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Abstract

We analyze the multifractality in the fidelity sequences of several en-
gineered Toffoli gates. Using quantum control methods, we consider sev-
eral optimization problems whose global solutions realize the gate in a
chain of three qubits with XY Heisenberg interaction. Applying a mini-
mum number of control pulses assuring a fidelity above 99% in the ideal
case, we design stable gates that are less sensitive to variations in the
interqubits couplings. The most stable gate has the fidelity above 91%
with variations about 0.1%, for up to 10% variation in the nominal cou-
plings. We perturb the system by introducing a single source of 1/f noise
that affects all the couplings. In order to quantify the performance of the
proposed optimized gates, we calculate the fidelity of a large set of opti-
mized gates under prescribed levels of coupling perturbation. Then, we
run multifractal analysis on the sequence of attained fidelities. This way,
gate performance can be assessed beyond mere average results, since the
chosen multifractality measure (the width of the multifractal spectrum)
encapsulates into a single performance indicator the spread of fidelity val-
ues around the mean and the presence of outliers. The higher the value
of the performance indicator the more concentrated around the mean the
fidelity values are and rarer is the occurrence of outliers. The results
of the multifractal analysis on the fidelity sequences demonstrate the ef-
fectiveness of the proposed optimized gate implementations, in the sense
they are rendered less sensitive to variations in the interqubits coupling
strengths.

1

pesquef@yahoo.com
Text Box
Post-print version of the paper published in Quantum InformationProcessing (2016). The final publication is available at Springer via http://dx.doi.org/doi:10.1007/s11128-016-1409-6 

pesquef@yahoo.com
Text Box


pesquef@yahoo.com
Text Box


http://link.springer.com/article/10.1007/s11128-016-1409-6
pesquef@yahoo.com
Text Box


pesquef@yahoo.com
Text Box




1 Introduction

The multifractal formalism describing the scaling of the moments for some dis-
tributions in complex systems has been widely used in studying a variety of clas-
sical systems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Recently, multifractality has also been
observed in quantum systems. Quantum wave functions in the Anderson model
show multifractality at metal-insulator transition [11, 12, 13, 14, 15, 16, 17].
Wave functions in the quantum Hall transition are also multifractal [18, 19, 20].
Actually, the strong fluctuations of the wave function amplitude are character-
ized as wave function multifractality. The relevant normalized measure is the
squared modulus of the wave function |ψ(r)|2 and the corresponding moments
are pq =

∫
dr|ψ(r)|2q, the so-called inverse participation ratios.

Other examples of the multifractal wave functions are certain eigenstates of
the quantum baker’s map [21], the eigenfunctions of one dimensional interme-
diate quantum maps [22], the eigenfunction of Anderson map [23], the Floquet
spectrum [24], the electronic states in the Fibonacci superlattice under weak
electric fields [25] and the individual wave packets in a periodically kicked sys-
tem [26]. Moreover, an ensemble of random matrices can be constructed such
that the corresponding eigenvectors become multifractal [27, 28, 29, 30].

Other measures have also been applied to characterize the multifractality in
quantum systems. The Rényi entropy was used to study the multifractality in
the ground state wave function in the spin chains [31, 32]. The von Neumann
entanglement entropy was also used to analyze the multifractality in the wave
functions at localization transition [33] as well as in the entanglement of random
states [34].

Fractal analysis of periodically kicked quantum systems has been done by
means of characterizing the quantum fidelity [35, 36], which is defined as the
overlap between the perturbed and the unperturbed quantum states |〈ψε(t)|ψ(t)〉|.
In this case, the fractal properties of a time sequence are analyzed. The object
studied here is mathematically different from those mentioned in the above ex-
amples, which deal with wavefunction multifractality.

In this paper, we introduce the gate fidelity
∣∣Tr
[
U†ε (t)U(t)

]∣∣ to study the
multifractality in quantum gates. We, therefore, deal with a sequence of gate
implementations whose fidelities, seen as a time sequence, are analyzed in terms
of multifractal properties. Specifically the Toffoli gate, a three-qubit gate with
central role in quantum information processing is considered here. The gate
is realized by applying a sequence of optimized control pulses in a system of
three interacting qubits [37]. We perturb the system by adding 1/f noise to
the interqubit couplings. The pertinence of employing such a degradation noise
model has been already discussed in Ref. [38]. We then implement the gate for
a large number of noise realizations. The resulted fidelity signal is then ana-
lyzed numerically in the multifractal framework, using the formalism recently
proposed in Ref. [39].

By manipulating the objective functional in the quantum optimization prob-
lem we design three new gates which show higher degree of multifractality in
the fidelity sequence compared with the gate originally proposed in Ref. [37]
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and with the robust gate designed in Ref. [38]. More specifically, it is shown
that, by decreasing the sensitivity of the gate fidelity with respect to variations
in the interqubits coupling strengths, the complexity in the implementation of
the gate increases and, as a consequence of it, the degree of multifractality in
the gate fidelity also increases.

