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Abstract

This technical report addresses model-based interpolation of long signal
gaps. It demonstrates that employing a modified autoregressive AR model,
computed as a weighted sum of line spectral pair (LSP) polynomials, is more
efficient computationally than using a conventional AR model, since longer
signal gaps can be interpolated at reduced model order.

Key-words: acoustic signal processing, audio reconstruction, AR models, line
spectrum pair polynomials

1. INTRODUCTION

Reconstruction of missing samples of audio and speech signals is needed in many real-
life digital signal processing applications. Signal losses can be caused by several factors
and reasons. For instance, transmission errors through digital channels can lead to signal
drop-outs due to packet losses [1]. Signal losses may occur already in the analog domain
prior to the signal digitalization. These are mainly caused by damages on the medium that
stores the analog signal. Typical examples are the clicks, pops, and crackles associated
with old disk records [2].

Autoregressive (AR) modeling of audio and speech signals has been utilized in several
applications, such as linear predictive coding [3], outlier detection [4], and signal recon-
struction [5, 6]. AR-based interpolation methods are usually suitable for interpolating
relatively short gaps. This restriction comes from the fact that, in general, musical sig-
nals are non-stationarity. Indeed, stationary can only be accepted as a valid hypothesis
within frames of about 20 ms. Thus, the signal has to be segmented in short frames to
which separate AR models are fitted. If a single AR model is to be fitted to a segment
with missing samples, the remaining number of known samples in the segment should
be enough to guarantee the statistical significance of the estimated model. Of course, the
larger the number of missing samples in the segment, the poorer the estimated model and
the performance of the reconstruction algorithm.

Furthermore, AR-based interpolation of long gaps shows poor performance toward the
middle of the gap [5]. This is due to the LS minimization of the modeling error, used
in the solution for the unknown samples. This criterion tends to yield a model excitation
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whose variance is too low. In the ideal case of a null excitation, the resulting interpolated
signal would be mainly governed by the impulse response of the AR model. For a stable
AR model, the closer its poles are to the unit circle, the faster its impulse response decays
over time. Thus, if the gap to be concealed lasts much longer than the time over which the
impulse response of the AR model conveys most of its energy, there will be little signal
energy toward the middle of the gap. Increasing the model order tends to push the poles of
the resulting AR model closer to the unit circle. Hence, this resource helps to alleviate the
energy vanishing effect, since an AR model with a slower decaying impulse response is
achieved. Other solutions to this problem consist of imposing a limit to the minimization
of the prediction error variance [7, 8].

When the gap to interpolate becomes too long it may happen that the spectral charac-
teristics of the signal before and after the gap differ substantially. In these cases, a more
suitable solution consists of employing two separate AR models, one for the fragment
preceding the gap and another for the samples that succeed the gap. Such a scheme has
been proposed in [9], which presents a weighted LS solution for the missing samples
given the two separate AR models. The same rationale of employing two different AR
models for interpolation of long gaps has been presented in [10, 11, 12].

Interpolation of long signal fragments has also been proposed through sinusoidal mod-
eling [13]. In this case, the gap information can be inferred from the parameters of the
sinusoidal tracks that surround the gap. The method has been reported effective for con-
cealing gaps of up to 30 ms, or even longer, depending on the signal stationarity [13].

In this work, interpolation will be carried out through relatively low-order AR-based
modeling. However, a modified AR model will be used in the interpolation method as
replacement to the conventionally estimated AR model. The modification consists of
first estimating each conventional AR model and obtaining its associated LSP polyno-
mials [14]. Then, a modified AR model is computed from a weighted sum of the LSP
polynomials [14]. The advantage of this solution is that a single weight factor can be
adjusted to place the poles of the modified model closer (or on) the unit circle, regard-
less of the order of the original AR model. Thus, the impulse response of the modified
model will decay slower than that of the conventional model of same order, offering an
immediate benefit to the interpolation problem.

The side-effect of using the weighted LSP approach is that the resonance frequencies of
resulting AR models become biased, especially in the high-frequency range. As a result,
some distortions are perceived within the reconstructed portions of signal. Nevertheless,
the modified models can produce a perceptually better interpolation result than the one
attained via conventional AR model of the same order. The gain comes from the preser-
vation of the signal energy across the gap, which is perceptually important. The relatively
low-order needed for the LSP-modified AR model to carry out the interpolation task ac-
counts for a significant reduction in the computational complexity of the interpolation
method.

