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Abstract

The Swift parallel scripting language allows for the specification, execution and
analysis of large-scale computations in parallel and distributed environments.
It incorporates a data model for recording and querying provenance informa-
tion. In this article we describe these capabilities and evaluate interoperabil-
ity with other systems through the use of the Open Provenance Model. We
describe Swift’s provenance data model and compare it to the Open Prove-
nance Model. We also describe and evaluate activities performed within the
Third Provenance Challenge, which consisted of implementing a specific scien-
tific workflow, capturing and recording provenance information of its execution,
performing provenance queries, and exchanging provenance information with
other systems. Finally, we propose improvements to both the Open Provenance
Model and Swift’s provenance system.

Key words: provenance, parallel scripting languages, scientific workflows

1. Introduction

The automation of large scale computational scientific experiments can be
accomplished through the use of workflow management systems [9], parallel
scripting tools [23], and related systems that allow the definition of the activi-
ties, input and output data, and data dependencies of such experiments. The
manual analysis of the data resulting from their execution is usually not feasible,
due to the large amount of information commonly generated by these experi-
ments. Provenance systems can be used to facilitate this task, since they gather
details about the design [14] and execution of these experiments, such as data
artifacts consumed and produced by their activities. They also make it easier
to reproduce an experiment for the purpose of verification.
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The Open Provenance Model (OPM) [18] is an ongoing effort to standardize
the representation of provenance information. It defines the entities artifact,
process, and agent and the relationships used (between an artifact and a pro-
cess), wasGeneratedBy (between a process and an artifact), wasControlledBy
(between an agent and a process), wasTriggeredBy (between two processes), and
wasDerivedFrom (between two artifacts). These relationships are used to assert
causal dependencies between the entities defined in the model. A set of these
assertions can be used to build a provenance graph. One of the main objectives
of OPM is to allow the exchange of provenance information between systems. It
also describes valid inferences that can be made from provenance graphs. More
complex relationships between processes and artifacts can be derived using, for
instance, transitivity.

The Swift parallel scripting system [25] [23] is a successor of the Virtual Data
System (VDS) [13] [26] [5]. It allows the specification, management and execu-
tion of large-scale scientific workflows on parallel and distributed environments.
The SwiftScript language is used for high-level specification of computations,
it has features such as data types, data mappers, dataset iteration, conditional
branching, and procedural composition. It allows the manipulation of datasets
in terms of their logical organization. The XML Dataset Typing and Mapping
(XDTM) [19] notation is used to define mappers between this logical organiza-
tion and the actual physical structure of the dataset. Procedures perform logical
operations on input data, without modifying them. SwiftScript also allows pro-
cedures to be composed to define more complex computations. By analyzing
the inputs and outputs of these procedures, the system determines data de-
pendencies between them. This information is used to execute procedures that
have no mutual data dependencies in parallel. Swift supports common exe-
cution managers for clustered systems and grid environments, such as Condor
[11], GRAM [7], and PBS [16]. It also supports Falkon [21], an execution en-
gine that provides high job execution throughput; and SSH [24], for executing
jobs via secure remote logins. Swift logs a variety of information about each
computation. This information can be exported using tools included in Swift to
a relational database that uses a data model similar to OPM. Our provenance
approach focuses on gathering information about the relationship between data
and processes at the SwiftScript level. We do not gather information about
lower level processes involved in executing a parallel script with Swift, such
as moving data to computational resources, and submitting tasks to execution
managers, although this is logged and could be integrated.

The objective of this paper is to present and evaluate the local and remote
provenance recording and analysis capabilities of Swift, and compare them with
those of other provenance systems. In the sections that follow, we describe
the provenance capabilities of the Swift system and evaluate its interoperability
with other systems through the use of OPM. We describe the provenance data
model of the Swift system and compare it to OPM. We also describe and eval-
uate activities performed within the Third Provenance Challenge (PC3) which
consisted of implementing and executing a scientific workflow (Pan-STARRS’
[12] LoadWorkflow), gathering and recording provenance information of its exe-
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Table 1: Database relation processes.

Attribute Definition

id the URI identifying the process

type the type of the process: execution,

compound procedure, function, oper-

ator

Table 2: Database relation dataset usage.

Attribute Definition

process id a URI identifying the process end

of the relationship

dataset id a URI identifying the dataset han-

dle end of the relationship

direction whether the process is consuming or

producing the dataset handle

param name the parameter name of this relation

cution, performing provenance queries, and exchanging provenance information
with other systems.

