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ABSTRACT
In the context of audio restoration, sound transfer of broken

disks usually produces audio signals corrupted with long pulses of
low-frequency content, also called thumps. This paper presents a
method for audio de-thumping based on Huang’s Empirical Mode
Decomposition (EMD), provided the pulse locations are known
beforehand. Thus, the EMD is used as a means to obtain pulse es-
timates to be subtracted from the degraded signals. Despite its
simplicity, the method is demonstrated to tackle well the chal-
lenging problem of superimposed pulses. Performance assessment
against selected competing solutions reveals that the proposed so-
lution tends to produce superior de-thumping results.

1. INTRODUCTION

Severe damages or discontinuities to the grooves of a disk, such as
those produced by deep scratches or breakages, may give rise to
long-duration pulses of low-frequency content in the resulting au-
dio signal, during disk playback [1, 2]. Being typically preceded
by high-amplitude impulsive disturbances, long pulses are consid-
ered the impulse response of the stylus-arm system added to the
waveform of interest [1, 2].

An illustration of a synthetically generated pulse is seen in Fig-
ure 1. As can be seen, the pulse waveform seems to have both an
amplitude-modulated component (decaying exponential envelope)
and a frequency-modulation component. Typically, the pulse os-
cillations start at about 150 Hz, right after the initial click, and
decay exponentially down to about 10 Hz.

To the author’s knowledge, apart from crude high-pass filter-
ing, which is usually unsatisfactory, there are three available tech-
niques for long pulse removal or audio de-thumping. Brief de-
scriptions of these methods follow.
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Figure 1: Synthetic example of a long pulse. The initial click oc-
curs at about 11 ms.

The so-called template matching method has been first pro-
posed by Vaseghi in [1] and [3]. Its main assumption is that long

∗ The work of Dr. Esquef was supported by CNPq-Brazil via grants no.
472856/2010-3 and 306607/2009-3.

pulses are shape-invariant, for being the impulse response of a
given stylus-arm system. Thus, if a clean version of the pulse (a
template) is available, its time-reversed version can be used as a
matched filter to detect other pulse occurrences in the audio sig-
nal. Furthermore, amplitude-scaled versions of the template can
be used to suppress corrupting pulses from the signal by simple
subtraction. The remaining initial click is supposed to be removed
afterward by standard de-clicking techniques [2].

In [4, 2, 5] Godsill and colleagues have proposed a model-
based signal separation technique for audio de-thumping. The
first step of the method consists in estimating two distinct auto-
regressive (AR) models: one of high order for the signal of inter-
est and another of low-order for the corrupting pulse. Then, pulse
removal is achieved by separation of the two AR processes. In this
approach, the initial click is taken as part of the long pulse, be-
ing modeled by the same AR model of the pulse, but with a much
higher excitation variance. Therefore, suppression of the initial
click and the pulse is taken care of at once by the method.

Simple non-linear filtering techniques for audio de-thumping
have been proposed in [6] by Esquef and colleagues. In this solu-
tion, hereafter referred to as the TPSW method, an initial estimate
for the long pulse is obtained from a non-linear filtering technique
called two-pass split window (TPSW) [7, 6], which is capable of
producing relatively smooth pulse estimates, despite the presence
of the high-amplitude clicks that precede the pulses. Then, these
pulse estimates are made even smoother by means of an overlap-
and-add signal segmentation with low-order polynomial fitting.

Thorough comparisons among the aforementioned methods is
beyond the scope of this paper. Nevertheless, in general terms, the
main advantages of the template matching method are its simplic-
ity and ability to detect long pulses even if the initial clicks are
absent. However, the solution is less flexible to tackle more chal-
lenging situations, such as the occurrence of superimposed long
pulses, i.e., when a second pulse appears within the duration of a
preceding one. According to the results presented in [6] the AR-
separation and TPSW methods perform equally well, being the
latter less intense computationally. Moreover, both can treat su-
perimposed pulses.

In this paper an alternative solution to audio de-thumping is
proposed. More specifically, it makes use of the so-called Empiri-
cal Mode Decomposition (EMD) [8] and its improved version, the
Complementary Ensemble EMD (CEEMD) [9, 10], as a means to
obtain estimates of long pulses corrupting an audio signal of in-
terest. In principle, the EMD is capable of decomposing a given
time-domain waveform into a finite set of Intrinsic Mode Func-
tions (IMFs) and a monotonic residue, each IMF being a single
AM-FM component. Since a long pulse can be well characterized
as a single AM-FM component, the choice of the EMD for the
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problem at hand seems justified.
The experimental results reported in this paper reveal that the

EMD and the CEEMD are effective and simple tools to provide
adequate pulse estimates. Performance evaluation of the proposed
method against the AR-separation and TPSW methods is carried
out via the Perceptual Audio Quality Measure (PAQM) [11]. The
attained results show that the CEEMD-based audio de-thumping
performs comparably to the competing solutions.