The paper is organized as follows. In Sec. 2 five different realizations of
the Toffoli gate are characterized. The multifractal formalism is introduced in
Sec. 3. In Sec. 4 the numerical analysis of the multifractality in the fidelity of
the Toffoli gate is reported. Finally, the summary and discussions are presented
in Sec. 5.

2 The Toffoli Gate

The Toffoli gate is an element of the special unitary group SU(8) equal to
the identity matrix I8×8 except for the last two rows which are interchanged.
It affects three-qubit states belonging to the eight-dimensional Hilbert space
C8. The Toffoli gate can be implemented in a system of coupled qubits using
different methods. The standard method of implementing the Toffoli gate by
decomposing it in terms of the universal gates [40] is not efficient because it
leads to a large gate time and low fidelity in the experimental setups [41, 42].
However, an efficient way to implement such multiqubit gate is to implement it
directly, by designing a sequence of electromagnetic pulses that affect the qubits
and realize the gate [37, 43]. In the following, we consider such an efficient
implementation using quantum control methods. We consider a system of three
mutually coupled qubits and apply a sequence of optimized pulses that affect
all the individual qubits. Suppose the chain of interacting qubits is described
by a Heisenberg XY Hamiltonian

H0 =
∑
m<l

Jml (σmxσlx + σmyσly) , m, l = 1, 2, 3 (1)

where Jml are the interqubit coupling strengths and σmx and σmy are Pauli X
and Y matrices for qubit m.

The chain of qubits can be manipulated by the control Hamiltonian

Hc(t) =

3∑
m=1

[u(m)
x (t)σmx + u(m)

y (t)σmy], (2)

where u
(m)
x (t) and u

(m)
y (t) are two different types of control fields (pulses) af-

fecting the individual qubits.
The system dynamics is therefore governed by the sum of the Hamiltonians

in Eqs. (1) and (2). The Schrödinger equation for the unitary operators (~ = 1){
dU/dt = −i (H0 +Hc)U
U(0) = I8×8,

(3)
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is used to obtain the evolution operator for the system.
Specifying the control pulses such that the evolution operator in a given time

interval tg implements the Toffoli gate is a numerical optimization problem.
Here, the control pulses are considered piecewise constant functions of time and
the gate time tg is divided into Nt equal pieces accordingly. The Schrödinger
equation can then be solved straightforwardly in each time interval. The total
time evolution operator is obtained by multiplying the partial time evolution
operators in the reverse order. The fidelity is defined as

F =
1

8

∣∣ Tr
[
U† (tg, Nt,u, {Jml})UToff

] ∣∣ , (4)

where U is the the total time evolution of the system during tg, u is the con-
catenation of all control pulses and UToff is the Toffoli gate. The values of the
control pulses are obtained by solving the optimization problem

max
u

F (u). (5)

We obtain five sets of control pulses using fidelity (4) in different optimization
problems. The control pulses in each set are optimized such that the resulting
gate fidelity functional has a specific response to variations in the interqubit
couplings Jml. Each set of control pulses corresponds to a different realization
of the Toffoli gate.

The first set of control pulses, u1, is the global solution of problem (5) with
Nt = 20, J12 = J23 = 6J13 = J̄ and tg = 4.18J̄−1. Finding such a set of control
pulses has been fully addressed in Ref. [37]. The set is composed of 60 control
pulses implementing the Toffoli gate with a fidelity above 99%.

The curve marked with • in Fig. (1) depicts the fidelity [Eq. (4)] in terms of
J/J̄ for the control pulses in the set u1 whose elements are optimized for J = J̄ .
The fidelity is clearly high in the vicinity of J = J̄ and decreases quickly as J/J̄
gets higher or lower than the unity.

The second set of control pulses, u2, is the global solution of the problem

max
u

∫ J̄+δJ

J̄−δJ
F (u, J)w(J) dJ, (6)

where

w(J) =


0,

∣∣J
J̄
− 1
∣∣ ≤ δ1

1, δ1 <
∣∣J
J̄
− 1
∣∣ ≤ δ2, (7)

with δ1 = 0.05, δ2 = 0.15 and δJ = 0.15J̄ . Here, as before, the same parameters
Nt = 20, J12 = J23 = 6J13 = J̄ and tg = 4.18J̄−1 are used. The set is composed
of 60 control pulses implementing the Toffoli gate with a fidelity above 99%, at
J/J̄ = 1. A detailed discussion for optimization problem (6) has been given in
Ref. [38].

The curve marked with H in Fig. (1) depicts the fidelity in terms of J/J̄
for the set u2. In this case, compared with the fidelity diagram for the set u1,
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the fidelities are smaller in the vicinity of J = J̄ but larger in other points.
Applying the pulses in the set u2 leads to a Toffoli gate which is less sensitive
to the variation in J , specially when |J/J̄ − 1| ≤ 0.1.

