GA-026: Algoritmos I

Prof. Luiz Gadelha

Programa de Pós-Graduação em Modelagem Computacional, P4/2019
Laboratório Nacional de Computação Científica
3 de outubro de 2019

Laboratório
Nacional de
Computação
Científica

Crescimento de Funções: Notação Θ

- Seja $g(n): \mathbb{R} \rightarrow \mathbb{R}$.
$\Theta(g(n))=\left\{f(n):\right.$ existem constantes positivas c_{1}, c_{2}, e n_{0} tais que $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ para todo $\left.n \geq n_{0}\right\}$
- Embora $\Theta(g(n))$ seja um conjunto, é comum usar a notação $f(n)=\Theta(g(n))$ ao invés de $f(n) \in \Theta(g(n))$.
- Exemplo: $2 n^{2}-n=\Theta\left(n^{2}\right)$.
- Precisamos encontrar c_{1}, c_{2} e n_{0} tais que $c_{1} n^{2} \leq 2 n^{2}-n \leq c_{2} n^{2}$.
- Para $n>0$ temos $c_{1} \leq 2-\frac{1}{n} \leq c_{2}$.
- Tomando $c_{1}=1, c_{2}=2$ e $n_{0}=1$ temos uma combinação que satisfaz a desigualdade para $n \geq n_{0}$.

Crescimento de Funções: Notação Θ

- Seja $g(n): \mathbb{R} \rightarrow \mathbb{R}$.
$\Theta(g(n))=\left\{f(n):\right.$ existem constantes positivas c_{1}, c_{2}, e n_{0}
tais que $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ para todo $\left.n \geq n_{0}\right\}$
- Exemplo: $2 n^{3} \neq \Theta\left(n^{2}\right)$.
- Precisamos encontrar c_{1}, c_{2} e n_{0} tais que $c_{1} n^{2} \leq 2 n^{3} \leq c_{2} n^{2}$.
- Para $n>0$ temos $c_{1} \leq 2 n \leq c_{2}$.
- $2 n \leq c_{2}$ implica que $n \leq \frac{c_{2}}{2}$ e essa desigualdade não será verdadeira para n suficientemente grande.

Crescimento de Funções: Notação Θ

- Em geral podemos ignorar termos de menor ordem em uma função função positiva assintoticamente.
- P.ex., para $f(n)=a n^{2}+b n+c(a>0)$ podemos verificar $f(n)=\Theta\left(n^{2}\right)$ escolhendo $c_{1}=\frac{a}{2}$ e $c_{2}=\frac{3 a}{2}$:
- $c_{1} n^{2}=\frac{a}{2} n^{2} \leq a n^{2}+b n+c$ $\Rightarrow \frac{a}{2} n^{2}+b n+c \geq 0$ (1)
- $a n^{2}+b n+c \leq c_{2} n^{2}=\frac{3 a}{2} n^{2}$ $\Rightarrow-\frac{a}{2} n^{2}+b n+c \leq 0$ (2)
- Sabemos que existe n_{0} a partir do qual (1) e (2) são verdadeiras. (Exercício)
- Uma constante $c=\Theta\left(n^{0}\right)$, que representaremos como $\Theta(1)$.

Crescimento de Funções: Notação Θ

- Fonte: Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2009). Introduction to Algorithms. MIT Press.

Crescimento de Funções: Notação 0

- Seja $g(n): \mathbb{R} \rightarrow \mathbb{R}$.

$$
\begin{gathered}
O(g(n))=\left\{f(n): \text { existe constante positiva } c \text { e } n_{0}\right. \\
\text { tal que } \left.0 \leq f(n) \leq c g(n) \text { para todo } n \geq n_{0}\right\}
\end{gathered}
$$

- A notação O é usada para definir um limite superior assintótico.
- $f(n)=\Theta(g(n)) \Rightarrow f(n)=O(g(n))$.
- A recíproca não é verdadeira:
- $a n+b=O\left(n^{2}\right)$.
- $a n+b \neq \Theta\left(n^{2}\right)$.
- A notação O pode ser usada para descrever o pior caso de complexidade de tempo de execução de um algoritmo.
- Nesse caso, o limite serve para qualquer entrada do algoritmo (além do pior caso).

Crescimento de Funções: Notação 0

- Fonte: Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2009).

Introduction to Algorithms. MIT Press.

Crescimento de Funções: Notação Ω

- Seja $g(n): \mathbb{R} \rightarrow \mathbb{R}$.

$$
\begin{gathered}
\Omega(g(n))=\left\{f(n): \text { existe constante positiva } c \text { e } n_{0}\right. \\
\text { tal que } \left.0 \leq c g(n) \leq f(n) \text { para todo } n \geq n_{0}\right\}
\end{gathered}
$$

- A notação Ω é usada para definir um limite inferior assintótico.
- $f(n)=\Theta(g(n)) \Rightarrow f(n)=\Omega(g(n))$.
- A recíproca não é verdadeira:
- $n^{3}=\Omega\left(n^{2}\right)$.
- $n^{3} \neq \Theta\left(n^{2}\right)$.
- A notação Ω pode ser usada para descrever o melhor caso de complexidade de tempo de execução de um algoritmo.
- Nesse caso, o limite serve para qualquer entrada do algoritmo (além do melhor caso).

Crescimento de Funções: Notação Ω

- Fonte: Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2009).

Introduction to Algorithms. MIT Press.

Crescimento de Funções

- Teorema. Para quaisquer funções $f(n)$ e $g(n)$, temos $f(n)=\Theta(g(n)) \Leftrightarrow f(n)=O(g(n))$ e $f(n)=\Omega(g(n))$.
- Exercício. Demonstrar o teorema.
- Outras propriedades:
- Transitividade:

$$
\begin{aligned}
& f(n)=\Theta(g(n)) \text { e } g(n)=\Theta(h(n)) \Rightarrow f(n)=\Theta(h(n)) \\
& f(n)=O(g(n)) \text { e } g(n)=O(h(n)) \Rightarrow f(n)=O(h(n)) \\
& f(n)=\Omega(g(n)) \text { e } g(n)=\Omega(h(n)) \Rightarrow f(n)=\Omega(h(n))
\end{aligned}
$$

- Reflexividade:

$$
f(n)=\Theta(f(n)), f(n)=O(f(n)), f(n)=\Omega(f(n))
$$

- Simetria: $f(n)=\Theta(g(n))$ se e somente se $g(n)=\Theta(f(n))$
- Simetria transposta:

$$
f(n)=O(g(n)) \text { se e somente se } g(n)=\Omega(f(n))
$$

Obrigado!

E-mail: lgadelha@lncc.br