The remainder of the paper is organized as follows. In Sec-
tion 2 brief reviews of the EMD and the CEEMD are given. The
proposed pulse estimation method is explained in Section 3. The
experimental setup defined for the comparative tests is described
in Section 4. In Section 4.3 the attained results are presented and
discussed. Finally, conclusions are drawn in Section 5.

2. THE EMPIRICAL MODE DECOMPOSITION

The Empirical Mode Decomposition was originally introduced by
Huang and collaborators [8] as a way to decompose multicom-
ponent signals into constituent functions from which meaningful
instantaneous frequencies could be estimated via the Analytical
Signal approach [12]. The EMD decomposition does not assume
any basis function since it is an entirely data-driven iterative algo-
rithm that operates over signal envelopes.

The EMD method decomposes a signal into components called
Intrinsic Mode Functions (IMFs), which are typically character-
ized by zero-mean oscillations modulated by a slowly varying en-
velope. An IMF must have the following properties [8, 13, 14]:

1. The number of extrema and the number of zero-crossings
must be either equal or differ at most by one;

2. The arithmetic mean between the upper and lower envelopes
of an IMF must be zero at any point of its domain.

With reference to the item 2 above, the upper (lower) envelope
is usually obtained via low-order polynomial fitting to the local
maxima (minima) of the signal. Variations on the EMD algorithm
exist [14, 15, 16] and are mainly concerned with two issues: differ-
ent criteria to stop the intermediate iterative sifting procedure that
culminate in an acceptable IMF; and alternative data extrapolation
schemes to obtain the signal envelopes [17, 10].

2.1. EMD Implementation

For the experiments reported in the paper, a standard version of the
EMD, i.e., one that uses a Cauchy-type stopping criterion and natu-
ral cubic spline interpolation to compute the envelopes [8, 13], has
been implemented in Matlab. Alternatively, these envelopes can
also be obtained via piecewise cubic Hermite interpolating poly-
nomials across local maxima (minima).

Considering a signal x(t), the EMD is described as follows.

1. Let j = 1 and set xj(t) = x(t);

2. Identify all local maxima and minima of xj(t);

3. Obtain the upper envelope eupper(t) (respectively, lower en-
velope elower(t)) by polynomial interpolation across the lo-
cal maxima (respectively, local minima) of xj(t) ;

4. Compute the mean envelope m(t) =
[
eupper(t)+elower(t)

]
/2;

5. Obtain an IMF estimate Cj(t) = xj(t) − m(t);

6. If m(t) is a non-monotonic function (or if it has enough ex-
trema to allow envelope computation), make xj(t) = m(t);
increment j by one unit; and go back to step 2 to obtain the
subsequent IMFs. Otherwise, stop the iterations and set the
residue of the decomposition as r(t) = m(t).

In practice, step 5 above is insufficient to produce a proper
IMF. To remedy this, step 5 is modified to include an inner loop
to perform additional siftings to xj(t). More specifically, a so-
called proto-IMF is defined as Cj,k(t) = xj(t)−m(t) for the kth

iteration of the sifting loop, which must continue until a stopping
criterion (defined below) is satisfied. If an additional sifting is
needed, then one sets xj(t) = Cj,k(t) and returns to step 2 going
through step 5. The final IMF estimate Cj(t) is then obtained as
the last Cj,k(t) of the sifting loop.

Here, the chosen stoping criterion is the same adopted in [13],
i.e., the iterations stop when the quantity

Sd = Var
{
Cj,k−1(t) − Cj,k(t)

}
/Var

{
Cj,k−1(t)

}
(1)

becomes smaller than a pre-assigned value, typically within the
range [0.0001–0.0003]. After obtaining a total of J IMFs and a
residual trend rJ(t), the original signal can be reconstructed by
summing up all IMFs and the trend: x(t) =

∑J
j=1 Cj(t)+rJ(t).

For broad spectrum signals such as those of fractal or Gaussian
processes, the maximum number of IMFs is approximately log2 L,
where L is the number of samples of the signal [18].

2.2. Complementary Ensemble EMD

EMD has been successfully used for analysis of diverse kinds of
signals, mainly due its ability to tackle responses of non-linear and
non-stationary systems. Nevertheless, the presence of intermit-
tency in such signals often results in a phenomenon called mode
mixing [13, 14], where coherent parts of the signal may end up in
adjacent IMFs, thus devoid of physical meaning.

