of node asked

Number
of processes

Partition Name
(group of machine)

icc -c mpi101.c
icc -lmpi mpi101.o -o mpi101

mpiicc -o mpi101

Compilation:

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. MPI Environmental Management

▶ MPI_Get_processor_name
– Gets the processor name; format is implementation dependent

▶ MPI_Get_version
– Gets version and sub-version of MPI

▶ MPI_Initialized
– Gets if MPI_Init was called; for example, useful for libraries

▶ MPI_Wtime
– Gets the time in seconds since an arbitrary point in the past

• if MPI_WTIME_IS_GLOBAL is true (1), the value is synchronized for all
processes

▶ MPI_Wtick
– Gets the precision in second of MPI_Wtime

26

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. TP: MPI101 phase 2

▶ Display the name of the machine using the MPI function

▶ Modify the number of nodes to run the program

MPI_Get_processor_name
Gets the name of the processor

Synopsis
int MPI_Get_processor_name(char *name, int *resultlen)

Output Parameters
name A unique specifier for the actual (as opposed to virtual) node.
This must be an array of size at least MPI_MAX_PROCESSOR_NAME.
resultlen Length (in characters) of the name

27

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. TP: MPI101 phase 2 (solution)

#include <mpi.h>
int main(int argc, char *argv[])
{
/* The basic MPI Program */
int mpierror, mpisize, mpirank;
mpierror=MPI_Init(&argc, &argv);
mpierror=MPI_Comm_size(MPI_COMM_WORLD, &mpisize);
mpierror=MPI_Comm_rank(MPI_COMM_WORLD, &mpirank);
/* Do work here */
{
 char temp[MPI_MAX_PROCESSOR_NAME];
 int resultlen;
 int r = MPI_Get_processor_name(temp, &resultlen);
 printf("I am %d out of %d running on %s\n", mpirank, mpisize, temp);
}
mpierror=MPI_Finalize();
return 0;
}

28

17-10-2016

© Atos - Confidential

Data Type

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

Data Type

▶ For portability reasons, MPI predefined elementary data types.

▶ Using elementary data types to build more complex types (derived data types)
– Not tackled in this training

▶ MPI implementations can provide more elementary data types:
– These types are in "mpi.h” header file.
– They can prevent portability

30

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

Data Type

▶ Predefined data types in Fortran:

31

TYPE MPI TYPE FORTRAN

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE_PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE

MPI_PACKED

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

Data Type

▶ Predefined data types in C:

32

TYPE MPI TYPE C

MPI_CHAR char (treated as printable character)

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_LONG_LONG_INT
MPI_LONG_LONG signed long long int

MPI_SIGNED_CHAR signed char(treated as integral value)

MPI_UNSIGNED_CHAR unsigned char (treated as integral value)

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_WCHAR wchar_t (treated as printable character)

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

Data Type

▶ Predefined data types in C (end):

33

TYPE MPI TYPE C

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_C_BOOL _Bool

MPI_INT8_T
MPI_INT16_T
MPI_INT32_T
MPI_INT64_T

int8_t
int16_t
int32_t
int64_t

MPI_UINT8_T
MPI_UINT16_T
MPI_UINT32_T
MPI_UINT64_T

uint8_t
uint16_t
uint32_t
uint64_t

MPI_C_COMPLEX
MPI_C_FLOAT_COMPLEX

Float _Complex

MPI_C_DOUBLE_COMPLEX double _Complex

MPI_C_LONG_DOUBLE_COMPLEX long double _Complex

MPI_BYTE

MPI_PACKED

17-10-2016

© Atos - Confidential

Point to Point
Communications
1. Description
2. Contents
3. Execution
4. Optimizations

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Principle

▶ A point to point communication is a communication between two MPI processes.

▶ One process is the sender: it sends the message.

▶ The other is the receiver or recipient: it waits the message of the senders.

▶ The sender and the receiver are identified by their rank.

35

0

1

2

3

4

5

sender

receiver

x
rank of the processus
inside the communicator

communicator

message

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Blocking Communications

▶ A blocking send blocks the process until the memory space used for the
message can be re-written without any modification of the message.

▶ A blocking send can be synchronous
– It waits for an acknowledgment of receipt.

▶ A blocking send can be asynchronous
– If system memory space is used to send the message.

▶ A blocking reception blocks the process until data are received and ready to
be used by the system.