In addition to the two sets of control pulses described above, in this work,
we design three new sets of control pulses by finding the global solutions of the
new optimization problem

max
u

{
β
[
F (u, J̄ − J0) + F (u, J̄) + F (u, J̄ + J0)

]
−
∣∣2F (u, J̄)− F (u, J̄ − J0)− F (u, J̄ + J0)

∣∣
−
∣∣F (u, J̄ − J0)− F (u, J̄ + J0)

∣∣}, (8)

where J0 = 0.1J̄ . Again, the relation J12 = J23 = 6J13 = J̄ is also used. As
before, the number of time divisions is set to Nt = 20 and the total gate time
is fixed to tg = 4.18J̄−1. Setting β ≈ 103, 10, 0.1 leads to the sets u3, u4, and
u5 respectively. Each set is composed of 60 control pulses that implement the
Toffoli gate with a fidelity above 96%, 93% and 91% for the sets u3, u4 and u5, at
J/J̄ = 1, respectively. We can approach the global solution in each optimization
by solving the problem with 200 random initial guesses and choosing the fields
with highest fidelity.

The main interest in optimization problem (8) is to find those solutions
whose fidelity functionals are almost flat in the interval

[
J̄ − J0, J̄ + J0

]
. Such

optimized pulses will realize the Toffoli gate with least sensitivity to pertur-
bations in J . In optimization problem (8), while the first term in the bracket
forces the fidelity to have high values in the above interval, the other two terms
flatten the fidelity curve in that interval symmetrically. By decreasing the value
of β the fidelity curve becomes more flat in the interval. Specially, for the set
u5 (β ≈ 0.1), when |J/J̄ − 1| ≤ 0.1, the fidelity varies in [0.918, 0.919], namely,
a maximum variation of about 0.1%.

The fidelity curves corresponding to the sets u3, u4 and u5 are depicted in
Fig. 1 by curves marked with N, � and F, respectively.

Note that, there is a compromise between the high fidelity of the gate and
the insensitivity of the gate fidelity to the variation in the couplings (stability).
In our setup, there is no such a set of control pulses like u5 that realize the gate
with a stable fidelity around 99%. In the above method of implementation of the
Toffoli gate, we have used a minimum number of control pulses that guarantee
a fidelity above 99% for the perfect situation [37]. In Ref. [43], using the same
gate construction, just by increasing the number of pulses, a Toffoli gate with a
fidelity above 99.99% is obtained. Perhaps, an stable gate with higher levels of
fidelity can be constructed as well, by increasing the number of control pulses.
In this paper, we do not consider such gates which have more that 60 control
pulses. However, what we are more interested here is the properties of a fidelity
signal which is obtained by large number of implementations of the gate in the
disordered system. The above set of gates is sufficient for our purpose.
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Figure 1: (Color online) The fidelity [Eq. (4)] versus J/J̄ for five different sets
of control pulses (see the text for the definitions of u1 to u5). Inset: a zoom on
the region |J/J̄ − 1| ≤ 0.1.

It may be mentioned that piecewise constant control pulses are convenient
from the theoretical point of view. Actually, in reality it is not possible to pro-
duce such pulses with an arbitrary accuracy. However, the piecewise-constant
control pulses obtained here can be filtered through a low-pass filter to be gen-
erated by an actual wave generator. Using a product formula approach [44] (see
also [37]), it is possible to obtain the fidelities for the filtered control pulses. In
this case, the fidelities are slightly decreased depending on the cutoff frequency
of the filter [44].

In Sec. 4, we analyze the multifractality of the fidelity that corresponds to
a large number of gate implementations with the above gates.

3 Multifractal Analysis

Fractal dimension is an index that informs how detail in a pattern changes
depending on the scale it is measured [45], which can be promptly associated
to regularity. This way, fractal analysis provides a framework for characterizing
and modeling irregular traces and complex shapes found in nature [46, 47].
However, many phenomena that have been identified in physics and applied
sciences do exhibit scaling behavior with wild regularity variations which cannot
be completely characterized by a single fractal dimension, but with a entire
spectrum of fractal dimensions [6, 48]. In face of this difficulty, the multifractal
formalism was proposed as a way of characterizing such form of complexity in
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terms of the scaling properties of singularity measures [49, 2].
The multifractal formalism consists in determining a singularity spectrum

f(α), where the singularity strength α accounts for the local regularity and
f(α), the Hausdorff dimension of α, gives a geometrical idea of the repartition
of these singularities [2, 50].

In general, f(α) is not assessed directly from data but via a scaling function,
such as ζ(q), which is then connected to f(α) by the Legendre transform [49]

α = dζ(q)/dq, f(α) = αq − ζ(q) + 1, (9)

where ζ(q) is the power-law exponent of a structure function of order q [49]. It is
worth noticing that ζ(q) is simply related to other widely employed multifractal
measures, such as the τ(q) exponent, the generalized Hurst exponent h(q), and
the generalized multifractal dimension D(q) [4, 48, 51, 8].