The original EMD algorithm is sensitive to the addition of
small perturbations to the input signal, in the sense that it may
produce a new set of IMFs in comparison with those of the noise-
less version. Based on this fact, Wu and Huang [10] proposed that
more reliable IMFs should be estimated from EMD of an ensemble
formed by a given input signal artificially corrupted with several
realizations of Gaussian noise.

The idea behind of the Ensemble EMD (EEMD) is to take a
large number of noisy versions of the original signal

x(i)(t) = x(t) + ε w(i)(t), (2)

where ε w(i)(t) is the i-th realization of a zero-mean white Gaus-
sian noise with standard deviation ε, which can be made a fraction
of that of x(t). After obtaining the IMFs C

(i)
j (t) for each real-

ization x(i)(t), the final result is obtained by averaging the IMFs
across all realizations:

C̃j(t) = lim
N→∞

1

N

N∑

i=1

C
(i)
j (t). (3)

Given a non-infinitesimal ε and a large enough N , the residual
noise amplitude will be proportional to ε/

√
N and the resulting

IMFs stable. More importantly, the EEMD largely reduces the
mode mixing problem [10], thus improving the EMD performance
at the expense of a much higher computational load.

DAFX-2

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-402



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

A further improvement to the EEMD is the Complementary
EEMD (CEEMD), in which the ensemble is formed by N/2 com-
plementary pairs of noise realizations with symmetric amplitude.
This way, Eq. (2) is modified to x(i)(t) = x(t)+(−1)iε w(i−γ)(t),
for i = 1, 2, . . . , N , where γ = i modulo 2. The IMFs of the thus
constructed ensemble are then obtained as before via Eq. (3). This
procedure ensures that the residual noise will be zero.

3. LONG PULSE ESTIMATION VIA EMD AND CEEMD

Similar to the AR-separation and TPSW methods, the proposed
EMD-based de-thumping requires prior knowledge of pulse loca-
tions in time. This means that, for a particular pulse, estimates
of its onset time and duration must be available. In practice, the
former can be inferred from the location of the initial click, which
can easily obtained by standard detection techniques [2].

From the auditory perception perspective, the most salient part
of a long pulse is its beginning, for its higher amplitude and fre-
quency. Therefore, pulse duration estimates can be obtained by
visual inspection. In other words, underestimation of pulse dura-
tions is likely to produce no audible effects.

3.1. EMD-based Estimation of Single Pulses

For didactic reasons, EMD-based estimation of single pulses is
presented first, being that of superimposed pulses left to later.

The main steps of the pulse estimation procedure (one pulse
at a time) are listed below. More specific details of each step are
given in the sequel.

1. Select a portion of the signal of interest containing one sin-
gle long pulse (to be called input signal hereafter);

2. Extend the input signal backward in time;

3. Analyze the extended input signal via the EMD. The main
parameter to be defined is the maximum number of IMFs.

4. Form the pulse estimate by mixing together partial recon-
structions of the signal, with different levels of detail, via
an overlap-and-add windowing scheme.

As regards step 1, the beginning of the input signal should
coincide with that of the pulse, i.e., it should start right after the
initial click. The duration of the segment should be approximately
that of the observed long pulse. It is advisable though to add about
5 ms to the duration in order to overcome boundary effects that
may affect IMF estimation [17, 10]. For that very reason, step 2
is taken. The idea here is to analyze an input signal a bit longer
than necessary and then discard samples at the extremities of the
ensuing IMFs and residue to get rid of possible boundary effects.
Therefore, the backward signal extrapolation carried out in step 2
does not need to be much involved. It can be simple enough to just
capture the tendency of the signal trajectory.

Signal extension backward in time should be made for at least
the duration of the initial click. For that, extrapolation schemes
based on AR modeling [2, 19] can be used. A simpler solution,
which is employed here, consists in mirroring the beginning of the
input signal with odd symmetry w.r.t. its first sample.

The EMD in step 3 uses a standard version of the algorithm
(see Section 2.1). As for the treatment of envelope boundaries, the
solution proposed in [10] is resorted to. More specifically, consid-
ering the upper envelope for didactic reasons, a straight line is first
fitted to the two consecutive maxima nearest to the end (or begin-
ning) of the signal. Then, an artificial new end (or beginning) point

for the envelope is created at the end (or beginning) of the segment.
This new point is taken as the largest value between the own signal
and the linearly extrapolated envelope. A similar scheme can be
employed to extend the lower envelope. In both cases, no exten-
sion of the input signal is carried out, just extrapolation of its lower
and upper envelopes toward its boundaries.

