GA-026: Algoritmos I

Prof. Luiz Gadelha

Programa de Pós-Graduação em Modelagem Computacional, P4/2019 Laboratório Nacional de Computação Científica

3 de outubro de 2019

▶ Seja $g(n) : \mathbb{R} \to \mathbb{R}$.

$$\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2, \text{ e } n_0$$

tais que $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ para todo $n \ge n_0\}$

- ▶ Embora $\Theta(g(n))$ seja um conjunto, é comum usar a notação $f(n) = \Theta(g(n))$ ao invés de $f(n) \in \Theta(g(n))$.
- $Exemplo: 2n^2 n = \Theta(n^2).$
 - Precisamos encontrar c_1, c_2 e n_0 tais que $c_1 n^2 < 2n^2 n < c_2 n^2$.
 - ▶ Para n > 0 temos $c_1 \le 2 \frac{1}{n} \le c_2$.
 - ▶ Tomando $c_1 = 1$, $c_2 = 2$ e $n_0 = 1$ temos uma combinação que satisfaz a desigualdade para $n \ge n_0$.

▶ Seja $g(n) : \mathbb{R} \to \mathbb{R}$.

$$\Theta(g(n))=\{f(n): ext{ existem constantes positivas } c_1,c_2, ext{ e } n_0$$
 tais que $0\leq c_1g(n)\leq f(n)\leq c_2g(n)$ para todo $n\geq n_0\}$

- ► Exemplo: $2n^3 \neq \Theta(n^2)$.
 - ▶ Precisamos encontrar c_1, c_2 e n_0 tais que $c_1 n^2 \le 2n^3 \le c_2 n^2$.
 - ▶ Para n > 0 temos $c_1 \le 2n \le c_2$.
 - ▶ $2n \le c_2$ implica que $n \le \frac{c_2}{2}$ e essa desigualdade não será verdadeira para n suficientemente grande.

- Em geral podemos ignorar termos de menor ordem em uma função função positiva assintoticamente.
- ▶ P.ex., para $f(n) = an^2 + bn + c$ (a > 0) podemos verificar $f(n) = \Theta(n^2)$ escolhendo $c_1 = \frac{a}{2}$ e $c_2 = \frac{3a}{2}$:
 - $c_1 n^2 = \frac{a}{2} n^2 \le an^2 + bn + c$ $\Rightarrow \frac{a}{2} n^2 + bn + c \ge 0 (1)$
 - ► $an^2 + bn + c \le c_2 n^2 = \frac{3a}{2}n^2$ ⇒ $-\frac{a}{2}n^2 + bn + c \le 0$ (2)
 - ► Sabemos que existe n₀ a partir do qual (1) e (2) são verdadeiras. (**Exercício**)
 - Uma constante $c = \Theta(n^0)$, que representaremos como $\Theta(1)$.

Fonte: Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2009). Introduction to Algorithms. MIT Press.

Seja $g(n): \mathbb{R} \to \mathbb{R}$. $O(g(n)) = \{f(n): \text{ existe constante positiva } c \in n_0$ tal que $0 \le f(n) \le cg(n)$ para todo $n \ge n_0\}$

- A notação O é usada para definir um limite superior assintótico.
- $f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)).$
- A recíproca não é verdadeira:
 - ▶ $an + b = O(n^2)$.
 - ▶ $an + b \neq \Theta(n^2)$.
- ▶ A notação *O* pode ser usada para descrever o pior caso de complexidade de tempo de execução de um algoritmo.
 - Nesse caso, o limite serve para qualquer entrada do algoritmo (além do pior caso).

Fonte: Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2009). Introduction to Algorithms. MIT Press.

▶ Seja $g(n): \mathbb{R} \to \mathbb{R}$.

$$\Omega(g(n)) = \{f(n) : \text{ existe constante positiva } c \in n_0$$

tal que $0 \le cg(n) \le f(n)$ para todo $n \ge n_0\}$

- A notação Ω é usada para definir um limite inferior assintótico.
- $f(n) = \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n)).$
- A recíproca não é verdadeira:
 - ▶ $n^3 = \Omega(n^2)$.
 - $\qquad \qquad n^3 \neq \Theta(n^2).$
- A notação Ω pode ser usada para descrever o melhor caso de complexidade de tempo de execução de um algoritmo.
 - Nesse caso, o limite serve para qualquer entrada do algoritmo (além do melhor caso).

Fonte: Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2009). Introduction to Algorithms. MIT Press.

Crescimento de Funções

- ▶ **Teorema**. Para quaisquer funções f(n) e g(n), temos $f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n))$ e $f(n) = \Omega(g(n))$.
- **Exercício**. Demonstrar o teorema.
- Outras propriedades:
 - Transitividade:

$$f(n) = \Theta(g(n)) \in g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$$

 $f(n) = O(g(n)) \in g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$
 $f(n) = \Omega(g(n)) \in g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$

Reflexividade:

$$f(n) = \Theta(f(n)), \ f(n) = O(f(n)), \ f(n) = \Omega(f(n))$$

- ▶ Simetria: $f(n) = \Theta(g(n))$ se e somente se $g(n) = \Theta(f(n))$
- Simetria transposta:

$$f(n) = O(g(n))$$
 se e somente se $g(n) = \Omega(f(n))$

Obrigado!

E-mail: lgadelha@lncc.br