A number of empirical multifractal formalisms are available in the literature.
(For review and comparison of distinct methods c.f. [52, 53, 54, 39].) In this
study a recently proposed formalism [39], which is briefly described in the sequel,
is employed for analysis.

3.1 EMD-DAMF

The EMD-based dominant amplitude multifractal formalism (EMD-DAMF) is
a moment-based method. In layman terms, a dominant amplitude multifractal
formalism involves initially a multiscale decomposition of the signal of interest.
Then, a search for high magnitude events across different scales is run to form
the set of the so-called dominant amplitude coefficients. In the EMD-DAMF,
for a given time scale k, the structure functions Sk(q) are defined as the q-order
statistical moments of a set of dominant amplitude coefficients vk,·, i.e.,

Sk(q) := 〈(vk,·)q〉 =
1

nk

nk∑
i=1

(vk,i)
q
. (10)

The dominant amplitude coefficients are obtained via the empirical mode
decomposition (EMD) [55], as explained below.

The EMD is a data-driven procedure which decomposes a multicomponent
time series X(t) in a relatively small number of multiscale components called
intrinsic mode functions (IMFs) and a monotonic trend: X(t) =

∑
k ck(t)+r(t).

Each IMF can be written as ck(t) = ak(t) cos ϕk(t), where ak(t) is a slowly
varying amplitude and ϕk(t) is the instantaneous phase [55].

One advantage of employing the EMD as a multiscale decomposition is that,
thanks to its data-driven formulation, it naturally adapts to signal features and
time scales. Moreover, the EMD involves computing signal envelopes so that
when an IMF ck(t) is obtained, |ak(t)| is already available. Hence, searching
for high magnitude events across different time scales can be accomplished by
looking for the local maxima of |ak(t)|. In order to avoid arbitrary small values
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of amplitude, which could lead to divergence of negative moments in Eq. (10),
the dominant amplitude coefficients are defined as [39]

vk,i := sup
k′≤k
{max ( |ak′(t ∈ Ik,i)| )} , (11)

for k = 1, 2, . . . , with i = 1, . . . , nk, where nk is number of local maxima of
ak(t), and Ik,i is a time support around the ith maxima of ak(t).

For processes presenting scaling properties one can expect that Sk(q) ' τ ζ(q)k

for kmin ≤ k ≤ kmax, where τk is the mean timescale of the kth component.
Hence, the singularity spectrum can be estimated from Eq. (9). The choice of
the multiresolution coefficients {vk, ·} in the EMD-DAMF permits to estimate
ζ(q) even for negative values of q, as with other multifractal formalisms, such
as the MFDFA and MFDMA (see [56] and [39] and references therein). As a
consequence, it is possible to obtain both sides of the f(α) spectrum [39]. (See
1 for a computer program with examples of the EMD-DAMF.)

3.2 Singularity spectrum attributes and complexity

Considering the general complexity of engineered quantum gates and their in-
teraction with noise, it is reasonable to expect that fluctuations in the fidelity
measured from a sequence of gate implementations may reflect system complex-
ity in some manner.

A typical realization of the fidelity sequence F (t) for the Toffoli gate exhibits
an apparent random behavior, as it can be seen in Fig. 2(a). Since F (t) is in
general a poorly correlated signal, it is advisable to perform multifractal analysis
in its integrated path, X(t) =

∫ t
0
[F (t′)− 〈F 〉]dt′, which is shown in Fig. 2(b).

The application of the EMD-DAMF method is exemplified in Fig. 3, where
one sees in panel (a): the moment function Sk(q) and its scaling behavior; in
panel (b): the corresponding scaling exponents ζ(q), for q between -5 and 5, in
steps of 0.5; and, finally, in panel (c): its corresponding singularity spectrum
f(α).

The value of α for which f(α) is maximum can be roughly related to the
(fractal) Hausdorff dimension of the set [2], hence, it gives a measure of the
apparent smoothness of the process. Small values of α correspond to events
with irregular fluctuations, and large values correspond to smoother fluctua-
tions. The spectrum width ∆α = αmax − αmin, on the other hand, quantifies
the richness of multifractality, therefore, ∆α can be regarded as a measure of
complexity. Furthermore, an asymmetric shape of f(α) can be also associated to
complexity, since it indicates an unbalanced contribution of singularities [2, 57].

4 Multifractal Fidelity

Multifractal analysis is the central method in studying complex systems to ap-
preciate of which we have referenced, in the introduction, a large number of

1http://lps.lncc.br/index.php/demonstracoes/emd-damf
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Figure 2: (Color online) Fidelity time fluctuations F (t) in (a) and its integrated

path X(t) =
∫ t

0
[F (t′)− 〈F 〉]dt′ in (b). The dashed black line in (a) is the mean

fidelity 〈F 〉.

works regarding both classical and quantum systems. The approach considered
in Sec. 2 for realizing the Toffoli gate implies the evolution of the system is com-
plex. In this section, we investigate such a complex evolution using multifractal
analysis.