36

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Non-Blocking Communication

▶ Non-blocking send and reception return almost immediately:
– no wait for communication event (copy in the system memory space or

acknowledgement of receipt)

▶ They aim to overlap communications time and computing time.

▶ User can not know the exact moment when a sending or a receiving has
effectively been done.

▶ Synchronization routines help ensure the sending or receiving of message.

▶ It is unsafe to modify the memory space used for data sending or receiving
without being ensured of the end of a sending or receiving.

37

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Modes

▶ 4 modes of send for point to point communications:
– Standard (MPI implementation dependant)
– Buffered (copy in a buffer ; the send is done later, asynchroneously ; no need

to wait receiving) => should probably give better results, but requires copy in
memory

– Synchronous (with receiving ; the program takes back the hand when the send
is complete)

– Ready (started only if the matching receive is already posted)
▶ Each mode has blocking and non-blocking implementation:

38

Mode Blocking Non-blocking

Send

Standard MPI_Send MPI_Isend

Buffered MPI_Bsend MPI_Ibsend

Synchronous MPI_Ssend MPI_Issend

Ready MPI_Rsend MPI_Irsend

Receive MPI_Recv MPI_Irecv

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Parameters (1/2)

▶ Parameters of point to point communication:

– buffer: memory address of the data or reception buffer

– count: number of elements in send buffer or the maximum of elements to
receive

– type: data type

– comm: communicator used

– dest: rank of destination

– source: rank of source
• use MPI_ANY_SOURCE to receive a message from any source

39

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Parameters (2/2)

– tag: a nonzero integer given by the programmer to identify a message
• use MPI_ANY_TAG to receive a message without knowing the tag.

– request: used to associate non-blocking communication operations (Isend
and Irecv) with an (MPI_request type) object used for synchronization.

– status: a variable containing additional information about the receive
operation after it completes
• MPI_Status type
• contains the rank of the sender, the tag of the message, the error of the

message.
• Instead, we have to find out the length of the message with MPI_Get_count
• which can be ignored with MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE

40

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Message Envelope & Body

▶ The envelope (description of the “context”) of message contains:
– Identities of the sender and the receiver (ranks)
– The tag
– The communicator

▶ A receiving operation works with a send operation only if the envelopes match.

▶ Communication with the fictive process of rank MPI_PROC_NULL has no effect.

▶ The body of the message contains:
– A buffer with data inside
– The type of the data
– Their size

41

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Send Operations

▶ Standard blocking send

▶ Synchronous blocking send:

▶ Standard non-blocking send:

42

int MPI_Send(buffer, count, type, dest, tag, comm, status)

int MPI_Ssend(buffer, count, type, dest, tag, comm)

int MPI_Isend(buffer, count, type, dest, tag, comm, request)

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Reception Operations

▶ Blocking reception :

– return only when buffer contains the message

▶ Non-blocking reception

– return immediately

43

int MPI_Recv(buffer, count, type, source, tag, comm, status)

int MPI_Irecv(buffer, count, type, source, tag, comm, request)

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. A Simple Example

>> I am process of rank 1, buffer = 0
>> I am process of rank 0, buffer = 12
>> I am process of rank 1, buffer = 12

44

program basic_sendrecv

implicit none

use MPI

integer :: source, dest, tag, error, buffer, nb_elements
integer(MPI_STATUS_SIZE) :: status

source = 0
dest = 1
tag = 21
nb_elements = 1

!! MPI INITIALIZATION

if (rank_process == source) then
 buffer = 12
 call MPI_SEND(buffer, nb_elements, MPI_INTEGER, dest, tag, MPI_COMM_WORLD, error)
 print *, "I am process of rank ", rank_process, " , buffer = ", buffer
else if (rank_process == dest) then
 buffer = 0
 print *, "I am process of rank ", rank_process, " , buffer = ", buffer
 call MPI_RECV(buffer, nb_elements, MPI_INTEGER, source, tag, MPI_COMM_WORLD, status, error)
 print *, "I am process of rank ", rank_process, " , buffer = ", buffer
endif

!! MPI FINALIZE

end program basic_sendrecv

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. Executing Features

▶ During a point to point communication, the send & the receive are 2 different
operations, eventually asynchronous, done by 2 different processes.

▶ It raises questions:
– What happens if no reception corresponds to the send?
– Can we use variables send/received without impact on the message?
– How to take back hand and do something else during the send or receive of

the message?
– …

▶ One important notion to be defined: completion.