2. Data Model

In Swift, data is represented by strongly-typed single-assignment variables.
Data types can be atomic or composite. Atomic types are given by primitive
types, such as integers or strings, or mapped types. Mapped types are used for
representing and accessing data stored in local or remote files. Composite types
are given by structures and arrays. In the Swift runtime, data is represented by
a dataset handle. It may have as attributes a value, a filename, a child dataset
handle (when it is a structure or an array), or a parent dataset handle (when it
is contained in a structure or an array).

Swift processes are given by invocations of external programs, invocations
of internal procedures, built-in functions, and operators. Dataset handles are
produced and consumed by Swift processes.

In the Swift provenance model, dataset handles and processes are recorded,
as are the relations between them (either a process consuming a dataset handle
as input, or a process producing a dataset handle as output). Each dataset
handle and process is uniquely identified in time and space by a URI. This in-
formation is stored persistently in a relational database. The two key relational
tables used to store the structure of the provenance graph are processes, which
stores brief information about processes (see table 1), and dataset usage, which
stores produced and consumed relationships between processes and dataset han-
dles (see table 2). Other tables (see [6] for details) are used to record details
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Listing 1: SwiftScript program for sorting a file.

type file;

app (file o) sortProg (file i) {

sort stdin= @filename (i) stdout =@filename (o);

}

file f <"inputfile ">;

file g <"outputfile ">;

g = sortProg (f);

about each process and dataset, and other relationships such as dataset con-
tainment.

Consider the SwiftScript program in listing 1, which first describes a pro-
cedure (sortProg, which calls the external executable sort); then declares
references to two files, (f, a reference to inputfile, and g, a reference to
outputfile); and finally calls the procedure sortProg. When this program
is run, provenance records are generated as follows:

• a process record is generated for the initial call to the sortProg(f) pro-
cedure;

• a process record is generated for the @filename(i) function invocation
inside sortProg, representing the evaluation of the @filename function
that Swift uses to determine the physical filename corresponding to the
reference f;

• and a process record is generated for the @filename(o) function invoca-
tion inside sortProg, again representing the evaluation of the @filename
function, this time for the reference g.

Dataset handles are recorded for:

• the string "inputfile";

• the string "outputfile";

• the file variable f;

• the file variable g;

• the filename of i;

• and the filename of o.

Input and output relations are recorded as:

• the sortProg(f) procedure takes f as an input;

• the sortProg(f) procedure produces g as an output;

• the @filename(i) function takes f as an input;
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Figure 1: Provenance relationships of a sortProg execution.

• the @filename(i) function produces the filename of f as an output;

• the @filename(o) function takes g as an input;

• and the @filename(o) function produces the filename of g as an output.

The Swift provenance model is close to OPM, but there are some differences.
Dataset handles correspond closely with OPM artifacts as immutable represen-
tations of data. However they do not correspond exactly, dataset handles do
not record provenance due to aliasing, such as when accessing arrays. Section
4 discusses this issue in more detail. The OPM entity “agent” is currently not
represented in Swift’s provenance model, however this could be represented, for
instance, by the identity of the user that runs a workflow.

Except for wasControlledBy, the dependency relationships defined in OPM
can be derived from the dataset usage database relation. It explicitly stores
the used and wasGeneratedBy relationships. Table 3 shows the equivalence
between tuples stored in the dataset usage table and OPM relationships.
wasTriggeredBy and wasDerivedFrom dependency relationships can also be in-
ferred from database usage, in the sortProg example we have, for instance,

f
wasDerivedFrom
←−−−−−−−−−− g. Figure 1 shows the provenance relationships captured by

Swift’s provenance system for the sortProg example using OPM notation.
One of the main concerns with using a relational model for representing

provenance is the need for querying over the transitive relation expressed in
the dataset usage table. For example, after executing the SwiftScript code in
listing 2, it might be desirable to find all dataset handles that lead to c: that
is, a and b. However simple SQL queries over the dataset usage relation can
only go back one step, leading to the answer b but not to the answer a. To
address this problem, we generate a transitive closure table by an incremental
evaluation system [10]. This approach makes it straightforward to query over
transitive relations using natural SQL syntax, at the expense of larger database
size and longer import time.
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Table 3: Equivalence between tuples in the dataset usage table and OPM relationships.

Tuple in the dataset usage table
OPM equivalent

process id dataset id direction param name

sortProg(f) f In i

sortProg(f) g Out o

@filename(i) f In i

@filename(i) filename of f Out result

@filename(o) g In o

@filename(i) filename of g Out result

Listing 2: Transitivity of provenance relationships.

b = p(a);

c = q(b);

Swift’s provenance data model is not dependent on a particular database
model. A number of other forms were briefly experimented with during devel-
opment [4]. The two most developed and interesting models were XML and
Prolog. XML provides a semi-structured tree form for data. A benefit of this
approach is that new data can be added to the database without needing an ex-
plicit schema to be known to the database. In addition, when used with a query
language such as XPath, certain transitive queries become straightforward with
the use of the // operator of XPath. Representing the data as Prolog tuples
is a different representation than a traditional database, but provides a query
interface that can express interesting queries flexibly.