In Sec. 2, five different sets of control pulses for implementing the Toffoli gate
were designed. Here, a sequence of a large number of implementations for each
gate is considered and the multifractal properties of the corresponding fidelity
sequence is analyzed. Moreover, a static noise is used to perturb the interqubit
couplings in each implementation of the gate.

Each gate implementation in the sequence has a fixed life time of tg =
4.18J̄−1, as introduced in Sec. 2. In order to treat the problem in the frame-
work of time series analysis, each gate implementation will be indexed by the
variable td = tgd, with d ∈ N. For simplicity, henceforth we normalize td by tg
and drop the subscript d. Although now t plays the role of a gate implementa-
tion index, ordered in time, it shall be clear that each t corresponds to a gate
implementation with gate time tg.

Following the above convention, the couplings are then changed in time as
J12 = J23 = 6J13 = J(t). Moreover, noise in the couplings is introduced as

J(t) = J̄ [1 + ε(t)] , (12)

where ε(t) is a random sequence of 1/f noise with mean E[ε] = 0 and variance
E[ε2] = σ2 <∞.
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Figure 3: (Color online) In (a), the scaling function Sk(q) obtained for the
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It should be mentioned the implementations of the Toffoli gate discussed
in Sec. 2 are specially achievable in a chain of superconducting transmon qubits
in circuit QED (see Refs. [37, 38]). It is well known that such superconducting-
circuit-based devices are decohered mainly due to degrees of freedom producing
1/f noise [58]. In this way, studying the operation of the Toffoli gate when the
system is perturbed by the 1/f noise is quite pertinent and interesting.

For every realization of ε(t), containing 215 elements, and for a given control
pulse uk, we obtain 215 values for the fidelity [see Eq. (4)]

F (k)(t) = F (J(t),uk) , (13)

one value for each run of the optimized gate with the corresponding J(t).
Figure 4 shows the fidelity sequences for the five sets of control pulses for

a fixed realization of the 1/f noise with the standard deviation σ = 0.1. The
mean fidelity for each sequence is shown by a dashed black line. The mean
fidelity values are about 0.94%, 0.96%, 0.95%, 0.93% and 0.91% for the sets u1

to u5, respectively.
It must be noted that, by just considering the mean fidelities, with σ ≤ 0.1, or

by just looking at the fidelity curves in Fig. 1 within the region |J/J̄ | ≤ 0.1, the
gates implemented using the pulse sets u4 and u5 do not show any advantages
over the gates implemented with the pulse sets u1 to u3. However, the spread
of the fidelities around the mean values and the presence of outliers in Fig. 4
are not accounted for in Fig. 1.

In Fig. 4, for proper comparison, the perturbation noise added to the cou-
plings is the same for all shown results. Now, the effect of the different set of
control pulses is clearly seen: despite the reduction of the mean fidelity from u2

to u5, the (asymmetrical) variance of the fidelities gets reduced from u1 to u5.
Therefore, for a given accepted target fidelity, for example not lesser than 91%,
there is a clear advantage in realizing the gate with the pulse set u5. Therefore,
a more complete assessment of the gate performance is needed. For this pur-
pose, in this section, we analyze the multifractal behavior of the sequences of
fidelities related to a large number of gate implementations of the above gates.

In brief and superficial terms, multifractal analysis aims at quantifying the
occurrence of singular and prominent events that manifest across different scales
of observation. In our case, the use of optimized control pulse sets u4 and u5

has the effect of reducing the spread of fidelity values around the mean value,
as can be seen in Fig. 4. Actually, by comparing the fidelity sequences calcu-
lated from the pulse sets u1 to u5, there seems to be an increase in the contrast
among the lowest fidelity values and the mean fidelity. In other words, the low-
est fidelity values appear as outliers (prominent singularities) to the otherwise
concentrated values around the mean. Therefore, resorting to a multifractal
analysis is justified for the performance evaluation problem at hand (Fig. 1),
among other equally valid ways to quantify the gate performance.

Before advancing to multifractal analysis of the fidelity sequences, we ex-
plain some characteristics of the sequences F (k)(t) by considering the system
dynamics in more details. Actually, in our setup the fluctuations in each fidelity
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sequence are caused by the fluctuations in the interqubit couplings. Moreover,
the strength of the fidelity fluctuations is affected by the control fields. Following
the explanations given below Eq. (3), the partial evolution of the unperturbed
system in the time interval [(n− 1)T, nT ], where T = tg/Nt and n = 1 . . . Nt, is
given by

U(T ) = exp[−i(J̄Hsys +Hc)T ] (14)

where the relation J12 = J23 = 6J13 = J̄ is used, and

Hsys ≡ (σ1xσ2x + σ1yσ2y) +
1

6
(σ1xσ3x + σ1yσ3y) + (σ2xσ3x + σ2yσ3y). (15)