The aforementioned procedure surely helps to reduce end ef-
fects observed in the IMFs, but do not completely eliminate them.
Hence, input signal extrapolation performed in step 2 is still needed.

One of the known issues of the standard EMD is the so-called
mode-mixing or intermittence [8], which consists of the split of an
apparent single intrinsic mode between two adjacent IMFs. Intrin-
sic mode segregation is a complex question whose discussion is
beyond the scope of this paper. As reported in [20] it depends on
parameters such as the relative amplitude of the modes and their
proximity in frequency.

As one could anticipate from the above discussion, although a
single long pulse would qualify for being an IMF, it is not always
true that one of the IMFs produced by EMD of the input signal
constitutes alone an adequate pulse estimate. The main reason for
that seems to be the overlap between the spectral range of the long
pulse and the low-frequency content of the audio signal of interest.

An illustration of the mode-mixing problem in the context of
EMD-based pulse estimation is depicted in Figure 2. As can be
seen, while the tail of the pulse is well captured by the residue
obtained after extracting seven IMFs, adequate representation of
the initial faster oscillations only happens if the 7th IMF is added
to the residue.

Similar to the strategy employed in [6], a practical way to ob-
tain a useful pulse estimate is to predefine three temporal regions
for the pulse and assign to each region pulse estimates with dif-
ferent degrees of detail (or frequency ranges). One pulse partition
that typically works in practice is the following:

pF: about half oscillation cycle from the beginning of the pulse;

pM: about one and half oscillation cycles from the end of pF;

pL: the rest of the pulse from the end of pM.
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Figure 2: Top: Signal corrupted with a long pulse. The thin verti-
cal line at about 25 ms indicates the beginning of the pulse. Mid-
dle: corrupted signal (thin faded gray line) and residue after ex-
tracting the first 7 IMFs (thick black line). Bottom: corrupted
signal (thin faded gray line) and the sum of the residue with the
7th IMF (thick black line).
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Figure 3: Signal corrupted with a long pulse (thin faded gray line)
and composite pulse estimate after EMD with 7 IMFs (thick black
line). The thin vertical lines delimit the partitions pF, pM, and pL.
The residue is attributed to pL. The sum of the residue and the 7th
IMF is attributed to pM. The sum of the residue with the 7th and
6th IMFs is attributed to pF.

The residue of the EMD analysis can be assigned to pL. Since
the maximum number of IMFs can be forcefully limited, the residue
is not a monotonic function and could be further decomposed into
more IMFs. However, the idea here is to set the maximum num-
ber of IMFs so as to produce a residue that, besides being smooth,
captures well the oscillations present in the pulse tail pL. Continu-
ing the decomposition process until obtaining a monotonic residue
is then unnecessary and would undesirably increase the computa-
tional costs involved.

To the portion pM one can assign the sum of the residue and the
last IMF observed in that region. In a similar fashion, to the por-
tion pF one can assign the sum of the residue and the two last IMFs
observed in that region. In practice, the partitions pF, pM, and pL

must overlap a bit in time. This way, it is possible to merge their
waveforms together seamlessly via straightforward cross-fading
schemes. An example of the proposed partition and assignment
scheme is seen in Figure 3, where the cross-fading among adja-
cent partitions lasts about 4.5 ms.

As reported in [18], EMD of white noise tends to produce
IMFs that could be considered as sub-band signals of a dyadic oc-
tave filterbank analysis with poor selectivity channels. Thus, the
higher the IMF number the lowest the mean frequency of its power
spectral density. Assuming this behavior holds for spectrally rich
audio signals, one may speculate that the estimates assigned pL,
pM, and pF would consist of lowpass versions of the input signal
with progressively increasing cutoff frequencies.

From the above discussion, an advantage of the EMD is that
the resulting IMFs are pulse estimates with different frequency
bandwidths that can be readily combined in the partition and as-
signment scheme. However, from Figure 3 one perceives that, es-
pecially in regions pF and pM, part of the low-frequency content of
the signal is present in the pulse estimate.

A practical solution to gain more control over the smoothness
of the pulse estimate is to post-process the partial pulse estimates
obtained in each partition prior to their merging. An effective post-
processing is the piece-wise polynomial fitting described in [6]. In
brief terms, this signal smoothing scheme consists of fitting a low-
order polynomial to short-duration frames of the signal of inter-
est, in an overlap-and-add signal segmentation, e.g., Hanning win-
dows with 50% temporal superposition. If the polynomial order
is fixed to 2, as adopted in the conducted experiments, the degree
of smoothness is solely controlled by the length of the overlapping
windows.