This paper is organized as follows. Section 2 defines the line spectral pair polynomi-
als as well as reviews their properties. Section 3 reviews the concept and properties of
the modified AR model, which is based on the weighted sum of LSP polynomials. Sec-
tion 4 describes the interpolation method used in the simulations. Experimental results
are shown in Section 5. Performance comparisons among the results of the interpola-
tion method when using the modified and the conventional AR models are provided in
Section 6. Conclusions are drawn in Section 7.
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Figure 1: Equivalence between���� and the LSP polynomials.

2. LINE SPECTRAL PAIRS POLYNOMIALS

Let the response of a���-order prediction filter be defined as���� � ��
��

��� �����
��,

where���� is the direct form of the prediction coefficients. The transfer function of the
synthesis filter is������, which is guaranteed to be stable if���� is of minimum phase.

The idea behind LSP polynomials is to map the polynomial���� into two other equiv-
alent polynomials, whose zeros are located on the unit circle. The mapping is given by
� ��� � ������������������ and���� � ������������������, where the polynomials
� ��� and���� are called LSP polynomials [15]. Moreover,���� can be reconstructed
from the LSP polynomials via���� � �

�
�� ��� ������. Figure 1 illustrates the equiva-

lence between���� and the weighted sum of� ��� and����.

3. WEIGHTED SUM OF LSP POLYNOMIALS

A linear prediction scheme based on a weighted sum of the LSP polynomials has been
proposed in [14]. The prediction filter is defined as

	��
 �� � �� ��� � ��� ������
 (1)

where, as before,� ��� and���� are the symmetric and antisymmetric LSP polynomials
associated with a���-order predictor����. The weight� is a real-valued gain. As seen in
Section 2 and in Figure 1, for� � ��	 the equivalence	��
 � � ��	� � ���� holds true.
It should be noted that for� �� ��	, 	��
 �� has order�� �.

For � � � and� � � the modified predictor	��
 �� reduces to the symmetric and
antisymmetric LSP polynomials, respectively. Therefore, for these values of� the poles of
��	��
 �� are on the unit circle. Moreover, it is shown in [14] that��	��
 �� is guaranteed
to be stable if� � � �
 � �. The AR model��	��
 �� will be referred hereafter to as the
WLSP-modified AR model.

Figure 2 shows the rootlocus of ��	��
 �� as function of� for a synthetic
��-order
AR model. Visual inspection on the rootlocus reveals that setting� close to 1 results in
an all-pole model��	��
 �� whose resonance frequencies (in the low-frequency range)
are closer to those of the original model������ than if� is set close to 0. Besides, setting
� � � implies a pole at DC, which may be problematic for synthesis applications, since
there is always some DC level in the excitation signals. Conversely, setting� � � implies
a pole at� � ��. This pole, however, seems to be less harmful perceptually than that at
� � �.

It will be seen in Section 5 that pushing the poles of the AR models used in the interpo-
lation method close to the unit circle, possibly without major changes in their resonance
frequencies, favors the interpolation performance. This can be done via a proper choice
of the� parameter in��	��
 ��. Alternatively, one could think of solving for the roots
of ����, artificially increasing the radius of the poles, and then recomputing the model
coefficients. However, solving for the roots of high-order polynomials is a not only prone
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Figure 2: Rootlocus of ��	��
 �� as function of� � � � � for a synthetic 4th-order AR
model. The markers�, �, and� indicate the pole locations for� � ��	, � � �, and
� � �, respectively.

to numerical errors, but also a computationally demanding task. Conversely, the com-
putational burden to obtain the WLSP-modified models is negligible: it requires only�
multiplications and additions per model.

4. MODIFIED INTERPOLATION METHOD

The WLSP-modified AR models can be just plugged into any AR-based interpolation
method, e.g., the least-squares AR (LSAR) method described in [6]. As the task involved
here is interpolation of long gaps, one can profit from using two different AR models,
one for the fragment that precedes the gap and another for the segment that succeeds the
gap [9, 11]. The AR-based interpolation scheme described in [11] will be used in this
work. Supposing a gap of samples in between two segments of� samples each, the
steps of the interpolation method follow.