45

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. Completion

▶ Of the reception: the message is arrived and the variable copied in local memory
and can be used by the processor receiver.

▶ Of the send: the send variable (i.e. the matching memory zone) can be used
safely, on read or write, in the sense that a modification of this variable by the
processor sending will no more impact on the reception of the other processor.

▶ => Completion ≈ variables send/received can be used without risk

▶ A non-blocking send does not guarantee completion!

46

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. Sending Process

1. Beginning of the communication (posting of the send)
2. Then 2 situations possible:

– Copy in a buffer. The send will be done later, asynchroneously. No need to wait
the reception.

– Synchronisation with reception: the routine is waiting that the process
receiving is ready and that the transfer has begun. Program takes back control
only when the send is complete.

▶. « Bufferization » will probably give better performance but requires a copy in
memory (sending or receiving side, amongst the implementation). To note that
the size of the buffers is necessarily limited.

47

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. Receiving Process

48

1. Initialization of the reception (posting): verification in the stack of the waiting
messages if an envelop corresponds to the one asked by the SEND_RECV

2. Transfer of data received in the memory zone dedicated by the SEND_RECV.

▶. Warning: data type is not checked by the SEND_RECV.

▶. Warning 2: In « standard » mode, using MPI_SEND and MPI_RECV is safe from
the data access point of view, nevertheless a bad management in the code of
the synchronization and the blocking behaviour may lead to deadlocks.

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. A First Example of Deadlock

49

if (rank_process == 0) then
 ! Reception of 10 MPI_REAL in data coming from 1 with tag "tag1"
 call MPI_RECV(data, 10, MPI_REAL, 1, tag1, MPI_COMM_WORLD, status, error)
 ! Send of 10 MPI_REAL of data2 towards 1 with the tag "tag2"
 call MPI_SEND(data2, 10, MPI_REAL, 1, tag2, MPI_COMM_WORLD, error)
else if (rank_process == 1) then
 ! Reception of 10 MPI_REAL in data coming from 0 with tag "tag2"
 call MPI_RECV(data, 10, MPI_REAL, 0, tag2, MPI_COMM_WORLD, status, error)
 ! Send of 10 MPI_REAL of data2 towards 0 with the tag "tag1"
 call MPI_SEND(data2, 10, MPI_REAL, 0, tag1, MPI_COMM_WORLD, error)
endif

Waiting message from 1 Waiting message from 0

Time

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. A Second Example of Deadlock

50

if (rank_process == 0) then
 ! Send of 10 MPI_REAL of data2 towards 1 with the tag "tag2"
 call MPI_SEND(data2, 10, MPI_REAL, 1, tag2, MPI_COMM_WORLD, error)
 ! Reception of 10 MPI_REAL in data coming from 1 with tag "tag1"
 call MPI_RECV(data, 10, MPI_REAL, 1, tag1, MPI_COMM_WORLD, status, error)
else if (rank_process == 1) then
 ! Send of 10 MPI_REAL of data2 towards 0 with the tag "tag1"
 call MPI_SEND(data2, 10, MPI_REAL, 0, tag1, MPI_COMM_WORLD, error)
 ! Reception of 10 MPI_REAL in data coming from 0 with tag "tag2"
 call MPI_RECV(data, 10, MPI_REAL, 0, tag2, MPI_COMM_WORLD, status, error)
endif

Time

"Bufferized" message send towards 1 "Bufferized" message send towards 0

data2

copy of
data2

Buffer data2

copy of
data2

Buffer

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. A Second Example of Deadlock

51

if (rank_process == 0) then
 ! Send of 10 MPI_REAL of data2 towards 1 with the tag "tag2"
 call MPI_SEND(data2, 10, MPI_REAL, 1, tag2, MPI_COMM_WORLD, error)
 ! Reception of 10 MPI_REAL in data coming from 1 with tag "tag1"
 call MPI_RECV(data, 10, MPI_REAL, 1, tag1, MPI_COMM_WORLD, status, error)
else if (rank_process == 1) then
 ! Send of 10 MPI_REAL of data2 towards 0 with the tag "tag1"
 call MPI_SEND(data2, 10, MPI_REAL, 0, tag1, MPI_COMM_WORLD, error)
 ! Reception of 10 MPI_REAL in data coming from 0 with tag "tag2"
 call MPI_RECV(data, 10, MPI_REAL, 0, tag2, MPI_COMM_WORLD, status, error)
endif

Time

"Bufferized" message send towards 1 "Bufferized" message send towards 0

data2

copy of
data2

Buffer data2

copy of
data2

Buffer

data2 data2

Reception of
message 1

Reception of
message 0

OK! OK!