The total evolution, as mentioned in Sec. 2, is the product of the partial evolu-
tions (14) in reverse order. Now, considering the noise affecting the couplings
as given by Eq. (12), the partial evolution of the system in each interval is
evaluated as

Uε(T ) = exp{−i [ (1 + ε)J̄Hsys +Hc ] T} (16)

where the value of ε is supposed to be constant in the whole time interval of
length tg = TNt, within which the partial evolutions are computed. However, ε
changes its value in each run of the gate and, therefore, the fidelity is changed
in each run as well. Equation (16) shows how the control pulses appear in
the partial dynamics of the system. It is clear that the fidelity fluctuations
depend on both the perturbed couplings and the control fields. In this way,
the fluctuations in the fidelity can reflect the complexity of the control pulses,
hence, the complexity in the implementation of the gate.

Here, we have to acknowledge several simplifications in our setup with re-
spect to a more realistic set of gate implementations. First of all, by means
of the relation J12 = J23 = 6J13 = J̄ a single 1/f noise realization is used
to perturb all the couplings. A more realistic implementation would involve
independent sources of perturbations for each coupling.

To model coupling perturbation with independent sources of noise, we can
consider a noise with three independent components ε = (ε12, ε13, ε23) which
affects the couplings as Jij = J̄ij [1 + εij(t)], i, j = 1, 2, 3, i < j. As before,
εij(t) are (independent) random sequences of 1/f noise, with zero mean and
equal finite variances, that change their values in each run of the gate but
remain constant during the run time tg. Assuming the couplings satisfy the
relation J12 = J23 = 6J13 = J̄ on average, the partial evolution of the system
in each interval is then given by

Uε(T ) = exp{−i [ J̄(1 + ε).Hsys +Hc ] T} (17)

where

Hsys ≡
(
σ1xσ2x + σ1yσ2y ,

1

6
(σ1xσ3x + σ1yσ3y) , σ2xσ3x + σ2yσ3y

)
, (18)

and 1 = (1, 1, 1).
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Actually, using multiple independent sources of noise with the above prop-
erties, namely, the same mean, variance and lifetime, just lead to faster decay
of the mean fidelity in terms of the standard deviation. This is because the the
optimization problem corresponding to the pulse sets u1 to u5 implies the ratio
between the three components in Hsys is kept fixed. The effect of a single source
of noise is of the form J̄(1+ε)1.Hsys which keeps such ratio fixed. But the effect
of three independent sources of noise is of the form J̄(1 + ε).Hsys which mod-
ifies the ratio between the three components of Hsys in each realization, hence
the detrimental effect in the time evolution of the system is stronger [see Sec.
IIIB in Ref. [38])]. Therefore, for multiple sources of noise, all having the same
standard deviation σ = 0.1, the mean fidelity lines (dashed black lines in Fig. 4)
are shifted toward lower levels of fidelity. That is, the variances are larger in
this case. Now, if the same level of mean fidelities as the case with a single
noise source is desired, the standard deviation should be decreased. Actually,
multiple noise sources with a proper standard deviation σ < 0.1 quantitatively
generate the same fidelity sequences as with a single noise source with σ = 0.1.
In this way, Eqs. (16) and (17) basically generate similar sequences. Although,
now with lower standard deviations the same multifractal properties as before
are expected. A separate simulation may be required to confirm the situation.
We do not consider such multiple noise sources in this paper and stress that
the simplified perturbation model in Eq. (12) used in our analysis does not re-
duce the relevance of the reported results. This is because the main objective is
to quantify the gate performance in relation to the choice of optimized control
pulses.

Other gate implementation parameters, such as the duration of the control
pulses and the gate time, are also susceptible to uncertainty. Specially, the
noisy gate time can be modeled as tg = t̄g[1 + ε(t)] which can also be written
as T = T̄ [1 + ε(t)] interpreted as an imperfection in the control pulse duration.
Here, t̄g and T̄ are the average gate time and the average pulse duration time,
respectively. In this case, the partial evolution of the system in each interval is
given by

Uε(T ) = exp{−i(J̄Hsys +Hc)(1 + ε)T}
= exp{−i[(1 + ε)J̄Hsys + (1 + ε)Hc]T} (19)

which is mathematically equivalent to the situation in which both the couplings
and the control pulses are affected by the noise. The noise that affects the opti-
mal control pulses will decrease the average fidelity of the fidelity sequence [44].
However, using the partial dynamics in Eq. (19) may reveal more information
about the system and lead to a richer fidelity sequence. We do not consider
the evolution (19) in this paper and expect that the simplified scenario (16) we
investigate in this section gives sufficient information on the expected average
behavior of a set of perturbed Toffoli gates. Actually, in this way, we allow a
more clear evaluation of the effect of the designed control pulses on the fidelity
in terms of a multifractality measure.