Here, a different window length can be chosen for each parti-
tion pL, pM, and pF . A rule of thumb is to set the window length
to some value (in units of time or number of samples) between a
quarter and a half of the smallest period of the pulse oscillation
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Figure 4: Signal corrupted with a long pulse (thin faded gray line)
and composite pulse estimate after applying the piece-wise poly-
nomial smoothing to the estimate shown in Figure 3.

observed in the considered partition. The pulse estimate that re-
sults from applying the piece-wise polynomial fitting is seen in
Figure 4, where windows of sizes 10 ms, 20 ms, and 30 ms have
been used, respectively, to smooth out the pulse estimates in par-
titions pF, pM, and pL. In order to avoid boundary effects during
the smoothing procedure, the bumpy pulse estimate in partition pF

was also extended backward by about 10 ms via odd symmetry
reflection w.r.t. its first sample.

Once an adequate pulse estimate is obtained, de-thumping is
simply achieved by subtracting the pulse from the signal. Removal
of the initial click can be easily accomplished via standard model-
based de-clicking techniques [2]. In practice, it may be desirable
to artificially overestimate the click duration toward the beginning
of the long pulse.

At this stage it seems appropriate to comment on the strong
and weak points of the EMD-based pulse estimation. An obvious
weakness lies in its inability to obtain a pulse estimate at once as a
single IMF. Furthermore, the user is left with the task of choosing
several additional parameters for the post-processing stage. This
burden, however, can be alleviated through a graphical user inter-
face, similar to that designed and proposed in [6]. On the other
hand, the EMD can be seen as a computationally cheap way of ob-
taining lowpass and bandpass filtered versions of the input signal.

3.2. CEEMD-based Estimation of Single Pulses

CEEMD-based estimation of single pulses follows the first three
processing steps defined in the beginning of Section 3.1, the latter
carried out with the CEEMD instead of the EMD. The fourth step,
however, turns out to be unnecessary, as it will be demonstrated.

Besides the number of IMFs, signal analysis via CEEMD re-
quires the choice of two other parameters: the standard deviation
of the additive noise realizations and the number of their pairs.
Fortunately, in the context of long pulse estimation tackled here,
these two parameters have minor impact to the final results. For all
simulations presented in this paper involving CEEMD, the stan-
dard deviation of the additive noise has been set to 20% of that of
the input signal, whereas the number of noise realization pairs was
set to 4, mainly to reduce computational costs.

Once the maximum number of IMFs is defined, the pulse es-
timate is simply taken as the ensuing residue, after discarding the
initial samples that are due to the artificial signal extension. As be-
fore, this residue is not a monotonic function and could be further
decomposed into more IMFs.

At this point it is worth mentioning that the maximum number
of IMFs required for the CEEMD to produce a smooth pulse es-
timate is about twice as that of EMD. This slower convergence to
a target-residue may come from a much higher number of signal
extrema in the beginning of the decomposition, due to the addition
of noise to the input signal.
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Figure 5: Signal corrupted with a long pulse (thin faded gray line)
and pulse estimate (thick black line) as the CEEMD residue after
extracting the first 12 IMFs. The thin vertical line at about 23 ms
indicates the actual beginning of the pulse. Pulse samples before
that limit should be discarded.

Figure 5 displays an example of pulse estimate obtained via
the proposed CEEMD-based method, where the pulse is taken as
the residue after extracting 12 IMFs. Here, for illustration pur-
poses, the pulse is plotted including the samples related to a back-
ward signal extension of about 2.5 ms. As can be seen, the at-
tained pulse estimate exhibits an adequate level of smoothness and
is capable of following the pulse trajectory in both fast and slow
oscillation regions.

In comparison with the pulse estimate shown in Figure 4, the
one yielded by the CEEMD solution is a bit bumpier. However,
since the amplitudes of these faster oscillations are quite small,
their subtraction from the corrupted signal is bound to produce
inaudible effects. Therefore, post-processing for further smooth-
ing and windowing schemes for pulse composition are no longer
needed.

3.2.1. Speeding up the CEEMD-Based Pulse Estimation

As seen in the previous section, the CEEMD-based pulse esti-
mation is effective, yet simpler than the EMD-based counterpart,
from the algorithm implementation and calibration perspectives.
Its main drawback is a higher computational cost that slows down
the process of obtaining the desired pulse estimates.