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. A Second Example of Deadlock

52

if (rank_process == 0) then
 ! Send of 10 MPI_REAL of data2 towards 1 with the tag "tag2"
 call MPI_SEND(data2, 10, MPI_REAL, 1, tag2, MPI_COMM_WORLD, error)
 ! Reception of 10 MPI_REAL in data coming from 1 with tag "tag1"
 call MPI_RECV(data, 10, MPI_REAL, 1, tag1, MPI_COMM_WORLD, status, error)
else if (rank_process == 1) then
 ! Send of 10 MPI_REAL of data2 towards 0 with the tag "tag1"
 call MPI_SEND(data2, 10, MPI_REAL, 0, tag1, MPI_COMM_WORLD, error)
 ! Reception of 10 MPI_REAL in data coming from 0 with tag "tag2"
 call MPI_RECV(data, 10, MPI_REAL, 0, tag2, MPI_COMM_WORLD, status, error)
endif

Time

Synchronous message send towards 1 Synchronous message send towards 0

data2 data2

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. A Second Example of Deadlock

53

if (rank_process == 0) then
 ! Send of 10 MPI_REAL of data2 towards 1 with the tag "tag2"
 call MPI_SEND(data2, 10, MPI_REAL, 1, tag2, MPI_COMM_WORLD, error)
 ! Reception of 10 MPI_REAL in data coming from 1 with tag "tag1"
 call MPI_RECV(data, 10, MPI_REAL, 1, tag1, MPI_COMM_WORLD, status, error)
else if (rank_process == 1) then
 ! Send of 10 MPI_REAL of data2 towards 0 with the tag "tag1"
 call MPI_SEND(data2, 10, MPI_REAL, 0, tag1, MPI_COMM_WORLD, error)
 ! Reception of 10 MPI_REAL in data coming from 0 with tag "tag2"
 call MPI_RECV(data, 10, MPI_REAL, 0, tag2, MPI_COMM_WORLD, status, error)
endif

Time

Synchronous message send towards 1 Synchronous message send towards 0

data2 data2

Waiting the reception of 0…Waiting the reception of 1…

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. Complements

54

▶ It exists routines allowing to perform a send and a receive at one time:

– Warning: in the first case, data_send & data_recv must be different. In the
second case, the variable send is replaced by the one received.

▶ Blocking test: waiting the arrival of a message correponding to the given
envelop.

MPI_SENDRECV(data_send, nb_elem_send, type_send, dest, tag_send,
 data_recv, nb_elem_recv, type_recv, src, tag_recv,
 comm, status, error)

MPI_SENDRECV_REPLACE(data, nb_elem, type, dest, tag_send,
 src, tag_recv, comm, status, error)

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

4. Performance of a MPI Computation (1/2)

▶ What are decisive factors?
– System architecture and network between cores and nodes.
– MPI implementation.
– The code: choice of algorithms, memory management,

communication/computing ratio in the code, load balancing…
▶ Time sharing during the execution of a MPI program

– Latency: time to begin an exchange ≈ time needed to send an empty
message

– Communications
– Computations

Example:

55

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

4. Performance of a MPI Computation (2/2)

▶ How to improve the implementation?
– Use the good algorithms…
– Use specialized libraries (fftw, scalapack…).
– Overlap communications with computations.
– Change communication mode.
– Balance load between different processes.

Example:

56

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

4. Non-blocking Communications (1/2)

▶ How? To not wait the completion to give back control.

▶ Non-blocking send (MPI_ISEND): as soon as the message is posted, the program
takes back control over the processor source.

▶ Non-blocking receive (MPI_IRECV): as soon as the reception is posted, the
program takes back the hand.

=> The program can do something else during data transfers: overlap
communications with computations.

Warning: The program takes back control before that the reception or the send is
complete. As a consequence the variable send/received is not usable immediately.

57

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

4. Non-blocking Communications (2/2)

58

call MPI_ISEND(data, nb_elements, type, dest, tag, comm, request, error)
!! …
call MPI_WAIT(request, status, error)

▶ How to know if the reception or the send is finished? To not wait the completion
to give back control?