1. Estimate an AR model for the� -sample-long segment that immediately precedes
the gap and compute the WLSP-modified AR model from it using� close to 1.

2. Forward extrapolate the signal across the gap by exciting the WLSP-modified AR
model, as described in [12]. The procedure can be equivalently accomplished by a)
computing an excitation via inverse filtering the segment upon which the model was
estimated through the WLSP-modified AR model; b) appending zeros to the end
of the resulting excitation; and c) exciting the modified AR model with this zero-
padded excitation. The last output samples of the previous filtering correspond
to the desired extrapolated signal.

3. Repeat the previous two items for the segment that succeeds the gap. This time,
however, a backward signal extrapolation is aimed for. Hence, appropriate time-
reversals of the signals involved should be performed.

4. Cross-fade the two extrapolated sequences via the generalized window1 as de-
scribed in [11].

1The roll-off parameter is set to 3 in all simulations shown.
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Figure 3: Performance of the interpolation method for several model orders. The gap is
located between samples 2001 and 4000. The original signal within the gap is shown in
dotted line.

5. EXPERIMENTAL RESULTS

The purpose of this section is to compare visually the performance of the interpolation
method under different model setups. The results attained when using conventional AR
models will be confronted against those attained when using WLSP-modified AR models.
The idea is to first illustrate the vanishing energy effect in interpolation of long signal gaps
as well as the role of the model order in this matter. Then, the benefit of using WLSP-
modified models is demonstrated. Of course, purely visual inspections do not tell much
about the sound quality the results. This issue is covered in Section 6.

5.1. Case Study: Low-frequency piano tone

This case study features a low-pitch piano tone (fundamental frequency�	 � 	� Hz,
played forte). Such a tone has hundreds of partials, and thus, modeling it as an AR
process requires high-order models. Applying an insufficient model order not only leaves
some mode resonances unaccounted for, but also tends to enlarge the bandwidth of the
modeled ones, i.e., the poles associated with these modes are not as close to the unit circle
as they should be.

The pole locations of a stable AR model define how fast its impulse response decays
over time. In its turn, the decay profile of the the model response has a crucial impact on
the performance of model-based interpolation of long gaps. For the extrapolation-based
reconstruction scheme used here, this issue is even more relevant, since the extrapolated
signals are basically the unforced response of the AR models, for given initial conditions.
Thus, fast decaying impulse responses may not suffice to fill in a long gap completely.
The result is then a reconstructed signal whose energy fades out towards the middle of the
gap.

First, the effect of the model order on the interpolation performance is investigated.
A gap of 2000 samples is artificially created in the signal, starting 5000 samples after
the note onset. Figure 3 compares the interpolation results for several choices of model
order. The AR models are estimated using Burg’s method [16]. The set of 2000 samples
that precedes the gap is used to estimate the forward AR predictor. Similarly, the set of
2000 samples that succeed the gap is used to estimate the backward AR predictor. From
Fig. 3 it is clear that model orders below 500 are insufficient to properly reconstruct this
particular signal. However, setting� � ���� seems sufficient for most cases [10].

Now, the conventional AR models are replaced with their WLSP-modified versions.
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Figure 4: Performance of the proposed interpolation method for model order� � �	� and
several values of�. The gap is located between samples 2001 and 4000 and the original
signal within the gap is shown in dotted line.

The model order2 is kept at� � �	� and� � ���	
 ���
 ����	. The interpolation results
are summarized in Fig. 4. It can be observed that setting� close to 1 seems to improve
the interpolation performance, in that the energy of the interpolated sequences tends to be
preserved. In this regard, the result of interpolation method, when employing the WLSP-
modified models (� � ����) of order� � �	�, is similar to that achieved when using the
conventional AR models (� � ��	) of order� � 	��.

The previous result counts favorably to the usage of the WLSP-modified models in the
interpolation scheme, in terms of a better balance between interpolation performance and
computational efficiency. Indeed, the extra burden needed to compute the LSP polynomi-
als and the WLSP-modified models, is negligible compared to the costs involved in the
model estimations and the extrapolation procedures.