The multifractal nature of the signals F (k)(t) in Eq. (4) is then analyzed

14



by using the EMD-DAMF formalism. We use the width of the multifractal
spectrum ∆α defined as α(q = 5) − α(q = −5), as a measure of the degree of
multifractality of the signal. For simplicity, henceforth we will refer to ∆α as
multifractal width. In terms of the problem at hand, the average multifractal
width gives a measure of the contrast between the intermittent and regular
behavior of the fidelity sequence values. Thus, based on what is seen in Fig. 4,
one expects that the fidelity sequence due to the gate u5 yields a larger average
multifractal width than that related to u1 gates. The multifractal analysis is
then carried out over different values of σ from 0.01 to 0.5, in steps of 0.01.

We also do statistics by generating nr = 100 independent realizations of
ε(t), for each one of the specified values of σ. This way, we can study how the
observed average degree of multifractality 〈∆α〉 depends on σ. As explained
below, distinct behaviors of the average degree of multifractality can be ob-
served depending on which set of control pulses uk is considered in the gate
implementation. The behavior of 〈∆α〉 can be interpreted as the complexity of
the implementation of the gate. An increasing degree of complexity is observed
for those fields implementing the gate with a fidelity with higher tolerance with
respect to variations in J .

Figure 5 shows the estimated multifractal width ∆α versus standard devia-
tion σ, for each of the nr = 100 sequences of the fidelity sequence F (1)(t), which
corresponds to the control pulses u1. For any given σ the set of 100 instances of
∆α’s has its own average 〈∆α〉 and standard deviation. The red solid line de-
picts 〈∆α〉 and the shaded area shows the band of 1 standard deviation around
the average. The number of ∆α estimates within the band for each σ is larger
than 60. The figure shows that the average multifractality decreases when the
standard deviation of the noise increases.

Now, we calculate F (k)(t) for the remaining four sets of control pulses, de-
fined in Sec. 2, using the above method systematically. Here, for each set of
control pulses, the same ensemble of nr = 100 independent sequences of J(t) is
used.

Figure 6 shows 〈∆α〉 as a function of σ for the five sets of control pulses. As
can be seen, for σ = 0.1 the value of 〈∆α〉 increases from u1 to u5.

Here, as regards u3, u4 and u5, by reducing β in Eq. (8), respectively, we
progressively flattened the fidelity curve in the interval |J/J̄ − 1| ≤ 0.1. As a
consequence, we observe an increase in the average multifractal width around
σ = 0.1, from u3 to u5. A possible explanation for the observed behavior
lies in the more complex control effort associated with u5, when it tries to
render F (J(t),u5) less sensitive to variations in J around the nominal values.
Since F is a function of u, the complexity of u carries over to F . The average
multifractal widths at σ = 0.1 for the sets u1 to u5 are given by 0.4152, 0.4418,
0.5018, 0.6751 and 1.1993, respectively. Therefore, the related value for the set
u5 increases by a factor of about 2.9 with respect to the set u1. The control
pulses in the set u5 still implement the Toffoli gate with a fidelity above 91%
which is acceptable [37].

Figure 6 shows that the average multifractality decreases when the noise
strength in J increases [59]. Moreover, the curves apparently converge to the
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Figure 5: (Color online) The multifractal width ∆α versus the standard de-
viation σ calculated for 100 independent sequences of the fidelity, associated
with the control pulses u1, for each standard deviation (× points). The red
solid line shows the average behavior and the shaded area shows the band of
1 standard deviation around the average.
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Figure 6: (Color online) The average multifractal width versus the standard
deviation σ for five different sets of control pulses (see the text for the definitions
of u1 to u5).

same value for sufficiently large σ. A possible explanation for such behaviors of
multifractality for large σ would be the following. When the noise variance in
J increases well beyond the tolerance J0 set in Eq. (8), none of the five control
pulses, regardless of their complexity is capable of guaranteeing a well-behaved
fidelity in terms of J . Again, since F is a function of both J and u, it is likely
the variance of J which will dominate over the complexity of u, resulting in a
low complexity in F .

Finally, Fig. 6 shows that the multifractality approaches to the same value
for small values of standard deviation. In this case, the gate implementation
approaches the perfect system gate implementation with noiseless couplings.
Therefore, any set of control pulses uk implements the gate equally well which
reflects in a similar complexity of the fidelity F .

In the above analysis, the correlated 1/f noise is used. Now, we briefly
report some results on the couplings perturbed by an uncorrelated noise source.
If instead of the 1/f noise, white Gaussian noise with zero-mean is used, similar
results to Fig. 6 are attained but generally with slightly lower values of ∆α.
However, even in this case, there is still considerable amount of multifractality
for the set u5. The curve corresponding to the set u5 reaches the maximum
〈∆α〉 = 0.9936 at σ = 0.07 while for the set u1 the maximum 〈∆α〉 = 0.1899
happened at σ = 0.01 (not shown). As before, the average multifractality
curves decrease when σ increases and apparently converge to the same value for
sufficiently large σ which is, however, lower than the converging value for the
1/f noise.
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It should be mentioned that, the 10% deviation in the couplings which is
considered in the above analysis is related to the upper level of the error that is
achieved in physical implementations using superconducting quantum informa-
tion processing devices. The deviations in the values of the relevant parameters
(such as Josephson couplings and qubit frequencies in superconducting circuits)
are typically on the order of 5− 10% which is indeed inevitable in the state-of-
the-art experiments [60, 61]. Hence the noise level σ = 10% which appears to
be important in our analysis has a direct connection to the real experiments.