3. PC3: Implementation and Queries

One of the main goals of PC3 was to evaluate OPM as a mechanism for
interoperability between provenance systems. An astronomy workflow from
the Pan-STARRS [12] project, called LoadWorkflow, was used for this pur-
pose. It receives a set of CSV files containing astronomical data, stores the
contents of these files in a relational database, and performs a series of vali-
dation steps. This workflow makes extensive use of conditional and loop flow
controls and database operations. Database operations are somewhat outside
the scope of usual Swift applications, which are generally file-oriented. A Java
implementation of the component applications of LoadWorkflow was provided
in the Provenance Challenge Wiki [1]. These components are declared in the
SwiftScript implementation of the workflow as external application procedures.
The procedural body of the SwiftScript code closely follows the LoadWorkflow

6



specification since Swift has native support for decision and loop controls, given
by the if and foreach constructs.

In our initial attempts to implement LoadWorkflow, we found the use of the
parallel foreach loop problematic because the database routines executed by
the external application procedures are opaque to Swift. Due to dependencies
between iterations of the loop, these routines were being incorrectly executed in
parallel. It was necessary to serialize the loop execution to keep the database
consistent. For the same reason, since most of the PC3 queries are for row-
level database provenance, we had to implement a workaround for gathering
this provenance by modifying the application database so that for every row
inserted, an entry containing the execution identifier of the Swift process that
performed this insertion is recorded on a separate annotation table.

A detailed description of the LoadWorkflow implementation in SwiftScript,
and the SQL queries to the provenance database can be found in [6] and [2]. Core
query 1, for instance, consists of determining, for a given application database
row, which CSV files contributed to it. The strategy used to answer this query is
to determine input CSV files that precede, in the transitivity table, the process
that inserted the row. This query can be answered by first obtaining the identi-
fier of the Swift process that inserted the row from the annotations included in
the application database. Then, we query for filenames of datasets that contain
CSV inputs in the set of predecessors of the process that inserted the row.

The OPM output for a LoadWorkflow run in Swift was generated by a script
that maps Swift’s provenance data model to OPM’s XML schema. Since OPM
and Swift’s provenance database use similar data models, it is fairly straightfor-
ward to build a tool to import data from an OPM graph into the Swift prove-
nance database. However we observed that the OPM outputs from the various
participating teams, including Swift, carry many details of the LoadWorkflow
implementation that are system specific, such as auxiliary tasks that are not
necessarily related to the workflow. To answer the same queries, it would be
necessary to perform some manual interpretation of the imported OPM graph
in order to identify the relevant processes and artifacts.

4. PC3: Evaluation

PC3 provided an opportunity to use OPM in practice. This also enabled
us to evaluate OPM and compare it to Swift’s provenance data model. OPM
originally did not specify a naming mechanism for globally identifying artifacts
outside of an OPM graph. In Swift, dataset handles are given an URI, now
OPM has an annotation for this purpose [18].

Swift’s provenance implementation has two models of representing contain-
ment for dataset handles contained inside other dataset handles (arrays and
complex types). A constructor/accessor model has special processes called ac-
cessors and constructors corresponding to the [] array accessor and [1,2,3]

explicit construction syntax in SwiftScript. This model is proposed in OPM.
In the Swift implementation, this is a cause of multiple provenances for dataset
handles. For example, consider the SwiftScript program displayed in listing
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Listing 3: Multiple provenance descriptions for a dataset.

int a = 7;

int b = 10;

int c[] = [a, b];

3, the expression c[0] evaluates to the dataset handle corresponding to the
variable a. That dataset handle has a provenance trace indicating it was as-
signed from the constant value 7. However, that dataset handle has additional
provenance indicating that it was output by applying the array access operator
[] to the array c and the numerical value 0. In OPM, the artifact resulting
from evaluating c[0] is distinct from the artifact resulting from evaluating a,
although they may be annotated with an isIdenticalTo arc [15]. In order to
address the divergence between OPM and Swift’s provenance data model, the
dataset handle implementation could be modified so that it supported dataset
handles being aliases to other dataset handles. The alias dataset handle would
behave identically to the dataset handle that it aliases, except that it would
have different provenance reflecting both the provenance of the original dataset
handle, and subsequent operations made to retrieve it. In listing 3, then, c[0]
would return a newly created dataset handle that aliased the original dataset
handle for a. There is also a container/contained model, where relations are
stored directly between dataset handles indicating that one is contained inside
the other, without intervening processes. These relations can be inferred from
the constructor/accessor model. The Contained relation between two artifacts,
defined in [15], indicates that one is contained within another. This maps rel-
atively cleanly to Swift’s in-memory model of dataset handles containing other
dataset handles. Swift collections may be hierarchical. In [15], it is not specified
if the Contained relation holds only one level deep or to all elements contained
in a collection.