The side-effect of using the WLSP-modified models in the interpolation scheme is that
they produce interpolated signals whose resonance frequencies may be biased compared
to those of the original signal. Nonetheless, slightly frequency-biased mode resonances
are likely to be initially excited with an energy level as high as that of the original res-
onances. This is why the interpolation method still works. Note that strongly biased
resonances will probably be excited at low energy levels. Hence, regarding contributions
to audible distortions in the reconstructed signals, strongly biased resonances may be less
harmful than slightly biased ones.

Figure 5 confronts the spectrum of the original signal within the gap against the spectra
of the reconstructed signals. One verifies that the original signal has a large number of
spectral peaks. Moreover, the spectrum of the interpolated signal via� � �	� and� � ��	
reveals that only the most prominent spectral peaks are modeled. These peaks are not as
sharp as those of the original spectrum.

On the other hand, the modeling setup� � �	� and� � ���� offers an interpolated
signal with a larger number of prominent peaks. The peaks are also sharper than those of
the signal attained via the modeling setup� � �	� and� � ��	. However, it is evident
that the complex spectral structure of the original signal is not well modeled by any of the
previous configurations that employ low-order models.

As for the frequency of the resonance modes, the spectral peaks of the interpolated
signal, attained via the modeling setup� � �	� and� � ����, show a good correlation
to the those of the original signal, at least visually. Figure 6 illustrates better this fact.
Nevertheless, frequency deviation in some spectral peaks can be observed. For instance,
the frequency of the prominent peak that appears around 1500 Hz in the original signal is
higher in the model spectrum. However, the low-frequency peaks seem to be less biased.

2The value of� refers to the order of the original AR model. The order of the WLSP models is�� �.
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Figure 5: Detail (up to 5 kHz) of the spectra of the original and reconstructed signals.
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Figure 6: Detail (up to 5 kHz) of the spectra of the original and reconstructed signal under
setup� � ���� and� � �	�. The modeled spectrum is plotted with a shift of -30 dB for
clarity.

Therefore, it is plausible to speculate that the quality of this interpolated signal can be
acceptable, from the perceptual point of view, in spite of possible audible distortions.

6. PERFORMANCE ASSESSMENT

In real-life situations, performance assessment of restored audio can only be carried out
via listening tests. As usually a referential uncorrupted version of the signal is absent,
objective measures are prevented. Nevertheless, the source of degradation can be artifi-
cially emulated and used to corrupt clean versions of test signals. Thus, the quality of the
restored signals can be evaluated objectively. Standard measures, such as signal-to-noise
ratio, may fail to reflect the subjective quality of the results. An alternative is to employ
objective measures based on psychoacoustics.

6.1. Perceptual Audio Quality Measurement

The Perceptual Audio Quality Measure (PAQM) [17] has been originally devised to assess
the quality of lossy-coded audio signals. It has been demonstrated to correlate strongly
with human judgment for both wideband audio and band-limited speech signals. The ba-
sic principle behind the PAQM is to compare the inner ear representations of the processed
and reference signals. Based on these representations a cognitive model generates an in-
dex of overall dissimilarity between the two signals. This index, the PAQM, reflects both
loss of valuable information as well as introduction of spurious artifacts in the processed
signal.

Note that, the PAQM values shown in the simulations reported here are merely those
of the dissimilarity index, and not subjective gradings of the results, such as the mean
opinion score (MOS). Mapping the dissimilarity index into the MOS grading can be car-
ried out [17]. However, such mapping would be not only application dependent, but also
would require extensive listening tests to assure a high correlation between the PAQM
and MOS values.
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In absolute and objective terms, the lower the value of PAQM, the more similar the pro-
cessed signal is to the reference. A��� � � implies a processed signal perceptually
identical to the reference. However, drawing conclusions on the subjective quality of a
reconstructed signal based solely on its PAQM is not straightforward. In other words, the
question arises: how close to zero should the PAQM be so that the restored signal can be
considered perceptually indistinguishable from the original? At least, two references can
be employed to help assessing the quality of the results in a comparative way: the PAQM
of the corrupted signal (with gaps); and the PAQM of a satisfactorily restored signal,
e.g., by adopting high-order (� � ����) AR models within the conventional interpolation
method. The PAQM of this signal gives a more realistic reference (than perfection) for a
satisfactory interpolation performance. The PAQM of the corrupted signal allows verify-
ing whether the interpolation is contributing or not to improve the perceptual quality of
the interpolated signals.

