
GA-026: Algoritmos I

Prof. Luiz Gadelha

Programa de Pós-Graduação em Modelagem Computacional, P4/2019
Laboratório Nacional de Computação Cient́ıfica

3 de outubro de 2019



Crescimento de Funções: Notação Θ

I Seja g(n) : R→ R.

Θ(g(n)) = {f (n) : existem constantes positivas c1, c2, e n0

tais que 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) para todo n ≥ n0}

I Embora Θ(g(n)) seja um conjunto, é comum usar a notação
f (n) = Θ(g(n)) ao invés de f (n) ∈ Θ(g(n)).

I Exemplo: 2n2 − n = Θ(n2).
I Precisamos encontrar c1, c2 e n0 tais que

c1n
2 ≤ 2n2 − n ≤ c2n

2.
I Para n > 0 temos c1 ≤ 2− 1

n ≤ c2.
I Tomando c1 = 1, c2 = 2 e n0 = 1 temos uma combinação que

satisfaz a desigualdade para n ≥ n0.

2 / 11



Crescimento de Funções: Notação Θ

I Seja g(n) : R→ R.

Θ(g(n)) = {f (n) : existem constantes positivas c1, c2, e n0

tais que 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) para todo n ≥ n0}

I Exemplo: 2n3 6= Θ(n2).
I Precisamos encontrar c1, c2 e n0 tais que c1n

2 ≤ 2n3 ≤ c2n
2.

I Para n > 0 temos c1 ≤ 2n ≤ c2.
I 2n ≤ c2 implica que n ≤ c2

2 e essa desigualdade não será
verdadeira para n suficientemente grande.

3 / 11



Crescimento de Funções: Notação Θ

I Em geral podemos ignorar termos de menor ordem em uma
função função positiva assintoticamente.

I P.ex., para f (n) = an2 + bn + c (a > 0) podemos verificar
f (n) = Θ(n2) escolhendo c1 = a

2 e c2 = 3a
2 :

I c1n
2 = a

2n
2 ≤ an2 + bn + c

⇒ a
2n

2 + bn + c ≥ 0 (1)
I an2 + bn + c ≤ c2n

2 = 3a
2 n2

⇒ − a
2n

2 + bn + c ≤ 0 (2)
I Sabemos que existe n0 a partir do qual (1) e (2) são

verdadeiras. (Exerćıcio)
I Uma constante c = Θ(n0), que representaremos como Θ(1).

4 / 11



Crescimento de Funções: Notação Θ
3.1 Asymptotic notation 45

(b) (c)(a)

nnn
n0n0n0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D !.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c1g.n/

c2g.n/

Figure 3.1 Graphic examples of the ‚, O , and ! notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) !-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D !.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/
lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n ! n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

I Fonte: Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2009).
Introduction to Algorithms. MIT Press.

5 / 11



Crescimento de Funções: Notação O

I Seja g(n) : R→ R.

O(g(n)) = {f (n) : existe constante positiva c e n0

tal que 0 ≤ f (n) ≤ cg(n) para todo n ≥ n0}

I A notação O é usada para definir um limite superior
assintótico.

I f (n) = Θ(g(n))⇒ f (n) = O(g(n)).
I A rećıproca não é verdadeira:

I an + b = O(n2).
I an + b 6= Θ(n2).

I A notação O pode ser usada para descrever o pior caso de
complexidade de tempo de execução de um algoritmo.

I Nesse caso, o limite serve para qualquer entrada do algoritmo
(além do pior caso).

6 / 11



Crescimento de Funções: Notação O3.1 Asymptotic notation 45

(b) (c)(a)

nnn
n0n0n0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D !.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c1g.n/

c2g.n/

Figure 3.1 Graphic examples of the ‚, O , and ! notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) !-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D !.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/
lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n ! n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

I Fonte: Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2009).
Introduction to Algorithms. MIT Press.

7 / 11



Crescimento de Funções: Notação Ω

I Seja g(n) : R→ R.

Ω(g(n)) = {f (n) : existe constante positiva c e n0

tal que 0 ≤ cg(n) ≤ f (n) para todo n ≥ n0}

I A notação Ω é usada para definir um limite inferior assintótico.

I f (n) = Θ(g(n))⇒ f (n) = Ω(g(n)).
I A rećıproca não é verdadeira:

I n3 = Ω(n2).
I n3 6= Θ(n2).

I A notação Ω pode ser usada para descrever o melhor caso de
complexidade de tempo de execução de um algoritmo.

I Nesse caso, o limite serve para qualquer entrada do algoritmo
(além do melhor caso).

8 / 11



Crescimento de Funções: Notação Ω3.1 Asymptotic notation 45

(b) (c)(a)

nnn
n0n0n0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D !.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c1g.n/

c2g.n/

Figure 3.1 Graphic examples of the ‚, O , and ! notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) !-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D !.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/
lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n ! n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

I Fonte: Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2009).
Introduction to Algorithms. MIT Press.

9 / 11



Crescimento de Funções

I Teorema. Para quaisquer funções f (n) e g(n), temos
f (n) = Θ(g(n))⇔ f (n) = O(g(n)) e f (n) = Ω(g(n)).

I Exerćıcio. Demonstrar o teorema.
I Outras propriedades:

I Transitividade:
f (n) = Θ(g(n)) e g(n) = Θ(h(n))⇒ f (n) = Θ(h(n))
f (n) = O(g(n)) e g(n) = O(h(n))⇒ f (n) = O(h(n))
f (n) = Ω(g(n)) e g(n) = Ω(h(n))⇒ f (n) = Ω(h(n))

I Reflexividade:
f (n) = Θ(f (n)), f (n) = O(f (n)), f (n) = Ω(f (n))

I Simetria: f (n) = Θ(g(n)) se e somente se g(n) = Θ(f (n))
I Simetria transposta:

f (n) = O(g(n)) se e somente se g(n) = Ω(f (n))

10 / 11



Obrigado!

E-mail: lgadelha@lncc.br

11 / 11