▶ MPI_WAIT

MPI_WAIT is blocking and gives back control as soon as the reception or the send
has completed.
▶ MPI_TEST

MPI_TEST is non-blocking and sends back a boolean that is true if the send or the
reception has completed.

logical flag
!! …
call MPI_ISEND(data, nb_elements, type, dest, tag, comm, request, error)
!! …
call MPI_WAIT(request, status, error)

17-10-2016

© Atos - Confidential

Collective
Communications
1. Description
2. Vector Version
3. Reduction

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Collective Communications

▶ A collective communication allows to realize in one call a set of point to point
communications.

▶ A collective communication implies all processes of a communicator.

▶ 3 types of collective operations:
– synchronization
– data transfer
– global reduction operation

▶ No tag needed

60

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Global Synchronization

▶ Barrier synchronization across all members of a comm.
▶ Blocks the caller until all group members have called it
▶ Returns at any process only after all processes in comm have entered the call.

61

int MPI_Barrier(MPI_Comm comm)

P0

active process

ti
m

e

waiting process

P1 P2 P3

barrier

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Broadcast (1/2)

62

int MPI_Bcast(&buffer, count, datatype, root, comm)

root

0

3 4 51 2

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Broadcast (2/2)

▶ root sends data to all process in the communicator

▶ Others processes wait to receive the data

▶ Equivalent to:
– root calls MPI_Send to all processes
– others process call MPI_Recv

63

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Scatter (1/2)

64

int MPI_Scatter(&sendbuf, sendcnt, sendtype,
 &recvbuf, recvcnt, recvtype, root, comm)

root

0

3 4 50 1 2

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Scatter (2/2)

▶ Each process receives a part of the data sent by root according to their rank:

▶ The message is split into n equal segments, the i-th segment is sent to the i-th
process of comm.

▶ Equivalent to :
– root sends to each process of rank i a part of data:

• MPI_Send(&(sendbuf + i * sendcnt * extent(sendtype), sendcnt, sendtype, i, …)

– Each process receives:
• MPI_Recv(&recvbuf, recvcnt, recvtype, root, ...)

▶ Only root uses sendbuf, sendcnt and sendtype arguments.

▶ root can use MPI_IN_PLACE to receive data :
– root sends no data to itself

65

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Gather (1/2)

66

int MPI_Gather(&sendbuf, sendcnt, sendtype,
 &recvbuf, recvcount, recvtype, root, comm)

0

3 4 50 1 2

root

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Gather (2/2)

▶ Each process (root process included) sends the contents of its send buffer to the
root process.

▶ The root process receives the messages and stores them in rank order.

▶ Equivalent to :
– each of the n processes (including the root process) executes a call to:

MPI_Send(&sendbuf, sendcnt, sendtype, root, …)

– and the root executes n calls to:
MPI_Recv(&(recvbuf + i * recvcnt * extent(recvtype)), recvcnt, recvtype, i, ...)

▶ root can use MPI_IN_PLACE as send buffer:
– root sends no data to itself

▶ The recvbuf, recvtype and recvcnt arguments are ignored for all non-root
processes.

67

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Allgather (1/2)

68

int MPI_Allgather(&sendbuf, sendcount, sendtype,
 &recvbuf, recvcount, recvtype, comm)

0

30 1 2

1 2 3

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. Allgather (2/2)

▶ MPI_ALLGATHER can be thought of as MPI_GATHER, but where all processes
receive the result, instead of just the root.

▶ All processes can use "MPI_IN_PLACE" in the parameter sendbuf ,
– process sends no data to itself

69

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. All-to-All Scatter/Gather(1/2)

70

int MPI_Alltoall(&sendbuf, sendcount, sendtype,
 &recvbuf, recvcount, recvtype, comm)

0

a a a a

0
a b c d

1

b b b b

1
a b c d

2

c c c c

2
a b c d

3

d d d d

3
a b c d

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

1. All-to-All Scatter/Gather(2/2)

▶ It is an extension of MPI_ALLGATHER to the case where each process sends
distinct data to each of the receivers.

▶ Equivalent to
– each process executes a send to each process (itself included)

MPI_Send(&(sendbuf + i * sendcnt * extent(sendtype), sendcnt, sendtype, i, …)

– and a receive from every other process with a call to,
MPI_Recv(&(recvbuf + i * recvcnt * extent(recvtype)), recvcnt, recvtype, i, ...)