The multifractality observed here seems to be of a different origin than in the
Anderson transitions that corresponds to localization critical phenomena [12].
Here, the system can tolerate 10% deviation in the value of the couplings and
the gate can be still realized with relatively high fidelity. In the fidelity of the
Toffoli gate, as described above, the multifractality reflects the complexity of
the control pulses implementing the gate.

5 Summary and Discussion

In this paper, we have analyzed the multifractal properties of fidelity sequences
related to five different realizations of the Toffoli gate. We considered a system
of three coupled qubits described by the Heisenberg XY Hamiltonian. The
Toffoli gate can be realized in such a system by applying Zeeman-like control
fields (pulses). When defining the fidelity functional, we considered five different
optimization problems and found the corresponding global optimized control
pulses. All the attained sets of control pulses can implement the Toffoli gate
with the fidelity above 91%, in the noiseless case. However, each set has a
different sensitivity to variations in the interqubit couplings.

We realize a large set of imperfect Toffoli gates, whose couplings have been
perturbed by 1/f noise. The couplings changed in each realization but remained
fixed during the gate implementation. Sequences of fidelities related to gates
implemented with five different sets of control pulses (u1 to u5) have been mea-
sured for different values of the noise strength. For each of the 100 independent
realizations of the fidelity sequence, and for a given standard deviation associ-
ated with the couplings, estimates of the average multifractal width 〈∆α〉 of the
singularity spectrum f(α) related to the fidelity sequences were obtained via the
EMD-DAMF formalism. We found that, for gate sequences implemented with
control pulses that flatten the fidelity functional with respect to J around its
maximum, one observes an increase in the estimate of the average multifractal
width 〈∆α〉 of the fidelity sequence. The flatter F is around J = J̄ , the larger
the measured average multifractality of F becomes, for J contaminated with
1/f noise with standard deviation σ. We observed that for noise with standard
deviations above 0.1, the average multifractality tends to decrease with σ and
apparently converges to a fixed value for sufficient high σ.

In this paper, a minimum number of control pulses, assuring a fidelity above
99% in the noiseless situation, are used to implement the Toffoli gate. With such
number of control pulses, an stable implementation of the gate (an insensitive
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gate to variations in the couplings) with almost fixed fidelity around 92% was
designed. However, it is expected an stable gate with higher level of fidelity can
be constructed, by increasing the number of control pulses. Such a high-fidelity
stable gate and its multifractal properties can be investigated in the same way
somewhere else.

To obtain a sequence of fidelities, a large number of gate implementations
was considered in which the implementations were affected by a 1/f noise. We
performed the simulation by considering a single source of noise perturbing the
couplings. Using multiple sources of noise disturbing the couplings or noises that
influence other part of the system, such as the control pulses, can be explored
in the same way.

We observed that by flattening the fidelity curve in the interval |J/J̄ − 1| ≤
0.1 the average multifractal width peaks around σ = 0.1. The dependence of the
peak position to the length of such interval may be investigated in a different
work.

Intuitively, one could say that u5 is the most specialized control sequence for
the case when |J/J̄ − 1| < 0.1. A good question would be whether the increase
in the multifractality of u5 around σ = 0.1 could be interpreted as a measure
of its specialization.

We speculate that the changes in the richness of multifractality observed here
is a result of the complexity in the implementation of the gate. The effects of
the number of control pulses may be analyzed to see if there is a critical number
for the control pulses below which no multifractality can be observed. The
approach that is given in Sec. 2 for implementing the Toffoli gate is a standard
way in quantum control theory in engineering quantum gates. Therefore, the
multifractality behavior of the fidelity observed here is also expected in other
engineered gates. Specially, it is interesting to check the multifractality for the
CNOT gate which is less complex.
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[23] Martin, J., Garćıa-Mata, I., Giraud, O., Georgeot, B.: Multifractal wave
functions of simple quantum maps. Phys. Rev. E 82, 046206 (2010)

[24] Bandyopadhyay, J.N., Wang, J., Gong, J.: Generating a fractal butterfly
floquet spectrum in a class of driven su(2) systems: Eigenstate statistics.
Phys. Rev. E 81, 066212 (2010)

[25] Wo loszyn, M., Spisak, B.J.: Multifractal analysis of the electronic states in
the fibonacci superlattice under weak electric fields. The European Physical
Journal B-Condensed Matter and Complex Systems 85(1), 1–7 (2012)
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