The Swift team [2] made a proposal [1] for a minor change to the XML
schema to better reflect the perceived intentions of the OPM authors. It was
apparent that the present representation of hierarchical processes in OPM is
insufficiently rich for some groups and that it would be useful to represent
hierarchy of individual processes and their containing processes more directly.
In Swift this is given by two categories: at the highest level, SwiftScript language
constructs, such as procedures and functions; below that, the mechanics of
Swift’s execution, such as moving files to and from computational resources, and
interactions with job execution. Swift provenance work to date has concentrated
on the high-level representation, treating all of the low-level behavior as opaque
and exposing neither processes nor artifacts. An OPM modification proposal
for this is forthcoming. In Swift, this information is often available through the
Karajan [17] execution engine thread identifier which closely maps to the Swift
process execution hierarchy: a Swift process contains another Swift process if
its Karajan thread identifier is a prefix of the second processes Karajan thread
identifier. The Swift provenance database stores values of dataset handles when
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those values exist in-memory (for example, when a dataset handle represents
and integer or a string). During PC3, interest in a standard way to represent
this was expressed.

5. Related Work

As pointed out by some provenance surveys [22] [8], provenance systems are
diverse regarding what the subject of the recorded provenance information is,
what its level of granularity is, and how it is gathered, stored, and queried. This
is also noticeable in PC3, where a variety of approaches were used to perform
its activities. These provenance systems use a variety of data models, including
semantic, relational and semistructured ones. Nevertheless, most of them were
able to map their data models to OPM. In this section we build on these surveys
and PC3 to compare Swift to other provenance systems.

Some provenance systems are not dependent on a particular workflow man-
agement system and work as provenance stores accessible, for example, as web
services or through API calls. Karma [3], for instance, is implemented as a web
service and stores provenance information in a relational database. Another
example is Tupelo [20], which is a data and metadata management middleware
that uses semantic web techniques, it has an API for enabling the storage of
provenance information. Unlike Swift, systems of this type often require the
instrumentation of the applications that compose a scientific workflow, which
was also observed during PC3. This may prove difficult when the users of these
applications are not also their developers, or if these applications are given by
undocumented legacy code.

Another category is given by workflow systems that have integrated prove-
nance management support. Vistrails [14], for instance, has a specialized prove-
nance query language and uses both XML and relational databases to store
provenance about data, processes and workflow evolution. This category in-
cludes Swift, which has a provenance system that is tightly coupled to it, that
gathers information both about processes and data involved in the execution of
a parallel script. It has comprehensive support for execution engines on high-
performance parallel and distributed computing environments. Also, by having
an integrated provenance system, Swift enables its users to readily generate and
query provenance records of their experiments. In Swift, prospective provenance
[26] is given by SwiftScript code, workflow evolution is not recorded. One al-
ternative for recording this, not yet implemented, would be to couple Swift’s
provenance database with a source code version control system.

6. Concluding Remarks

Swift was able to perform the activities proposed for PC3. This success
illustrates its capability to support provenance collection and analysis. Its
provenance model is close to OPM, which enables interoperability with other
provenance systems. One important aspect of Swift is its support for scalable
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execution of large-scale computations on parallel and distributed environments,
along with the collection of provenance information. Several examples of par-
allel scripting applications are mentioned in [23], which include protein struc-
ture prediction, identification of drug targets using computational docking, and
computational economics. In a recent example, Swift executed a neural imag-
ing analysis workflow that involved 500,000 jobs. Swift development continues
with the objective of improving its provenance capabilities and future work will
concentrate on the following aspects:

Provenance system scalability. Swift provenance tracking model results in
the generation and storage of large amounts of data. For smaller computations,
such as LoadWorkflow, this is not a problem, but for larger computations (which
is precisely the sort of computations for which Swift is particularly well suited)
the provenance can become extremely large, and provenance queries can take
a long time to execute. It may be desirable to provide options that can allow
the programmer to request that Swift store less data albeit (presumably) with
reduced accuracy. It may also be interesting to use distributed data management
techniques to enable better scalability.

Provenance query system. It was clear from PC3 that although it is possible
to express the provenance queries in SQL it is not always straightforward to do
so, due to its poor transitivity support. One future objective is to make the
provenance query system, which should include a specialized provenance query
language, capable of being readily queried by scientists to let them do better
science through validation, collaboration, and discovery.
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