The absence of a mapping into a subjective quality grading system gives the PAQM
a speculative role in regard the subjective assessment of the results. In other words, no
one knows how apart from each other two values of PAQM should be in order to the
corresponding signals be perceived as perceptually different. Nevertheless, it is plausi-
ble to speculate that PAQM values close to each other are likely to reflect signals with
similar perceived quality. In this context, the external referential PAQMs, i.e., those of
the degraded and a satisfactorily restored signals, play an essential role in allowing an
approximate inference on the quality of other restored versions of the signal from their
PAQMs.

6.2. Test Signals

Finding a set of test signals that can represent a broad class of audio and speech signals is
a difficult task. For convenience, in this work such set will be limited to four signals only.
They arePiano Tone: a piano tone (�	 � 	���) playedforte; Pop: a 14-s-long excerpt
of Finnish pop music;Classic: a 13-s-long excerpt of orchestral music; andSinging: a
20-s-long excerpt of pop singinga capella.

6.3. Experimental Setup

The experiments consist of artificially creating gaps in the test signals and reconstructing
the signal in them. After that the PAQM related to each pair of original/reconstructed
signal is measured. This way, one can assess the effects of the processing parameters on
the interpolation performance.

The the length of the gaps is set to 2000 samples (� 44.1 kHz), corresponding thus
to duration of about 45 ms. This poses a challenge for the reconstruction procedure,
since such length is on limit above which the signal frame can no longer be considered
stationary.

Creating gaps in a periodical fashion allows evaluating the interpolation performance
in portions of the same signal with different temporal and spectral characteristics. More-
over, the periodical mutes are quite annoying perceptually. As a measure based on psy-
choacoustics, the PAQM is likely to evaluate the ability of the interpolation method to
restore or not the sense of continuity in the interpolated signals.

The idea of the experiments is to check whether the usage of WLSP-based models leads
to any improvement in the performance of the interpolation method, i.e, a better balance
tradeoff between perceptual quality or computational efficiency. Rather than evaluating
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Table 1: Parameters of the experimental setup.
Parameter Value
Gap length � � ���� samples
Gap periodicity 50000 samples
Order (WLSP models) � � ���
Order (conv. AR models) � � ����� ���� ���� �����
AR estimation Burg’s method,� � ���� samples
AR modification WLSPs with� � ����� ����

the results for various model orders, the investigation is focused on the effect of� on the
quality of the restored signals. The order of the WLSP-based models is then arbitrarily
set to 150.

For the reasons given in Section 6.1, the PAQMs of the test signals restored via the con-
ventional interpolation method with� � ��	�
 ���
 	��
 ����	 are provided as a means to
aid performance comparisons. The processing parameters used in the experimental setup
are summarized in Table 1.

6.4. Effect of �

The performance assessment is carried out using the experimental setup defined in the
previous section. As seen in Fig. 4, the effect of� on the interpolation results is more dra-
matic when� 
 �. Therefore, when measuring the PAQM of the results as function of�,
it is reasonable to adopt a non-uniform distribution for the values of� within the range be-
tween 0.5 and 1. In this case, a higher sample density should be employed as� approaches
1. The values of� were arbitrarily chosen as� � ���	
 ���
 ���
 ����
 �����
 ������
 �	.

The solid lines in Fig. 7 show the PAQMs of the restored signals as function of�. In
all cases, the model order was fixed to� � �	�. The horizontal dashed lines indicate
the values of PAQM attained using conventional AR models the indicated orders. As
additional references, the PAQMs related to the corrupted version of the signals are also
shown.