In the context of EMD of white noise, findings reported in [18]
suggest that the number of IMF zero-crossings, which holds rela-
tion with the number of IMF extrema, tends to decrease on average
by half from a given IMF to the subsequent one. Thus, the larger
the number of extrema in the beginning, the longer the decompo-
sition takes to converge to a monotonic residue.

With the previous information in mind, the following modifi-
cation, which affects the computation of signal envelopes within
the EEMD processing chain, has been found operative to speed up
the CEEMD-based pulse estimation method:

1. Detect all peaks and valleys of the input signal as usual;

2. Select from the previous set of peaks and valleys only the
peak (valley) with maximum (minimum) amplitude inside
juxtaposed observation windows of 3.4 ms (about 150 sam-
ples at 44.1 kHz sampling rate);

3. Obtain the signal envelopes as usual, but using only the
peaks and valleys selected in step 2;

4. Apply item 2 only for extraction of the first two IMFs.

The selection performed in step 2 above is an attempt to re-
tain only the most prominent peaks and valleys of the input sig-
nal, which is artificially corrupted with noise in the CEEMD. The
proposed peak and valley pruning produces upper and lower en-
velopes are way smoother than those of the noisy input signal. As

a consequence, the frequency bandwidths of the first two IMFs are
larger than those of the corresponding IMFs computed via conven-
tional CEEMD, forcing the modified CEEMD iterations to con-
verge faster to slowly varying IMFs, which are of interest to the
present application.

Together with the maximum number of IMFs, the length of
the observation window in step 2 above can also be changed by
the user as a means to control the degree of smoothness of the
pulse estimate. Considering a practical range from 1 to 10 ms,
the longer the window length, the smaller the maximum number
of extracted IMFs required for the residue to become an adequate
pulse estimate.

To illustrate the combined role of the two previously discussed
parameters in the final CEEMD-based pulse estimate, outcomes of
two different yet equally effective configurations of the CEEMD
method are presented in Figure 6 and Figure 7. In connection
with these results, Table 1 summarizes the processing parameters
adopted in each configuration and the average savings in computa-
tional time w.r.t the conventional CEEMD-based pulse estimation.

Visual assessment among the plots shown in Figures 5 to 7
reveals similar pulse estimates. Hence, from Table 1, adoption
of the proposed peak (valley) picking for envelope computation
within CEEMD is advantageous, for it can produce up to a ten-
fold reduction in computational time.
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Figure 6: Signal corrupted with a long pulse (thin faded gray line)
and pulse estimate (thick black line) as the CEEMD residue af-
ter extracting 4 IMFs. Peak and valley selection was carried out
within juxtaposed windows of 3.4 ms.
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Figure 7: Signal corrupted with a long pulse (thin faded gray line)
and pulse estimate (thick black line) as the CEEMD residue after
extracting only 2 IMFs. Peak and valley selection was carried out
within juxtaposed windows of 6.8 ms.

Table 1: Configuration of the CEEMD-based pulse estimation and
corresponding results. The value of T is about 10 s when running
the CEEMD analysis on a Core i7 870 2.93 GHz Quad Core CPU.
All simulations ran on the same machine.

CEEMD Configuration Results
No. IMFs Window Size Avg. Proc. Time Visual Output

13 – T Figure 5
4 3.4 ms T/3.8 Figure 6
2 6.8 ms T/10 Figure 7
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3.2.2. A Real-World Example of CEEMD-based De-Thumping

As a real-world example, one of the long pulse occurrences in
the signal available from [21] has been subjected to the proposed
CEEMD-based de-thumping. The signal in question, which is
sampled at 22.05 kHz, contains pulses with initial oscillations of
about 180 Hz, thus faster than in the previously considered pulse.
In order for the CEEMD method to capture those fast pulse vari-
ations, the window size in the peak/valley selection scheme has
been experimentally set to 1.4 ms, whereas the maximum number
of IMFs was limited to 2.

The attained pulse estimate is seen in the top panel of Figure 8,
where one can notice undesirable fast oscillations after about 40
ms of the beginning of the pulse. To improve the estimate, they
were flattened out via the overlap-and-add polynomial smooth-
ing [6] with windows of 13.6 ms. The final pulse estimate, which
is shown in the bottom panel of Figure 8, is then composed by
seamlessly merging the first approximately 16 ms of the original
CEEMD-based estimate with its smoothed out version from about
40 ms onward.

Concerning the corrupted signal and related pulse estimate
depicted in the bottom panel of Figure 8, the corresponding de-
thumped version is seen in the top plot of Figure 9. The remaining
click of about 680 µs (about 15 samples at 22.05 kHz sampling
rate) was suppressed by LSAR signal reconstruction with model
order 65 to produce the signal shown in the middle plot of Fig-
ure 9. A detailed vision of the signal reconstruction around the
click location is seen in the bottom plot.