▶ All processes can use MPI_IN_PLACE in the parameter sendbuf ,
– the data to be sent is taken from the recvbuf…
– …and replaced by the received data

71

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Vector Versions of the Collective

▶ Operation of collective vector (name of operation with "v” suffix)
– MPI_Scatterv
– MPI_Gatherv
– MPI_Allgatherv
– MPI_Alltoallv (et MPI_Alltoallw)

▶ Allows a varying count of data from each process, since recvcounts is now an
array

72

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Vector Version of Scatter (1/3)

▶ Vector version of MPI_Scatter

– sendcounts: integer array (of length group size) specifying the number of
elements to send to each rank

– displs: integer array (of length group size). Entry i specifies the displacement
(relative to sendbuf) from which to take the outgoing data to process i

▶ The send buffer is ignored for all non-root processes.

73

int MPI_Scatterv(const void* sendbuf, const int sendcounts[],
 const int displs[], MPI_Datatype sendtype,
 void* recvbuf, int recvcount, MPI_Datatype recvtype,
 int root, MPI_Comm comm)

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Vector Version of Scatter (2/3)

▶ Equivalent to:

– the outcome is as if the root executes n send operations,

– and each process executes a receive

▶ root can use MPI_IN_PLACE as recvbuf:
– root sends no data to itself

74

MPI_Send(&(sendbuf + displs[i] * extent(sendtype), sendcounts[i], sendtype, i, …)

MPI_Recv(&recvbuf, recvcount, recvtype, root, ...)

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. Vector Version of Scatter (3/3)

75

...
for (i=0; i<gsize; ++i) {
 displs[i] = i*stride;
 scounts[i] = 100-i;
}
MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, recvbuf, 100-i, MPI_INT, root, comm);

100 99 98 97

displs[2]

96

sendbuf

ROOT

99P1

recvbuf

100P0

recvbuf

P3

recvbuf

97...

...

...

...

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. TP: Example of vector version of collective
communication

▶ The first process (rank=0) send an array to all process.
– The size of the array depending of the rank of the receiver.

(sends 1 element to rank=1, 2 elements to rank=2 …)

76

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

2. TP: Example of vector version of collective
communication (solution)

int *scounts = malloc(sizeof(int)* mpisize);
int *displs = malloc(sizeof(int)* mpisize);
for (i = 0 ; i < mpisize ; i++)
 scounts[i] = i;
displs[0] = 0;
for (i = 1 ; i < mpisize ; i++)
 displs[i] = displs[i-1] + scounts[i-1];

 MPI_Scatterv(array, scounts, displs, MPI_INT,
 array, mpirank, MPI_INT, 0, MPI_COMM_WORLD);

77

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. Reduction (1/6)

▶ Performs a global reduce operation (for example sum, maximum, and logical
and) across all members of a group

▶ Example with SUM operation

78

P0

3

P1

5

P2

1

P0

9

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. Reduction (2/6)

▶ Predefined Reduction Operations

79

Name Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND logical and

MPI_BAND bit-wise and

MPI_LOR logical or

MPI_BOR bit-wise or

MPI_LXOR logical exclusive or (xor)

MPI_BXOR bit-wise exclusive or (xor)

MPI_MAXLOC max value and location

MPI_MINLOC Min value and location

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. Reduction (3/6)

▶ MPI_REDUCE combines the elements provided in the input buffer sendbuf of each
process in the communicator comm, using the operation op.

▶ Returns the combined value in the output buffer of the process with rank root

▶ Example

– recvbuf[0] = max(all of sendbuf[0])
– recvbuf[1] = max(all of sendbuf[1])

80

int MPI_Reduce(const void* sendbuf, void* recvbuf, int count, MPI_Datatype datatype,
 MPI_Op op, int root, MPI_Comm comm)

MPI_Reduce(&sendbuf, &recvbuf, 2, MPI_INT, MPI_MAX, 0, comm)

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

P Root

3. Reduction (4/6)

▶ Another example:

81

MPI_Reduce(&sendbuf, &recvbuf, 3, MPI_INT, MPI_SUM, 0, comm)

P3P2P1P0

1 15 11 2 15 13 3 45 17 2 25 19

8 100 60

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. Reduction (5/6)

▶ A variant of the reduce operations where the result is returned to all processes in
a group.