From Fig. 7 one observes that, at least for the test signals employed, the PAQM de-
cays monotonically as the value of� varies from 0.5 to 1. From the perceptual point of
view, the best results in all examples are attained when� � �. The decrease in perceptual
quality due to the presence of the gaps seems to be similar for all test signals. As one
could anticipate, increasing the order of the conventional models improves the quality of
the results. For the signalsPiano Tone andClassic, signal reconstruction with conven-
tional AR models of order� � �	� already yields some improvement in the perceptual
quality. This improvement is less substantial for the signalSinging and even null for
the signalPop. In this example, the restored version exhibiting a slightly higher PAQM
than the degraded signal does not necessarily mean that a further degradation has taken
place. Recalling the remarks provided in Section 6.1, both signals should be regarded as
perceptually similar.

According to the PAQM, for the signalPiano Tone, the interpolation result attained
when employing WLSP-modified AR models (� � �) of order� � �	� is comparable to
that obtained through conventional AR models of order� � 	��. The PAQMs show, how-
ever, that a better interpolation performance for this signal can be achieved by employing
higher-order conventional AR models. Similar conclusions can be drawn from the PAQM
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Figure 7: PAQMs of the interpolated signals under several parameter setups. The solid
lines represent the PAQM as function of� with � � �	�. The dashed lines refer to the
PAQM of the results attained with� � ��	 and the indicated model orders. The PAQM of
the corrupted signal is also shown (gaps).

results associated with the restored versions of the signalClassic.

Interestingly, for the signalsPop andSinging, the performance of the interpolation
method when using WLSP-modified AR models (� � �) of order� � �	� surpasses
that attained through conventional AR models of order� � ����. In all cases, using the
WLSP-modified AR models allows adopting significant lower model orders than those
needed if conventional AR models were used to achieve similar interpolation perfor-
mances. Therefore, the modified models substantially increase the computational effi-
ciency of the interpolation method.

6.5. Subjective Evaluation

Informal listening tests on the restored signals have been conducted to confront the PAQM
in subjective terms. The results reveal that, despite some audible distortions, the recon-
structed signals attained by the WLSP-based approach with� � �	� and� � � sound bet-
ter than those by the conventional method with� � �	�. However, the overall subjective
impression was that the quality of the results achieved by the conventional interpolation
with � � ���� was always, perceptually, slightly higher than that of the signals restored
with the modified scheme with� � �	� and� � �.

The latter finding is in agreement with the PAQMs computed for the corresponding
versions of the signalsPiano Tone and Classic. However, for the signalsPop and
Singing, the related PAQMs contradict the results of the subjective evaluation. That
discrepancy may be explained by the approximate character of the PAQM comparisons,
as used here, to draw conclusions on the subjective quality of the results. Moreover,
the accuracy of the PAQM to reflect perceptual quality tends to decrease as the dissim-
ilarity between the processed signal and the reference increases. In this regard, one
should notice that signalsPop andSinging are more non-stationary in nature than sig-
nalsPiano Tone andClassic. Therefore, adequate signal reconstruction of the former
signals is a more challenging task. Consequently, the satisfactorily restored versions
(� � ����) of signalsPop and Singing are not as close to the reference as those of
the signalsPiano Tone andClassic. Hence, for the former signals, less confident val-
ues of PAQM are expected to occur. Sound examples are available at on the web URL:
http://www.acoustics.hut.fi/publications/papers/tassp-int/
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7. CONCLUSIONS

This work presented an application of LSP polynomials to signal interpolation across long
signal gaps. In particular, the conventional AR models used in the interpolation method
were replaced with modified AR models, which are based on a weighted sum of LSP
polynomials. The pole location of these modified models can be controlled through the
weighting parameter.

Experiments were conducted on a set of four test signals. Objective measures taken
over the restored signals revealed that adopting a low-order AR model and setting the
weight parameter to 1 yield better interpolation results. This choice corresponds to replace
the conventional AR model with its symmetric LSP polynomial, which has all its poles
on the unit circle.

Subjective evaluations via informal listening tests showed that the proposed modifica-
tion introduces some distortions in the interpolated signals and their perceptual quality is
inferior to that of the satisfactorily restored signals. Nevertheless, for low-order models,
the modified scheme leads to a substantial improvement in perceptual quality compared to
the conventional method with equal order. Since the proposed modification implies only
a negligible extra computational cost, a better balance between interpolation performance
and computational efficiency can be claimed.
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