3.3. Estimation of Superimposed Pulses

As regards estimation of superimposed pulses, a strategy that has
been found effective was to treat independently the parts that form
the pulse. In other words, the signal part that follows the last
driving initial click is subjected for instance to the CEEMD-based
pulse estimator as if it were a single pulse occurrence. Separately,
pulse estimation in the intermediate part between two consecutive
initial clicks is carried out using the same processing parameters.
For this part, it is desirable to extent the signal backward and for-
ward in time for about the duration of the delimiting clicks.
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Figure 8: Top: real-world example of a signal corrupted with
a long pulse [21] (faded gray line) and corresponding CEEMD
pulse estimate (thick black line). Bottom: same corrupted signal
(faded gray line) and improved estimate via polynomial smoothing
from 40 ms onward (thick black line).
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Figure 9: Top: de-thumped signal related to the corrupted signal
and related pulse estimate shown in the bottom plot of Figure 8.
Middle: de-clicked signal via LSAR signal reconstruction. Bot-
tom: detail of the signal reconstruction around the click location,
with the original click painted in faded gray line. The thin verti-
cal lines around 23 ms delimit the audio region subjected to LSAR
interpolation.

Figure 10 shows an example of CEEMD-based estimation of
superimposed pulses in which the same processing setup that gen-
erated the result seen in Figure 6 has been used.

4. PERFORMANCE ASSESSMENT

In this paper the performance assessment methodology for audio
de-thumping methods defined in [6] is employed. The same set of
test signals and one of the quantitative metrics considered in [6]
are also used as a means to allow direct comparisons with those
previous results. A brief overview of the experimental setup is
given in the sequel. The reader is referred to [6] for a more detailed
description.

4.1. Test Signals

The test signals comprise a set of reference uncorrupted signals
and a corresponding set of artificially corrupted versions. The ref-
erence set is composed of 6 CD-quality short-duration (11 to 20
s) excerpts of audio including diverse musical genres such as pop,
jazz, classic, and ethnic, as well as solo of drums and acoustic bass.

The corrupted set was produced by adding several single long
pulses (with initial click) to the reference signals. Successive pulses
were placed approximately 769 ms apart from each other. Here,
only the set of strong pulses [6, 22] will be considered for perfor-
mance evaluation.
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Figure 10: Signal corrupted with a superimposed long pulse (thin
faded gray line) and CEEMD-based pulse estimates (thick black
lines).
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4.2. Experimental Setup and Performance Metric

As in [6], the evaluation methodology adopted here consists in
first obtaining restored versions (de-thumped and de-clicked) of
the corrupted set via a selection of de-thumping methods with pre-
defined configurations. Then, the reference and restored sets are
compared by objective means.

Here, the Perceptual Audio Quality Measure (PAQM) [11] is
used as the performance metric. In a nutshell, the PAQM compares
a processed signal w.r.t. a reference and outputs a dissimilarity in-
dex that takes into account several properties of the human audi-
tory system, such as masking in time and frequency. The closer
to zero the PAQM, the more similar perceptually are the processed
and reference signals.

The aim here is to run a direct comparison among the PAQM
values associated with the restored signals produced by the follow-
ing de-thumping methods: AR Separation (ARS), TPSW-based
(TPSW), EMD-based pulse estimation (EMD), and CEEMD-based
pulse estimation (CEEMD). Therefore, only the processing setup
of the EMD and the CEEMD will be defined. The processing pa-
rameters employed in the ARS and the TPSW can be found in [6].

4.2.1. EMD Configuration

The following configuration was employed to obtain the EMD-
related results:

• Backward signal extension: 100 samples with odd symme-
try w.r.t. the first sample;

• Maximum number of IMFs: 6;

• Envelope computation: piecewise cubic Hermite interpolat-
ing polynomials across local maxima (minima);

• pF: 44 ms from the beginning of the pulse;

• pM: 60 ms from the end of pF;

• pL: 100 ms from the end of pM;

• Pulse estimate inside pF: (residue + 6th IMF + 5th IMF)
smoothed out via the overlap-and-add polynomial scheme
with windows of 10 ms and 2nd-order polynomials;

• Pulse estimate inside pM: (residue + 6th IMF) smoothed out
via the overlap-and-add polynomial scheme with windows
of 20 ms and 2nd-order polynomials;

• Pulse estimate inside pL: (residue) smoothed out via the
overlap-and-add polynomial scheme with windows of 30
ms and 2nd-order polynomials;

• Click removal: 75th-order LSAR signal reconstruction of
50 samples from the click onset.