▶ Example with SUM operation

82

int MPI_Allreduce(const void* sendbuf, void* recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

P0
3

P1
5

P2
1

P1
9

P2
9

P0
9

Send

Reception

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

P0
2

P1
4

P2
1

P1
6

P2
7

P0
2

Send

Receptions

P3
2

P3
9

3. Reduction (6/6)

▶ The operation returns, in the receive buffer of the process with rank i, the
reduction of the values in the send buffers of processes with ranks 0,. . .,i

▶ Example with SUM operation

83

int MPI_Scan(const void* sendbuf, void* recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

 | 17-10-2016 | Benjamin Pajot | © Atos - Confidential
GBU France | BDS | LNCC Training

3. User Defined Reduction

▶ Just to mention that thanks to the following routines, the user can define its own
reduction operations.

84

int MPI_Op_create(MPI_User_function* user_fct, int commute, MPI_Op* op)

int MPI_Op_free(MPI_Op* op)

void MPI_User_function(void* invec, void* inoutvec, int *len, MPI_Datatype *datatype)

17-10-2016

© Atos - Confidential

Questions?

Atos, the Atos logo, Atos Consulting, Atos Worldgrid, Worldline,
BlueKiwi, Canopy the Open Cloud Company, Yunano, Zero Email, Zero
Email Certified and The Zero Email Company are registered trademarks
of Atos. July 2014. © 2014 Atos. Confidential information owned by
Atos, to be used by the recipient only. This document, or any part of it,
may not be reproduced, copied, circulated and/or distributed nor
quoted without prior written approval from Atos.

17-10-2016

© Atos - Confidential

Thanks
For more information please contact:
Benjamin Pajot
T +33 4 76 29 74 57
benjamin.pajot@atos.net

Or contact R. Dolbeau & G.-E. Moulard

mailto:benjamin.pajot@atos.net

	Slide 1
	Slide 2
	Plan
	Slide 4
	1. Goals of Parallel Programming
	1. Architectures
	1. What Matters
	2. MPI: Message Passing Interface
	2. MPI Implementations
	2. Sequential Programming Model
	2. Programming Model by Message Passing
	2. Key Notions
	2. Programmation MPI
	2. Work and Data Distribution in MPI
	2. Messages
	2. A First Simple Example
	Slide 17
	1. Generality
	1. Initialization of MPI Program
	1. Termination of a MPI Program
	2. Communicators
	2. Communicator: Size and Rank
	2. Basic Example in C
	2. Basic Example in Fortran
	2. TP: MPI101
	3. MPI Environmental Management
	3. TP: MPI101 phase 2
	3. TP: MPI101 phase 2 (solution)
	Slide 29
	Data Type
	Data Type
	Data Type
	Data Type
	Slide 34
	1. Principle
	1. Blocking Communications
	1. Non-Blocking Communication
	1. Modes
	2. Parameters (1/2)
	2. Parameters (2/2)
	2. Message Envelope & Body
	2. Send Operations
	2. Reception Operations
	2. A Simple Example
	3. Executing Features
	3. Completion
	3. Sending Process
	3. Receiving Process
	3. A First Example of Deadlock
	3. A Second Example of Deadlock
	3. A Second Example of Deadlock
	3. A Second Example of Deadlock
	3. A Second Example of Deadlock
	3. Complements
	4. Performance of a MPI Computation (1/2)
	4. Performance of a MPI Computation (2/2)
	4. Non-blocking Communications (1/2)
	4. Non-blocking Communications (2/2)
	Slide 59
	1. Collective Communications
	1. Global Synchronization
	1. Broadcast (1/2)
	1. Broadcast (2/2)
	1. Scatter (1/2)
	1. Scatter (2/2)
	1. Gather (1/2)
	1. Gather (2/2)
	1. Allgather (1/2)
	1. Allgather (2/2)
	1. All-to-All Scatter/Gather(1/2)
	1. All-to-All Scatter/Gather(2/2)
	2. Vector Versions of the Collective
	2. Vector Version of Scatter (1/3)
	2. Vector Version of Scatter (2/3)
	2. Vector Version of Scatter (3/3)
	2. TP: Example of vector version of collective communication
	Slide 77
	3. Reduction (1/6)
	3. Reduction (2/6)
	3. Reduction (3/6)
	3. Reduction (4/6)
	3. Reduction (5/6)
	3. Reduction (6/6)
	3. User Defined Reduction
	Slide 85
	Slide 86

