GA-026: Algoritmos I

Prof. Luiz Gadelha

Programa de Pós-Graduação em Modelagem Computacional, P4/2019 Laboratório Nacional de Computação Científica

3 de outubro de 2019

• Seja $g(n) : \mathbb{R} \to \mathbb{R}$.

 $\Theta(g(n)) = \{f(n) : \text{existem constantes positivas } c_1, c_2, e n_0$ tais que $0 \le c_1g(n) \le f(n) \le c_2g(n)$ para todo $n \ge n_0\}$

Embora Θ(g(n)) seja um conjunto, é comum usar a notação f(n) = Θ(g(n)) ao invés de f(n) ∈ Θ(g(n)).

• Exemplo: $2n^2 - n = \Theta(n^2)$.

- Precisamos encontrar $c_1, c_2 \in n_0$ tais que $c_1 n^2 \le 2n^2 n \le c_2 n^2$.
- Para n > 0 temos $c_1 \le 2 \frac{1}{n} \le c_2$.
- ► Tomando c₁ = 1, c₂ = 2 e n₀ = 1 temos uma combinação que satisfaz a desigualdade para n ≥ n₀.

• Seja
$$g(n) : \mathbb{R} \to \mathbb{R}$$
.

 $\Theta(g(n)) = \{f(n) : \text{existem constantes positivas } c_1, c_2, \text{ e } n_0$

tais que $0 \le c_1g(n) \le f(n) \le c_2g(n)$ para todo $n \ge n_0$ }

• Exemplo:
$$2n^3 \neq \Theta(n^2)$$
.

- Precisamos encontrar $c_1, c_2 \in n_0$ tais que $c_1 n^2 \le 2n^3 \le c_2 n^2$.
- Para n > 0 temos $c_1 \le 2n \le c_2$.
- 2n ≤ c₂ implica que n ≤ c₂/2 e essa desigualdade não será verdadeira para n suficientemente grande.

- Em geral podemos ignorar termos de menor ordem em uma função função positiva assintoticamente.
- ▶ P.ex., para $f(n) = an^2 + bn + c$ (a > 0) podemos verificar $f(n) = \Theta(n^2)$ escolhendo $c_1 = \frac{a}{2}$ e $c_2 = \frac{3a}{2}$:

•
$$c_1 n^2 = \frac{a}{2}n^2 \le an^2 + bn + c$$

 $\Rightarrow \frac{a}{2}n^2 + bn + c > 0$ (1)

►
$$an^{2} + bn + c \le c_{2}n^{2} = \frac{3a}{2}n^{2}$$

 $\Rightarrow -\frac{a}{2}n^{2} + bn + c \le 0$ (2)

- Sabemos que existe n₀ a partir do qual (1) e (2) são verdadeiras. (Exercício)
- Uma constante $c = \Theta(n^0)$, que representaremos como $\Theta(1)$.

Crescimento de Funções: Notação Θ

Fonte: Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2009). Introduction to Algorithms. MIT Press.

Crescimento de Funções: Notação O

• Seja
$$g(n) : \mathbb{R} \to \mathbb{R}$$
.
 $O(g(n)) = \{f(n) : \text{existe constante positiva } c \in n_0$
tal que $0 \le f(n) \le cg(n)$ para todo $n \ge n_0\}$

- A notação O é usada para definir um limite superior assintótico.
- $f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)).$
- A recíproca não é verdadeira:

•
$$an + b = O(n^2)$$
.

- $an + b \neq \Theta(n^2)$.
- A notação O pode ser usada para descrever o pior caso de complexidade de tempo de execução de um algoritmo.
 - Nesse caso, o limite serve para qualquer entrada do algoritmo (além do pior caso).

Crescimento de Funções: Notação O

Fonte: Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2009). Introduction to Algorithms. MIT Press.

Crescimento de Funções: Notação Ω

• Seja
$$g(n) : \mathbb{R} \to \mathbb{R}$$
.

 $\Omega(g(n)) = \{f(n) : \text{existe constante positiva } c \in n_0$

tal que $0 \le cg(n) \le f(n)$ para todo $n \ge n_0$

A notação Ω é usada para definir um limite inferior assintótico.

•
$$f(n) = \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n)).$$

•
$$n^3 = \Omega(n^2)$$
.
• $n^3 \neq \Theta(n^2)$.

- A notação Ω pode ser usada para descrever o melhor caso de complexidade de tempo de execução de um algoritmo.
 - Nesse caso, o limite serve para qualquer entrada do algoritmo (além do melhor caso).

Crescimento de Funções: Notação Ω

Fonte: Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2009). Introduction to Algorithms. MIT Press.

- ► **Teorema**. Para quaisquer funções $f(n) \in g(n)$, temos $f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n))$ e $f(n) = \Omega(g(n))$.
- **Exercício**. Demonstrar o teorema.
- Outras propriedades:
 - ► Transitividade: $f(n) = \Theta(g(n)) e g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$ $f(n) = O(g(n)) e g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$ $f(n) = \Omega(g(n)) e g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$
 - Reflexividade:
 - $f(n) = \Theta(f(n)), \ f(n) = O(f(n)), \ f(n) = \Omega(f(n))$
 - Simetria: $f(n) = \Theta(g(n))$ se e somente se $g(n) = \Theta(f(n))$
 - Simetria transposta:

f(n) = O(g(n)) se e somente se $g(n) = \Omega(f(n))$

Obrigado!

E-mail: lgadelha@lncc.br