4.2.2. CEEMD Configuration

The following configuration was employed to obtain the CEEMD-
related results:

• Number of noise realization pairs: N/2 = 4;

• Standard deviation of each realization: ε = 0.2 std{x(t)};

• Backward signal extension: 100 samples with odd symme-
try w.r.t. the first sample;

• Maximum number of IMFs: 4;

• Envelope computation (for first two IMFs): piecewise cu-
bic Hermite interpolating polynomials across local maxima
(minima), after selection of one maximum (minimum) per
juxtaposed windows of 3.4 ms;

• Envelope computation (third and fourth IMFs): piecewise
cubic Hermite interpolating polynomials across local max-
ima (minima);

• Click removal: 75th-order LSAR signal reconstruction of
50 samples from the click onset.

4.3. Results and Discussion

Table 2 summarizes the attained PAQM of the restored (de-thumped
and de-clicked) test signals for each of the considered methods and
predefined configurations given in the previous sections and [6].

Analysis of the results suggests a tendency of the EMD to out-
perform the competing methods. For instance, for all test signals
restored by EMD, the associated PAQMs are smaller than those
of TPSW. ARS offers the most effective restoration for signals
Drums and Singing, whereas CEEMD is the least successful in
these cases. Signal Ethnic as restored by CEEMD yields the small-
est PAQM. It is worth mentioning that too small PAQM differences
may not necessarily imply a noticeable perceptual difference. Au-
dio examples can be found in [23].

In summary, for the considered experimental scenario, the at-
tained PAQM results suggest EMD and CEEMD are effective and
competitive tools for audio de-thumping.

Table 2: Comparative performance evaluation of the EMD,
CEEMD, TPSW, and ARS de-thumping methods using PAQM.
The best results (lowest PAQM) are highlighted.

Test Signal EMD CEEMD TPSW ARS
Pop 0.024 0.028 0.036 0.046
Jazz 0.012 0.031 0.028 0.061

Classic 0.010 0.023 0.017 0.033
Ethnic 0.032 0.030 0.051 0.048
Drums 0.029 0.097 0.049 0.014
Bass 0.015 0.030 0.031 0.188

Singing 0.092 0.282 0.110 0.066

5. CONCLUSIONS

This paper addressed the problem of long pulse removal from au-
dio signals (de-thumping). Two methods for long pulse estimation
based on Huang’s Empirical Mode Decomposition (EMD) were
proposed. After an overview of the EMD and its related comple-
mentary ensemble version (CEEMD), their use as tools to obtain
adequate pulse estimates from corrupted audio signals was inves-
tigated by means of practical examples.

It was found out experimentally that, possibly due to mode
mixing issues afflicting signal analysis via EMD, an intrinsic mode
function (IMF) or a non-monotonic residue (after successively ex-
tracting a given number IMFs from the original signal) may not
serve alone as an adequate pulse estimate. To overcome the prob-
lem, the adopted solution [6] was to define three temporal parti-
tions to which pulse estimates with different frequency bandwidths
or levels of smoothness were attributed. The final composite pulse
estimate was then assembled together by merging seamlessly the
estimates from each partition.
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As regards signal analysis via the CEEMD, it was discov-
ered that adequate pulse estimates could be obtained at once as a
non-monotonic residue after successively extracting a given num-
ber IMFs from the original signal. However, as compared with
the EMD, about twice the number of initial IMFs needed to be
extracted for producing a smooth enough pulse estimate. Other
CEEMD parameters such as the variance of the additive noise and
the number of ensemble pairs had negligible impact on the final
results. As a means to decrease the computational cost of the
CEEMD for the studied application, a modified scheme for sig-
nal envelope computation was devised: piecewise cubic Hermite
interpolating polynomials were fitted across local maxima (min-
ima), after selection of one maximum (minimum) per juxtaposed
short-duration windows. Average reductions in computation time
up to ten times were reported.

Objective performance evaluation of the proposed EMD- and
CEEMD-based methods for audio de-thumping was carried out us-
ing the same methodology and test data of [6]. Indirect compara-
tive results, in terms of the Perceptual Audio Quality Measure [11]
of the restored versions of the corrupted data, suggest the proposed
CEEMD-based method tends to perform as effectively as the com-
peting TPSW-based procedure [6] and outperform the AR separa-
tion method [2]. As regards the EMD-based method the observed
tendency is of a more favorably performance in comparison with
the TPSW-based solution.
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